Is my survey biased? The importance of measurement invariance

Yusuke Kuroki
Sunny Moon
November 9th, 2017
Measurement Invariance

- **Measurement invariance:** the same construct is being measured across groups (or across time).
- This is prerequisite to comparing groups but rarely tested.
“real” vs. Self-report

- A professor teaches a course and wants to know if high school GPA is a significant predictor of grades in the course.
- With respect to High school GPA, should a professor ask for the official data from IR or can the professor rely on students’ self-report HS GPA?
- This depends on the relationship between the official and self-reported GPA...

<table>
<thead>
<tr>
<th>Official HS GPA</th>
<th>Self-report HS GPA</th>
</tr>
</thead>
</table>
Official HS GPA

Self-Reported HS GPA

Official HS GPA
Official HS GPA

Self-Reported HS GPA

Group A

Group B
equal slopes and intercepts

diff slopes, equal intercepts

equal slopes, diff. intercepts

diff. slopes, diff. intercepts
Confirmatory Factor Analysis (CFA)

- CFA allows us to examine the relationship between latent and observed variables.
- For example, in NSSE, **Higher-order learning** is a latent factor measured by four items.

During the current school year, how much has your coursework emphasized the following:
 1. Applying facts, theories, or methods to practical problems or new situations
 2. Analyzing an idea, experience, or line of reasoning in depth by examining its parts
 3. Evaluating a point of view, decision, or information source
 4. Forming a new idea or understanding from various pieces of information
Confirmatory Factor Analysis (CFA)

- CFA allows us to examine the relationship between *latent* and *observed* variables.
 - Observed – directly measured.
 - Latent – not directly measured but inferred from the observed variables.

- A path diagram is a popular way to describe your theory (though it may not be accurate)

```
latent

observed

Regression or loading

(co)variance

Vector of 1s
(used for intercepts)
```
Simple regression

\[y = \beta_0 + \beta_1 x + e \]
One factor model

\[y_1 = \mu_1 + \lambda_1 F + e_1 \]
\[y_2 = \mu_2 + \lambda_2 F + e_2 \]
\[y_3 = \mu_3 + \lambda_3 F + e_3 \]
Model evaluation

- RMSEA: < 0.05 = good, .05 to .08 = acceptable
- Comparative Fit Index (CFI): > 0.95 = good, > 0.90 = acceptable
- Tucker-Lewis Index (TLI): > 0.95 = good
- SRMR: < 0.08 good
- Chi-square: this can be used compare models, if they are nested
Multiple-group CFA

This allows simultaneously estimate parameters for multiple groups
Levels of MI

1. Configural invariance: same factor loading pattern across groups.
2. Metric invariance: factor loadings equal across groups (aka weak invariance).
3. Scalar invariance: loadings & intercept equal across groups (aka strong invariance).
4. Strict invariance: residual variances equal across groups.
Configural invariance

Parameters are free to vary across groups
Metric invariance (weak)

Factor loadings are held equal across groups
equal slopes and intercepts

diff slopes, equal intercepts

equal slopes, diff. intercepts

diff. slopes, diff. intercepts
Metric invariance (weak)

- **Are factor loadings equal?**

 - Factor loadings, like regression weights, show us the relationship between a latent factor and observed variables.

 - Compare the fit of the metric invariance model with the fit of the configural model using a chi-square difference test.

 - If not significantly different, the factor loadings are invariant.

 - This suggests that the same construct is being measured.
Scalar invariance (strong)

Factor loadings and intercepts are held equal across groups
Scalar invariance (strong)

• Are factor loadings AND intercepts equal?

• Compare the fit of the scalar invariance model with the fit of the metric invariance model.

• If this model is significantly worse than the previous one, the intercepts are not equals, suggesting that one group tend to give higher or lower item response.
Strict invariance

Factor loadings, intercepts and residuals are held equal across groups
Strict invariance

• Are factor loadings AND intercepts AND residual variance equal?

• Compare the fit of the strict invariance model with the fit of the scalar invariance model.

