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Hi Zair,
 
Can you please send the email below to students on my behalf? Note that there are six aZachments, please
do not forget to aZach them to the message.
 
Thanks!
 
Subject: materials for Marcelo’s lecturers
 
Dear all,
 
I want to give you some materials to help you with my lectures next week. I should’ve sent this a month ago,
but only now was I able to put together the notes I menNon below. I hope this will sNll be useful to you,
despite being last minute.
 

1. Here:

hZp://www.disconzi.net/Research/Uzbekistan2022/Uzbekistan-ASI.pdf

are some notes I wrote for the lectures. Unfortunately, I didn’t have Nme to Latex them (I plan to do it
at some point), so these are handwriZen. I think they will be useful to you, although admiZedly my
handwriNng is not the nicest one. Because they are exported from my iPad, the file is large, so it may
take a minute for you to open them in your browser.

This will free you from taking detailed class notes since the notes I wrote contain enough details, so
that you can beZer focus in the lectures.

I’m also aZaching some papers to this message:
 

2. The paper “The RelaNvisNc Euler EquaNons: Remarkable Null Structures and Regularity ProperNes”
covers parts of secNon “New formulaNon of the relaNvisNc Euler equaNons,” roughly pages 46-62 and
98-110 of the notes.

3. The paper “Rough sound waves in 3D compressible Euler flow with vorNcity” covers secNon “Low
regularity soluNons,” which is roughly pages 46-98 of the notes.

https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__http%3A%2F%2Fwww.disconzi.net%2FResearch%2FUzbekistan2022%2FUzbekistan-ASI.pdf__%3B!!GF3VTAzAMGBM8A!x4Vi67hNBSS8HusL2Ofb5kkXVY44MS3HyMPkKVkts_JA4FAq0p1ud6DsMWZgeiEUDhPpPZ5GDj9GeWUD2qqQbd7iK2l742L8b-_XjNjg%24&data=05%7C01%7Czibragimov%40fullerton.edu%7Ce4d97d22e5af45f2ae1308da6ee99176%7C82c0b871335f4b5c9ed0a4a23565a79b%7C0%7C0%7C637944247539940674%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=lycSXxbiGkMVaAVxFbucEmO6IbULTDpXmrZ5WbcWf34%3D&reserved=0


Page 2 of 2

4. The paper “The relaNvisNc Euler equaNons with a physical vacuum boundary: Hadamard local well-
posedness, rough soluNons, and conNnuaNon criterion,” covers secNon “The relaNvisNc Euler equaNons
with a physical vacuum boundary,” which is pages 111-166 of the notes.

5. The papers “Nonlinear Constraints on RelaNvisNc Fluids Far from Equilibrium” and “First-Order
General-RelaNvisNc Viscous Fluid Dynamics” cover secNon “RelaNvisNc fluids with viscosity,” which is
the remaining part of the notes.

(The above papers can all be found on arXiv, but the published versions that I’m sending here are more
polished than the arXiv versions.)
 
Regarding background, I’ll be assuming background in (Lorentzian) geometry and PDEs.
 

6. If you don’t have a background in geometry or need to brush up some concepts, a quick introducNon
can be found in chapter 3 of these notes:

hZp://www.disconzi.net/Research/USCSummer2019/USC_notes.pdf

A more complete introducNon is available on these notes by S. Aretakis: 

hZps://www.math.toronto.edu/aretakis/General%20RelaNvity-Aretakis.pdf

7. If you need a quick introducNon to some of the main PDE tools I’ll be assuming, I recommend these
notes by J. Luk:

hZps://web.stanford.edu/~jluk/NWnotes.pdf

8. Finally, a quick review of the concept of characterisNcs for general PDEs, which will be used in the
lectures, can be found in appendix A of the aZached paper “On the existence of soluNons and causality
for relaNvisNc viscous conformal fluids.”

Naturally, I don’t expect you to go over all this material in the short Nme before the lectures. But I thought
that having these references can be helpful. Of course, do not hesitate to reach out if you have any quesNons.
 
Best,
 
-- 
Marcelo Disconzi
Associate Professor of MathemaNcs
Vanderbilt University
www.disconzi.net
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ON THE EXISTENCE OF SOLUTIONS AND CAUSALITY FOR

RELATIVISTIC VISCOUS CONFORMAL FLUIDS

Marcelo M. Disconzi

Department of Mathematics, Vanderbilt University
Nashville, TN 37211, USA

(Communicated by Igor Kukavica)

Abstract. We consider a stress-energy tensor describing a pure radiation vis-

cous fluid with conformal symmetry introduced in [3]. We show that the cor-
responding equations of motions are causal in Minkowski background and also

when coupled to Einstein’s equations, and solve the associated initial-value

problem.

1. Introduction. Consider the following stress-energy tensor for a relativistic fluid
with viscosity:

Tαβ =
4

3
uαuβε+

1

3
gαβε− ηπµαπνβ(∇µuν +∇νuµ −

2

3
gµν∇λuλ)

+ λ(uαu
µ∇µuβ + uβu

µ∇µuα) +
1

3
χπαβ∇µuµ + χuαuβ∇µuµ

+
λ

4ε
(uαπ

µ
β∇µε+ uβπ

µ
α∇µε) +

3χ

4ε
uαuβu

µ∇µε+
χ

4ε
παβu

µ∇µε.

(1)

Here, u is the four-velocity of fluid particles, normalized so that

uαuα = −1, (2)

ε is the energy density of the fluid, g is a (Lorentzian) metric, ∇ is the Levi-Civita
connection associated with g, παβ = gαβ +uαuβ , and η, λ, and χ are viscous trans-
port coefficients — so that η = λ = χ = 0 corresponds to an ideal fluid. The
transport coefficients are non-negative functions of ε. Coefficient η is the usual co-
efficient of shear viscosity, whereas λ and χ are related to relaxation times. More
precisely, while λ and χ, differently than η, have no analogue in more familiar the-
ories such as classical, non-relativistic Navier-Stokes, their physical meaning can be
understood from the derivation of (1) from kinetic theory given in [3]. In that case,
one may interpret λ/(sθ) and χ/(sθ), where s is the entropy density and θ the tem-
perature, as relaxation times that restore causality (since intuitively causality says
that the system needs some time to relax back to equilibrium after a perturbation).
See [3] for details.

2000 Mathematics Subject Classification. Primary: 35Q76; Secondary: 35L15.
Key words and phrases. Relativistic viscous fluids, conformal fluids, Einstein’s equations,

causality, well-posedness.
M. M. D. is partially supported by NSF grant # DMS-1812826, by a Sloan Research Fellowship

provided by the Alfred P. Sloan foundation, and by a Discovery grant administered by Vanderbilt
University.

1567

http://dx.doi.org/10.3934/cpaa.2019075


1568 MARCELO M. DISCONZI

We are interested in the case of pure radiation, when the fluid’s pressure is given
by p = 1

3ε, and, therefore, p has already been eliminated from Tαβ .
Above and throughout, we adopt the following:

Convention 1. We work in units where 8πG = c = 1, where G is Newton’s
constant and c is the speed of light in vacuum. Our signature for the metric is
−+ ++. Greek indices run from 0 to 3 and Latin indices from 1 to 3.

We shall couple (1) to Einstein’s equations:

Rαβ −
1

2
Rgαβ + Λgαβ = Tαβ , (3)

where Rαβ and R are, respectively, the Ricci and scalar curvature of the metric
g, and Λ is a constant (the cosmological constant). We recall that in light of the
Bianchi identities, a necessary condition for (3) to hold is that

∇αTαβ = 0. (4)

Naturally, equations (3)-(4) are defined in a four-dimensional differentiable mani-
fold, the space-time.

We shall establish the following.

Main result. (see Theorems 2.2 and 2.3 for precise statements) Under appropriate
conditions on the initial data and the transport coefficients, the system of Einstein’s
equations coupled to (1) is causal and admits a unique solution. Causality and
uniqueness are here understood in the usual sense of general relativity. Existence,
uniqueness, and causality remain true if we consider solely (4) in Minkowski space-
time.

The tensor (1) was introduced1 in [3]. As discussed there, (1) is the first example
in the literature of a stress-energy tensor for relativistic viscous fluids satisfying
the following list of physical requirements: in Minkowski background, equations (4)
are (i) linearly stable with respect to perturbations around homogeneous thermody-
namic equilibrium, (ii) well-posed, and (iii) causal; (iv) Einstein’s equations coupled
to (1) are well-posed and causal; (v) equations (4) reduce to the standard Navier-
Stokes equations in the non-relativistic limit; (vi) an out-of-equilibrium entropy
can be defined so that solutions to (4) satisfy the (out of equilibrium) second law
of thermodynamics; and (vii) Tαβ can be derived from microscopic kinetic theory.

One reason for seeking a stress-energy tensor satisfying the above properties is
that the traditional forms of the relativistic Navier-Stokes equations fail to be causal
and stable [23, 35], and attempts to construct a relativistic viscous theory satisfying
(i)-(vi) have been limited so far2. See [12, 15, 16, 37] for a discussion. In [3] it is
also shown that Tαβ yields a well-defined temperature in the test-case of the Gubser
flow, in contrast to the traditional relativistic Navier-Stokes’ equations that yield a
negative temperature, and that a hydrodynamic attractor exists for the dynamics
of the Bjorken flow.

Tensor (1) describes a conformal fluid. Loosely speaking, this means that (1)
is well-behaved under conformal changes of the metric. More precisely, consider

1In [3], (1) is written in a different form, using the so-called Weyl derivative (whose definition

is given in [3]; see [33] for more details) instead of the covariant derivative. Both expressions agree
once the Weyl derivative is expanded in terms of the covariant derivative.

2It is interesting to note that the seemingly easier task of generalizing the non-relativistic
Navier-Stokes to Riemannian manifolds is not without problems either, see [5].
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a conformal transformation g′αβ = e−2φgαβ , and the transformed quantities u′α =

e−φuα, ε′ = e4φε. Then the fluid is called conformal if Tαβ is traceless and the
corresponding transformed T ′αβ satisfies

T ′αβ = e2φTαβ .

One can show [2, 4] that under these conditions

∇′α(T ′)αβ = e4φ∇αTαβ ,
so in particular solutions are preserved by the above transformations. There exists
a large literature on conformal fluids and their applications in physics, to which the
reader is referred for a discussion (see, e.g., [11, 20] and references therein; for the
mathematical background for these references, see [19]). We restrict ourselves to
mentioning that conformal fluids are of importance in the study of the quark-gluon
plasma that forms in high-energy collisions of heavy-ions; the quark-gluon plasma
at very high temperatures is the prototypical example of a relativistic viscous fluid
with an equation of state of pure radiation.

The definition of conformal fluid, stated above, will play no direct role in this
work per se. Rather, we shall use one of its main consequences, namely, that for
such fluids we have

χ = a1η, λ = a2η, (5)

where a1 and a2 are constants. Therefore all transport coefficients are determined
once we are given η = η(ε).

Our main result has previously appeared in [3], but the letter format of that
manuscript and the fact that it was addressed primarily to a physical audience pre-
vented us from presenting several details of the proof. In particular, the argument
in [3] may not be entirely satisfactory for a mathematical audience.

Definition 1.1. For the rest of the the paper, we shall refer to the system of
equations (3), with Tαβ given by (1) and u satisfying (2), as the viscous Einstein-
conformal fluid (VECF) system.

2. Statement of the results. We now turn to the precise formulation of the Main
Result. We begin by discussing the initial data for the VECF system.

Definition 2.1. An initial data set for the VECF system consists of a three-
dimensional smooth manifold Σ, a Riemannian metric g0 on Σ, a symmetric two-
tensor κ on Σ, two real-valued functions ε0 and ε1 defined on Σ, and two vector
fields v0 and v1 on Σ, such that the Einstein constraint equations are satisfied.

We recall that the constraint equations are given by the following system of
equations on Σ:

Rg0 − |κ|2g0 − (trg0 κ)2 = 2ρ

∇g0 trg0 κ− divg0 κ = j

where Rg0 is the scalar curvature of g0, ∇g0 , trg0 , divg0 , and | · |g0 are the covariant
derivative, trace, divergence, and norm with respect to g0. The quantities ρ and j
are given by ρ = T (n, n) and j = T (n, ·), where n is the future-pointing unit normal
to Σ inside a development of the initial data and T is the stress-energy tensor.

Because Tαβ involves first derivatives of u and ε, initial conditions for their time
derivatives have to be given, hence the necessity of two functions and two vector
fields. Even though u is a four-vector, it suffices to specify vector fields on Σ,
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with initial conditions for the non-tangential components of u derived from (2) (see
section 3.2). It is well-known that initial data for Einstein’s equations cannot be
prescribed arbitrarily, having to satisfy the associated constraint equations, see,
e.g., [21], for details.

We can now state our main result. The definition of spaces Gs and Gm,s is
recalled in Appendix A.1. We refer the reader to the general relativity literature
(e.g., [7, 21, 25, 38, 40]) for the terminology employed in Theorem 2.2.

Theorem 2.2. Let I = (Σ, g0, κ, ε0, ε1, v0, v1) be an initial data set for the VECF
system. Assume that Σ is compact with no boundary, and that ε0 > 0. Suppose that
χ and λ are given by (5), where η : (0,∞) → (0,∞) is analytic, and assume that
a1 = 4 and a2 ≥ 4. Finally, assume that the initial data is in G(s)(Σ) for some
1 < s < 17

16 . Then:
1) There exists a globally hyperbolic development M of I.
2) M is causal, in the following sense. Let (g, ε, u) be a solution to the VECF

system provided by the globally hyperbolic development M . For any p ∈ M in the
future of Σ, (g(p), u(p), ε(p)) depends only on I|i(Σ)∩J−(p), where J−(p) is the causal

past of p and i : Σ → M is the embedding associated with the globally hyperbolic
development M .

We note that, in the standard PDE language, Theorem 2.2 is local in time. But as
usual in general relativity, solutions to Einstein’s equations are geometric (a solution
to Einstein’s equations is a Lorentzian manifold) and, in particular, coordinate
independent, whereas a statement like “there exists a T > 0...” (as is usual in local
in time results) requires the introduction of coordinates. This is why the theorem is
better stated as the existence of a globally hyperbolic development3. We assumed
that Σ is compact for simplicity, otherwise asymptotic conditions would have to
be prescribed. The type of asymptotic conditions one would impose had Σ been
non-compact depends on the type of questions one is investigating. For instance,
it is customary to require g0 to be asymptotically flat, but other conditions, such
as asymptotically hyperbolic, are often used. As for the matter variables, several
choices are possible. One can require v0 and ε0 to approach zero, a constant, or
some other specified profile at infinity. The literature on Einstein’s equations with
non-compact Σ is vast, and a discussion of asymptotic conditions can be found,
e.g., [7, 8] and references therein. The assumption ε0 > 0 in Theorem 2.2 (which
implies a uniform bound from below away from zero by the compactness of Σ),
however, is crucial. This is apparent from expression (1), but it is worth mentioning
that allowing ε0 to vanish leads to severe technical difficulties even in the better
studied case of the Einstein-Euler system (see [18, 24, 36] for the known results
and [13] for a discussion; in fact, the difficulties with vanishing density are present
already in the non-relativistic case, see the discussion in [14, 31]). In particular,
if we were dealing with a non-compact Σ and had chosen an asymptotic condition
where ε0 approaches zero, the techniques here employed would not directly apply.

3We recall that a globally hyperbolic development is, roughly speaking, a Lorentzian manifold
where Einstein’s equations are satisfied and in which Σ embeds isometrically as a Cauchy surface
taking the correct data. We also recall that once a globally hyperbolic development is shown to
exist, one can prove the existence of the “largest” possible global hyperbolic development, i.e., the

maximal globally hyperbolic development of the initial data, which is (geometrically) unique. See
[25, 38] for details.
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The assumptions a1 = 4 and a2 ≥ 4 are technical4, but they are consistent with
conditions that guarantee the previously mentioned linear stability of (1). Note
that while our proof is restricted to the Gevrey class, our result guarantees that
causality will be automatically satisfied in any function space where uniqueness can
be established. This is relevant in view of the difficulties of constructing causal
theories of relativistic viscous fluids.

Next, we consider the case of a Minkowski background.

Theorem 2.3. Let T be given by (1) with g being the Minkowski metric. Suppose
that χ and λ satisfy (5), with a1 = 4, a2 ≥ 4, where η : (0,∞)→ (0,∞) is a given
analytic function. Let ε0, ε1 : R3 → R and v0, v2 : R3 → R3 belong to G(s)(R3) for
some 1 ≤ s < 7

6 , and assume that ε0 ≥ C0 > 0, where C0 is a constant.

Then, there exists a T > 0, a function ε : [0, T ) × R3 → (0,∞), and a vec-
tor field u : [0, T ) × R3 → R4, such that (ε, u) satisfies equations (2) and (4) in
[0, T ) × R3, ε(0, ·) = ε0, ∂0ε(0, ·) = ε1, u(0, ·) = u0, and ∂0u(0, ·) = u1, where ∂0

is the derivative with respect to the first coordinate in [0, T ) × R3. This solution
belongs to G2,(s)([0, T ) × R3) and is unique in this class. Finally, the solution is
causal, in the following sense. For any p ∈ [0, T )×R3, (ε(p), u(p)) depends only on
(ε0, ε1, v0, v1)|{x0=0}∩J−(p), where J−(p) is the causal past of p (with respect to the

Minkowski metric).

While formally Theorem 2.3 can not be derived as a corollary of Theorem 2.2,
its validity should come as no surprise once we know the latter to be true. In fact,
the proof of Theorem 2.3 will be essentially contained in that of Theorem 2.2, as
we shall see. It is nonetheless useful to state Theorem 2.3 given the importance of
viscous fluids in Minkowski background for applications.

Remark 1. The difference between s > 1 in Theorem 2.2 and s ≥ 1 in Theorem 2.3
comes from the fact that in the proof of Theorem 2.2 we work in local coordinates
and employ bump functions, which cannot be analytic (case s = 1). In Minkowski
space, however, we can use global coordinates and analyticity is not prevented.

3. Proof of Theorem 2.2. In this section we prove Theorem 2.2, thus we hence-
forth assume its hypotheses. We will always denote by s a number in (1, 17

16 ), as in
the statement of the theorem. The proof will be split in several parts. Some of the
arguments parallel well-known constructions in general relativity in the smooth set-
ting, but we present them because some additional steps are required in the Gevrey
class.

3.1. The equations of motion. Here we write the VECF in coordinates and in a
more explicit form. At this point, we are only interested in writing the equations in
a suitable form, thus we assume the validity of (2) and (3) (and consequently (4)),
and derive relations of interest.

As is customary, we shall write (3) in trace-reversed form and in wave coordinates.
More precisely, we consider the reduced Einstein equations given by

gµν∂2
µνgαβ = Bαβ(∂ε, ∂u, ∂g), (6)

where above and henceforth we adopt the following:

4 Other values of a1 and a2 are in fact possible as showed in [3], and the proof for these
other cases is essentially the same as showed here. The main difference is how one factors the

characteristic determinant. This different factorization is carried out in [3]. See Remark 16.
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Notation 1. We shall employ the letters B and B̃, with indices attached when
appropriate, to denote a general expression depending on at most the number of
derivatives indicated in its argument. For instance, in (6), Bαβ represents an ex-
pression depending on at most first derivatives of ε, first derivatives of u, and first

derivatives of g. As another example, B̃(ε, ∂u, ∂2g) denotes an expression depend-
ing on at most zero derivatives of ε, one derivative of u, and two derivatives of g.

B and B̃ can vary from expression to expression. It can be easily verified that B

and B̃ will always be an analytic function (typically involving only products and
quotients) of its arguments.

Equations (4) become5

(−ηgαµ + (λ− η)uαuµ)∂2
αµu

β + (λ+ χ)uβuµ∂2
µαu

α +
1

3
(−η + χ)gβµ∂2

µαu
α

+
1

3
(−η + χ)uβuµ∂2

µαu
α +

1

4ε
uβ(λgαµ + (λ+ 3χ)uαuµ)∂2

αµε

+
1

4ε
(λ+ χ)uαgβµ∂2

αµε+
1

4ε
(λ+ χ)uβuαuµ∂2

αµε+ B̃β(∂u, g)∂2g

=Bβ(∂ε, ∂u, ∂g).

(7)

The term B̃β(∂u, g)∂2g, which is linear in ∂2g, comes from derivatives of the
Christoffel symbols, after expanding the second covariant derivatives of u. This

term is of the form B̃β(∂u, g, ∂2g) according to Notation 1, but we wrote it as

B̃β(∂u, g)∂2g to emphasize that we shall consider it as a second order quasi-linear
operator on g. The particular form of this operator will not be needed, but it is
important that it be included in the principal part of the system for the derivative
counting employed below.

Applying uαuµ∇α∇µ to (2) produces

uλu
αuµ∂2

αµu
λ + B̃(∂u, g)∂2g = B(∂u, ∂g). (8)

We introduce the vector

U = (uβ , ε, gαβ),

where we adopt the obvious notation with uβ denoting (u0, u1, u2, u3), etc.; such a
notation is used throughout, including in the matrices below. We write equations
(6), (7), and (8) in matrix form as

M(U, ∂)U = q(U), (9)

where

M(U, ∂) =

(
m(U, ∂) b(U, ∂)

0 gµν∂2
µν

)
(10)

with

m00(U, ∂) =(−ηgαµ + (λ− η)uαuµ)∂2
αµ + (λ+ χ)u0uα∂2

0α

+
1

3
(−η + χ)(g0α + u0uα)∂2

0α,

m0i(U, ∂) =(λ+ χ)u0uα∂2
αi +

1

3
(−η + χ)(g0α + u0uα)∂2

αi,

5See Appendix B for a derivation of (6) and (7).
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miν(U, ∂) =ui(λ+ χ)uα∂2
αν +

1

3
(−η + χ)(giα + uiuα)∂2

αν , ν 6= i,

mii(U, ∂) =(−ηgαµ + (λ− η)uαuµ)∂2
αµ + ui(λ+ χ)uα∂2

αi

+
1

3
(−η + χ)(giα + uiuα)∂2

αi,

with no sum over i,

mν4(U, ∂) =
1

4ε
uν(λgαµ + (λ+ 3χ)uαuµ)∂2

αµ +
1

4ε
(λ+ χ)(uαgνµ + uνuαuµ)∂2

αµ,

m4ν(U, ∂) = uνu
αuµ∂2

αµ.

(Recall Convention 1: above we have 1 ≤ i ≤ 3.) The matrix b(U, ∂) in (10)

corresponds to the matrix with the operators B̃β(∂u, g)∂2 and B̃(∂u, g)∂2 that act
on g (see (7) and (8)), whose explicit form will not be important here. Finally,
gµν∂2

µν in (10) represents the 10 × 10 identity matrix times the operator gµν∂2
µν .

The vector q(U) corresponds to the right-hand side of equations (6), (7), and (8),
i.e.,

q(U) = (Bβ(∂ε, ∂u, ∂g), B(∂u, g), Bαβ(∂ε, ∂u, ∂g)).

3.2. Initial data. We now investigate the appropriate initial conditions for (9).
We remind the reader that the geometric data in the assumptions of Theorem 2.2
are intrinsic to Σ, thus they do not determine full data for the system6. Hence, we
need to complete the given data to a full set of initial data.

Assume that I is given as in the statement of Theorem 2.2. Embed Σ into R×Σ
and consider p ∈ {0} ×Σ. We shall initially obtain a solution in a neighborhood of
p, hence we prescribe initial data locally.

