RYAN CAMMAROTA
Assistant Professor
(Organic Chemistry)
Office: MH-582C
Email: rcammarota@fullerton.edu

Organic and organometallic chemistry research focused on applying interpretable machine learning algorithms to make predictions about reaction outcomes and molecular properties. Specific areas of interest include uncovering structure-reactivity relationships in sustainable metal-catalyzed coupling reactions and investigating reaction mechanisms using NMR spectroscopy and cyclic voltammetry. Students will learn to make molecules, measure their properties, and use modern computational and data science tools to predict how they will react.

JOYA COOLEY
Assistant Professor (Inorganic/Materials Chemistry)
Office: MH-507
Email: jcooley@fullerton.edu

Design, synthesis, characterization of solid-state inorganic intermetallic and ceramic materials towards developing design principles for functional materials. Manipulating structure, oxidation-, and spin-states through chemical tuning toward understanding and developing design principles over (1) color and opacity in inorganic pigments and (2) negative-and zero-thermal-expansion materials. Additionally, (3) developing innovative synthesis in domestic kitchen microwave ovens toward developing rapid-synthesis methods and control of properties (such as particle size) linked to material properties.

JULIA CHAN
Assistant Professor
(Chemistry Education)
Office: MH-512A
Email: juliachan@fullerton.edu

(1) Studying the effect of affective characteristics (attitudes, self-concept, and motivation) on achievement in general and organic chemistry classes
(2) Studying ways to enhance students' affective characteristics, metacognition, and achievement through student-centered group learning pedagogies
(3) Developing informational workshops to promote growth mindsets and effective studying and learning strategies in and outside of the classroom.

JOHN HAAN
Professor
(Analytical Chemistry)
Office: MH-582B
Email: jhaan@fullerton.edu

Electrochemistry to address alternative energy options, particularly those related to fuel cell technology; development of new catalysts and fuels; probing the chemistry of fuel cell reactions.
PAULA HUDSON
Associate Professor
(Analytical Chemistry)
Office: MH-585
Email: phudson@fullerton.edu

Chemical and physical processes of atmospherically relevant surfaces and aerosols using Fourier transform infrared spectroscopy, quantitative adsorption methods and particle sizing instrumentation.

NIROSHIKA KEPPETIPOLA
Associate Professor
(Biochemistry)
Office: MH-501C
Email: nkeppetipola@fullerton.edu

Post-translational modifications (PTMs) in splicing regulatory proteins and their effect on splicing regulation. Focus on PTMs in the splicing regulatory protein family: polypyrimidine tract binding protein (PTB) and homolog neuronal PTB. Extend studies to other splicing regulatory proteins such as the RNA binding Fox family of proteins. Our studies will utilize both in vivo and in vitro assays and related tissue culture and biochemical techniques.

STEVAN PECIC
Assistant Professor
(Organic/Biochemistry)
Office: MH-582E
Email: specic@fullerton.edu

(1) Development of novel inhibitors of enzymes involved in lipid metabolism and their evaluation as potential therapeutics using traditional medicinal chemistry techniques (in silico drug design, synthesis, structure-activity relationship (SAR) studies and in vitro biological assays). (2) The identification of DNA-aptameric sensors for small molecules in so-called structure-switching format using SELEX procedure. We are in particular interested in aptamers for small molecules such as steroids and drugs that regulate pain and inflammation.

ANDREW PETIT
Associate Professor
(Theoretical Physical Chemistry)
Office: MH-582D
Email: apetit@fullerton.edu

Computational photochemistry. Current research interests include developing structure-function relationships in photobases, determining the mechanism of light-driven organic reactions involving reactive intermediates, and modeling the photochemistry of the atmospherically relevant radicals NO and OH. Students will learn high-performance computing, quantum chemistry, and the interplay between theory and experiment.

MADELINE RASCHE
Professor
(Biochemistry)
Office: MH-513B
Email: merasche@fullerton.edu

Biochemical, genetic, and genomic approaches to identify the genes and characterize the enzymes involved in the biosynthetic pathways of selected archaeal coenzymes and potential applications for modulation of biological methane production and utilization by microorganisms of environmental importance.

STEVEN PECIC
Assistant Professor
(Organic/Biochemistry)
Office: MH-582E
Email: specic@fullerton.edu

(1) Development of novel inhibitors of enzymes involved in lipid metabolism and their evaluation as potential therapeutics using traditional medicinal chemistry techniques (in silico drug design, synthesis, structure-activity relationship (SAR) studies and in vitro biological assays). (2) The identification of DNA-aptameric sensors for small molecules in so-called structure-switching format using SELEX procedure. We are in particular interested in aptamers for small molecules such as steroids and drugs that regulate pain and inflammation.

FU-MING TAO
Professor
(Physical Chemistry)
Office: MH-539A
Email: ftao@fullerton.edu

Theoretical study of molecular structure and interactions using advanced computational programs and technologies; application of computational chemistry to the investigation of environmental and biological problems, in collaboration with experimental scientists.

SACHEL VILLAFANE
Assistant Professor
(Chemistry Education)
Office: MH-535A
Email: svillafane@fullerton.edu

Understanding how curriculum influences students’ learning, interest in science, and preparation for the workforce by: (1) Using quantitative and qualitative methods to understand different cognitive and affective factors, (2) Using instruments that produce reliable and valid results to inform, evaluate, and improve instruction, (3) Understanding instructors’ decisions about the use of assessments to inform instruction.

NICHOLAS SALZAMEDA
Professor
(Organic/Bioorganic Chemistry)
Office: MH-580B
Email: nsalzameda@fullerton.edu

Interested in drug discovery for the treatment of neglected diseases. Research efforts are at the interface of chemistry and biochemistry involving the organic synthesis of small molecules, enzyme assays to identify novel inhibitors for proteases related to human health and disease. Optimization of small molecule inhibitors through organic synthesis, structure activity relationship studies and molecular modeling will also be performed to improve binding and selectivity for their enzyme target.