• The strict invariance model is highly constrained model and often rejected in practice.
Software

• Mplus, SAS (proc calis), SPSS (AMOS), STATA (SEM builder), SmartPLS, LISREL, Onyx, EQS, etc.

• R
 – OpenMx
 – sem
 – lavaan
 – semTools
Software Options: R and RStudio
library(foreign) # needed to read in SPSS data.
library(lavaan) # loading the lavaan package

reading in the SPSS data
data <- read.spss("C:/.../data.sav", use.value.labels = F, to.data.frame = T)

inspect data
head(data)
str(data)
summary(data)
objects(data)
View(data)
lavaan syntax

specify the model
model <- 'y ~ x1 + x2 + x3'

fit the model
fit <- cfa(model, data)

display summary output
summary(fit, fit.measures=TRUE)

<table>
<thead>
<tr>
<th>Type</th>
<th>Operator</th>
<th>definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latent variable</td>
<td>=~</td>
<td>Is measured by</td>
</tr>
<tr>
<td>Regression</td>
<td>~</td>
<td>Is regressed on</td>
</tr>
<tr>
<td>(co)variance</td>
<td>~~</td>
<td>Is correlated with</td>
</tr>
<tr>
<td>Intercept</td>
<td>~1</td>
<td>intercept</td>
</tr>
</tbody>
</table>
lavaan syntax

specify the model
model <- ' y1 ~ x1 + x2 + x3
 y2 ~ x1 + x2 + x3 '

fit the model
fit <- cfa(model, data)

display summary output
summary(fit, fit.measures=TRUE)
lavaan syntax

specify the model
model <- ' x3 ~ x1 + x2
 x4 ~ x1 + x2 + x3
 x1 ~~ x2 '

fit the model
fit <- cfa(model, data)

display summary output
summary(fit, fit.measures=TRUE)
specify the model
HS.model <- ' visual =~ x1 + x2 + x3
 textual =~ x4 + x5 + x6
 speed =~ x7 + x8 + x9 '

fit the model
fit <- cfa(HS.model, data)

display summary output
summary(fit, fit.measures=TRUE)

Illustration using NSSE

Sample: two cohorts of first-time freshmen who took NSSE, 2014 and 2016 at Cal State Fullerton.

Latent Variable: Learning Strategies
Three indicator items (1 = never, 4 = very often)
- $LS_{reading}$: Identified key information from reading assignments
- LS_{notes}: Reviewed your notes after class
- $LS_{summary}$: Summarized what you learned in class or from course materials

Grouping Variable: URM (URM vs. non-URM)
#specify your model
model <- 'L =~ LSreading + LSnotes + LSsummary'

#fit your model
modelresult <- cfa(model, data, missing = 'ML')

#display model
summary(modelresult, fit.measures = TRUE)
lavaan

model <- 'LS =~ LSreading + LSnotes + LSsummary'

Latent Variables:

| Variable | Estimate | Std.Err | z-value | P>|z| |
|----------|----------|---------|---------|-----|
| L | 1.000 | 0.091 | 18.166 | 0.000 |
| LSreading| 3.004 | 0.020 | 150.237 | 0.000 |
| LSnotes | 2.877 | 0.024 | 122.025 | 0.000 |
| LSsummary| 2.693 | 0.024 | 113.057 | 0.000 |

Intercepts:

| Variable | Estimate | Std.Err | z-value | P>|z| |
|----------|----------|---------|---------|-----|
| LSreading| 3.004 | 0.020 | 150.237 | 0.000 |
| LSnotes | 2.877 | 0.024 | 122.025 | 0.000 |
| LSsummary| 2.693 | 0.024 | 113.057 | 0.000 |

Variances:

| Variable | Estimate | Std.Err | z-value | P>|z| |
|----------|----------|---------|---------|-----|
| LSreading| 0.409 | 0.017 | 23.937 | 0.000 |
| LSnotes | 0.340 | 0.025 | 13.612 | 0.000 |
| LSsummary| 0.239 | 0.028 | 8.454 | 0.000 |
| L | 0.172 | 0.017 | 10.004 | 0.000 |
lavaan

model <- 'LS =~ NA*LSreading + LSnotes + Lssummary
LS ~~ 1*LS'