Take coordinates {xα}3α=0 in a neighborhood U of p such that {xi}3i=1 are coor-
dinates on Σ, which we assume to be normal coordinates for g0 centered at p. We
remark that in these coordinates the initial data will be in G(s)({x0 = 0}∩U). For,
by our assumption on I, there exist local coordinates {yi}3i=1 in a neighborhood
Y ⊆ Σ of p such that, in these coordinates, the initial data is Gevrey regular. One
obtains (short-time) geodesics starting at p by solving the geodesic equation, which
will be an ODE with Gevrey data in the {yi} coordinates. Since we can equip
Gevrey spaces with a norm, the usual Picard iteration can be applied to solve the
geodesic equation, and hence we obtain solutions that are Gevrey regular and vary
within the Gevrey class with the initial data. Therefore, the exponential map and,
as a consequence, the coordinates {xi} are Gevrey regular in Y with respect to the
{yi} coordinates. Expressing the initial data now in {xi} coordinates, we conclude
from standard properties of composition and products of Gevrey maps (see, e.g.,
[32]) that the initial data is in G(s)({x0 = 0} ∩ U) in the {xi} coordinates.

We prescribe the following initial conditions for gαβ on {x0 = 0} ∩ U :

gij(0, ·) = (g0)ij , g00(0, ·) = −1, g0i(0, ·) = 0, ∂0gij(0, ·) = κij ,

6For example, g0 is a metric on Σ which is a three-manifold; thus, g0 contains only nine (six
independent) components locally, whereas there are sixteen (ten independent) components in the
full space-time metric. Similarly, κ does not determine all transversal derivatives of g on Σ, and v0
and v1 determine only the initial three-velocity and its transversal derivatives, whereas we need the

four-velocity u and its tranversal derivatives initially. These mismatches are, as it is well-known,
related to the gauge freedom of Einstein’s equations. See, e.g., [7] for more discussion.
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and ∂0g0α(0, ·) is chosen such that {xα} are wave coordinates for g at x0 = 0 (which
is well-known to always be possible).

For uβ , we prescribe

ui(0, ·) = vi0, u
0(0, ·) =

√
1 + (g0)ijvi0v

j
0, ∂0u

i(0, ·) = vi1,

∂0u
0(0, ·) =

1√
1 + (g0)ijvi0v

j
0

(
(g0)ijv

j
0v
i
1 +

1

2
κijv

i
0v
j
0 +

1

2
∂0g00(0, ·)(1 + (g0)ijv

i
0v
j
0)

+ ∂0g0i(0, ·)vi0
√

1 + (g0)ijvi0v
j
0

)
.

(Note that the radicands are non-negative because g0 is a Riemannian metric.) The
initial conditions for u0 and ∂0u

0 have been derived from (2) and the above initial
conditions for gαβ . Finally,

ε(0, ·) = ε0, ∂0ε(0, ·) = ε1.

3.3. Initial conditions for the system in R4. Consider the local coordinates
introduced in section 3.2. Via these coordinates and identifying p with the origin,
we can regard system (9) as defined in an open set U of R4 containing the origin,
with the initial conditions prescribed on {x0 = 0} ∩ U . Note that we can also take
(9) as a system of equations on the whole of R4, and we therefore do so. We seek to
extend the initial data to the whole hypersurface {x0 = 0}, thus determining initial
conditions for the system in R4.

Let V be compactly contained in {x0 = 0} ∩ U and W be compactly contained
in V. Let ϕ : {x0 = 0} → R be a function in G(s)(R3) such that 0 ≤ ϕ ≤ 1, ϕ = 1
in W, and ϕ = 0 in the complement of V. Denote by h the Minkowski metric and
set, on {x0 = 0},

g̊ij = ϕ(g0)ij + (1− ϕ)hij , g̊00 = −1, g̊0i = 0, ∂0g̊ = ϕκij .

These will be initial conditions for gαβ (for equations (9) in R4), with an usual
abuse of notation to denote the initial conditions involving ∂0. As our coordinates
have been chosen with {xi} normal coordinates for g0 centered at p, we have that
g̊ij(0) = hij and the deviations of g̊ij from the Minkowski metric restricted to
{x0 = 0} ∩ U are quadratic on the coordinates away from the origin. Writing

g̊ij = ϕ(g0)ij + (1− ϕ)hij = hij + ϕ((g0)ij − hij),
we see that, shrinking U if necessary and taking into account our choice for g̊0α,
g̊αβ is a perturbation of the Minkowsi metric restricted to {x0 = 0}. Therefore, g̊αβ
defines a Lorentzian metric.

Next, we introduce

ůi = ϕvi0, ∂0ů
i = ϕvi1,

with the initial conditions for ů0 and ∂0ů
0 obtained by the same formulas as in

section (3.2), with the appropriate replacements by ůi and g̊ on the right-hand
sides. Finally, set

ε̊ = ϕε0 + 1− ϕ, ∂0̊ε = ϕε1.

By the compactness of Σ and the assumption ε0 > 0, it follows that ε0 ≥ C for
some constant C > 0, thus

ε̊ ≥ min{1

2
C,

1

2
} ≥ C ′ > 0,
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for some constant C ′.
The initial data for (9) in R4 described in this section will be denoted by Ů .

3.4. Solving the system in R4. In this section, we solve system (9) with the
initial conditions described in section 3.3 (see Proposition 1 below). We shall employ
the techniques, terminology, and notation of Leray-Ohya systems reviewed in the
appendix.

Lemma 3.1. Equations (9) form a Leray system.

Proof. Write U as U = (U1, U2), with the understanding that U1 = (uβ , ε) =
(u0, u1, u2, u3, ε) and U2 = (gαβ). Assign to (9) the following indices:

m1 = 2, m2 = 2,
n1 = 0, n2 = 0,

where m1 = m(U1) ≡ m(uβ , ε), m2 = m(U2) ≡ m(gαβ),

n1 = n(equation (7))

= n(equation (8))

≡ n(equations corresponding to the first five rows of (9)),

and

n2 = n(equation (6))

≡ n(equations corresponding to the last ten rows of (9)).

It is understood that we have one indexmI for each unknown of the fifteen unknowns
and one index nJ for each one of the fifteen equations in (9). For instance, by
m1 = m1(uβ , ε) = 2 we mean m(u0) = m(u1) = m(u2) = m(u3) = m(ε) = 2, and
so on.

One readily verifies that with this choice of indices, (9) has the structure of a
Leray system. Indeed, we list below for each row J in (9) or, equivalently, for each
equation in the system (6), (7), and (8), the value of nJ ; the highest derivatives of
each unknown entering in the coefficients and on the right-hand side of the equation;
and the difference mI − nJ :

rows 1-4 ≡ eq. (7) : n1 = 0; ∂u, ∂ε, ∂g;


m(u)− n1 ≡ m1 − n1 = 2,

m(ε)− n1 ≡ m1 − n1 = 2,

m(g)− n1 ≡ m2 − n1 = 2,

row 5 ≡ eq. (8) : n1 = 0; ∂u, ∂g;


m(u)− n1 ≡ m1 − n1 = 2,

m(ε)− n1 ≡ m1 − n1 = 2,

m(g)− n1 ≡ m2 − n1 = 2,

and

rows 6-15 ≡ eq. (6) : n2 = 0; ∂u, ∂ε, ∂g;


m(u)− n1 ≡ m1 − n2 = 2,

m(ε)− n1 ≡ m1 − n2 = 2,

m(g)− n1 ≡ m2 − n2 = 2.

For example, in equations (7), for which n1 = 0, we have that the left-hand side
consists of differential operators of order 2 acting on (uβ , ε) (m(uβ , ε)−n1 = 2) and
differential operators of order 2 acting on (gαβ) (m(gαβ)−n1 = 2), whose coefficients
depend on at most first derivatives of the unknowns (∂u, ∂ε, ∂g, i.e., m(uβ , ε)−n1−1
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andm(gαβ)−n1−1);theright-handsideof(7),asthecoefficientsofthedifferential
operators,dependsonat mostfirstderivativesoftheunknowns.

Assumption1. Wehenceforth makeexplicituseof(5),witha1=4anda2≥4,
inaccordancewiththeassumptionsofTheorem2.2.

Fortheproofofthenextproposition,thereaderisremindedoftheDefinitionA.9
ofAs(Σ,Y),whichconsistsofthespaceoffunctionssufficientlyneartheCauchy
data.

Proposition1. ThereexistaT>0,avectorfieldu:[0,T)×R3→ R4,afunction
:[0,T)×R3→ (0,∞),andaLorentzianmetricgdefinedon[0,T)×R3,suchthat

U=(uβ,,gαβ)satisfies(9)in[0,T)×R3andtakestheinitialdataŮon{x0=0}.

Moreover, (u,,g)∈G2,(s)([0,T)×R3)andthissolutionisuniqueinthisclass.

Proof. Wefixtheinitialdata Ů asconstructedinsection3.3andconsiderU =
(uα,,gαβ)∈ As(Σ,Y). ShrinkingY ifnecessary, wecanassumethatgαβ isa
Lorentzianmetric,that >0,andthatuistime-likeforgαβ,sincetheseproperties

holdforŮ. Becausethecoefficientsofthe matrixofdifferentialoperatorsM(U,∂)
dependonat mostfirstderivativesoftheunknowns,wecanevaluatethesecoef-

ficientsonU. DenotethecorrespondingoperatorbyM(U,∂). Thecharacteristic

determinantP(U,ξ)of(9),evaluatedatU,is

P(U,ξ)=detM(U,ξ)=p1(U,ξ)p2(U,ξ)p3(U,ξ)p4(U,ξ) (11)

where7

p1(U,ξ)≡p1(ξ)=
1

12
η4(uµξµ)4, (12)

p2(U,ξ)≡p2(ξ)=(a2−1)((u0)2ξ2
0+(u1)2ξ2

1+(u2)2ξ2
2+(u3)2ξ2

3)−ξµξµ

+2(a2−1)(u1u2ξ1ξ2+u1u3ξ1ξ3+u2u3ξ2ξ3)

+2(a2−1)u0ξ0uiξi
2

,

(13)

p3(U,ξ)≡p3(ξ)=−6((a2+5)a2+(a2
2+7a2−8)uλuλ)(uµξµ)2

+6(a2+2)(1+5uλuλ)ξµξµ,
(14)

and

p4(U,ξ)≡p4(ξ)=(ξµξµ)10, (15)

andthecontractionsintheseexpressionsaredonewithrespecttothe metricgαβ.

ThecomputationofP(U,ξ),andthecorrespondingfactorizationintheabovepoly-
nomials,isdonethroughalengthyandtediousalgebraiccalculation,partofwhich
wasdonewiththehelpofthesoftware Mathematica8. Notethattheblockdiago-
nalformofM(U,∂)allowedustocomputethecharacteristicdeterminantwithout

providingthespecificformoftheoperatorsBβ(∂u,g)∂2gandB(∂u,g)∂2g.

7Weremarkthatcomparedto[3],polynomialp3(U,ξ)looksdifferent. Thatisbecausein[3]
uλuλ hadbeenreplacedby 1inviewof(2). Strictlyspeaking, wearenotallowedtodothat
sinceonehastoprovethaturemainsnormalizedforpositivetime, whichisdoneinLemma3.3
below,butthis wasignoredin[3]sincethereonlyasketchoftheproof waspresented(seethe

aboveIntroduction).
8SeeAppendixC.
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It is easy to see that the polynomials ûµξµ and ξµξµ are hyperbolic polynomials
as long as ĝαβ is a Lorentzian metric and û is time-like with respect to ĝαβ . Both
conditions are satisfied in view of the constructions in section 3.3. Therefore, p1(ξ)
is the product of four hyperbolic polynomials (recall that ε̂ > 0 and η(ε̂) > 0), and
p4(ξ) is the product of ten hyperbolic polynomials. We now move to analyze p2(ξ)
and p3(ξ).

Write p2(ξ) = (p̃2(ξ))2, where p̃2(ξ) is the second-degree polynomial between
brackets in the definition of p2(ξ). We claim that p̃2(ξ) is a hyperbolic polynomial.
To show this, we need to investigate the roots ξ0 = ξ0(ξ1, ξ2, ξ3) of the equation
p̃2(ξ) = 0. Consider first the case where p̃2(ξ) is evaluated at the origin, i.e.,

p̃2(ξ) = p̃2(Û(0), ξ), and assume for a moment that ĝαβ(0) is the Minkowski metric
and that ûµûµ = −1. In this case, the roots are

ξ0,± = − 1

1 + (a2 − 1)(1 + û2)

(
(a2 − 1)û · ξ

√
1 + û2

±
√

(a2 + (a2 − 1)û2)ξ2 − (a2 − 1)(û · ξ)2

)
,

(16)

where û = (û1, û2, û3), û2 = (û1)2 + (û2)2 + (û3)2, ξ = (ξ1, ξ2, ξ3), ξ2 = ξ1
1 + ξ2

2 + ξ2
3 ,

and · is the Euclidean inner product. We see that if ξ = 0, then ξ0,± = 0, and
hence ξ = 0. Thus, we can assume ξ 6= 0. The Cauchy-Schwarz inequality gives

û2ξ2−(û ·ξ)2 ≥ 0, hence ξ0,+ and ξ0,− are real and distinct for a2 ≥ 4. We conclude
that p̃2(ξ) is a hyperbolic polynomial at the origin. Since the roots of a polynomial
vary continuously with the polynomial coefficient, p̃2(ξ) will have two distinct real
roots at any point on {x0 = 0} if ĝαβ is sufficiently close to the Minkowski metric and
ûµûµ sufficiently close to −1. We know from section 3.3 that these last conditions
are fulfilled upon taking U and Y sufficiently small (recall that g̊αβ(0) equals the
Minkowski metric.). Therefore, p̃2(ξ) is a hyperbolic polynomial, and p2(ξ) is the
product of two hyperbolic polynomials.

We now investigate the roots ξ0 = ξ0(ξ1, ξ2, ξ3) of the equation p3(ξ) = 0. As
above, we first consider p3(ξ) evaluated at the origin and suppose that ĝαβ(0) is the
Minkowski metric and that ûµûµ = −1, which produces

ξ0,± =
1

−2(2 + a2)− (a2 − 4)(1 + û2)

(
(a2 − 4)û · ξ

√
1 + û2

±
√

2
√

(3a2(2 + a2) + (a2
2 − 2a2 − 8)û2)ξ2 − (a2

2 − 2a2 − 8)(û · ξ)2

)
.

As above, we can assume ξ 6= 0, and the Cauchy-Schwarz inequality again gives

û2ξ2 − (û · ξ)2 ≥ 0. We readily verify that (a2
2 − 2a2 − 8) ≥ 0 and 3a2(2 + a2) > 0

for a2 ≥ 4. Therefore, ξ0,+ and ξ0,− are real and distinct, and p3(ξ) is a hyper-
bolic polynomial at the origin. As above, this implies that p3(ξ) is a hyperbolic
polynomial.

We conclude that P (Û , ξ) is the product of four degree one (i.e., p1(ξ)), two
degree two (i.e., p2(ξ)), one degree two (i.e., p3(ξ)), and ten degree two (i.e., p4(ξ))
hyperbolic polynomials. The Gevrey index of (9) is thus 17

16 (see Remark 15). Recall

that 1 < s < 17
16 by assumption.

Since mI − nJ = 2 for all I, J , and
∑
I mI −

∑
J nJ ≥ 2, we have verified the

conditions of Theorem A.14 in the appendix. Hence we obtain the diagonalized
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system

M̃(U, ∂)U = q̃(U), (17)

where M̃(U, ∂) is a diagonal matrix whose entries are differential operators of order
30 (the order of the characteristic determinant, see the appendix) whose coefficients
depend on at most 29 derivatives of U , and q̃(U) contains all the lower order terms.
We want to invoke Theorem A.10 to solve (17). To do so, we need to provide initial
conditions for (17). Since our goal is to obtain a solution to (9) out of a solution to
(17), such initial conditions need to be compatible with solutions to (9).

We shall show that all derivatives of U , restricted to {x0 = 0}, can be formally
computed from (9) and written in terms of the initial data. In particular, initial
conditions to (17) compatible with (9) can be determined. As usual in these situa-
tions, it suffices to show that we can inductively compute ∂k0U on {x0 = 0} as the
tangential derivatives ∂i can always be computed.

From (6), we can determine ∂2
0gαβ

∣∣
{x0=0} in terms of the initial data Ů . Using

the result into (7), we can write B̃β(∂u, g)∂2g restricted to {x0 = 0} in terms of Ů .
Equations (7) and (8) then give

a

(
∂2

0u
β

∂2
0ε

)
= b,

where b can be written in terms of the initial data on {x0 = 0}, and the matrix a
is the matrix of the coefficients of the terms ∂2

0u
β and ∂2

0ε in equations (7) and (8).
At the origin, where g̊αβ(0) equals the Minkowski metric, the determinant of a is

η4

ε0
(1 + ů2)2(3a2 + (a2 − 4)̊u2)(a2 + (a2 − 1)̊u2)2,

which is never zero for a2 ≥ 4 (recall that ε0 > 0 and η(ε0) > 0). Invoking once
more the fact that g̊αβ is a perturbation of the Minkowski metric, we conclude
that det(a)|{x0=0} never vanishes. We can thus invert a and write ∂2

0u
β and ∂2

0ε at

x0 = 0 in terms of Ů .
It is clear that we can continue this process: differentiate (6) with respect to

∂0 to determine ∂3
0gαβ

∣∣
{x0=0}; differentiate (7) and (8) with respect to ∂0, use

∂3
0gαβ

∣∣
{x0=0} to eliminate the resulting terms B̃β(∂u, g)∂3g and B̃(∂u, g)∂3g, and

then solve for ∂3
0u

β and ∂3
0ε at x0 = 0 (notice that the matrix a remains unchanged).

Inductively, we can determine all derivatives ∂k0U on {x0 = 0}, k = 2, 3, . . . , in terms

of Ů . Moreover, ∂k0U
∣∣
{x0=0} are analytic expressions of Ů and, therefore, the initial

conditions for (17) determined in this fashion will be in G(s).

The initial data for (17), denoted
˚̃
U , consists of the original initial data Ů for (9),

and the values of ∂k0U
∣∣
{x0=0} determined by the above procedure for k = 2, . . . , 29.

Remark 2. The above procedure determines all derivatives of U , evaluated at
x0 = 0, in terms of the initial conditions Ů . It follows that if the initial data Ů is
analytic, a well-known argument using power series can be employed to construct
an analytic solution to (9) in a neighborhood of {x0 = 0}. These techniques for
construction of analytic solutions, however, say nothing about causality.

Having supplied (17) with appropriate initial conditions, we can now invoke

Theorem A.10 to conclude the following. There exist a T̃ > 0, a vector field
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u : [0, T̃ )× R3 → R4, a function ε : [0, T̃ )× R3 → (0,∞), and a Lorentzian metric

g defined on [0, T̃ )×R3, such that U = (uβ , ε, gαβ) satisfies (17) in [0, T̃ )×R3 and

takes the initial data
˚̃
U on {x0 = 0}. Moreover, (u, ε, g) ∈ G2,(s)([0, T̃ ) × R3) and

this solution is unique in this class.
(We note that in invoking Theorem A.10, we are using that the intersections

of the cones determined by the polynomials pi(ξ) have non-empty interiors (recall
definition A.4). This follows from the above expressions, but it can also be verified
from the explicit computations in section 3.5.)

The conclusions that ε > 0 and g is a Lorentzian metric follow by continuity in
the x0 variable, since these conditions are true at x0 = 0.

Now we move to obtain a solution to (9) in R4. The argument is similar to the
one in [30], thus we shall go over it briefly.

Let {Ůk}∞k=1 be a sequence of analytic initial conditions for the system (9) con-

verging in G(s)({x0 = 0}) to Ů . For each k, let (uk, εk, gk) be the analytic solution

to (9), defined in a neighborhood of {x0 = 0}, and taking on the initial data Ůk (see

Remark 2). Let
˚̃
Uk be the initial data for (17) obtained from Ůk and compatible with

(9), i.e., the one derived by the inductive procedure previously described. Then,
˚̃
Uk →

˚̃
U in G(s)({x0 = 0}). In light of the compatibility of

˚̃
Uk, and because (17)

was derived from (9) via diagonalization, the solutions (uk, εk, gk) also satisfy (17).
Furthermore, this solution to (17) also agrees with the one given by Theorem A.10
(since this theorem also applies for analytic data, i.e., s = 1). The energy-type of
estimates proved by Leray and Ohya [28] guarantee then that (uk, εk, gk)→ (u, ε, g)
in G(s) and that (u, ε, g) satisfy the original system (9). By construction, (u, ε, g)

take on the initial data Ů .

Remark 3. The initial conditions for the VECF system have to satisfy the Einstein
constraint equations (recall Definition 2.1). The initial conditions Ů satisfy the

constraints in the region W in light of the way that Ů was constructed out of I|U .
This is, naturally, necessary for the eventual construction of a full solution to the
VECF system. However, purely from the point of view of (9) in R4, initial condition
can be prescribed freely, i.e., they do not have to satisfy any constraints. Therefore,
the existence of the analytic initial data Ůk follows simply by the density of analytic
functions in G(s). Also by density, we can guarantee that the components (̊ε0)k and

(̊gαβ)k in Ůk satisfy (̊ε0)k > 0 and that (̊gαβ)k is a Lorentzian metric.

Remark 4. The above calculations involving (a2
2 − 2a2 − 8) ≥ 0 show why we

have the technical assumption a2 ≥ 4. As our calculations were presented already
with a1 = 4 in place, they do not reveal the reason for this assumption, which as
follows. Computing the characteristic determinant with general a1 produces a very
complicated expression with some terms proportional to a1−4. These terms vanish
when a1 = 4, and the corresponding expression simplifies to (11). This can be seen
explicitly in Appendix C.

3.5. Causality. Having obtained solutions, we now investigate the causality of
equations (9). As in section 3.4, we use results and terminology recalled in the
appendix.

Lemma 3.2. The solution U = (u, ε, g) to (9) given in Proposition 1 is causal,
in the following sense. For any x ∈ [0, T ) × R3, (u(x), ε(x), g(x)) depends only on

Ů |{x0=0}∩J−(x), where J−(x) is the causal past of x (with respect to the metric g).
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Proof. Fix x ∈ [0, T ) × R3. The characteristic determinant of (9) at x is given by

(11), with the obvious replacement of Û by U and evaluated at x; the polynomials
pi(U(x), ξ) ≡ pi(x, ξ), i = 1, . . . , 4, are given by expressions (12) to (15), again with
the obvious replacement by U(x). By the same argument used in section 3.4 to
prove that the pi(ξ)’s are hyperbolic polynomials on {x0 = 0}, namely, that gαβ is
near the Minkowski metric, we know that the polynomials pi(x, ξ) are hyperbolic
(perhaps after shrinking T if necessary).

Denote by Vi(x) the characteristic cone {pi(x, ξ) = 0}, and by Γ∗,±i (x) the
corresponding (forward and backward) convex cones (on the cotangent space).
Let K∗,±(x) be the (forward and backward) time-like interiors of the light-cone

{gµν(x)ξµξν = 0}. We need to show that K∗,±(x) ⊆ Γ∗,±i (x) (see Remark 12).
This is straightforward for i = 1 and i = 4.

Assume for a moment that g is the Minkowski metric at x and that uλuλ = −1
(note that we have not proved yet that u remains normalized for x0 > 0). The roots
of {p2(x, ξ) = 0} are given by (16), changing û by u, which we can write as

ξ0,± = s±(u, θ)
√
ξ2, (18)

where

s±(u, θ) = − 1

1 + (a2 − 1)(1 + u2)

(
(a2 − 1)

√
u2 cos θ

√
1 + u2

±
√
a2 + (a2 − 1)u2 − (a2 − 1)u2 cos2 θ

)
,

θ is the angle between u and ξ in R3, we used u ·ξ =
√
u2
√
ξ2 cos θ, and we omitted

the dependence of u and θ on x for simplicity.
Equation (18) determines the two halves of the characteristic cone V2(x) in the

cotangent space at x. We will have that K∗,±(x) ⊆ Γ∗,±2 (x) if the slopes s± satisfy
−1 < s±(u, θ) < 1 for each u and θ. To see that this is the case, compute

s±(u, 0) = s±(u, 2π) = −
±√a2 + (a2 − 1)

√
u2(1 + u2)

1 + (a2 − 1)(1 + u2)
,

and observe that this expression is always between −1 and 1 for a2 ≥ 4. We seek
the maxima and minima of s±(u, θ) for 0 < θ < 2π. Computing the derivative with
respect to θ and solving for sin θ, we find sin θ = 0, i.e., θ = π. We readily verify
that −1 < s±(u, π) < 1, thus −1 < s±(u, θ) < 1. Since this last condition is open,
the result remains true when g is sufficiently close to the Minkowski metric and u
sufficiently close to unitary, which is the case if T is taken sufficiently small. The
same argument shows that K∗,±(x) ⊆ Γ∗,±3 (x), where again one uses the condition
a2 ≥ 4.