Latent Variables:

| | Estimate | Std.Err | z-value | P(>|z|) |
|---|----------|---------|---------|---------|
| L | | | | |
| LSreading | 0.415 | 0.021 | 20.008 | 0.000 |
| LSnotes | 0.684 | 0.025 | 26.981 | 0.000 |
| Lssummary | 0.764 | 0.026 | 29.362 | 0.000 |

Intercepts:

| | Estimate | Std.Err | z-value | P(>|z|) |
|---|----------|---------|---------|---------|
| LSreading | 3.004 | 0.020 | 150.237 | 0.000 |
| LSnotes | 2.877 | 0.024 | 122.025 | 0.000 |
| Lssummary | 2.693 | 0.024 | 113.057 | 0.000 |
| L | 0.000 | | | |

Variances:

| | Estimate | Std.Err | z-value | P(>|z|) |
|---|----------|---------|---------|---------|
| L | 1.000 | | | |
| LSreading | 0.409 | 0.017 | 23.937 | 0.000 |
| LSnotes | 0.340 | 0.025 | 13.612 | 0.000 |
| Lssummary | 0.239 | 0.028 | 8.454 | 0.000 |
Configural invariance

cfa(model, data, group = 'URM', missing = 'ML')

Non-URM (n=761)

| Latent Variables: | Estimate | Std.Err | z-value | P(|z|) |
|-------------------|----------|---------|---------|-------|
| L | 1.000 | 0.120 | 13.165 | 0.000 |
| LSreading | 1.580 | 0.146 | 12.428 | 0.000 |
| LSnotes | 1.808 | 0.146 | 12.428 | 0.000 |

Intercepts:

| Estimate | Std.Err | z-value | P(|z|) |
|----------|---------|---------|-------|
| LSreading| 2.977 | 0.028 | 107.683| 0.000 |
| LSnotes | 2.866 | 0.032 | 88.560 | 0.000 |
| LSsummary| 2.678 | 0.033 | 81.815 | 0.000 |
| L | 0.000 | | | |

Variances:

| Estimate | Std.Err | z-value | P(|z|) |
|----------|---------|---------|-------|
| LSreading| 0.404 | 0.024 | 17.086| 0.000 |
| LSnotes | 0.353 | 0.034 | 10.447| 0.000 |
| LSsummary| 0.233 | 0.039 | 5.927 | 0.000 |
| L | 0.176 | 0.024 | 7.288 | 0.000 |

URM (n=697)

| Latent Variables: | Estimate | Std.Err | z-value | P(|z|) |
|-------------------|----------|---------|---------|-------|
| L | 1.000 | 0.120 | 13.165 | 0.000 |
| LSreading | 1.730 | 0.139 | 12.489 | 0.000 |
| LSnotes | 1.878 | 0.156 | 12.055 | 0.000 |

Intercepts:

| Estimate | Std.Err | z-value | P(|z|) |
|----------|---------|---------|-------|
| LSreading| 3.033 | 0.029 | 104.911| 0.000 |
| LSnotes | 2.890 | 0.034 | 83.978 | 0.000 |
| LSsummary| 2.709 | 0.035 | 78.056 | 0.000 |
| L | 0.000 | | | |

Variances:

| Estimate | Std.Err | z-value | P(|z|) |
|----------|---------|---------|-------|
| LSreading| 0.414 | 0.025 | 16.746| 0.000 |
| LSnotes | 0.324 | 0.037 | 8.752 | 0.000 |
| LSsummary| 0.246 | 0.041 | 6.048 | 0.000 |
| L | 0.167 | 0.024 | 6.848 | 0.000 |
Metric invariance

cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings'))