We conclude that for any x ∈ [0, T )×R3, we have K∗,±(x) ⊆
⋂4
i=1 Γ∗,±i (x), and

the result now follows from Theorem A.11 and Remark 12.

Remark 5. The characteristics associated with p1(ξ) and p4(ξ) are of course those
of the flow lines and gravitational waves. The characteristics associated with p3(ξ)
and p2(ξ) are interpreted, respectively, as sound waves and shear waves. The latter
is sometimes called a second sound wave and is present also in the Müller-Israel-
Stewart theory [22]. It is useful to compare these characteristics to those of the
ideal fluid. In the latter case we have the flow lines and the sound cone (i.e., the
characteristics of the sound waves; see [17] for a detailed discussion of the role
of the sound cone in the relativistic Euler equations). Here it is as if the sound
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cone had “split” into two sound-type characteristics. This resembles what happens
in magnetohydrodynamics: there two different characteristics are present for the
magnetoacoustic waves, namely, the so-called fast and slow magnetoacoustic waves
(see [1] for details).

3.6. Existence and causality for the system in R×Σ. Here we show how the
solution found in section 3.4 can be used to construct a causal solution in a region
of R × Σ, thus effectively proving Theorem 2.2. Recall that we embedded Σ into
R× Σ.

Remark 6. Consider the solution U = (u, ε, g) to (9) obtained in Proposition 1. Let
p be a point on {x0 = 0}×Σ and W be as in section 3.3. Let D+

g (W) ⊆ [0, T )×R3

be the future domain of dependence of W in the metric g, where replacing W with
a smaller set if necessary, we can assume that x0 < T for every (x0, x1, x2, x3) ∈
D+
g (W). In the coordinates on D+

g (W) induced from the coordinates on [0, T )×W,

the solution U is in G(2,s) The solution will remain in G(2,s) upon coordinate changes
that are Gevrey regular [32]. Note that there are plenty of such coordinate changes
in that a smooth manifold always admits a maximal compatible analytic atlas.

Lemma 3.3. It holds that uλuλ = −1 in D+
g (W).

Proof. The vector field u satisfies (8), whose explicit form is

uλu
αuµ∇µ∇µuλ + uα∇αuλuµ∇µuλ = 0.

This can be written as

1

2
uαuµ∇α∇µ(uλu

λ) = 0.

This is an equation for the scalar uλu
λ. The operator uαuµ∇α∇µ satisfies the

assumptions of Theorem A.10. Therefore, uαu
α = −1 in D+

g (W) if this condition
is satisfied initially, which is the case by construction.

Lemma 3.4. For every q ∈ Σ there exists a neighborhood Zq ⊆ Σ of q in Σ and
a globally hyperbolic development Mq of I|Zq , where Mq ⊆ [0, Tq) × Σ for some

Tq > 0.

Proof. Let p be a point on {x0 = 0} × Σ and W be as in section 3.3. Since the

initial conditions Ů (where Ů is as in section 3.3) agree on W with those from the
initial data I, in view of Lemma 3.2, we conclude that U is a solution to the reduced
Einstein equations within D+

g (W). It is well-known that a solution to the reduced

equations within D+
g (W) is also a solution to the full Einstein’s equations if and

only if the constraints are satisfied, which is the case by the definition of I. Because
p was an arbitrary point, the result is proven.

We now glue the different Mq’s in order to obtain a global (in space) solution.

Proposition 2. Let q, r ∈ Σ, Zq and Zr be neighborhoods of q and r as in lemma
3.4, with globally hyperbolic developments Mq and Mr of I|Zq and I|Zr , respectively,

and corresponding solutions Uq = (uq, εq, gq) and Ur = (ur, εr, gr) of the VECF
equations. Assume that Zq ∩ Zr 6= ∅. Then, for any w ∈ Zq ∩ Zr, there exist
neighborhoods Uq and Ur of w in Mq and Mr, respectively, and a diffeomorphism
ψ : Uq → Ur such that Uq = ψ∗(Ur).
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Proof. We shall construct harmonic coordinates for gq in a neighborhood of w in
Mq as follows. Identifying (a portion of) Σ with its embedding in Mq, take normal
coordinates (V, {yi}) for g0 on Σ centered at w, where g0 comes from the initial
data I. Note that the initial data is Gevrey regular in the {yi} coordinates (see the
argument in section 3.2). We can thus assume that Uq is in G(2,s) (see Remark 6)

On [0, Tq) × V , where Tq > 0 is some small number such that Uq is defined
on [0, Tq) × V , we introduce coordinates {yα}, y0 ∈ [0,∞). Consider family of
initial-value problems parametrized by α:

∇µ∇µf (i) = 0,

f (i)(0, y1, y2, y3) = yi,

∂0f
(i)(0, y1, y2, y3) = 0,

and

∇µ∇µf (0) = 0,

f (0)(0, y1, y2, y3) = 0,

∂0f
(0)(0, y1, y2, y3) = 1,

where ∇ is the covariant derivative in the metric gq. This problem has a Gevrey
regular solution in a neighborhood of w in [0, Tq) × V , and a standard implicit

function type of argument shows that the functions xα ≡ f (α) define (harmonic)
coordinates near w. We now consider the change of coordinates x = x(y) : [0, T ′q )×
V ′ → W ⊆ [0,∞) × R3, x = (x0, x1, x2, x3), where V ′ is a neighborhood of w in
V , T ′ > 0 is determined by the foregoing conditions guaranteeing the existence
of the coordinates {xα}, and W is an open set containing the origin. Pulling Uq
back to W via x−1, it follows from these constructions that (x−1)∗(Uq) satisfies the
reduced Einstein equations in W . Since Uq originally satisfied (2) and (4) as well,
we conclude that it is a solution to (9) in W .

We can repeat the above argument to obtain wave coordinates {zα} for gr. Be-
cause (V, {yi}) is intrinsically determined by g0, and Mq and Mr induce on Zq ∩Zr
the same initial data, the map z agrees with x on {0}×V ′ (in the region where both
are defined). From these facts, we conclude that (x−1)∗(Uq) and (z−1)∗(Ur) (i) are
solutions to (9) in some domain [0, t)× Y ⊆ [0,∞)×R3 containing the origin, and
(ii) take the same initial data on {0} × Y .

We have shown that (9) enjoys uniqueness and causality. Thus, considering possi-
bly a smaller region that is globally hyperbolic for both (x−1)∗(gq) and (z−1)∗(gr),
we conclude that (x−1)∗(Uq) = (z−1)∗(Ur), so that Uq = (z−1 ◦ x)∗(Ur), as de-
sired.

Using Proposition 2, we can now identify overlapping globally hyperbolic de-
velopments, thus obtaining a globally hyperbolic development of I as stated in
Theorem 2.2. Causality follows essentially from Lemma 3.2: by the foregoing, we
can assume that M is diffeomorphic to [0, T ) × Σ for some T > 0. Shrinking T if
necessary, we reduce the problem to local coordinates, in which case we can employ
wave coordinates. Causality, as stated in Theorem 2.2, is preserved by diffeomor-
phisms, thus the result follows from the causality of the reduced system guaranteed
by Lemma 3.2. This finishes the proof of Theorem 2.2.
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4. Proof of Theorem 2.3. The proof of Theorem 2.3 is essentially contained in
the above. In the case of a Minkowski background, the system reduces to

m(U, ∂)U = q(U),

where m is as in (10), U = (uβ , ε) and q(U) is as in (9) with the appropriate
changes for this 5 × 5 system. The system can be analyzed as in section 3.4. We
can do this directly in R4, without the complications of constructing the initial
data Ů . The characteristic determinant is given by p1(ξ)p2(ξ)p3(ξ), where these
polynomials are as before, with the simplification that now we need not carry out
any near-Minkowski arguments. Without the matrix gµν∂2

µν coming from Einstein’s

equations, the Gevrey index of the system is 7
6 , and analogues of Proposition 1 and

Lemma 3.2 establish the result.

Appendix A. Tools of weakly hyperbolic systems. For the reader’s conve-
nience, we state in this appendix the results about Leray-Ohya systems (sometimes
called weakly hyperbolic systems) that are used in the proof of Theorem 2.2. These
results have been established by Leray and Ohya in [27, 28] for the case of systems
with diagonal principal part, and extended by Choquet-Bruhat in [6] to more gen-
eral systems. These works build upon the classical work of Leray on hyperbolic
differential equations [26]. The reader can consult these references for the proofs
of the results stated below. Further discussion can be found (without proofs) in
[7, 10, 12]. Related results can also be found in [34].

We start by recalling some standard notions and fixing the notation that will be
used throughout. Given T > 0, let X = [0, T ]×Rn. By ∂k we shall denote any kth

order derivative. We shall denote coordinates on X by {xα}nα=0, thinking of x0 ≡ t
as the time-variable. We use the multi-index notation to write

∂α ≡ ∂|α|

∂xα0
0 ∂xα1

1 ∂xα2
2 · · · ∂x

αn
n
≡ ∂α0

x0 ∂
α1

x1 ∂
α2

x2 · · · ∂αnxn ,

where |α| = α0 + α1 + α2 + · · ·+ αn.

A.1. Gevrey spaces. In this section we review the definition of Gevrey spaces.
Roughly speaking, a function is of Gevrey class if it obeys inequalities similar, albeit
weaker, than those satisfied by analytic functions. One of the crucial properties
of Gevrey spaces for their use in general relativity is that they admit compactly
supported functions.

Definition A.1. Let s ≥ 1. We say that f : Rn → C belongs to the Gevrey space
G(s)(Rn) if

sup
α

1

(1 + |α|)s
‖∂αf‖

1
1+|α|
L2(Rn) <∞.

Let K ⊂ Rn be the cube of unit side. We say that f belongs to the local Gevrey

space G
(s)
loc(Rn) if

sup
α

1

(1 + |α|)s

(
sup
K
‖∂αf‖L2(K)

) 1
1+|α|

<∞,

where supK is taken over all side one cubes K in Rn.
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We note that the case s = 1, i.e., G(1)(Rn), corresponds to the space of analytic
functions.

We next introduce the space of maps defined on X whose derivatives up to order
m belong to G(s)({x0 = t}), 0 ≤ t ≤ T .

Definition A.2. On X, denote St = {x0 = t}. Let s ≥ 1, and let m ≥ 0 be an
integer. We denote by α a multi-index α = (α0, . . . , αn) for which α0 = 0. We
define Gm,(s)(X) as the set of maps f : X → C such that

sup
α, |β|≤m, 0≤t≤T

1

(1 + |α|)s
∥∥∂β+αf

∥∥ 1
1+|α|
L2(St)

<∞.

Let Y be an open set of Rd. We define Gm,(s)(X×Y ) as the set of maps f : X×Y →
C such that

sup
α, γ, |β|≤m, 0≤t≤T

1

(1 + |α|+ |γ|)s

∥∥∥∥sup
y∈Y

∣∣∂β+α
x ∂γy f

∣∣∥∥∥∥ 1
1+|α|+|γ|

L2(St)

<∞.

Let Kt ⊂ St be the cube whose sides have unit length. The spaces G
m,(s)
loc (X) and

G
m,(s)
loc (X × Y ) are defined as the set of maps f : X → C and f : X × Y → C,

respectively, such that

sup
α, |β|≤m, 0≤t≤T

1

(1 + |α|)s

(
sup
Kt

∥∥∂β+αf
∥∥
L2(Kt)

) 1
1+|α|

<∞,

and

sup
α, γ, |β|≤m, 0≤t≤T

1

(1 + |α|+ |γ|)s

(
sup
Kt

∥∥∥∥sup
y∈Y

∣∣∂β+α
x ∂γy f

∣∣∥∥∥∥
L2(Kt)

) 1
1+|α|+|γ|

<∞,

where supKt is taken over all cubes of side one within St.

Remark 7. Definitions A.1 and A.2 are easily generalized to vector and tensor fields
in Rn and X, and to open subsets of Rn and X. In particular, replacing Rn by an
open set Ω and X by [0, T ]×Ω in the above definitions we obtain the corresponding
spaces for Ω. This allows one to define Gevrey spaces on manifolds. If M is a
differentiable manifold, we say that f : M → C belongs to G(s)(M) if for every
p ∈ M there exists a coordinate chart (x, U) about p such that f ◦ x−1 ∈ G(s)(Ω),
where Ω = x(U). This definition generalizes for vector and tensor fields.

Remark 8. The reason to treat X and Y differently in definitions of G(s)(X × Y )
and Gm,(s)(X × Y ) is that, in the theorems of section A.2, we need to distinguish
between the regularity with respect to the space-time X and the regularity with
respect to the parametrization of the initial data.

Remark 9. We could similarly define for manifolds the analog of the other Gevrey
spaces introduce above. However, this can be somewhat cumbersome and not always
natural. In particular, the spaces Gm,(s) require a distinguished coordinate that
plays the role of time. This can always be done locally, and it can be done for
globally hyperbolic manifolds if we fix a particular foliation in terms of space-like
slices (as done, e.g., in [10, 12]), although it is debatable how canonical this is. Here
we prefer to avoid extra complications, i.e., we in fact only need the definition of
G(s)(Σ), which is used for the construction of appropriate local coordinates and the
construction of the initial data for the system in R4 (sections 3.2 and 3.3) and in
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the results of section 3.6. The bulk of the proofs are carried out for the system in
R4, where all the different Gevrey spaces play a role. It follows that the solution in
R4 is in particular smooth, giving rise to a smooth globally hyperbolic development.
Note that for the conclusion of Theorem 2.2 it is not needed to assert that the full
solution enjoys certain Gevrey regularity.

For more about Gevrey spaces, see, e.g., [28, 39]. We remark that the terminology
“local” and the notation Gloc are not standard.

A.2. The Cauchy problem. Let a = a(x, ∂k), x ∈ X, be a linear differential
operator of order k. We can write

a(x, ∂k) =
∑
|α|≤k

aα(x)∂α,

where α = (α0, α1, α2, . . . , αn) is a multi-index. Let p(x, ∂k) be the principal part
of a(x, ∂k), i.e.,

p(x, ∂k) =
∑
|α|=k

aα(x)∂α.

At each point x ∈ X and for each co-vector ξ ∈ T ∗xX, where T ∗X is the cotangent
bundle of X, we can associate a polynomial of order k in the cotangent space T ∗xX
obtained by replacing the derivatives by ξ ∈ T ∗xX. More precisely, for each kth

order derivative in a(x, ∂k), i.e.,

∂α =
∂|α|

∂xα0
0 ∂xα1

1 ∂xα2
2 · · · ∂x

αn
n

|α| = k, we associate the polynomial

ξα ≡ ξα0
0 ξα1

1 ξα2
2 · · · ξαnn ,

where ξ = (ξ0, ξ1, ξ2, . . . , ξn) ∈ T ∗xX, forming in this way the polynomial

p(x, ξ) =
∑
|α|=k

aα(x)ξα.

Clearly, p(x, ξ) is a homogeneous polynomial of degree k. It is called the character-
istic polynomial (at x) of the operator a.

The cone Vx(p) of p in T ∗xX is defined by the equation

p(x, ξ) = 0.

Definition A.3. With the above notation, p(x, ξ) is called a hyperbolic polynomial
(at x) if there exists ζ ∈ T ∗xX such that every straight line through ζ that does not
contain the origin intersects the cone Vx(p) at k real distinct points. The differential
operator a(x, ∂k) is called a hyperbolic operator (at x) if p(x, ξ) is hyperbolic.

Leray proved in [26] that (ifX is at least three-dimensional) if p(x, ξ) is hyperbolic
at x, then the set of points ζ satisfying the condition of Definition A.3 forms the
interior of two opposite half-cones Γ∗,+x (a), Γ∗,−x (a), with Γ∗,±x (a) non-empty, with
boundaries that belong to Vx(p) .

Remark 10. Another way of stating Definition A.3 is as follows. Given ζ ∈ TxX,
consider a non-zero vector θ that is not parallel to ζ and form the line λζ + θ,
where λ ∈ R is a parameter. We then require this line to intersect the cone Vx(p)
at k distinct real points. An equivalent definition of hyperbolic polynomials is as
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follows [9]: p(x, ξ) is hyperbolic at x if for each non-zero ξ = (ξ0, . . . , ξn) ∈ T ∗xX,
the equation p(x, ξ) = 0 has k distinct real roots ξ0 = ξ0(ξ1, . . . , ξn).

With applications to systems in mind, we next consider the N × N diagonal
linear differential operator matrix

A(x, ∂) =

a
1(x, ∂k1) · · · 0

...
. . .

...
0 · · · aN (x, ∂kN )

 .

Each aJ(x, ∂kJ ), J = 1, . . . , N is a linear differential operator of order kJ .

Definition A.4. The operator A(x, ∂) is called Leray-Ohya hyperbolic (at x) if:
(i) The characteristic polynomial pJ(x, ξ) of each aJ(x, ∂kJ ) is a product of hy-

perbolic polynomials, i.e.

pJ(x, ξ) = pJ,1(x, ξ) · · · pJ,rJ (x, ξ), J = 1, . . . , N,

where each pJ,q(x, ξ), q = 1, . . . , rJ , J = 1, . . . , N , is a hyperbolic polynomial.
(ii) The two opposite convex half-cones,

Γ∗,+x (A) =

N⋂
J=1

rJ⋂
q=1

Γ∗,+x (aJ,q), and Γ∗,−x (A) =

N⋂
J=1

rJ⋂
q=1

Γ∗,−x (aJ,q),

have a non-empty interior. Here, Γ∗,±x (aJ,q) are the half-cones associated with the
hyperbolic polynomials pJ,q(x, ξ), q = 1, . . . , rJ , J = 1, . . . , N .

Remark 11. When the above hyperbolicity properties hold for every x, we call
the corresponding operators hyperbolic (we can also talk about hyperbolicity in
an open set, a certain region, etc.). When we say that an operator is Leray-Ohya
hyperbolic on the whole space (or in an open set, etc.), this means not only that
Definition A.4 applies for every x, but also that the numbers rJ and the degree of
the polynomials pJ,q(x, ξ), q = 1, . . . , rJ , J = 1, . . . , N , do not change with x.

Definition A.5. We define the dual convex half-cone C+
x (A) at TxX as the set of

v ∈ TxX such that ξ(v) ≥ 0 for every ξ ∈ Γ∗,+x (A); C−x (A) is analogously defined,
and we set Cx(A) = C+

x (A) ∪ C−x (A). If the convex cones C+
x (A) and C−x (A) can

be continuously distinguished with respect to x ∈ X, then X is called time-oriented
(with respect to the hyperbolic form provided by the operator A). A path in X is
called future (past) time-like with respect to A if its tangent at each point x ∈ X
belongs to C+

x (A) (C−x (A)), and future (past) causal if its tangent at each point
x ∈ X belongs or is tangent to C+

x (A) (C−x (A)). A regular surface Σ is called
space-like with respect to A if TxΣ (⊂ TxX) is exterior to Cx(A) for each x ∈ Σ. It
follows that for a time-oriented X, the concepts of causal past, future, domains of
dependence and influence of a set can be defined in the same way one does when
the manifold is endowed with a Lorentzian metric. We refer the reader to [26] for
details. Here we need only the following: the causal past J−(x) of a point x ∈ X is
the set of points that can be joined to x by a past causal curve.

Remark 12. The definitions in Definition A.5 endow X with a causal structure
provided by the operator A. Despite the similar terminology, however, it should
be noticed that all of the above definitions depend only on the structure of the
operator A, and do not require an a priori Lorentzian metric on X. The case of
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interest in general relativity, however, is when the causal structure of the space-
time is connected with that of A. In this regard, the following observation is useful.
Suppose that X has a Lorentzian metric g. For causal solutions of the systems of
equations here described (see Theorem A.11 below) to be causal in the sense of
general relativity, one needs that, for all x ∈ X, C±x (A) ⊆ K±x , where K±x are the
two halves of the light-cone {gµνξµξν ≤ 0}. By duality, this is equivalent to saying
that in the cotangent spaces we have K∗,±x ⊆ Γ∗,+x (A), where K∗,±x are the two
halves of the dual light-cone {gµνξµξν ≤ 0}.

Next, we consider the following quasi-linear system of differential equations

A(x, U, ∂)U = B(x, U), (19)

where A(x, U, ∂) is the N ×N diagonal matrix

A(x, U, ∂) =

a
1(x, U, ∂k1) · · · 0

...
. . .

...
0 · · · aN (x, U, ∂kN )

 ,

with aJ(x, U, ∂kJ ), J = 1, . . . , N differential operators of order kJ . B(x, U) is the
vector

B(x, U) = (bJ(x, U)), J = 1, . . . , N,

and the vector

U(x) = (U I(x)), I = 1, . . . , N

is the unknown. Notice that because aJ is allowed to depend on U , the above
system is in general non-linear.

Definition A.6. The system A(x, U, ∂)U = B(x, U) is called a Leray system if it
is possible to attach to each unknown uI an integer mI ≥ 0, and to each equation
J of the system an integer nJ ≥ 0, such that:

(i) kJ = mJ − nJ , J = 1, . . . , N ;
(ii) the functions bJ and the coefficients of the differential operators aJ are9

functions of x, of uI , and of the derivatives of uI of order at most mI − nJ − 1,
I, J = 1 . . . , N . If for some I and some J , mI − nJ < 0, then the corresponding aJ

and bJ do not depend on uI .

Remark 13. The indices mI and nJ in Definition A.6 are defined up to an additive
integer.

Definition A.7. A Leray-Ohya system (with diagonal principal part) is a Leray
system where the matrix A is Leray-Ohya hyperbolic. In the quasi-linear case, since
the operators a depend on U , we need to specify a function U that is plugged into
A(x, U, ∂) in order to compute the characteristic polynomials. In this case we talk
about a Leray-Ohya system for the function U . The primary case of interest is
when U assumes the values of the given Cauchy data.

When considering a quasi-linear system, we write p(x, U, ξ) and similar expres-
sions to indicate the dependence on U .

We now formulate the Cauchy problem for Leray systems.

9The regularity required for the coefficients aJ and bJ depends on particular applications and
context. For instance, for Theorem A.10 the required regularity is specified. Similarly, in Definition

A.8, one needs to take derivatives of these quantities up to order nJ , thus they need to be at least
as many times differentiable.
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Definition A.8. Let Σ be a regular hypersurface in X, which we assume for sim-
plicity to be given by {x0 = 0}. The Cauchy data on Σ for a Leray system in X
consists of the values of U = (uI) and their derivatives up to order mI − 1 on Σ,
i.e., ∂αuI

∣∣
Σ

, |α| ≤ mI −1, I = 1, . . . , N . The Cauchy data is required to satisfy the

following compatibility conditions. If V = (vI) is an extension of the Cauchy data
defined in a neighborhood of Σ, i.e. ∂αvI

∣∣
Σ

= ∂αuI
∣∣
Σ

, |α| ≤ mI − 1, I = 1, . . . , N ,

then the difference aJ(x, V, ∂)U − bJ(x, V ) and its derivatives of order less than nJ
vanish on Σ, for J = 1, . . . , N . When to a Leray system A(x, U, ∂)U = B(x, U)
we prescribe initial data satisfying these conditions, we say that we have a Cauchy
problem for A(x, U, ∂)U = B(x, U).

Notice that by definition, the Cauchy data for a Leray system satisfies the afore-
mentioned compatibility conditions. We also introduce the following notions related
to the Cauchy problem for a Leray system.

Assumption 2. Consider the Cauchy problem for a Leray system A(x, U, ∂)U =
B(x, U). Let Y be an open set of RL, where L equals the number of derivatives of
uJ of order less or equal to maxI mI − nJ , J = 1, . . . , N , and such that Y contains
the closure of the values taken by the Cauchy data on Σ. It is convenient to consider
A(x, U, ∂) as a differential operator defined over X×Y , as follows. We shall assume

that there exists a differential operator Ã(x, y, ∂) defined over X × Y with the
following property. If (x, y) ∈ X ×Y and V = (vJ) is a sufficiently regular function

on Σ such that y = (∂maxI mI−nJ vJ(x))J=1,...,N , then A(x, V (x), ∂) = Ã(x, y, ∂).

We shall write A(x, y, ∂) for Ã(x, y, ∂).

Definition A.9. Consider the Cauchy problem for a Leray system A(x, U, ∂)U =
B(x, U). Let Σ and Y be as in Definition A.8 and Assumption 2, respectively.
Denote by As(Σ, I) the set of V = (vJ) ∈ G(s)(Σ), J = 1, . . . , N , such that
(∂maxI mI−nJ vJ(x))J=1,...,N ∈ Y for all x ∈ Σ.

We are now ready to state the results of this appendix. We use the above notation
and definitions in the statement of the theorems below.

Theorem A.10 (Existence and uniqueness). Consider the Cauchy problem for
(19). Suppose that the Cauchy data is in G(s)(Σ), and that

aJ(·, ·, ∂kJ ) ∈ GnJ ,(s)loc (X × Y ), and bJ(·, ·) ∈ GnJ ,(s)(X × Y ).

Suppose that for any V ∈ As(Σ, Y ) the system is Leray-Ohya hyperbolic with indices
mI and nJ ; thus for all x ∈ Σ, each pJ(x, V, ξ) is the product of rJ hyperbolic
polynomials,

pJ(x, V, ξ) = pJ,1(x, V, ξ) · · · pJ,rJ (x, V, ξ), J = 1, . . . , N.

Suppose that each pJ,q+1(x, V, ξ), q = 0, . . . , rJ −1, depends on at most mI−mJ,q−
rI + q derivatives of vI , I = 1, . . . , N , where

mJ,q = nJ + deg(pJ,1) + · · ·+ deg(pJ,q), mJ,rJ = mJ , mJ,0 = nJ .

Above, deg(pJ,q) is the degree, in ξ, of the polynomial pJ,q(x, V, ξ).
Denote by aJq+1(x, y, ∂) the differential operator associated with pJ,q+1. Assume

that

aJq+1(·, ·, ∂) ∈ GmJ,q−q,(s)loc (X × Y ).
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Let 0 ≤ gI ≤ rI be the smallest integers such that aJ(x, V, ∂mJ−nJ ) and bJ(x, V )
depend on at most mI −nJ − rI + gI derivatives of vI , I = 1, . . . , N , J = 1, . . . , N .
Finally, assume that

1 ≤ s ≤ rJ
gJ

and
n

2
+ rJ < nJ , J = 1, . . . , N.

Then, there exists a T ′ > 0 and a solution U = (uI) to the Cauchy problem for (19)
and defined on [0, T ′)× Rn ⊆ X. The solution satisfies

uI ∈ GmI ,(s)([0, T ′)× Rn), I = 1, . . . , N.

Furthermore, the solution is unique in this regularity class.

Theorem A.11 (Causality). Assume the same hypotheses of Theorem A.10, and
suppose further that

1 ≤ s < rJ
gJ
, J = 1, . . . , N.

Let T ′ and U be as in the conclusion of Theorem A.10. Then, if T ′ is suffi-
ciently small, the operator A(x, U, ∂) is Leray-Ohya hyperbolic (thus the causal past
of a point is well-defined), and for each x ∈ [0, T ′) × Rn, U(x) depends only on
U0|J−(x)∩Σ, where U0 is the Cauchy data.

Remark 14. Theorem A.10 assumes that the system is Leray-Ohya hyperbolic for
V ∈ A(Σ, Y ), which is essentially the space of values near the initial data. (Natu-
rally, it would not make sense to require the system to be Leray-Ohya hyperbolic
for the yet to be proven to exist solution U .) Once U is constructed, one can then
ask whether the system is Leray-Ohya hyperbolic for U . This will be the case if T ′

is small, since in this case the values of U will be close to those of the initial data
by continuity, guaranteeing that U(x) ∈ A(Σ, Y ).

Theorems A.10 and A.11 are proven in [28] (reprinted in [29]).
We now consider a system whose principal part is not necessarily diagonal. The

definition of a Leray system depends only on the existence of the indices mI and
nJ with the stated properties, and thus can be extended to non-diagonal systems.

Definition A.12. Consider a system of N partial differential equations and N
unknowns in X, and denote the unknown as U = (uI), I = 1, . . . , N . The system
is a (not necessarily diagonal in the principal part) Leray system if it is possible
to attach to each unknown uI a non-negative integer mI and to each equation a
non-negative integer nJ , such that the system reads

hJI (x, ∂mK−nJ−1uK , ∂mI−nJ )uI + bJ(x, ∂mK−nJ−1uK) = 0, J = 1, . . . , N. (20)

Here, hJI (x, ∂mK−nJ−1uK , ∂mI−nJ ) is a homogeneous differential operator of order
mI − nJ (which can be zero), whose coefficients depend on at most mK − nJ − 1
derivatives of uK , K = 1, . . . N , and there is a sum over I in hJI (·)uI . The remaining
terms, bJ(x, ∂mK−nJ−1uK), also depend on at most mK −nJ −1 derivatives of uK ,
K = 1, . . . N . As before, these indices are defined only up to an overall additive
integer.

As done above, for a given sufficiently regular U , hJI (x, ∂mK−nJ−1UK , ∂mI−nJ )
are well-defined linear operators, and we can ask about their hyperbolicity proper-
ties. The case of interest will be, again, when we evaluate these operators at some
given Cauchy data.
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Write (20) in matrix form as

H(x, U, ∂)U = B(x, U). (21)

Definition A.13. The characteristic determinant of (21) at x ∈ X and for a given
U is the polynomial p(x, ξ) in the co-tangent space T ∗xX, ξ ∈ T ∗xX, given by

p(x, U, ξ) = det(H(x, U, ξ)). (22)

Note that p is a homogeneous polynomial of degree

` ≡
N∑
I=1

mI −
N∑
J=1

nJ .

Under appropriate conditions, (21) can be transformed into a Leray-Ohya system
of the form (19), i.e., with diagonal principal part. More precisely, we have the
following.

Theorem A.14 (Diagonalization). Consider (21). Suppose that the characteristic
determinant (22) at a given U is not identically zero, and it is the product of Q
hyperbolic polynomials, i.e.,

p(x, U, ξ) = p1(x, U, ξ) · · · pQ(x, U, ξ).

Let dq be the degree of pq(x, U, ξ), q = 1, . . . , Q, and suppose that

max
q
dq ≥ max

I
mI −min

J
nJ .

Finally, assume that

` ≥ max
I
mI −min

J
nJ .

Then, there exists a N ×N matrix C(x, U, ∂) of differential operators whose coeffi-
cients depend on U , such that

C(x, U, ∂)H(x, U, ∂)U = I p(x, U, ∂)U + B̃1(x, U),

and

C(x, U, ∂)B(x, U) = B̃2(x, U),

where I is the N×N identity matrix, p(x, U, ∂) is the differential operator associated

with p(x, U, ξ), and B̃1(x, U) and B̃2(x, U) depend on at most ` − 1 derivatives of
U , as do the coefficients of the operator p(x, U, ξ). Furthermore, there is a choice
of indices that makes the system

I p(x, U, ∂)U = B̃2(x, U)− B̃1(x, U) (23)

into a Leray system. In particular, if the intersections ∩qΓ∗,+x (aq) and ∩qΓ∗,−x (aq),
where Γ∗,±x (aq) are the half-cones associated with the hyperbolic polynomials
pq(x, U, ξ), have non-empty interiors, then (23) is a Leray-Ohya system with di-
agonal principal part in the sense of definition A.7.

Theorem A.14 is proven in [6].

Definition A.15. Under the hypotheses of Theorem A.14, the number Q
Q−1 is

called the Gevrey index of the system.
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Remark 15. Suppose that (23) forms a Leray-Ohya system in the sense of defini-
tion A.7, i.e., the half-cones have non-empty interiors as stated in Theorem A.14.
It can then be shown [6] that a value of s sufficient to apply Theorems A.10 and

A.11 is 1 ≤ s < Q
Q−1 .

Let us make a brief comment about the proofs of the above results. Theorem
A.10 is proven as follows. First, one solves the associated linear problem. This
is done by a method of majorants reminiscent of the Cauchy-Kowalevskaya theo-
rem. One uses the fact that Gevrey functions admit a formal series expansion that
provides a consistent way of constructing successive approximating solutions to the
problem. The non-linear problem is then treated via a fixed point argument, upon
solving successive linear problems. Theorem A.11 is obtained by a Holmgren type
of argument. We remark that the assumption that pJ,q+1(x, V, ξ), q = 0, . . . , rJ −1,
depends on at most mI − mJ,q − rI + q derivatives of vI , I = 1, . . . , N , ensures
that the coefficients of the associated differential operators aJ,q+1(x, U, ∂) do not
depend on too many derivatives of U , as it should be in the treatment of quasi-linear
equations.

Theorem A.14 is based on the following identity:

cTa = det(a), (24)

where a is an N ×N invertible matrix and cT the transpose of the co-factor matrix.

At the level of differential operators, this identity produces the lower order terms B̃1.
One then needs to match the order of the resulting differential operators and lower
order terms with appropriate indices satisfying the definition of a Leray system.
This is possible under the conditions on dq and ` stated in the theorem.

Appendix B. Derivation of the equations of motion. In this section we give
the derivation of (6) and (7). The derivation of (6) is standard and we include it
here for the reader’s convenience, thus let us start with (6). Let

(0)tαβ =
4

3
uαuβε+

1

3
gαβε, (25)

and denote the third to ninth terms in (1) by (1)tαβ to (7)tαβ , respectively. Explicitly,

(1)tαβ = −ηπµαπνβ(∇µuν +∇νuµ −
2

3
gµν∇λuλ),

(2)tαβ = λ(uαu
µ∇µuβ + uβu

µ∇µuα),

(3)tαβ =
1

3
χπαβ∇µuµ,

(4)tαβ = χuαuβ∇µuµ,

(5)tαβ =
λ

4ε
(uαπ

µ
β∇µε+ uβπ

µ
α∇µε),

(6)tαβ =
3χ

4ε
uαuβu

µ∇µε,

(7)tαβ =
χ

4ε
παβu

µ∇µε,

so that

Tαβ = (0)tαβ + (1)tαβ + · · · (7)tαβ .
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B.1. Calculation of ∇α(1)tαβ . We have

∇α(1)tαβ = −ηπαµπνβ(∇α∇µuν +∇α∇νuµ −
2

3
gµν∇α∇λuλ)

+∇α(ηπαµπνβ)(∇µuν +∇νuµ −
2

3
gµν∇λuλ).

(26)

Compute

πνβ∇α∇µuν = (gνβ + uβu
ν)∇α∇µuν = ∇α∇µuβ + uβu

ν∇α∇µuν
= ∇α∇µuβ + uβ∇α(uν∇µuν)− uβ∇αuν∇µuν
= ∇α∇µuβ − uβ∇αuν∇µuν ,

so that

−ηπαµπνβ∇α∇µuν = −ηπαµ(∇α∇µuβ −∇αuν∇µuν)

= −η(gαµ + uαuµ)∇α∇µuβ + ηπαµ∇αuν∇µuν
= −ηgαµ∇α∇µuβ + uαuµ∇α∇µuβ + ηπαµ∇αuν∇µuν .

(27)

Similarly, we find

παµ∇α∇νuµ = (gαµ + uαuµ)∇α∇νuµ = gαµ∇α∇νuµ + uαuµ∇α∇νuµ
= ∇α∇νuα − uα∇αuµ∇νuµ,

so that

−ηπαµπνβ∇α∇νuµ = −ηπνβ(∇α∇νuα − uα∇αuµ∇νuµ)

= −ηgνβ∇α∇νuα − ηuβuν∇α∇νuα + ηπνβu
α∇αuµ∇νuµ.

(28)

But

∇α∇νuα = ∇ν∇αuα +Rναu
α,

so that (28) becomes

−ηπαµπνβ∇α∇νuµ = −ηgνβ(∇ν∇αuα +Rναu
α)− ηuβuν(∇ν∇αuα +Rναu

α)

+ ηπνβu
α∇αuµ∇νuµ

= −ηgνβ∇ν∇αuα − ηgνβRναuα − ηuβuν∇ν∇αuα

− ηuβuνRναuα + ηπνβu
α∇αuµ∇νuµ.

(29)

Next compute

−ηπαµπνβ(−2

3
gµν∇α∇λuλ) =

2

3
ηπαµπβµ∇α∇λuλ

=
2

3
ηπαβ∇α∇λuλ =

2

3
η(gαβ + uαuβ)∇α∇λuλ

=
2

3
ηgαβ∇α∇λuλ +

2

3
ηuβu

α∇α∇λuλ.

(30)

Plugging (27), (29), and (30) into (26) we find

∇α(1)tαβ = −ηgαµ∇α∇µuβ − ηuαuµ∇α∇µuβ + ηuβπ
αµ∇αuν∇µuν − ηgνβ∇ν∇αuα

− ηuβuν∇ν∇αuα − ηRβαuα − ηuβRναuνuα + ηπνβu
α∇αuµ∇νuµ

+
2

3
ηgνβ∇ν∇αuα +

2

3
ηuβu

ν∇ν∇αuα

+∇α(ηπαµπνβ)(∇µuν +∇νuµ −
2

3
gµν∇λuλ).



CONFORMAL FLUIDS 1593

We now group the first two terms, the fourth term with the ninth term, and the
fifth term with the tenth term, to find

∇α(1)tαβ = −η(gαµ + uαuβ)∇α∇µuβ −
1

3
ηgνβ∇ν∇αuα

− 1

3
ηuβu

ν∇ν∇αuα + (1)Bβ ,

(31)

where

(1)Bβ = ηuβπ
αµ∇αuν∇µuν − ηRβαuα − ηuβRναuνuα + ηπνβu

α∇αuµ∇νuµ

+∇α(ηπαµπνβ)(∇µuν +∇νuµ −
2

3
gµν∇λuλ).

(32)

B.2. Calculation of ∇α(2)tαβ . Compute

∇α(2)tαβ = ∇α
[
λ(uαuµ∇µuβ + uβu

µ∇µuα)
]

= λ(uαuµ∇α∇µuβ + uβu
µ∇α∇µuα) +∇α(λuαuµ)∇µuβ

+∇α(λuβu
µ)∇µuα.

Using ∇α∇µuα = ∇µ∇αuα +Rµαu
α we find

∇α(2)tαβ = λuαuµ∇α∇µuβ + λuβu
µ∇µ∇αuα + (2)Bβ , (33)

where

(2)Bβ = λuβRµαu
µuα +∇α(λuαuµ)∇µuβ +∇α(λuβu

µ)∇µuα. (34)

B.3. Calculation of ∇α(3)tαβ . Compute

∇α(3)tαβ = ∇α
(1

3
παβ∇µuµ

)
=

1

3
χπαβ∇α∇µuµ +

1

3
∇α(χπαβ )∇µuµ,

so that

∇α(3)tαβ = χ
1

3
gµβ∇µ∇αu

α +
1

3
χuβu

µ∇µ∇αuα + (3)Bβ , (35)

where

(3)Bβ =
1

3
∇α(χπαβ )∇µuµ. (36)

B.4. Calculation of ∇α(4)tαβ . Compute

∇α(4)tαβ = ∇α
(
χuαuβ∇µuµ

)
= χuβu

µ∇µ∇αuα + (4)Bβ ,
(37)

where

(4)Bβ = ∇α(χuαuβ)∇µuµ. (38)
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B.5. Calculation of ∇α(5)tαβ . Compute

∇α(5)tαβ = ∇α
[ λ

4ε
(uαπµβ∇µε+ uβπ

αµ∇µε
]

=
λ

4ε
uαπµβ∇α∇µε+

λ

4ε
uβπ

αµ∇α∇µε+∇α
[ λ
4ε

(uαπµβ + uβπ
αµ)
]
∇µε

=
λ

4ε
uαgµβ∇α∇µε+

λ

4ε
uβu

αuµ∇α∇µε+
λ

4ε
uβg

αµ∇α∇µε

+
λ

4ε
uβu

αuµ∇α∇µε+∇α
[ λ
4ε

(uαπµβ + uβπ
αµ)
]
∇µε.

We rearrange the terms, swapping the first and third terms, so that

∇α(5)tαβ =
λ

4ε
uβg

αµ∇α∇µε+
λ

4ε
uβu

αuµ∇α∇µε

+
λ

4ε
uαgµβ∇α∇µε+

λ

4ε
uβu

αuµ∇α∇µε+ (5)Bβ ,

(39)

where

(5)Bβ = ∇α
[ λ
4ε

(uαπµβ + uβπ
αµ)
]
∇µε. (40)

B.6. Calculation of ∇α(6)tαβ . Compute

∇α(6)tαβ = ∇α
[3χ

4ε
uαuβu

µ∇µε
]

=
3χ

4ε
uβu

αuµ∇α∇µε+∇α
[3χ

4ε
uαuβu

µ
]
∇µε

=
3χ

4ε
uβu

αuµ∇α∇µε+ (6)Bβ ,

(41)

where

(6)Bβ = ∇α
[3χ

4ε
uαuβu

µ
]
∇µε. (42)

B.7. Calculation of ∇α(7)tαβ . Compute

∇α(7)tαβ = ∇α
[ χ

4ε
παβu

µ∇µε
]

=
χ

4ε
(gαβ + uαuβ)uµ∇α∇µε+∇α

[ χ
4ε
παβu

µ
]
∇µε

=
χ

4ε
gαβu

µ∇α∇µε+
χ

4ε
uαuβu

µ∇α∇µε+ (7)Bβ ,
(43)

where

(7)Bβ = ∇α
[ χ

4ε
παβu

µ
]
∇µε. (44)

B.8. Calculation of ∇αTαβ . Using (1), (25), (31), (33), (35), (37), (39), (41), and

(43), we find

∇αTαβ = −η(gαµ + uαuβ)∇α∇µuβ −
1

3
ηgνβ∇ν∇αuα −

1

3
ηuβu

ν∇ν∇αuα

+ λuαuµ∇α∇µuβ + λuβu
µ∇µ∇αuα

+ χ
1

3
gµβ∇µ∇αu

α +
1

3
χuβu

µ∇µ∇αuα

+ χuβu
µ∇µ∇αuα +

λ

4ε
uβg

αµ∇α∇µε+
λ

4ε
uβu

αuµ∇α∇µε

+
λ

4ε
uαgµβ∇α∇µε+

λ

4ε
uβu

αuµ∇α∇µε+
3χ

4ε
uβu

αuµ∇α∇µε

+
χ

4ε
gαβu

µ∇α∇µε+
χ

4ε
uαuβu

µ∇α∇µε+Bβ ,

(45)
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where the first three terms on the RHS of (45) come from (31), the fourth and
fifth from (33), the sixth and seventh from (35), the eighth from (37), the ninth to
twelfth from (39), the thirteenth from (41), the fourteenth and fifteenth from (43),
and Bβ is given by

Bβ = (1)Bβ + (2)Bβ + (3)Bβ + (4)Bβ + (5)Bβ + (6)Bβ + (7)Bβ +∇α(0)tαβ , (46)

with (1)Bβ , . . . ,
(7)Bβ given by (32), (34), (36), (38), (40), (42), and (44), respec-

tively, and (0)tαβ is given by (25). We now group the terms on the RHS of (45)
as follows: the first and the fourth terms, the fifth and the eighth terms, the sec-
ond and the sixth terms, the third and the seventh terms, the ninth, tenth, and
thirteenth terms, the eleventh and fourteenth terms, and the twelfth and fifteenth
terms. We obtain:

∇αTαβ = (−ηgαµ + (λ− η)uαuµ)∇α∇µuβ + (λ+ χ)uβu
µ∇µ∇αuα

+
1

3
(−η + χ)gµβ∇µ∇αu

α +
1

3
(−η + χ)uβu

µ∇µ∇αuα

+
1

4ε
uβ(λgαµ + (λ+ 3χ)uαuµ)∇α∇µε+

1

4ε
(λ+ χ)gµβu

α∇α∇µε

+
1

4ε
(λ+ χ)uβu

αuµ∇α∇µε+Bβ ,

(47)

where the first term on the RHS of (47) comes from the first and the fourth terms
on the RHS of (45), the second term on the RHS of (47) comes from the fifth and
the eighth terms on the RHS of (45), the third term on the RHS of (47) comes from
second and the sixth terms on the RHS of (45), the fourth term on the RHS of (47)
comes from the third and the seventh terms on the RHS of (45), the fifth term on
the RHS of (47) comes from the ninth, tenth, and thirteenth terms on the RHS of
(45), the sixth term on the RHS of (47) comes from the eleventh and fourteenth
terms on the RHS of (45), the seventh term on the RHS of (47) comes from and the
twelfth and fifteenth terms on the RHS of (45), and we used that ∇α∇µε = ∇µ∇αε.

Expanding the covariant derivatives and using Notation 1 gives (7).

B.9. Derivation of (6). Let us first write (3) in trace reversed form. Tracing (3)
gives

R = 4Λ− T,

where T = gαβTαβ . (For (1) we in fact have T = 0, as it must be for a conformal
tensor. But at this point we are writing Einstein’s equations for a general tensor.)
Plugging this for R in (3) gives

Rαβ = Tαβ −
1

2
Tgαβ + Λgαβ .

We now proceed to compute Rαβ in local coordinates. In coordinates, we have

Rαβ = ∂λΓλαβ − ∂αΓλβλ + ΓλαβΓµλµ − ΓλαµΓµβλ.

Using the definition of the Christoffel symbols Γλαβ gives

Rαβ = −1

2
gµν∂2

µνgαβ +
1

2
(gαλ∂βΓλ + gβλ∂αΓλ)

− 1

2
(∂βg

λµ∂λgαµ + ∂αg
λµ∂λgβµ)− ΓµαλΓλβµ,
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where Γλ is given by

Γλ = gµνΓλµν .

Using that in wave coordinates Γλ = 0 and recalling (1), the above gives (6).