Non-URM (n=761)

| Latent Variables: | Estimate | Std.Err | z-value | P>|z| |
|-------------------|----------|---------|---------|------|
| L =~ | | | | |
| LSredng | 1.000 | | | |
| LSnotes (.p2.) | 1.652 | 0.091 | 18.147 | 0.000 |
| LSSmmry (.p3.) | 1.842 | 0.106 | 17.324 | 0.000 |

| Intercepts: | Estimate | Std.Err | z-value | P>|z| |
|-------------------|----------|---------|---------|------|
| .LSreading | 2.977 | 0.027 | 108.359 | 0.000 |
| .LSnotes | 2.866 | 0.033 | 88.125 | 0.000 |
| .LSSmmry | 2.678 | 0.033 | 81.882 | 0.000 |
| L | 0.000 | | | |

| Variances: | Estimate | Std.Err | z-value | P>|z| |
|-------------------|----------|---------|---------|------|
| .LSredng | 0.406 | 0.023 | 17.508 | 0.000 |
| .LSnotes | 0.345 | 0.030 | 11.365 | 0.000 |
| .LSSmmry | 0.241 | 0.033 | 7.287 | 0.000 |
| L | 0.167 | 0.018 | 9.087 | 0.000 |

URM (n=697)

| Latent Variables: | Estimate | Std.Err | z-value | P>|z| |
|-------------------|----------|---------|---------|------|
| L =~ | | | | |
| LSredng | 1.000 | | | |
| LSnotes (.p2.) | 1.652 | 0.091 | 18.147 | 0.000 |
| LSSmmry (.p3.) | 1.842 | 0.106 | 17.324 | 0.000 |

| Intercepts: | Estimate | Std.Err | z-value | P>|z| |
|-------------------|----------|---------|---------|------|
| .LSreading | 3.033 | 0.029 | 104.200 | 0.000 |
| .LSnotes | 2.890 | 0.034 | 84.404 | 0.000 |
| .LSSmmry | 2.709 | 0.035 | 77.992 | 0.000 |
| L | 0.000 | | | |

| Variances: | Estimate | Std.Err | z-value | P>|z| |
|-------------------|----------|---------|---------|------|
| .LSredng | 0.413 | 0.024 | 16.860 | 0.000 |
| .LSnotes | 0.334 | 0.031 | 10.650 | 0.000 |
| .LSSmmry | 0.238 | 0.034 | 7.005 | 0.000 |
| L | 0.177 | 0.020 | 9.013 | 0.000 |
Compare configural vs metric

config_out <- cfa(model, data, group = 'URM', missing = 'ML')
metric_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings'))

lavTestLRT(config_out, metric_out)

Not sig.
Scalar invariance

cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts'))

Non-URM (n=761)

```
| Latent Variables:          | Estimate | Std.Err | z-value | P>|z| |  
|-----------------------------|----------|---------|---------|-----|  
| L ~                         |          |         |         |     |  
| LSredng (.p1.)              | 1.000    |         |         |     |  
| LSnotes (.p2.)              | 1.650    | 0.091   | 18.164  | 0.000|  
| LSSmmary (.p3.)             | 1.839    | 0.106   | 17.345  | 0.000|  
| Intercepts:                 |          |         |         |     |  
| .LSredng (.p8.)             | 2.994    | 0.023   | 130.269 | 0.000|  
| .LSnotes (.p9.)             | 2.862    | 0.030   | 94.968  | 0.000|  
| .LSSmmary (.10.)            | 2.675    | 0.032   | 84.486  | 0.000|  
| L                           | 0.000    |         |         |     |  
| Variances:                  |          |         |         |     |  
| .LSreading                  | 0.406    | 0.023   | 17.496  | 0.000|  
| .LSnotes                   | 0.345    | 0.030   | 11.378  | 0.000|  
| .LSSummary                 | 0.241    | 0.033   | 7.305   | 0.000|  
| L                           | 0.168    | 0.018   | 9.094   | 0.000|  
```