Appendix C. The characteristic determinant. In this section we derive (11).
Because of the structure of the system in (9) it suffices to compute the characteristic
determinant of m(U, ∂) in (10). Using Mathematica and (5) we find (we are not
assuming a1 = 4 at this point)

detm(Û , ξ) = p̃1(Û , ξ)p̃2(Û , ξ)p̃3(Û , ξ),

where

p̃1(Û , ξ) =
1

12ε̂
η4(ûµξµ)2,

p̃2(Û , ξ) =
[
(a2 − 1)(û0)2ξ2

0 + (a2 − 1)(û1)2ξ2
1 − (û2)2ξ2

2 + a2(û2)2ξ2
2 − 2û2û3ξ2ξ3

+ 2a2û
2û3ξ2ξ3 − (û3)2ξ2

3 + a2(û3)2ξ2
3 + ξ0(2(−1 + a2)ξ1û

0û1

+ 2(a2 − 1)ξ2û
0û2 − 2ξ3û

0û3 + 2a2û
0û3ξ3 − ξ0)

+ξ1(2(−1 + a2)û1û2ξ2 + 2(a2 − 1)û1û3ξ3 − ξ1)− ξ2ξ2 − ξ3ξ3
]2

and

p̃3(Û , ξ) =− 6(−2a1û0û
0 − a2û0û

0 + 2a1a2û0û
0 + a2

2û0û
0 − 2a1û1û

1 − a2û1û
1

+ 2a1a2û1û
1 + a2

2û1û
1 − 2a1û2û

2 − a2û2û
2 + 2a1a2û2û

2 + a2
2û2û

2

− 2a1û3û
3 − a2û3û

3 + 2a1a2û3û
3 + a2

2û3û
3)(ξ0û

0 + ξ1û
1

+ ξ2û
2 + ξ3û

3)4

− 2(−a2û0 + 4a1a2û0 + 3a2
2û0)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ0

− 2(−a2û1 + 4a1a2û1 + 3a2
2û1)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ1

− 2(−a2û2 + 4a1a2û2 + 3a2
2û2)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ2

− 2(−a2û3 + 4a1a2û3 + 3a2
2û3)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ3

+ 5(3a1û0û
0 + 2a2û0û

0 + a1a2û0û
0 + 3a1û1û

1 + 2a2û1û
1

+ a1a2û1û
1 + 3a1û2û

2 + 2a2û2û
2 + a1a2û2û

2

+ 3a1û3û
3 + 2a2û3û

3 + a1a2û3û
3)(ξ0û

0 + ξ1û
1

+ ξ2û
2 + ξ3û

3)2(ξ0ξ
0 + ξ1ξ

1 + ξ2ξ
2 + ξ3ξ

3) (48)

+ (3a1û0 + 2a2û0 + a1a2û0)(ξ0û
0 + ξ1û

1 + ξ2û
2 + ξ3û

3)ξ0(ξ0ξ
0

+ ξ1ξ
1 + ξ2ξ

2 + ξ3ξ
3) + (3a1û1 + 2a2û1 + a1a2û1)(ξ0û

0

+ ξ1û
1 + ξ2û

2 + ξ3û
3)ξ1(ξ0ξ

0 + ξ1ξ
1 + ξ2ξ

2 + ξ3ξ
3)

+ (3a1û2 + 2a2û2 + a1a2û2)(ξ0û
0 + ξ1û

1

+ ξ2û
2 + ξ3û

3)ξ2(ξ0ξ
0 + ξ1ξ

1 + ξ2ξ
2 + ξ3ξ

3)

+ (3a1û3 + 2a2û3 + a1a2û3)(ξ0û
0

+ ξ1û
1 + ξ2û

2 + ξ3û
3)ξ3(ξ0ξ

0 + ξ1ξ
1 + ξ2ξ

2 + ξ3ξ
3)

+ (4a2û0û
0 − a1a2û0û

0 + 4a2û1û
1 − a1a2û1û

1 + 4a2û2û
2
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− a1a2û2û
2 + 4a2û3û

3 − a1a2û3û
3)(ξ0ξ

0 + ξ1ξ
1 + ξ2ξ

2 + ξ3ξ
3)2.

It is not difficult to see, after some manipulations, that p̃2(Û , ξ) is precisely p2(Û , ξ),

i.e., (13). Let us now analyze p̃3(Û , ξ). The first term in p̃3(Û , ξ), that spans lines
2 to 5 in (C), is proportional to (ûµξµ)4. The terms from lines 6 to 9 combined are
also proportional to (ûµξµ)4. Indeed, the term on the sixth line can be written as

−2(−a2û0 + 4a1a2û0 + 3a2
2û0)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3ξ0

= −2(−a2 + 4a1a2 + 3a2
2)(ξ0û

0 + ξ1û
1 + ξ2û

2 + ξ3û
3)3û0ξ

0,

and similarly we can group ûi with ξi in the terms on the seventh to ninth line.
Factoring then the common factor in lines 6 to 9 gives a term cubic in ûµξµ times
the term

û0ξ
0 + û1ξ

1 + û2ξ
2 + û3ξ

3.

But this last term equals ûµξµ, which can then be grouped with the cubic term in
ûµξµ producing a term proportional to (ûµξµ)4, as claimed.

The next term in p̃3(Û , ξ), spanning lines 10 to 13 in (C) is proportional to
(ûµξµ)2.

We claim that the terms spanning lines 14 to 20, when combined, produce a term
proportional to (ûµξµ)2. To see this, note that as written the terms in lines 14 to
20 all have a factor û0ξ

0 + û1ξ
1 + û2ξ

2 + û3ξ
3, which equals ûµξµ. The term that

begins on line 14 of (C) can be written as

(3a1û0 + 2a2û0 + a1a2û0)(ξ0û
0 + ξ1û

1 + ξ2û
2 + ξ3û

3)ξ0(ξ0ξ
0 + ξ1ξ

1 + ξ2ξ
2 + ξ3ξ

3)

= (3a1 + 2a2 + a1a2)(ξ0û
0 + ξ1û

1 + ξ2û
2 + ξ3û

3)(ξ0ξ
0 + ξ1ξ

1 + ξ2ξ
2 + ξ3ξ

3)û0ξ
0,

and similarly we can combine ûi with ξi in the other terms in lines 15 to 20.
Factoring then the common factor to all terms in lines 14 to 20 produces a term
linear in ûµξµ times û0ξ

0 + û1ξ
1 + û2ξ

2 + û3ξ
3 ≡ uµξµ, hence a term quadratic in

ûµξµ, as claimed.

Therefore, we see that all terms in p̃3(Û , ξ) contain a factor of (ûµξµ)2, except
for the last term which spans lines 21 and 22. This last term, however, vanishes

identically if a1 = 4. In this case we can factor (ûµξµ)2 from p̃3(Û , ξ). We combine

the factored (ûµξµ)2 with p̃1(Û , ξ), producing p1(Û , ξ), i.e., (12), and the remainder

from p̃3(Û , ξ) produces p3(Û , ξ), i.e., (14).

Remark 16. Without setting a1 = 4, the above factorization procedure can be

used to show that p̃3(Û , ξ) factors as

A(ûµξµ)4 +B(ûµξµ)2ξλξλ + C(ξλξλ)2,

where A, B, and C depend on a1 and a2. We would like to factor this quartic
polynomial as a product of (real) degree two polynomials, since then we can analyze
its roots explicitly. The above choice a1 = 4 does exactly this. But other choices of
a1 and a2 also lead to the desired factorization, as showed in [3].
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New constraints are found that must necessarily hold for Israel-Stewart-like theories of fluid dynamics to
be causal far away from equilibrium. Conditions that are sufficient to ensure causality, local existence, and
uniqueness of solutions in these theories are also presented. Our results hold in the full nonlinear regime,
taking into account bulk and shear viscosities (at zero chemical potential), without any simplifying
symmetry or near-equilibrium assumptions. Our findings provide fundamental constraints on the
magnitude of viscous corrections in fluid dynamics far from equilibrium.
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Introduction.—Relativistic fluid dynamics is essential to
the state-of-the-art modeling of the quark-gluon plasma
(QGP) formed in ultrarelativistic heavy-ion collisions (see
[1–3]). However, despite its wide use and significant success,
it remains unclear why such a fluid dynamical description is
applicable given that local deviations from equilibrium
in nucleus-nucleus collisions can be very large, especially
at early times [4–6]. In fact, typical fluidlike signatures
involving anisotropic flow [7] persist even in small systems
formed in proton-nucleus and proton-proton collisions at
sufficiently high multiplicity [8–14]. Such findings have
motivated a series of new investigations on the foundations
of relativistic viscous fluid dynamics [15–18] and their
subsequent extension toward the far-from-equilibrium
regime relevant for heavy-ion collisions [19–45].
The viscous fluid description of the QGP is currently based

on ideas from Israel and Stewart (IS) [46,47] (see, also,
Mueller [48]), who proposed a way to fix the long-standing
acausality [49] and instability [50] problems of the relativistic
generalization of Navier-Stokes (NS) equations derived by
Eckart [51] and Landau and Lifshitz [52]. The general
mechanism introduced by IS to try to avoid such issues
assumes that dissipative currents such as the shear stress
tensor, πμν, and the bulk scalar,Π, are new degrees of freedom
[53,54] which obey nonlinear relaxation equations describing
how such quantities relax to their relativistic NS limits within
relaxation time scales τπ and τΠ. The same principle is also at

play in modern formulations of fluid dynamics put forward by
Ref. [55] and Ref. [56], which are currently employed in
numerical simulations (see, for instance, [57]).
It is well known that the IS-like theories are linearly

stable around equilibrium [58–61]. But physically sensible
relativistic theories of fluid dynamics must also be causal,
i.e., the equations of motion must be hyperbolic, and the
propagation of information must be, at most, the speed of
light [62]. Also, the Cauchy problem must be locally well
posed [63], i.e., given initial conditions, one must show
that the equations admit a unique solution. A common
misconception in the field is that IS-like theories have
already been proven to be causal a long time ago in
Refs. [46,58,59,64–66]. This is not the case. Those early
works only considered linearized disturbances around
equilibrium, where the background fields πμν and Π vanish
and the corresponding linear disturbances are small. Such a
linearized analysis says nothing about the nonlinear regime,
even for small πμν and Π. The far-from-equilibrium regime,
in particular, is necessarily nonlinear as πμν and Π can be as
large as the local equilibrium pressure P.
Hence, it is not known if IS theories are, indeed, sensible

in the regime probed by high energy hadronic collisions.
Understanding the far-from-equilibrium properties of such
theories is also crucial to reliably assess the role of viscous
effects in early universe cosmology [67]. Here, we make
essential steps toward solving this critical problem by
finding conditions (in the form of simple algebraic inequal-
ities that can be checked at every step of the evolution) that
must necessarily hold for IS-like theories to be causal in the
nonlinear regime. We also present conditions that are
sufficient to ensure causality, local existence, and unique-
ness of solutions of IS-like theories. Our results are the first
in the literature that hold in the full nonlinear regime, with
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bulk and shear viscosities (at zero chemical potential), in
three spatial dimensions, without recurring to any sym-
metry or near-equilibrium assumptions.
The equations of motion.—Using the Landau frame

definition of the hydrodynamic variables [52], the
energy-momentum tensor of the fluid can be written as
[We use units c ¼ ℏ ¼ kB ¼ 1. The spacetime metric
signature is ð−þþþÞ. Greek indices run from 0 to 3,
Latin indices from 1 to 3.] Tμν ¼ εuμuνþ
ðPþ ΠÞΔμν þ πμν, where uμ is the fluid’s four-velocity
(with uμuμ ¼ −1), ε is the energy density, P ¼ PðεÞ
is the equilibrium pressure defined by an equation of state,
Δμν ¼ gμν þ uμuν is the projector orthogonal to the flow,
gμν is the spacetime metric, πμν ¼ πνμ, πμνuμ ¼ 0, and
Δμνπ

μν ¼ 0. We focus on high energy collisions, and thus,
we only investigate, here, the case of zero chemical
potentials. Conservation of energy and momentum implies
that∇μTμν ¼ 0, which can be written as (c2s ¼ dP=dε is the
equilibrium speed of sound squared)

uα∇αεþ ðεþPþΠÞ∇αuα þ παμ∇αuμ ¼ 0;

ðεþPþΠÞuβ∇βuα þ c2sΔ
β
α∇βεþΔβ

α∇βΠþΔβ
α∇μπ

μ
β ¼ 0:

ð1Þ

Here, we consider the case where the dissipative currents
fπμν;Πg satisfy the following equations (Note that our
metric signature is different than in [56].), derived using the
Denicol-Niemi-Molnar-Rischke formalism [56], and com-
monly used in heavy-ion collision applications

τΠuμ∇μΠþ Π ¼ −ζ∇μuμ − δΠΠΠ∇μuμ − λΠππ
μνσμν;

ð2aÞ

τπΔ
μν
αβu

λ∇λπ
αβ þ πμν

¼ −2ησμν − δπππ
μν∇αuα − τπππ

hμ
α σνiα − λπΠΠσμν;

ð2bÞ

where σμν ¼ Δμν
αβ∇αuβ is the shear tensor, Δμν

αβ ¼
ðΔμ

αΔν
β þ Δμ

βΔν
αÞ=2 − 1

3
ΔμνΔαβ, Ahμ

λ B
νiλ ¼ Δμν

αβA
αλBβ

λ , and
η, ζ are the shear and bulk viscosities, respectively. All the
transport coefficients, fη; ζ; τΠ; τπ; δΠΠ; λΠπ; δππ; τππ; λπΠg,
can depend on the ten dynamical variables fε; uμ; πμν;Πg
(so, in principle, they may even depend on the dissipative
tensors) but not on their derivatives. Explicit expressions
for transport coefficients in models can be found, for
instance, in [56,68,69].
We note that fη; ζ; τπ; τΠg are the only coefficients

that remain after linearization around equilibrium where
πμν ¼ 0 and Π ¼ 0. This shows why linearized analyses
[58,59] necessarily miss the effects from the other
coefficients, fδΠΠ; λΠπ; δππ; τππ; λπΠg, which contribute
to the nonlinear evolution. However, other nonlinear

terms such as πμνπ
μν, Π2, πμνΠ, πhμα πνiα, which appear

in [56], could have been trivially added to the equations
as they do not contribute to a causality analysis since they
do not involve derivatives of the fields. Nevertheless,
there are still some other nonlinear terms that can

be considered such as πhμα Ωνiα, where Ωμν ¼ ðΔα
μ∇αuν −

Δα
ν∇αuμÞ=2 is the vorticity and, also, Ωhμ

α Ωνiα [3]. The
former will be investigated in a separate publication.
The latter contributes with derivatives of the fields to
the principal part of the system of equations and, thus,
a different analysis than presented here would be
required.
Causality.—Causality is the concept in relativity theory

asserting that no information propagates faster than the
speed of light and no closed timelike curves exist (so the
future cannot influence the past). See Refs. [70–74] for a
mathematically precise definition of causality. Causality
can be investigated by determining the characteristic
manifolds associated with a system of partial differential
equations [75,76]. Let us write equations (1)–(2) as
Aα∇αΨ ¼ FðΨÞ, where we defined the vector
Ψ ¼ ðε; uν;Π; π0ν; π1ν; π2ν; π3νÞ, the 22 × 22 matrix

Aα ¼

2
6666666666664

uα ρδαν þ παν 01×1 01×4 01×4 01×4 01×4

c2sΔμα ρuαδμν − πανuμ Δμα δα0I4 δα1I4 δα2I4 δα3I4
04×1 Eα

ν τΠuα 04×4 04×4 04×4 04×4

04×1 C0δα
ν 04×1 τπuαI4 04×4 04×4 04×4

04×1 C1δα
ν 04×1 04×4 τπuαI4 04×4 04×4

04×1 C2δα
ν 04×1 04×4 04×4 τπuαI4 04×4

04×1 C3δα
ν 04×1 04×4 04×4 04×4 τπuαI4

3
777777777777775

; ð3Þ
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and FðΨÞ is a vector that does not contain derivatives of the
variables. Above, we also defined ρ ¼ εþ Pþ Π,
Eα
ν ¼ ðζ þ δΠΠΠÞδαν þ λΠππ

α
ν , Bμλα

ν ¼ 1
2
ðΔμαδλν þ Δλαδμν

− 2
3
ΔμλδανÞ, and

Cσδα
ν ¼

�
ð2ηþ λπΠΠÞδσμδδλ þ

τππ
2

πσλδ
δ
μ þ

τππ
2

πδλδ
σ
μ

�
Bμλα
ν

−
τππ
3

Δσδπαν þ δπππ
σδδαν − τπðπσνuδ þ πδνuσÞuα:

The characteristic surfaces fΦðxÞ ¼ 0g are determined by
the principal part of the equations by solving the character-
istic equation detðAαξαÞ ¼ 0, with ξα ¼ ∇αΦ [77]. The
system is causal if, for any ξi, it holds that (C1) the roots
ξ0 ¼ ξ0ðξiÞ of the characteristic equation are real and (C2)
ξα ¼ ðξ0; ξiÞ is spacelike or lightlike. Condition (C2) implies
that the characteristic surfaces fΦðxÞ ¼ 0g
are timelike or lightlike, indicating that no information
is superluminal. For instance, for an ideal fluid (where
Π ¼ 0 and πμν ¼ 0), the characteristic velocities are
determined by the speed of sound and causality implies
that c2s ≤ 1 [63].
From (3), it is clear that the characteristics associated

with the evolution depend on the dissipative tensors
fπμν;Πg. Therefore, the true causal behavior of IS theories
is necessarily a far-from-equilibrium property of the fluid,
and linear analyses around equilibrium cannot be used to
establish causality and well posedness in IS theories. The
computation of the characteristics defined by (3), which is
needed for a causality analysis, is extremely involved and is
presented in the Supplemental Material [78]. Below, we
present the main consequences of such calculations.
Let Λα, α ¼ 0, 1, 2, 3, be the eigenvalues of the πμν . The

eigenvalues are such that Λ0 ¼ 0, since uμ is in the kernel
of πμν (uμπ

μ
ν ¼ 0), and Λ1 þ Λ2 þ Λ3 ¼ 0, so that the

trace is kept zero. Without loss of generality, let us take
Λ1 ≤ Λ2 ≤ Λ3 with Λ1 ≤ 0 ≤ Λ3. Now, we state our
assumptions, which are the following: (A1) for the trans-
port coefficients and relaxation times, suppose that τΠ; τπ >
0 and η; ζ; τππ; δΠΠ; λΠπ; δππ; λπΠ; c2s ≥ 0; (A2) for the fluid
variables, suppose that ε > 0, P ≥ 0, and εþ Pþ Π > 0;
finally, we also assume that (A3) εþ Pþ Πþ Λa > 0,
a ¼ 1, 2, 3. Then, the following conditions are necessary
for causality, i.e., if any of the inequalities below is not
satisfied, then the system is not causal:

ð2ηþ λπΠΠÞ −
1

2
τππjΛ1j ≥ 0; ð4aÞ

εþ Pþ Π −
1

2τπ
ð2ηþ λπΠΠÞ −

τππ
4τπ

Λ3 ≥ 0; ð4bÞ

1

2τπ
ð2ηþ λπΠΠÞ þ

τππ
4τπ

ðΛa þ ΛdÞ ≥ 0; a ≠ d; ð4cÞ

εþ Pþ Πþ Λa −
1

2τπ
ð2ηþ λπΠΠÞ

−
τππ
4τπ

ðΛd þ ΛaÞ ≥ 0; a ≠ d; ð4dÞ

1

2τπ
ð2ηþ λπΠΠÞ þ

τππ
2τπ

Λd

þ 1

6τπ
½2ηþ λπΠΠþ ð6δππ − τππÞΛd�

þ ζ þ δΠΠΠþ λΠπΛd

τΠ
þ ðεþ Pþ Πþ ΛdÞc2s ≥ 0;

ð4eÞ

εþ Pþ Πþ Λd −
1

2τπ
ð2ηþ λπΠΠÞ

−
τππ
2τπ

Λd −
1

6τπ
½2ηþ λπΠΠþ ð6δππ − τππÞΛd�

−
ζ þ δΠΠΠþ λΠπΛd

τΠ
− ðεþ Pþ Πþ ΛdÞc2s ≥ 0;

ð4fÞ

where (4c)–(4f) must hold for a, d ¼ 1, 2, 3. The proof that
(4) are necessary conditions for causality under assump-
tions (A1)–(A3) is given in the Supplemental Material [78].
Here, we discuss the significance of this result.
We stress that assumptions (A1) and (A2) are standard in

heavy-ion collision applications [57], and (A3) is a very
natural assumption since Pþ Πþ Λa for a ¼ 1, 2, 3 may
be interpreted as the pressure in each spatial axis in the local
rest frame. Thus, if (A3) is violated, the theory would
have a pathology in the sense that fluid elements would
have negative inertia, i.e., the acceleration is opposite to the
force given by the negative of the gradient of pressure.
Furthermore, it is natural to make assumptions that hold
close to equilibrium, and since (A2) guarantees
εþ Pþ Π > 0, for small deviations from equilibrium,
Λa will be small, giving εþ Pþ Πþ Λa > 0. That said,
we stress that, although (A3) is expected to hold near
equilibrium, it is, itself, not a near-equilibrium assumption.
Conditions (4) could never have been found using a

linearized analysis, as they depend on Π and Λa, both of
which vanish in equilibrium. Consequently, if, in any fluid
dynamic simulation in heavy-ion collisions that employs
(1)–(2), the necessary conditions above are not fulfilled,
causality is necessarily violated. It is important to point out
that this causality violation has nothing to do with the
ability of numerical schemes to produce a solution, a point
we shall return to at the end of the Letter.
While the above conditions must hold for the system to

be causal, they are not sufficient conditions, i.e., by
themselves, conditions (A1)–(A3) and (4) do not assure
the system to be causal (see the Supplemental Material
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[78]). Therefore, it is important to have conditions that are
sufficient for causality. In this regard, assume, again, that
(A1)–(A3) hold. Then, the following conditions are suffi-
cient to ensure that causality holds, i.e., if they are satisfied,
then the system is causal:

ðεþPþΠ− jΛ1jÞ−
1

2τπ
ð2ηþλπΠΠÞ−

τππ
2τπ

Λ3≥0; ð5aÞ

ð2ηþ λπΠΠÞ − τππjΛ1j > 0; ð5bÞ

τππ ≤ 6δππ; ð5cÞ

λΠπ
τΠ

þ c2s −
τππ
12τπ

≥ 0; ð5dÞ

1

3τπ
½4ηþ 2λπΠΠþ ð3δππ þ τππÞΛ3�

þ ζ þ δΠΠΠþ λΠπΛ3

τΠ
þ jΛ1j þ Λ3c2s

þ
12δππ−τππ

12τπ
ðλΠπτΠ

þ c2s −
τππ
12τπ

ÞðΛ3 þ jΛ1jÞ2
εþ Pþ Π − jΛ1j − 1

2τπ
ð2ηþ λπΠΠÞ − τππ

2τπ
Λ3

≤ ðεþ Pþ ΠÞð1 − c2sÞ; ð5eÞ

1

6τπ
½2ηþ λπΠΠþ ðτππ − 6δππÞjΛ1j�

þ ζ þ δΠΠΠ − λΠπjΛ1j
τΠ

þ ðεþ Pþ Π − jΛ1jÞc2s ≥ 0;

ð5fÞ

1 ≥
12δππ−τππ

12τπ
ðλΠπτΠ

þ c2s −
τππ
12τπ

ÞðΛ3 þ jΛ1jÞ2
½ 1
2τπ

ð2ηþ λπΠΠÞ − τππ
2τπ

jΛ1j�2
; ð5gÞ

1

3τπ
½4ηþ 2λπΠΠ − ð3δππ þ τππÞjΛ1j�

þ ζ þ δΠΠΠ − λΠπjΛ1j
τΠ

þ ðεþ Pþ Π − jΛ1jÞc2s

≥
ðεþ Pþ Πþ Λ2Þðεþ Pþ Πþ Λ3Þ

3ðεþ Pþ Π − jΛ1jÞ

×

�
1þ

2½ 1
2τπ

ð2ηþ λπΠΠÞ þ τππ
2τπ

Λ3�
εþ Pþ Π − jΛ1j

�
; ð5hÞ

where condition (5h) can be dropped if δππ ¼ τππ ¼ 0. The
detailed proof can be found in the Supplemental Material
[78]. Since (4) must hold for causality, they must be
satisfied for any set of conditions that imply causality,
and it is possible to verify that (5) imply (4) under
assumptions (A1)–(A3). When shear viscous effects are
neglected, (5) reduces to the conditions for the bulk
viscosity case found in [79].

Conditions (A1)–(A3) and (5) also ensure the unique
local solvability of the initial-value problem in the class of
quasianalytic functions: given initial data of sufficient
regularity satisfying (5), there exists a unique solution to
the nonlinear equations taking the given initial data, defined
for a certain time interval. Thus, if (A1)–(A3) and (5) hold,
the evolution of the viscous fluid is guaranteed to be well
defined and causal even far from equilibrium where the
gradients (and, hence, πμν and Π) are large. This is relevant
for determining the properties of hydrodynamic attractors
[20] under general flow conditions [27,80] and, also, for an
overall validation of fluid dynamics descriptions of extreme
systems, such as proton-proton collisions. Moreover, while,
here, we focus on applications to heavy-ion collisions, so
gμν is the Minkowski metric, the methods of [79] can be
adapted to show that our conclusions hold when (1)–(2) are
coupled to Einstein’s equations. Hence, our results are also
crucial for determining the far-from-equilibrium behavior
of viscous fluids in general relativity, which may be
relevant to neutron star mergers [81]. The technical details
of these statements are provided in the Supplemental
Material [78].
When we linearize the equations around the equilibrium,

terms involving τππ; δΠΠ; λΠπ; δππ; λπΠ drop out and, thus,
(A1) can be replaced by τπ; τΠ > 0, η; ζ; c2s ≥ 0, and (A2)
and (A3) can be replaced by εþ P > 0 and P ≥ 0. Then,
conditions (5) become necessary and reduce to εþ P > 0,
εþ P − ðη=τπÞ ≥ 0, and 1=ðεþ PÞð4η=3τπ þ ζ=τΠÞ ≤
1 − c2s . These conditions coincide with the corresponding
well-known results previously found in [58,59] that ensure
causality and stability in the linearized regime around
equilibrium.
It is instructive to compare the causal propagation modes

of the full nonlinear theory determined here with that of
the dynamics linearized about equilibrium. Linearizing
Eqs. (1)–(2) around equilibrium, we find four distinct
modes of propagation which correspond to the flow lines,
the sound waves, and shear waves at two distinct speeds.
These are the same ones found in the previous works
[46,58,59,64–66], where, there, the authors find, in addi-
tion, a second longitudinal mode (second sound) due to the
fact that their equations also include a conserved current. In
the nonlinear case, we found six distinct propagation modes
corresponding to the flow lines, the sound waves, and shear
waves at four distinct speeds. This, again, highlights how
one misses an important part of the dynamics by looking
only at linearizations around equilibrium: there are two
additional speeds allowed for the shear waves that collapse
onto the remaining two upon linearization, so that these
additional velocities are not visible in the linearized
analysis.
We presented two sets of conditions for causality,

namely, conditions that are necessary and conditions that
are sufficient. Further studies must be done to discover
conditions that are necessary and sufficient, i.e., conditions
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that ensure the system to be causal if and only if they hold.
This is an extremely challenging task given the complexity
of the characteristic equation in the nonlinear problem.
Conformal limit.—To obtain some physical understand-

ing about our nonlinear constraints, consider a conformal
fluid [55], i.e., Π ¼ 0, P ¼ ε=3, δππ ¼ 4τπ=3, with η=s and
τπT being constants (here, T ∼ ε1=4 is the temperature and
s ∼ T3 is the equilibrium entropy density). Assume, for
simplicity, that all the other transport coefficients vanish (as
in [82]). The necessary conditions in (4) then impose that
Λa=ðεþ PÞ ≥ −1þ ðη=sÞð1=τπTÞ, so none of the eigen-
values of πμν can be too negative. Also, when
Λa=ðεþ PÞ > −1þ ðη=sÞð1=τπTÞ, the eigenvalues are
also limited from above since (4e) gives
Λa=ðεþ PÞ ≤ 1 − ð2=τπTÞðη=sÞ. Using typical values
motivated by heavy-ion collision applications, η=s ¼
1=ð4πÞ [83] and τπT ¼ 5η=s [84], one then finds
−4=5 < Λa=ðεþ PÞ ≤ 3=5. This implies that the relative

magnitude of the shear stress tensor,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πμνπ

μν=ðεþ PÞ2
q

,

cannot be arbitrarily large. Using a NS initial condition
where πμν ∼ −2ησμν at the initial time τ0, the corresponding
normalized eigenvalues would be parametrically given by
Λa=ðεþ PÞ ∼ ðη=sÞ=½τ0Tðτ0; x⃗Þ� (assuming σμν ∼ 1=τ0 in
the initial state). Given that our conditions imply that,
roughly, jΛa=ðεþ PÞj≲ 1, for τ0 ¼ 0.6 fm and
η=s ¼ 1=ð4πÞ, causality issues will be found where
Tðτ0; x⃗Þ ≲ 30 MeV, which is below the typical values
for the freeze-out temperature. However, in initial state
models where the initialized πμν=ðεþ PÞ is large and
strongly deviates from NS, the estimate above does not
apply, and causality violations may appear in hot regions of
the plasma as well. A detailed numerical study is needed to
assess the importance of our results to current simulations
of heavy-ion collisions.
Conclusions.—In this Letter, we established, for the first

time, that causality, in fact, holds for the full set of
nonlinear equations in IS-like theories without the need
for symmetry assumptions and in the presence of both shear
and bulk viscosity. All our conditions are simple algebraic
inequalities among the dynamical variables that can be
easily checked in a given system or simulation. Previous
attempts to go beyond the linear regime were restricted to
1þ 1 dimensions [60] or assumed strong symmetry con-
ditions [61,85], which, in practice, also corresponds to
partial differential equations with only one spatial variable.
Without such restrictions, the only other work where
nonlinear causality has been shown for IS-like systems
is [79], which only included bulk viscous effects. We have
also studied the Cauchy problem for (1)–(2), establishing
that it is well defined, so that it is meaningful to talk about
solutions.
Prior to our work, unless a numerical code was specifi-

cally tailored to detect causality violations of the under-
lying equations, which typically is not a feature present in

standard codes, one could only identify whether a numeri-
cal simulation of (1)–(2) violated causality if this caused
(a) a breakdown of the simulation, (b) a manifestly spurious
solution, or (c) clear nonphysical behavior. These
constraints are all too weak, as we now explain. For
illustration, consider −∂2

tψ þ ð1þ ψÞΔψ ¼ 0, where Δ
is the Laplacian. This is a nonlinear wave equation with
(nonlinear) speed given by

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ψ

p
for (For ψ < −1, the

equation is no longer a wave equation, becoming elliptic,
and it is a degenerate wave equation when ψ ¼ −1.)
ψ > −1. Indeed, the characteristics are given by
ξ0 ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

1þ ψ
p jξ⃗j. Therefore, the solutions are not causal

when ψ > 0, but are causal for −1 < ψ ≤ 0. Nevertheless,
the equation remains hyperbolic as long as ψ > −1.
Standard hyperbolic theory (see, e.g., [86]) ensures that,
given smooth initial data ψ jt¼0 and ∂tψ jt¼0, there exists a
unique smooth solution defined for some time. So any
numerical scheme that is able to track the unique solution
will produce results in both the acausal and causal cases
ψ > 0 and −1 < ψ ≤ 0, respectively. This makes it
extremely difficult to infer violations of causality using
(a) or (b) as criteria. Exactly the same situation can happen
in simulations of (1)–(2). We also note that linearizing
the equation about the “equilibrium” ψ ¼ 0 gives
−δψ tt þ Δδψ ¼ 0, which is always causal, reinforcing,
again, the idea that causality cannot always be obtained
from linearizations.
Criteria (c) has also limited applicability. First, there are

different mechanisms that can produce nonphysical sol-
utions. Thus, it is still important to understand whether
unphysical behavior is being caused by causality violation
or some other mechanism, such as running beyond the limit
where the effective description is valid. Second, relativistic
fluids in the far-from-equilibrium regime, such as the QGP,
may exhibit unexpected behavior, so one needs to be
careful to differentiate genuine exotic features from those
that are consequences of running a simulation in a super-
luminal regime. This may be particularly relevant to heavy-
ion simulations where the values of the fields drop
extremely rapidly at the edges of the QGP at early times
and in the cold or dilute regions of plasma where a rescaling
of dissipative tensors has been employed [87–90]. Third,
numerical simulations of relativistic fluids must be based
on equations of motion that respect causality, a fundamen-
tal physical principle in relativity.
The results we presented here are an important step

in addressing all these difficulties, as one can check if
(A1)–(A3), (4), or (5) hold at any moment in numerical
simulations [Comparing with the example of the equation
for ψ above, this would be similar to monitoring the value
of

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ ψ

p
: if ψ > 1, then the system is not causal, which is

the analog of (5), whereas causality is guaranteed if
−1 < ψ ≤ 0, which is the analog of (5).] since all the
quantities involved in our inequalities can be readily
extracted in numerical simulations [3]. We also note that
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our results apply, in particular, to the initial conditions, so
(4) and (5) can be used to rule out initial conditions that
violate causality or to select initial conditions for which
causality holds. This can be particularly relevant to further
constrain the physical assumptions behind the modeling of
initial conditions in QGP simulations. There are many
subtleties involved in numerically solving the IS equations,
including possible violations of causality caused entirely as
an artifact of the numerical simulation. Thus, it is important
to distinguish between such numerically caused unphysical
phenomena from true violation of causality of the under-
lying equations. Our new causality criteria can be instru-
mental in such analyses.
In sum, in this Letter, we established, for the first time in

the literature, conditions to settle the longstanding ques-
tions concerning causality in Israel-Stewart theories in the
nonlinear, far-from-equilibrium regime. As such, our gen-
eral results provide the most stringent tests to date for
determining the validity of relativistic fluid dynamic
approaches in heavy-ion collisions, astrophysics, and
cosmology.
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In this Supplemental Material, in Section II we provide the proof that conditions (4) are necessary for
causality, in Section III we provide the proof that conditions (5) are sufficient for causality, and in Section IV
we establish local existence and uniqueness of solutions to the initial-value problem for equations (1)-(2). All
these results depend on a careful analysis of the roots of the characteristic equation det(Aαξα) = 0. Thus,
we first present in Section I a suitable factorization of det(Aαξα). In Section V we show that conditions
(4), albeit necessary, are not sufficient for causality. In Section VI we provide the formal definition of
causality and comment on why, in our case, it can be reduced to conditions (C1) and (C2). Since causality
is intrinsically tied to concepts of relativity theory, we refer to the standard literature (e.g., [1]) for further
background. Throughout this Supplemental Material, we continue to use the notation and definitions of the
paper.

I. THE CHARACTERISTIC EQUATION

Letting b = uαξα, vµ = ∆µνξν , and wµ = πµνξν , the characteristic determinant can be written as

det(Aαξα) = b13τ16
π τΠ det

[
b ρξν + wν

bc2sv
µ ρb2δµν − bwνuµ −

C̄µν
τπ
− vµẼν

τΠ

]
= b14τ16

π τΠ det [M ] , (S1)

where M = [Mµ
ν ]4×4 with Mµ

ν = ρb2δµν −bwνuµ−
C̄µν
τπ
− vµẼν

τΠ
−c2svµ(ρξν+wν), Ẽν = Eαν ξα = (ζ + δΠΠΠ) ξν+

λΠπwν , and

C̄δν = Cσδαν ξαξσ =
1

2

[
(2η + λπΠΠ)ξµδ

δ
λ +

τππ
2
wλδ

δ
µ +

τππ
2
πδλξµ

](
vµδλν + vλδµν −

2

3
∆µλξν

)
−τππ

3
vδwν + δππw

δξν − bτπ(wνu
δ + bπδν). (S2)

Since πµν is symmetric and traceless, it can be diagonalized, so the eigenvalue problem πµν e
ν
A = ΛAe

µ
A,

with A = 0, 1, 2, 3, defines an orthonormal set of eigenvectors eµA=0 = uµ, eµA=a = eµa with real eigenvalues Λa
for a = 1, 2, 3 in the sense that gµνe

µ
Ae

ν
B = ηAB where ηAB = diag(−1, 1, 1, 1). The eigenvalues are such that

Λ0 = 0 and Λ1 + Λ2 + Λ3 = 0. Without any loss of generality, let us take Λ1 ≤ Λ2 ≤ Λ3 with Λ1 ≤ 0 ≤ Λ3 so
that the trace is kept zero (note that if πµν 6= 0, this allows degeneracies to occur with multiplicity up to two).
Since {eµA} is a complete set in R4, we may define a tetrad of dual vectors {eAν } by setting eAν ≡ ηAB(eB)ν so
that1 δBA = eνAe

B
ν . Also, the following completeness relation holds: δµν =

∑
A e

µ
Ae

A
ν = −uµuν +

∑
a e

µ
a(ea)ν .

Therefore, the components of any four-vector zµ relative to the tetrad {eµA} are defined by zA ≡ zνeAν . We
can then use this to define vA ≡ eµAvµ and ξA ≡ eµAξµ. Given that ξµ = −buµ +

∑
a v

aeµa (a = 1, 2, 3) one
finds that ξA=0 = −ξA=0 = b while ξa = va. Furthermore, wA ≡ eµAwµ = eµAπµνξ

ν = ΛAξA = ΛAvA, where

1 From now on, repeated Latin indexes are not summed unless explicitly stated.



2

we used that Λ0 = 0 and again ξa = va (note also that va = va since ηab = δab). Using these observations,
we can show that the determinant det(M) needed for the characteristics in (S1) is given by

det(M) = det(E−1ME) = m0m1m2m3

×

[
1−

∑
a

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] + ζ+δΠΠΠ+λΠπΛa

τΠ
+ (ρ+ Λa)c2s

}
v̂2
a

m̄a

−12δππ − τππ
12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)∑
a,b
a<b

(Λa − Λb)
2v̂2
av̂

2
b

m̄am̄b

]
, (S3)

where E = [eµA]4×4, E−1 = [eBν ]4×4, and E−1ME = [eAµM
µ
ν e

ν
B ]4×4. Also, we defined above m0 =

ρ
(
b2 −

∑
a gav

2
a

)
, ga = 2(2η+λπΠΠ)+τππΛa

4ρτπ
, ma = (ρ+Λa)b2− 1

2τπ
(2η+λπΠΠ)(v ·v)− τππ

4τπ

(
Λav · v +

∑
c Λcv

2
c

)
,

v̂a = va/
√
v · v (assuming v 6= 0), and m̄0 = m0/(v ·v), m̄a = ma/(v ·v). Note that

∑
a v̂

2
a =

∑
a v

2
a/(v ·v) = 1

since v · v = vµvµ =
∑
a v

2
a. Assuming v 6= 0 is allowed because v = 0 does not lead to nontrivial roots b 6= 0

of the characteristic equation if assumptions (A1)–(A3) hold.
The roots ξ of det(Aαξα) = 0 in Eq. (S1) are the 14 roots from b = uαξα = 0 and the 8 roots from

det(M) = 0 in Eq. (S3) which consist of the 2 roots from m0 = 0 and the 6 roots coming from the zeros of

f(k) = m̄1m̄2m̄3G(k), (S4)

where we defined k ≡ b2/v · v and

G(k) = 1−
∑
a

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] + ζ+δΠΠΠ+λΠπΛa

τΠ
+ (ρ+ Λa)c2s

}
v̂2
a

m̄a

−12δππ − τππ
12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)∑
a,b
a<b

(Λa − Λb)
2v̂2
av̂

2
b

m̄am̄b
. (S5)

In this notation det(M) = m0(v · v)3f(k) because we used the definition m̄a = ma/v · v. Note that although
G(k) has m̄a appearing in denominators, these are canceled by the multiplication of G(k) by m̄1m̄2m̄3 in
the definition of f(k). Thus, f(k) is a polynomial of degree 3 in k (of degree 6 in b) and is defined for all
values of k ∈ R. Then, it is possible to factorize f(k) as

f(k) =

[
3∏
a=1

(ε+ P + Π + Λa)

]
(k − k1)(k − k2)(k − k3), (S6)

where k1, k2, k3 as the three roots of f(k). Note that for the sake of brevity, we have suppressed the depen-
dence on v̂ in writing G(k) and f(k) (to be more precise, these should have been written as G(k, v̂), f(k, v̂)).

Conditions (C1) and (C2) for causality demand that all the 22 roots ξ0 = ξ0(ξi) of det(Aαξα) = 0 are real
and satisfy ξαξ

α = −b2 + v · v ≥ 0, i.e., 0 ≤ k ≤ 1. The 14 roots b = 0 are causal. Thus, the rest the analysis
of necessary conditions in Section II will focus on the remaining roots defined by f(k) = 0. We summarize
this in the following important statement:

The system is causal if and only if for all for all v̂ on the unit sphere, the roots
of m̄0(k, v̂) = 0 and f(k, v̂) = 0 are real and 0 ≤ k ≤ 1.

(C3)

II. DERIVATION OF NECESSARY CONDITIONS FOR CAUSALITY

Here we establish that conditions (4) are necessary (but not sufficient, see Section V) for causality. More
precisely, we establish the following Theorem.
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Theorem 1. Let Ψ = (ε, uν ,Π, π0ν , π1ν , π2ν , π3ν)ν=0,...,3 be a smooth solution to equations (1)-(2) in
Minkowski space, with uµu

µ = −1 and πµν satisfying πµµ = 0 and uµπµν = 0. Suppose that (A1)-(A3)
hold. If any of conditions (4) is not satisfied, then Ψ is not causal in the sense of Definition 4 (see Section
VI).

Proof of Theorem 1: Our derivation of necessary conditions for causality is via the following reasoning.
Causality requires that conditions (C1) and (C2) hold for all ξi. Thus, in order to violate causality, it suffices
to show that for some ξi, (C1) or (C2) fails. Suppose now that we find a condition, say Z, for which we
can exhibit one ξi such that (C1) or (C2) fail, i.e., we obtain the statement “Z implies non-causality.” This
statement is logically equivalent to “Causality implies non-Z.” This means that non-Z is a necessary condition
for causality: if it is violated, the system is not causal. In our case, conditions like Z will be inequalities
among the scalars of the problem (e.g., the relaxation times, eigenvalues Λa, etc.) of the form A > B, whose
negation is then A ≤ B. The latter is then the necessary condition we are looking for: if A ≤ B does not
hold, the system is not causal.

Recall that (C1) and (C2) is equivalent to (C3), so in view of the foregoing discussion, we aim to violate
(C3). With the choice v̂a = δad, one can write m0 = ρ(v · v)(k − gd) = 0. Under our assumptions, the only
root is k = gd. Since we need 0 ≤ k ≤ 1, as discussed, and since g1 ≤ g2 ≤ g3, causality if violated if g1 < 0,
leading to condition (4a), or if g3 > 1, leading to condition (4b).

As for the roots of f(k), we may note that now in f(k) = m̄1m̄2m̄3G(k) we have

m̄a = (ε+ P + Π + Λa)k − 1

2τπ
(2η + λπΠΠ)− τππ

4τπ
(Λa + Λd) (S7)

and

G(k) = 1−

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λd] + ζ+δΠΠΠ+λΠπΛd

τΠ
+ (ρ+ Λd)c

2
s

}
m̄d

(S8)

because we have set v̂a = δad. We may therefore rewrite

f(k) = m̄am̄b

[
m̄d −

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λd] +

ζ + δΠΠΠ + λΠπΛd
τΠ

+ (ρ+ Λd)c
2
s

}]
, (S9)

where a 6= b and a, b 6= d. Setting each of the factors ma,mb equal to zero, we obtain the roots

k =
1

2τπ
(2η + λπΠΠ) + τππ

4τπ
(Λa + Λd)

ε+ P + Π + Λa
, a 6= d. (S10)

Causality is violated if k < 0, leading to condition (4c), of if k > 1, leading to condition (4d). The remaining
root in (S9) is obtained when the term in brackets vanishes, giving

k =
1

2τπ
(2η + λπΠΠ) + τππ

2τπ
Λd

ε+ P + Π + Λd

+

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λd] + ζ+δΠΠΠ+λΠπΛd

τΠ
+ (ρ+ Λd)c

2
s

}
ε+ P + Π + Λd

. (S11)

Causality is violated if k < 0, leading to (4e), or if k > 1, leading to (4f). This finishes the proof.

III. DERIVATION OF SUFFICIENT CONDITIONS FOR CAUSALITY

Here we establish that conditions (5) are sufficient for causality. More precisely, we have:
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Theorem 2. Let Ψ = (ε, uν ,Π, π0ν , π1ν , π2ν , π3ν)ν=0,...,3 be a smooth solution to equations (1)-(2) in
Minkowski space, with uµu

µ = −1 and πµν satisfying πµµ = 0 and uµπµν = 0. Suppose that (A1)-(A3)
and (5) hold. Then Ψ is causal in the sense of Definition 4 (see Section VI).

Proof of Theorem 2: As discussed in Section I, the 14 roots b = 0 are causal and do not need any further
treatment. The remaining 8 roots that come from det(M) = 0 are, again, the two roots of m0 and the six
roots of f(k) defined in (S4). We begin by analyzing the two roots of m0. Recalling that v = 0 does not
lead a nontrivial root of det(Aαξα) = 0, we see that the roots of m0 are given by b2 = k =

∑
a gav̂

2
a. For

these roots we need to check (according to (C3)) that

0 ≤
∑
a

gav̂
2
a ≤ 1. (S12)

(A3) together with conditions (5a) and (5b) give 0 ≤ g1 ≤ g2 ≤ g3 ≤ 1. From g1 ≤
∑
a gav̂

2
a ≤ g3, we see

that (S12) is satisfied.
Now we analyze the remaining 6 roots of det(M) = 0 coming from f(k) defined in Eq. (S4) and written

explicitly as a polynomial in (S6). We will show further below that the three roots ki in (S6) are real. But
let us first show that any real root of f must lie within [0, 1]. Since f is a cubic polynomial, it either has
only one real root, say s1, or three real roots, in which case we can order them as k1 ≤ k2 ≤ k3 in (S6).
Invoking (5a), we see that in the first case f is negative to the left of s1 and positive to its right, and in
the second case that f is a growing cubic polynomial except in the interval between the roots k1 and k3. In
either situation, any real root will be between 0 and 1 if

f(k < 0) < 0, (S13)

and

f(k > 1) > 0. (S14)

Let us first verify the inequality (S14). For k > 1

m̄a(k > 1) ≥ k(ε+ P + Π− |Λ1|)−
1

2τπ
(2η + λπΠΠ)− τππ

2τπ
Λ3, (S15)

where we have used −2|Λ1| ≤ Λa +
∑
c Λcv̂

2
c ≤ 2Λ3. Now, observe that

k(ε+ P + Π− |Λ1|)−
1

2τπ
(2η + λπΠΠ)− τππ

2τπ
Λ3 > (ε+ P + Π− |Λ1|)−

1

2τπ
(2η + λπΠΠ)− τππ

2τπ
Λ3

for k > 1, hence the condition (5a) lead us to m̄a(k ≥ 1) > 0. This guarantees that

m̄1(k > 1)m̄2(k > 1)m̄3(k > 1) > 0.