URM (n=697)

```
| Latent Variables:          | Estimate | Std.Err | z-value | P>|z| |  
|-----------------------------|----------|---------|---------|-----|  
| L ~                         |          |         |         |     |  
| LSredng (.p1.)              | 1.000    |         |         |     |  
| LSnotes (.p2.)              | 1.650    | 0.091   | 18.164  | 0.000|  
| LSSmmary (.p3.)             | 1.839    | 0.106   | 17.345  | 0.000|  
| Intercepts:                 |          |         |         |     |  
| .LSredng (.p8.)             | 2.994    | 0.023   | 130.269 | 0.000|  
| .LSnotes (.p9.)             | 2.862    | 0.030   | 94.968  | 0.000|  
| .LSSmmary (.10.)            | 2.675    | 0.032   | 84.486  | 0.000|  
| L                           | 0.020    | 0.024   | 0.819   | 0.413|  
| Variances:                  |          |         |         |     |  
| .LSreading                  | 0.413    | 0.025   | 16.849  | 0.000|  
| .LSnotes                   | 0.334    | 0.031   | 10.664  | 0.000|  
| .LSSummary                 | 0.238    | 0.034   | 7.021   | 0.000|  
| L                           | 0.177    | 0.020   | 9.020   | 0.000|  
```
Compare metric vs scalar

```r
scalar_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts'))
lavTestLRT(metric_out, scalar_out)
```

Chi Square Difference Test

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>AIC</th>
<th>BIC</th>
<th>Chisq</th>
<th>Chisq diff</th>
<th>Df</th>
<th>diff</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>metric_out</td>
<td>2</td>
<td>9840.4</td>
<td>9925.0</td>
<td>0.7136</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scalar_out</td>
<td>4</td>
<td>9837.7</td>
<td>9911.7</td>
<td>2.0114</td>
<td>1.2978</td>
<td>2</td>
<td>0.5226</td>
<td></td>
</tr>
</tbody>
</table>

Not sig.
Strict invariance

cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts', 'residuals'))

Non-URM (n=761)

URM (n=697)
Compare scalar vs strict

strict_out <- cfa(model, data, group = 'URM', missing = 'ML', group.equal = c('loadings', 'intercepts', 'residuals'))

lavTestLRT(scalar_out, strict_out)

Chi Square Difference Test

<table>
<thead>
<tr>
<th></th>
<th>Df</th>
<th>AIC</th>
<th>BIC</th>
<th>Chisq</th>
<th>Chisq diff</th>
<th>Df</th>
<th>diff</th>
<th>Pr(>Chisq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>scalar_out</td>
<td>4</td>
<td>9837.7</td>
<td>9911.7</td>
<td>2.0114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>strict_out</td>
<td>7</td>
<td>9831.9</td>
<td>9890.0</td>
<td>2.1773</td>
<td>0.16585</td>
<td>3</td>
<td>0.9829</td>
<td></td>
</tr>
</tbody>
</table>

Not sig.
Alternative: semTools

library(semTools)

model <- 'L =~ LSreading + LSnotes + LSsummary'

measurementInvariance(model, data, strict= TRUE, group = "URM", missing = 'ML')
Issues

• What if the measurement is non-invariant? (Sass, 2011).
 – Use only invariant items.
 – Allows parameters of non-invariant items to vary across groups (partial measurement invariance model)
 – Use all the items if the extent of noninvariance is small.
 – avoid using the scale

• Are survey items considered continuous or ordinal?
 – lavaan can model ordinal data.
scalar_out <- cfa(model, data = data,
 group.equal = c("loadings", "intercepts"),
 group.partial = c('L =~ LSnotes', 'LSnotes ~ 1'),
 group = "URM", missing = 'ML')
library(semTools)

model <- 'L =~ LSreading + LSnotes + LSsummary'

measurementInvarianceCat(model, data = data, strict = T, group = "URM",
 ordered = c("LSreading","LSnotes","LSsummary"))
Optional: Plotting the model

library(semPlot)

semPaths(config_out)
semPaths(config_out, "est") # if you want add estimates to the figure.
Summary

• Measurement invariance is required for accurate assessment and evaluation.
• Multiple Group CFA is the most widely used tool for testing measurement invariance.
• Testing for measurement invariance in R is relatively simple.
 – A lot of examples online.
End

Question?