To obtain f(k > 1) > 0 in (S14), we therefore need G(k > 1) > 0. By means of (5c) and (5d),

−
∑
a

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] + ζ+δΠΠΠ+λΠπΛa

τΠ
+ (ρ+ Λa)c2s

}
v̂2
a

m̄a(k > 1)

> −
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λ3] + ζ+δΠΠΠ+λΠπΛ3

τΠ
+ (ε+ P + Π + Λ3)c2s

ε+ P + Π− |Λ1| − 1
2τπ

(2η + λπΠΠ)− τππ
2τπ

Λ3

(S16)

as well as

−12δππ − τππ
12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)∑
a<b

(Λa − Λb)
2v̂2
av̂

2
b

m̄a(k > 1)m̄b(k > 1)
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> −
12δππ−τππ

12τπ

(
λΠπ

τΠ
+ c2s − τππ

12τπ

)
(Λ3 − Λ1)2[

ε+ P + Π− |Λ1| − 1
2τπ

(2η + λπΠΠ)− τππ
2τπ

Λ3

]2 , (S17)

and thus,

G(k > 1) > 1−
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λ3] + ζ+δΠΠΠ+λΠπΛ3

τΠ
+ (ε+ P + Π + Λ3)c2s

ε+ P + Π− |Λ1| − 1
2τπ

(2η + λπΠΠ)− τππ
2τπ

Λ3

−
12δππ−τππ

12τπ

(
λΠπ

τΠ
+ c2s − τππ

12τπ

)
(Λ3 + |Λ1|)2[

ε+ P + Π− |Λ1| − 1
2τπ

(2η + λπΠΠ)− τππ
2τπ

Λ3

]2 . (S18)

Note that we have used maxa,b(Λa − Λb)
2 = (Λ3 − Λ1)2 = (Λ3 + |Λ1|)2, which follows from the ordering of

the eigenvalues Λa. Hence (5e) implies G(k) > 0 for k > 1.
It now remains to verify the inequality (S13). In this case, when k < 0

m̄a(k < 0) = −|k|(ε+ P + Π + Λa)− 1

2τπ
(2η + λπΠΠ)− τππ

4τπ

(
Λa +

∑
c

Λcv̂
2
c

)

< − 1

2τπ
(2η + λπΠΠ) +

τππ
2τπ
|Λ1|. (S19)

From condition (5b), one has that m̄a(k ≤ 0) < 0. Then,

f(k < 0) = m̄1(k < 0)m̄2(k < 0)m̄3(k < 0)G(k < 0) < 0

if, and only if, G(k < 0) > 0. Due to m̄a(k ≤ 0) < 0 together with (5c) and (5d), we obtain that

∑
a

{
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] + ζ+δΠΠΠ+λΠπΛa

τΠ
+ (ρ+ Λa)c2s

}
v̂2
a

−m̄a(k < 0)

>
1

6τπ
[2η + λπΠΠ− (6δππ − τππ)|Λ1|] + ζ+δΠΠΠ−λΠπ|Λ1|

τΠ
+ (ε+ P + Π− |Λ1|)c2s

−ma(k < 0)
. (S20)

Condition (5f) guarantees that
∑
a . . . > 0 in the above inequality. Moreover,

−12δππ − τππ
12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)∑
a<b

(Λa − Λb)
2v̂2
av̂

2
b

m̄a(k < 0)m̄b(k < 0)

> −
12δππ−τππ

12τπ

(
λΠπ

τΠ
+ c2s − τππ

12τπ

)
(Λ3 + |Λ1|)2[

1
2τπ

(2η + λπΠΠ)− τππ
2τπ
|Λ1|

]2 . (S21)

where we used (S19) and (Λ3 + |Λ1|)2 = maxa,b(Λa − Λb)
2 again. Now, since

G(k < 0) > 1−
12δππ−τππ

12τπ

(
λΠπ

τΠ
+ c2s − τππ

12τπ

)
(Λ3 + |Λ1|)2[

1
2τπ

(2η + λπΠΠ)− τππ
2τπ
|Λ1|

]2 , (S22)

we have G(k < 0) > 0 from condition (5g), finally implying f(k < 0) < 0.
It remains to establish the reality of the roots ki in (S6). To do that, let us write G(k) as

G(k) = 1−
∑
a

Rav̂
2
a

m̄a
−
∑
a,b
a<b

Sabv̂
2
av̂

2
b

m̄am̄b
(S23)
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and

m̄a = ρak − ra, (S24)

where

Ra =
1

6τπ
[2η + λπΠΠ + (6δππ − τππ)Λa] +

ζ + δΠΠΠ + λΠπΛa
τΠ

+ (ρ+ Λa)c2s (S25)

Sab =
12δππ − τππ

12τπ

(
λΠπ

τΠ
+ c2s −

τππ
12τπ

)
(Λa − Λb)

2, (S26)

ρa = ρ+ Λa = ε+ P + Π + Λa, (S27)

ra =
1

2τπ
(2η + λπΠΠ) +

τππ
4τπ

(
Λa +

∑
c

Λcv̂
2
c

)
. (S28)

Note, in particular, that r̄1 ≤ ra ≤ r̄3, where r̄1,3 ≡ 1
2τπ

(2η + λπΠΠ) +
τππΛ1,3

2τπ
> 0 from (5b). By applying

conditions (5) one has that Ra, Sab, ρa, ra ≥ 0. Then, f(k) can be written as

f(k) = m̄1m̄2m̄3 − m̄1m̄2R3v̂
2
3 − m̄2m̄3R1v̂

2
1 − m̄3m̄1R2v̂

2
2 − m̄1S23v̂

2
2 v̂

2
3 − m̄2S13v̂

2
1 v̂

2
3

−m̄3S12v̂
2
1 v̂

2
2

= a3k
3 + a2k

2 + a1k + a0, (S29)

where

a0 = −
(
r1r2r3 + r1r2R3v̂

2
3 + r2r3R1v̂

2
1 + r1r3R2v̂

2
2 − r1S23v̂

2
2 v̂

2
3 − r2S13v̂

2
1 v̂

2
3

−r3S12v̂
2
1 v̂

2
2

)
, (S30)

a1 = ρ1r2r3 + ρ2r1r3 + ρ3r1r2 + (ρ1r2 + ρ2r1)R3v̂
2
3 + (ρ2r3 + ρ3r2)R1v̂

2
1

+(ρ3r1 + ρ1r3)R2v̂
2
2 − ρ1S23v̂

2
2 v̂

2
3 − ρ2S13v̂

2
1 v̂

2
3 − ρ3S12v̂

2
1 v̂

2
2 , (S31)

a2 = −(ρ1ρ2r3 + ρ1ρ3r2 + ρ2ρ3r1 + ρ1ρ2R3v̂
2
3 + ρ2ρ3R1v̂

2
1 + ρ1ρ3R2v̂

2
2), (S32)

a3 = ρ1ρ2ρ3. (S33)

In view of (5), we have a3 > 0 and a2 < 0. Since all coefficients of f(k) are real, then at least one of the roots
must be real, say k = s1 ∈ R is the real root. Then, we know that the other two roots s2 and s3 are real or
complex conjugate, i.e., s∗3 = s2. Let us assume that s2 and s3 can be imaginary and set s2,3 = kR ± ikI ,
kI 6= 0. By using Vieta’s formula s1 + s2 + s3 = −a2

a3
= |a2|

a3
> 0 we obtain that

|a2|
a3
− 1 ≤ 2kR =

|a2|
a3
− s1 ≤

|a2|
a3

. (S34)

Thus, the following condition holds,

3ρ1(r̄1 +R1)

ρ2ρ3
− 1 < 2kR <

3ρ3(r̄3 +R3)

ρ1ρ2
(S35)

because the real root s1 ∈ [0, 1] when (5a)–(5g) apply, as we have already showed. Since we are assuming
s2,3 = kR ± ikI , where kI 6= 0, we have that m̄a(s2,3) = ρakR − ra ± ikI cannot be zero (unless kI = 0
and the roots are real). Consequently, from (S23) we obtain that f(s2,3) = 0 lead us to G(s2,3) = 0, where
s2,3 must obey the above conditions implied by f being a cubic polynomial, in particular the condition on
kR in (S35). Thus, let us split G(s2,3) in (S19) into GR(s2,3) + iGI(s2,3), where GR(s2,3) = <[G(s2,3)] and
GI(s2,3) = =[G(s2,3)]. In particular,

GI(s2,3) = ±kI
∑
a

v̂2
a

|m̄a|2

ρaRa +
∑
b
b>a

[ρa(ρbkR − r̄b) + ρb(ρakR − r̄a)]Sabv̂
2
b

|m̄b|2

 . (S36)
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To show that the roots are real, if suffices to have GI(s2,3) 6= 0. We distinguish two cases. If Sab = 0 then
GI(s2,3) 6= 0 because we assumed kI 6= 0. This means that in this case the roots must all be real. On the
other hand, if Sab 6= 0 and ρ1R1− r̄3 > 0, then Eq. (S36) also gives GI(s2,3) 6= 0, because then the sum over
b in (S36) is > 0. To check that ρ1R1− r̄3 > 0, note first that (5a) guarantees that ρa > ra. Then, by means
of (S35), we obtain that

ρ1kR − r̄3 >
ρ1

2

(
3ρ1(R1 + r̄1)

ρ2ρ3
− 1− 2r̄3

ρ1

)
≥ 0 (S37)

because of condition (5h), and this implies ρ1kR − r̄3 > 0. Since we have already showed that any real root
of f(k) must lie within [0, 1], this finishes our proof.

IV. LOCAL EXISTENCE AND UNIQUENESS

In this Section, we establish the local existence and uniqueness of solutions to the Cauchy problem. Below,
G is the space of Gevrey functions or quasi-analytic functions.

Theorem 3. Consider the Cauchy problem for equations (1)-(2) in Minkowski space, with initial data
Ψ̊ = (̊ε, ůν , Π̊, π̊0ν , π̊1ν , π̊2ν , π̊3ν)ν=0,...,3 given on {t = 0}. Assume that the data satisfies the constraints2

ůν ůν = −1, ůν is future-pointing, π̊νν = 0, and π̊νµů
µ = 0. Suppose that (A1)-(A3) and (5) hold for Ψ̊

in a strict form (i.e. < instead of ≤, > instead of ≥). Finally, assume that Ψ̊ ∈ Gδ({t = 0}), where
1 ≤ δ < 20/19. Then, there exist a T > 0 and a unique Ψ = (ε, uν ,Π, π0ν , π1ν , π2ν , π3ν)ν=0,...,3 defined on

[0, T )×R3 such that Ψ is a solution to (1)-(2) in [0, T )×R3 and Ψ = Ψ̊ on {t = 0}. Moreover, the solution
Ψ is causal in the sense of Definition 4 (see Section VI).

Proof of Theorem 3: The calculations provided in Section I and in the proof of Theorem 2 imply that, under
the assumptions, the characteristic polynomial of the system evaluated at the initial data is a product of
strictly hyperbolic polynomials. One also sees that intersection of the interior of the characteristic cones
defined by these strictly hyperbolic polynomials has non-empty interior and lies outside the light-cone defined
by the metric. Under these circumstances we can apply theorems A.18, A.19, and A.23 of [2] to conclude
the result (the remaining assumptions of these theorems are easily verified in our case).

For the sake of brevity, we refer readers to [3] for a definition of Gδ, making only the following remarks.
The case of δ = 1 corresponds to the space of analytic functions, of which Gδ with δ > 1 is a generalization.
This is why G is sometimes referred to as the space of quasi-analytic functions. The usefulness of Gevrey
functions to the study of hyperbolic problems is at least two-fold. On the one hand, one can prove very
general existence and uniqueness theorems for Gevrey data given on a non-characteristic surface that are
akin to the Cauchy-Kovalewskaya theorem for analytic data. On the other hand, an advantage of Gevrey
maps over analytic ones is that one can construct Gevrey functions that are compactly supported; hence
one can appeal to the type of localization arguments that are so useful in the study of hyperbolic equations.
This is particularly important when one is considering coupling to Einstein’s equations.

While typical evolution problems consider solutions in more general function spaces than Gδ, we stress
that ours is the very first existence and uniqueness result for equations (1)-(2). In other words, while it is
desirable to extend our result to more general function spaces, Theorem 3 is important because it shows,
for the very first time in the literature, that the initial value problem for equation (1)-(2) is well-defined, so
that it is meaningful to talk about solutions.

We remark that the diagonalization of πµν was carried out in terms of orthonormal frames which can be
defined for any Lorentzian metric. Also, our computations are manifestly covariant. Thus, the results of

2 Alternatively, we could have only unconstrained data be prescribed and obtain the full set of data from the stated constraints.
For example, we could have ůi prescribed and define u0 so that ůν is unit time-like and future pointing.
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Theorems 1, 2, and 3, remain true in a general globally hyperbolic space-time, as mentioned in the main
text. Moreover, as also mentioned in the main text, the result extends to the case when (1)-(2) are coupled
to Einstein’s equations. This follows by computing the characteristic determinant of the coupled system and
observing that it factors into the product of the characteristic determinant of (1)-(2), which we analyzed
here, and the characteristic determinant of Einstein’s equations. The argument is the same as given in [4].

V. INSUFFICIENCY OF CONDITIONS FOR CAUSALITY

In this Section, we show that conditions (4), albeit necessary, are not sufficient for causality. We do this
by showing that causality can be violated if we only assume (A1)-(A3) and (4).

Thus, suppose that (A1)-(A3) and (4) hold. Consider the case where (Ins1) δππ = τππ/4, δΠΠ = 0,
ζ+λΠπΛa ≥ 0, λΠπ

τΠ
+ c2s− τππ

12τπ
> 0, and 1− c2s− τππ

3τπ
− λΠπ

τΠ
< 0. Also, the parameters as well as c2s obey the

necessary conditions (4). Assume also that (Ins2) Λ3 = Λ2 > 0, i.e., Λ3 is a degenerated eigenvalue. Then,
we may write

G(k) = 1−
∑
a

Rav̂
2
a

m̄a
−
∑
a,b
a<b

Sabv̂
2
av̂

2
b

m̄am̄b
, (S38)

where

Ra =
1

6τπ

[
2η + λπΠΠ +

τππ
2

Λa

]
+
ζ + λΠπΛa

τΠ
+ (ε+ P + Π + Λa)c2s (S39)

and

Sab =
τππ
6τπ

(
ΛΠπ

τΠ
+ c2s −

τππ
12τπ

)
(Λa − Λb)

2. (S40)

From (4a) together with the above choices we have that Ra, Sab > 0. Now, let us define

m̃a ≡ ε+ P + Π + Λa −
1

2τπ
(2η + λπΠΠ)− τππ

2τπ
Λa. (S41)

Then, (4f) can be written as

m̃d −Rd ≥ 0, (S42)

culminating into m̃d > 0. Note that this must hold for any d = 1, 2, 3. Let us consider the case where a1 is
such that m̃a1

−Ra1
= mind(m̃d −Rd). Thus, if (S42) is verified for d = a1, it is automatically true for for

all d = 1, 2, 3. Now, we may choose the constraint in the parameters such that (Ins3) m̃a1
−Ra1

= 0, what
is in accord with (S42). The remainder of this proof relies on the choice v̂a1 =

√
1− ε2, v̂a2 = ε, and v̂a3 = 0

for ε ∈ (0, 1). Moreover, we make the assumption (Ins4) that if a1 = 3, 2, then a2 = 2, 3 while if a1 = 1, then
a2 can be either 2 or 3. Thus, one can clearly see that

f(k) = m̄a3

(
m̄a1m̄a2 − m̄a1Ra2ε

2 − m̄a2Ra1(1− ε2)− Sa1a2ε
2(1− ε2)

)
, (S43)

m̄d = (ε+ P + Π + Λd)k −
1

2τπ
(2η + λπΠΠ)− τππ

4τπ

[
Λd + Λa1

(1− ε2) + Λa2
ε2
]

= m̄0
d −

τππ
4τπ

(Λa2
− Λa1

)ε2, (S44)

where we defined

m̄0
d ≡ (ε+ P + Π + Λd)k −

1

2τπ
(2η + λπΠΠ)− τππ

4τπ
(Λd + Λa1

) .
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From (4d) one may easily verify that m̄0
d(k ≥ 1) ≥ 0. In particular,

m̄0
a1

(k = 1) = m̃a1
> 0 (S45)

from (S42), while m̄0
a2,a3

(k = 1) > m̃a2,a3
> 0. (Ins2) enables us to write (note that a2 6= 1 according to

(Ins4))

Λa1(1− ε2) + Λa2ε
2

{
= Λ3 = Λ2, if a1 = 2, a2 = 3 or a1 = 3, a2 = 2,

< Λ3, if a1 = 1 ∀ ε ∈ (0, 1)
, (S46)

which results into

m̄d ≥ (ε+ P + Π + Λd)k −
1

2τπ
(2η + λπΠΠ)− τππ

4τπ
(Λd + Λ3) , (S47)

and gives m̄d(k ≥ 1) ≥ 0 due to (4d) and m̄2,3(k ≥ 1) > 0 because m̃d > 0 from (S42).
The roots of f are the roots of m̄a3 and the roots in the term in brackets in (S43). Let us define it as

f̃(k) ≡ m̄a1m̄a2 − m̄a1Ra2ε
2 − m̄a2Ra1(1− ε2)− Sa1a2ε

2(1− ε2)

= m̄a1m̄a2G(k), (S48)

where

G(k) = 1− Ra2
ε2

m̄a2

− Ra1
(1− ε2)

m̄a1

− Sa1a2
ε2(1− ε2)

m̄a1
m̄a2

. (S49)

Note that since ε ∈ (0, 1), the terms m̄a1,a2
(k̄) cannot be zero if k̄ is a root of f̃ due to the term Sa1a2

. Also,

because f̃(k) = (ρ + Λa1)(ρ + Λa2)k2 + O(k) is a positive function to the right of the larger real root due
to (Ins3), then f̃(k > 1) > 0, or equivalently G(k > 1) > 0, guarantees that there is no real root for k > 1.
Because (Ins1) leads to Ra, Sab > 0, and since m̄a(k > 1) > m̄a(k = 1), then condition G(k > 1) > 0 is
equivalent to G(k = 1) ≥ 0. In other words we must have that

1− Ra2ε
2

m̄a2
(k = 1)

− Ra1(1− ε2)

m̄a1
(k = 1)

− Sa1a2ε
2(1− ε2)

m̄a1
(k = 1)m̄a2

(k = 1)
≥ 0. (S50)

Since ε < 1 we can expand (S45) in powers of it and, after using (S45) and (Ins3), obtain the causality
condition {

1− τππ
4τπm̃a1

(Λa2
− Λa1

)− Ra2

m̄0
a2

(k = 1)
− Sa1a2

m̃a1
m̄0
a2

(k = 1)

}
ε2 +O(ε4) ≥ 0. (S51)

Now, by writing

m̄0
a2

(k = 1) = m̃a1
+ (Λa2

− Λa1
)

(
1− τππ

4τπ

)
and

Ra2 = Ra1 + (Λa2 − Λa1)

(
c2s +

τππ
12τπ

+
λΠπ

τΠ

)
,

and by means of (Ins3) we may rewrite

1− Ra2

m̄0
a2

(k = 1)
=

Λa2
− Λa1

m̄0
a2

(k = 1)

(
1− c2s −

τππ
3τπ
− λΠπ

τΠ

)
≤ 0. (S52)

Note that (S52) is negative or zero because of (Ins2), (Ins3), and (Ins4). From (Ins2) and (Ins4), if a1 = 2, 3,
then a2 = 3, 2 and Λa2

−Λa1
= 0 while if a1 = 1, then a2 = 2, 3 and Λa2

−Λ1 > 0, resulting in Λa2
−Λa1

≥ 0,
while (Ins1) makes (S52) negative or zero. As a consequence of (S52), the term proportional to ε2 in the
LHS of (S51) is negative and, for some small value of ε ∈ (0, 1) it must become the leading term, turning
the LHS of (S51) strictly negative. Then, one concludes that the system is not causal and the necessary
conditions (4) are not sufficient.
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VI. FORMAL DEFINITION OF CAUSALITY AND CONDITIONS (C1) AND (C2)

Here we present the precise mathematical definition of causality and how it relates to conditions (C1) and
(C2). Causality can be defined as follows (see [5, page 620] or [6, Theorem 10.1.3] for more details).

Definition 4. Let (M, g) be the Minkowski space. Consider inM a system of partial differential equations
for an unknown ψ, which we write as Pψ = 0, where P is a differential operator (which is allowed to depend
on ψ)3. Let ϕ be a solution to the system. We say that ϕ is causal if the following holds true: given a
Cauchy surface Σ ⊂ M, for any point x in the future of Σ, ϕ(x) depends only on ϕ|J−(x)∩Σ, where J−(x)
is the causal past of x.

The case of most interest is when the Cauchy surface is the hypersurface {t = 0} where initial data is
prescribed. We also note that since we are working in Minkowski space, J−(x) is simply the past light-cone
with vertex at x. The situation in Definition 4 is illustrated in Fig. 1. In particular, causality implies that
ϕ(x) remains unchanged if the the values of ϕ along Σ are altered only outside J−(x)∩Σ. Observe that this
definition says that ϕ(x) can only be influenced by points in the past of x that are causally connected to x,
so no information is allowed to propagate faster than the speed of light.

~x

t

x

Σ

J−(x) ∩ Σ

FIG. 1: (color online) Illustration of causality. J−(x) is the past light-cone with vertex at x. Points inside J−(x) can
be joined to a point x in space-time by a causal past directed curve (e.g. the red line). The value of ϕ(x) depends
only on ϕ|J−(x)∩Σ.

The connection between Definition 4 and conditions (C1) and (C2) is via the characteristics of the system
Pψ = 0. It is beyond the scope of this Supplemental Material to provide a detailed description of the
connections between Definition 4 and the system’s characteristics. We refer readers to Appendix A of [2], [7,
Chapter VI], and [8]. Here, we restrict ourselves to the following comments. Finite speed of propagation is a
property of hyperbolic equations. For such equations, there exist domains of dependence that show precisely
how the value of a solution at a point x is determined solely by values within a domain of dependence in the
past with “vertex” at x (this is exactly the generalization of the past light-cone). The domain of dependence,
in turn, is determined by the system’s characteristics. While it is mathematically possible for hyperbolic
equations to exhibit domains of dependence where information propagates faster than the speed of light (see,
again, our discussion in the Conclusion), for solutions to be causal (i.e., to not have faster-than-light signals),
the domains of dependence must always lie inside the light-cones. This is equivalent to the statement (C1)
and (C2) that we have used. Definition 4 can be generalized to arbitrary globally hyperbolic spaces, which is
needed for the aforementioned generalization of our Theorems to this setting. Again, we refer to Appendix
A of [2], [7, Chapter VI], and [8].

3 In coordinates, this system of PDEs would be represented by P IKψ
K = 0, I,K = 1, . . . , N , where {ψK}NK=1 are local

representations of ψ, and PIK are differential operators (possibly depending on ψK).
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We present the first generalization of Navier-Stokes theory to relativity that satisfies all of the following
properties: (a) the system coupled to Einstein’s equations is causal and strongly hyperbolic; (b) equilibrium
states are stable; (c) all leading dissipative contributions are present, i.e., shear viscosity, bulk viscosity, and
thermal conductivity; (d) nonzero baryon number is included; (e) entropy production is non-negative in the
regime of validity of the theory; (f) all of the above hold in the nonlinear regime without any simplifying
symmetry assumptions. These properties are accomplished using a generalization of Eckart’s theory
containing only the hydrodynamic variables, so that no new extended degrees of freedom are needed as in
Müller-Israel-Stewart theories. Property (b), in particular, follows from a more general result that we also
establish, namely, sufficient conditions that when added to stability in the fluid’s rest frame imply stability
in any reference frame obtained via a Lorentz transformation All of our results are mathematically
rigorously established. The framework presented here provides the starting point for systematic
investigations of general-relativistic viscous phenomena in neutron star mergers.

DOI: 10.1103/PhysRevX.12.021044 Subject Areas: Fluid Dynamics, Gravitation

I. INTRODUCTION

Relativistic fluid dynamics has been successfully used as
an effective description of long wavelength, long time
phenomena in a multitude of different physical systems,
ranging from cosmology [1] to astrophysics [2] and also
high-energy nuclear physics [3]. In the latter, relativistic
viscous fluid dynamics has played an essential role in the
description of the dynamical evolution of the quark-gluon
plasma formed in ultrarelativistic heavy-ion collisions [4]
and also in the quantitative extraction of its transport
properties (see, for instance, Ref. [5]). More recently, with
the observation of binary neutron star mergers [6–8], the
modeling of the different dynamical stages experienced by
the hot and dense matter formed in these collisions requires
extending of our current understanding of viscous fluids
toward the strong gravity regime where general relativistic
effects are important (see, e.g., Refs. [9–14]).

The ubiquitousness of fluid dynamics stems from the
existence of general conservation laws (such as energy,
momentum, and baryon number) and their consequences to
systems where there is a large separation of scales, such that
the macroscopic behavior of conserved quantities can be
understood without precise knowledge of all the details that
govern the system’s underlying microscopic properties
[15]. Ideal fluid dynamics is the extreme situation where
dissipative effects are neglected and the theory’s basic
properties in this limit are reasonably well understood, both
in a fixed background as well as when coupling to
Einstein’s equations is taken into account [2,16,17]. We
remark that because all sources of dissipation relevant for
our discussion stem from bulk viscosity, shear viscosity,
and heat conduction, and following standard practice in the
field [3], we will use the terms viscous fluid and dissipative
fluid interchangeably. In particular, other sources of dis-
sipation, such as anomalous dissipation [18,19], will not be
discussed.
When dissipative effects are taken into account, the

behavior of fluids is far less understood (unless stated
otherwise, fluids, hydrodynamics, etc., henceforth mean
relativistic fluids, relativistic hydrodynamics, etc.), despite
the importance of viscous dissipation in cutting-edge scien-
tific experiments such as in studies of thequark-gluon plasma
or their expected relevance for neutron star mergers, as
mentioned above. Historically, a stumbling block has been
the difficulty of modeling dissipative phenomena while
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preserving causality. Causality is a central postulate in
special and general relativity, stating that the speed which
information can propagate in any system cannot be larger
than the speed of light [20]. This implies that a solution to the
equations of motion at a given spacetime point x is
completely determined by the spacetime region that is in
the past of and causally connected to x [20–22]. Of course,
this property must hold in relativity regardless of whether
dissipation is present or not [20]. While causality is typically
not an issue for most matter models under reasonable
assumptions [21], including the case of ideal fluids [23],
ensuring causality of fluid theories in the presence of
dissipation turned out to be a major challenge [2].
The challenges one encounters when modeling fluids

with dissipation, however, are not restricted to enforcing
causality. Another hallmark property of dissipative fluids is
stability. By this we mean that perturbations of a system
that is in thermodynamic equilibrium should decay in time.
This expresses the basic intuition that if dissipation is
present, the system will dissipate energy and, consequently,
small deviations from equilibrium will be damped, leading
the dynamics to return to equilibrium within some char-
acteristic timescale. Naturally, in order to implement this
idea in a given formalism one needs to specify what is
meant by equilibrium and perturbations. We will consider
homogeneous (nonrotating) equilibrium states and our
perturbations will be plane-wave solutions to the equations
of motion linearized about such homogeneous states.
Although this is not the most general definition of equi-
librium [24], it captures the most basic intuition about how
deviations from equilibrium should behave in a dissipative
theory and, consequently, in practice this has been the
definition most often used in the literature [25,26]. Like
causality, stability is a property that is difficult to incor-
porate in theories of relativistic fluids with dissipation.
Aside from causality and stability, a third fundamental

property required for a theory of relativistic viscous fluids
is that the equations of motion be locally well posed. This
means that given initial conditions, there must exist one and
only one solution to the equations of motion taking the
prescribed initial conditions [27] and defined for some time
[28]. Physically, this means that the system has a well-
defined evolution determined by the initial conditions. Like
causality, local well posedness is a property required of any
field theory [2,20–22], but we emphasize it here since, also
like causality, this is a property that is difficult to achieve in
theories of fluids with dissipation.
Needless to say, there is little use for a theory of fluids

that is causal, stable, and locally well posed if it is not able
to make connections with real physical phenomena. Thus, a
theory of relativistic viscous fluids must in addition be
suitable for empirical studies. This means, at the least, that
the theory must agree with well-established physical facts,
but also that one needs to be able to extract quantitative
predictions from such a theory.

The interplay between theory and experiment is, of
course, at the heart of physics. In the context of relativistic
fluid dynamics, such interplay has been heavily guided by
complex numerical simulations [3]. Moreover, it is clear
that simulations will continue to be at the center of
developments in the field, particularly when it comes to
the investigations of viscous effects in neutron star mergers.
In this regard, while there is no one-size-fits-all approach
for implementing numerical simulations of general relativ-
istic systems [2,29], in the numerical general relativity
community one concept that has been very important for
the construction of numerical algorithms is that of strong
hyperbolicity [30]. This means that the principal part of the
equations of motion can be diagonalized; see Sec. V for
details. Although a discussion of the role of strong hyper-
bolicity in general relativistic numerical simulations is
beyond the scope of this work (the reader can consult
the above references for details), we stress that strong
hyperbolicity is a highly desirable feature for numerical
studies of general relativistic systems (see also Ref. [31] for
more discussion on potential caveats of numerical
simulations).
In summary, a physically meaningful theory of relativ-

istic viscous fluids must be (I) causal, (II) stable, and (III)
locally well posed. In addition, it is highly desirable to have
a theory that is (IV) strong hyperbolic.
While property II is, by definition, concerned with the

equations linearized about equilibrium in Minkowski back-
ground, we emphasize that whenever referring to causality,
local well posedness, and strong hyperbolicity, i.e., proper-
ties I, III, and IV, we are always talking about the equations
of motion in the full nonlinear regime. It is important to
stress this point because a substantial body of theoretical
work in relativistic viscous fluids is restricted to analyzing
the equations linearized about equilibrium and, thus, the
corresponding claims about causality, local well posedness,
etc., are restricted to this particular, linearized-about-equi-
librium case (see Sec. II B). Furthermore, for applications
in general relativity (in particular the study of viscous
effects in neutron star mergers), one is interested in the case
where properties I–IV hold with dynamical coupling to
Eintein’s equations (again, with exception of property II).
At this point, we should stress that when we say that a

theory is causal, stable, etc., we do not mean it uncondi-
tionally, but rather under a specific set of assumptions.
Obviously, one is interested in cases where the assumptions
are physically reasonable, even if they do not cover all
cases of physical interest. For simplicity, however, in the
remaining of this Introduction and in Sec. II, we avoid
discussion of specific hypotheses. Thus, when we say that a
certain theory is causal, stable, etc., we mean “causal under
a specific set of assumptions,” and unless stated otherwise,
it will be implicitly understood that the assumptions in
question are of physical interest. An exception to this will
be made only later in Sec. II B, when we summarize the
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extent to which different theories of viscous fluids satisfy
one or more of the properties I–IV, since in this case
mentioning the assumptions under which such theories
fulfill some of these requirements will be important for
comparison among them and also with our results. Even in
this case, however, we will refer to those assumptions only
at a high level (e.g., we will say that a certain property holds
for nonzero shear viscosity but without specifying the
precise range of nonzero values that is in fact required for
the result to hold). We believe that this will suffice to give
the reader a panoramic view of the state of affairs in the
field. All the precise assumptions for the results that will be
discussed can be found in the references we provide or, in
the case of the results of this paper, in the remainder of
the text.
The goal of this work is to provide the first example of a

theory of relativistic viscous fluids that simultaneously
satisfies all the properties I–IV. All our results are math-
ematically rigorous, hold with or without dynamical
coupling to Einstein’s equations, are valid in the full
nonlinear regime, and do not make any symmetry or
simplifying assumptions. We establish these results without
the need for additional (extended) variables (see Sec. II B
for details).
Section II provides a more or less self-contained expo-

sition of our results and how they fit within studies of
relativistic fluids with viscosity. We hope that such an
exposition will be helpful to readers interested in the
subject here investigated but who are not necessarily
specialists in all the topics covered by our methods. In
order to keep our account as simple as possible, we carry
out the discussion in Sec. II at a high level, writing few
formulas and omitting several details, but we provide full
references for interested readers. More precisely, in Sec. II
A, we discuss some important concepts underlying the
investigation of relativistic viscous fluids. None of the ideas
discussed in Sec. II A are new, but they play a key role in
our constructions. Therefore, it is convenient to revisit such
ideas here. In Sec. II B, we review the state of affairs in the
field regarding properties I–IV. This review is not intended
to be exhaustive; rather, our goal is to provide enough
context for our results. Finally, in Sec. II C, we provide a
summary and discussion of our results. Specialists might
skip Sec. II without compromising understanding (although
some specialists might still be interested in some aspects of
the discussion in Sec. II C).
Definitions.—The spacetime metric gμν has a mostly plus

signature ð−þþþÞ. Greek indices run from 0 to 3, latin
indices from 1 to 3. The spacetime covariant derivative is
denoted as ∇μ. We use natural units, c ¼ ℏ ¼ kB ¼ 1.

A. Organization of the paper

This paper is organized as follows. In Sec. II we provide
an overview of our results and the context surrounding
them. In Sec. III, we formulate a generalization of Navier-

Stokes (NS) theory using the Bemfica-Disconzi-Noronha-
Kovtun (BDNK) formalism [32–35]. In Sec. IV, we provide
necessary and sufficient conditions that must be fulfilled by
the parameters of the theory for causality to hold. In Sec. V,
we prove that the full nonlinear system of equations in
general relativity is strongly hyperbolic, the solutions are
unique, and the initial-value problem is well posed in
general relativity. A new theorem concerning the linear
stability properties of relativistic fluids in flat spacetime is
given in Sec. VI. We employ this theorem in Sec. VII to
obtain conditions that ensure that the new theory presented
here is stable. The rigorous mathematical proofs of
Theorem I, Proposition I, Theorem II, and Theorem III
are found in the Appendixes A, B, C, and D, respectively.
Our conclusions and outlook can be found in Sec. VIII.

II. BACKGROUND AND DISCUSSION

A. Definition of out-of-equilibrium variables:
Hydrodynamic frames

In the modern perspective, relativistic fluid dynamics is
understood as an effective theory for the evolution of
conserved densities, such as the energy-momentum tensor
Tμν. (We could include, in this introductory part, other
conserved quantities such as the baryon current Jμ and
those associated with higher moments. In fact, conservation
of Jμ will be implicitly understood later in the discussion of
Secs. II A and II B and thereafter since we will often refer to
the presence of a chemical potential. For simplicity,
however, we will often refer only to Tμν in this part, since
this will suffice for the aspects wewant to highlight.) To say
that Tμν is conserved means that

∇μTμν ¼ 0;

which provides equations of motion governing the dynam-
ics of the fluid.
The energy-momentum tensor Tμν is understood as the

expectation value of the microscopic quantum operator T̂μν,
which is an observable that can be defined for any non-
equilibrium state. In equilibrium, the state of the system can
be parametrized by the temperature Teq, the flow velocity
uμeq (observe that this is the four-velocity of the fluid,
although we will often refer to it simply as the velocity; the
fluid velocity is always assumed to be normalized; see
Sec. II B), and the chemical potential μeq. One of the
assumptions that forms the basis of a fluid dynamics
description is that for states not very far from equilibrium,
the physical observable Tμν ¼ hT̂μνi can still be para-
metrized in terms of a “temperature” T, a “flow velocity”
uμ, and a “chemical potential” μ that reduce to Teq, u

μ
eq, and

μeq in equilibrium. We write quotation marks to emphasize
the fact that the quantities T, uμ, and μ have no first-
principles microscopic definitions. Therefore, while it is
useful to interpret T, uμ, and μ as out-of-equilibrium
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macroscopic temperature, velocity, and chemical potential,
since they are close to Teq, u

μ
eq, and μeq and reduce to the

latter in equilibrium, we should ultimately understand T,
uμ, and μ as auxiliary variables that are used to parametrize
the physical observable Tμν—the latter enjoying a first-
principles, microscopic definition even when the system is
out of equilibrium.
It follows that there exists an ambiguity in the definition

of the out-of-equilibrium quantities T, uμ, and μ, since there
are different ways of parametrizing Tμν subject to the
constraint that one recovers the unambiguous parametriza-
tion in terms of Teq, u

μ
eq, and μeq in equilibrium. In other

words, different out-of-equilibrium choices of T, uμ, and μ
to parametrize Tμν are allowed as long as they agree in
equilibrium. This is sometimes expressed by saying that T,
uμ, and μ correspond to a “fictitious” temperature, flow
velocity, and chemical potential [2,36].
A particular choice of parametrization of Tμν in terms of

T, uμ, and μ has been historically called a choice of a
hydrodynamic frame, or simply frame. (It is a bit unfortu-
nate the word “frame” has also other meanings in relativity
theory, e.g., reference frames related by a Lorentz trans-
formation, frames in a tetrad formalism, null frames, or a
local rest frame (LRF), etc. However, all these different
meanings can be distinguished from the context.) A choice
of frame is, therefore, a definition of what one means by
temperature, velocity, and chemical potential out of equi-
librium. Consequently, a choice of frame is always involved
whenever we describe a fluid out of equilibrium in terms of
temperature, velocity, and chemical potential. This is still
the case even if further, extended variables are introduced
(see Sec. II B for the notion of extended variables). The
notion of hydrodynamic frame and how it represents a
choice of out-of-equilibrium variables is discussed exten-
sively in the literature. An incomplete list is given by
Refs. [34,36–51]. References [34,48], in particular, contain
a detailed discussion of the topic.
Observe that once Tμν is cast in terms of T, uμ, and μ, the

energy-momentum conservation equations ∇μTμν ¼ 0 can
be equivalently written as evolution equations for those
quantities. We also remark that one can choose other
thermodynamic quantities, e.g., the energy density or the
pressure, to parametrizeTμν, andwewill in fact do so later on
in the paper. Of course, not all thermodynamic scalars are
independent; they are connected by the first law of thermo-
dynamics and a prescription of an equation of state [2].
Obviously, the nonuniqueness in the definition of the
variables used to parametrizeTμν out of equilibrium remains
if we choose a parametrization in terms of other thermody-
namic variables such as the energy density, pressure, etc.
In order to pass from this qualitative argument about the

ambiguity of T, uμ, and μ away from equilibrium to a more
precise assessment of such ambiguity, one needs to be more
specific about how one formalizes the idea that fluid
dynamics arises as a long time, long wavelength limit of

an underlying microscopic theory, i.e., as a description of
the macroscopic dynamics of the system for small devia-
tions from equilibrium. Such a formalization can be
accomplished in the framework of the so-called gradient
expansion, which was used a century ago by Chapman and
Enskog in the derivation of fluid dynamics from the
(nonrelativistic) Boltzmann equation and that has since
then been adapted to the relativistic setting [38]. We remark
that the gradient expansion is not the only way to formalize
the idea that fluid dynamics is an effective description that
emerges from a more fundamental microscopic behavior;
see Sec. II B for a discussion of ideas involving the so-
called moment expansion and holographic techniques.
Nevertheless, the gradient expansion, while not fundamen-
tal, is a very convenient and powerful formalism based on
effective field theory ideas that allows one to track how
different parametrizations of Tμν lead to different fluid
descriptions.
The gradient expansion is based on the idea that one can

write

Tμν ¼ Oð1Þ þOð∂Þ þOð∂2Þ þ � � � ;

whereOð∂nÞ denotes terms with n derivatives of T, uμ, and
μ [so, e.g., Oð∂2Þ involves both terms of the form ∂2T and
∂T∂μ, etc.] and Oð1Þ corresponds to the terms that reduce
to Tμν

eq, the energy-momentum tensor parametrized in terms
of Teq, u

μ
eq, and μeq. Schematically, this is an expansion in

powers of the Knudsen number Kn ∼ lmicro∂, i.e., the ratio
between the relevant microscopic scale lmicro and the
inverse macroscopic scale L, associated with the derivative
of the hydrodynamic fields. In this sense, the gradient
expansion corresponds to the well-known Knudsen number
expansion used in the description of kinetic systems
[38,39]. In particular, since the expansion truncated at
Oð1Þ corresponds to ideal hydrodynamics, viscous con-
tributions require considering at least Oð∂Þ terms, which is
consistent with the basic intuition that dissipation is a
phenomenon associated with deviations from equilibrium.
In order to construct a fluid theory out of the gradient

expansion, one truncates it at a certain order. This trunca-
tion necessarily defines a scale at which the effective
description is supposed to be valid, with higher-order
effects encoded by the terms neglected in the expansion
which are considered outside the limit of validity of the
truncated theory. Aside from the truncation order, one also
needs to specify the constitutive relations, i.e., the specific
form of each term Oð∂nÞ in terms of T; uμ; μ, up to the
truncation order (see Secs. II B and III for examples). By
specifying the truncation order and the constitutive rela-
tions, one is in fact defining what is meant by T, uμ, and μ
out of equilibrium; i.e., one is making a choice of hydro-
dynamic frame.
Different frame choices, therefore, correspond to differ-

ent effective descriptions of the same truncated theory. At
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this point, it seems almost unnecessary to talk about frames,
and one might be tempted to simply say that one has
distinct theories of fluids. The key word here, however, is
effective. Indeed, when we consider two distinct constitu-
tive relations truncated at a given order,

Tμν ¼ TμνðT; uα; μÞ and T̃μν ¼ T̃μνðT̃; ũα; μ̃Þ;

one obviously has different fluid theories: the equations of
motion ∇μTμν ¼ 0 and ∇μT̃μν ¼ 0 are not the same.
Consequently (upon writing these conservation laws in
terms of T; uα; μ and T̃; ũα; μ̃, respectively), the quantities
T; uα; μ and T̃; ũα; μ̃ satisfy different evolution equations
and, thus, cannot represent the same definition of temper-
ature, fluid velocity, and chemical potential. However,
one needs to keep in mind that the temperature, flow
velocity, and chemical potential are not fundamental
quantities, whereas the energy-momentum tensor is (it
does have a first-principles definition). Thus, TμνðT; uα; μÞ
and T̃μνðT̃; ũα; μ̃Þ differ because they represent distinct
coarse-grained or low-energy limits of the actual, micro-
scopically uniquely defined, energy-momentum tensor.
Therefore, the language of frames signals the key fact that
one is always considering one possible effective description
among many.
Summarizing, there exists an intrinsic ambiguity in how

one parametrizes Tμν in terms of out-of-equilibrium tem-
perature T, velocity uμ, and chemical potential μ. Such
ambiguity simply expresses the fact that these quantities do
not have first-principles microscopic definitions away from
equilibrium. What is not ambiguous away from equilibrium
is the definition of Tμν. One resolves this ambiguity by
choosing a definition of T; uμ; μ. Such a choice is known as
a frame choice. Different parametrizations of Tμν, therefore,
correspond to different frame choices. Not all frame
choices, however, are equally useful. In our work, we
explore suitable definitions of temperature, flow velocity,
and chemical potential to construct effective theories
describing fluids that lead to sensible theories in terms
of satisfying properties I–IV.
At this point, the attentive reader will probably have

noticed that much of the above discussion does not depend
on relativistic principles. In other words, the fact that there
is no first-principles definition of out-of-equilibrium quan-
tities such as temperature, flow velocity, and chemical
potential applies to nonrelativistic theories as well. In the
nonrelativistic setting, however, there exists a highly
successful theory of dissipative (Newtonian) fluids,
namely, the Navier-Stokes-Fourier theory. In light of its
success, it is fair to say that for all practical purposes, one
can take the definitions of out-of-equilibrium quantities in
the Navier-Stokes-Fourier theory as the correct ones in a
nonrelativistic context. Had an equivalently successful
theory of relativistic viscous fluids been available (where
success would in particular incorporate properties I–IV),

we could similarly take the definitions of out-of-equilib-
rium quantities in such a theory as the correct ones for all
practical purposes. Nevertheless, as we explain in the next
section, there is not, at the moment, a theory of relativistic
viscous fluids that can claim such a level of success. Hence,
exploring how different frame choices can lead to different
fluid descriptions becomes a topic of uttermost interest (see
Sec. II C).

B. Brief overview of viscous theories

The first proposal for a relativistic viscous fluid theory
was done by Eckart [52] in 1940, with a closely related
formulation by Landau and Lifshitz [15] in the 1950s. In
these works, the authors postulated a form for the energy-
momentum tensor (and also of the baryon current Jμ, but,
as in the previous section, here we simplify the discussion
by focusing on Tμν only) based on ideas from thermody-
namics and following a covariant generalization of the
nonrelativistic Navier-Stokes-Fourier theory. For example,
in Eckart’s theory, one has

Tμν
Eckart¼ εuμuνþðP−ζ∇λuλÞΔμνþqμuνþqνuμ−2ησμν;

where ε, T, and uμ are the (out-of-equilibrium) energy
density [53], temperature, and velocity of the fluid, with the
latter normalized [54] by uμuμ ¼ −1, Δμν ¼ gμν þ uμuν is
the projection onto the space orthogonal to uμ, P is the
equilibrium pressure (see below) given by an equation of
state (the choice of which depends on the nature of the
fluid; for example, for a conformal fluid one has P ¼ 1

3
ε), ζ

is the coefficient of bulk viscosity, η is the coefficient of
shear viscosity, qμ ¼ −κTðΔν

μ∇ν lnT þ uν∇νuμÞ repre-
sents energy diffusion, with κ being the coefficient of heat
conduction, and σμν ¼ Δμναβ∇αuβ is the shear tensor, with
Δμν

αβ ¼ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
α − 2

3
ΔμνΔαβÞ (so Δμν

αβ projects a
two-tensor on the space of two-tensors traceless and
orthogonal to uμ). In the absence of viscous effects, when
ζ ¼ η ¼ κ ¼ 0, one recovers the energy-momentum tensor
of an ideal fluid.
According to the standard physical interpretation of the

energy-momentum tensor of a fluid, the fluid’s total
pressure is given by 1

3
ΔμνTμν. It is convenient to write

the total pressure as a sum of an “equilibrium” part, which
is assumed to be given by an equation of state whose
functional form follows that assigned to the fluid in the
limit when viscous effects are absent, and a “nonequili-
brium” part that contains explicitly the viscous contribu-
tions. In the case of Tμν

Eckart, the latter is given by −ζ∇μuμ.
This term clearly illustrates the fact that only terms of first
order in Knudsen number were kept in this case because
ζ=P gives the relevant microscopic length scale associated
with particle-number changing processes, while ∇μuμ

accounts for the inverse length scale associated with the
gradient of the hydrodynamic fields.
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As said, Eckart and Landau and Lifshitz were seeking a
covariant version of the nonrelativistic Navier-Stokes
equation compatible with thermodynamic principles, most
notably, the second law of thermodynamics; i.e., their
choice of Tμν ensured that entropy production (for a
suitable definition of out-of-equilibrium entropy) is non-
negative. From a modern perspective, however, these
theories are better understood as effective theories that
arise from a gradient expansion truncated at first order and
with a specific choice of hydrodynamic frame, i.e., a
specific choice of constitutive relation that parametrizes
the energy-momentum tensor in terms of out-of-equilib-
rium variables. In fact, it is possible to show that the Eckart
and Landau and Lifshitz theories can be obtained from
kinetic theory as an expansion in gradients truncated at first
order [38]. Constraints on the coefficients that appear in
such truncated series are found by imposing the second law
of thermodynamics. In accordance with the notion of
hydrodynamic frames, the specific choices that lead to
the theories of Eckart and of Landau and Lifshitz are known
in the literature as the Eckart and Landau and Lifshitz
frames [2]. One can immediately see that other frame
choices are possible for an energy-momentum tensor
truncated at first order upon noticing that Tμν

Eckart does
not contain all possible terms that are linear in derivatives of
T, uμ, and μ—terms that are allowed in a truncation at first
order. Theories arising from a gradient expansion truncated
at first order are known as first-order theories. The Eckart
and Landau theories are, thus, examples of first-order
theories.
The Eckart and Landau and Lifshitz theories are very

intuitive and natural at first sight. They correspond to
immediate covariant generalizations of the nonrelativistic
Navier-Stokes-Fourier theory (in fact, they recover it in the
nonrelativistic limit), satisfy the second law of thermody-
namics, preserve many features present in the ideal case
(e.g., the energy density is recovered from the energy-
momentum tensor by double contraction with the velocity),
are relatively simple, and, as already said, can be derived
from kinetic theory. Yet, they are remarkably at odds with
fundamental physical principles in that they are known to
violate causality and are unstable [25,55]. Consequently,
the Eckart and Landau and Lifshitz theories cannot be taken
as viable theories of relativistic viscous fluids. In fact, a
large class of first-order theories, of which the theories of
Eckart and of Landau and Lifshitz are particular cases, are
known to be acausal and unstable [25]. One naturally
wonders what are the root causes of the failures of these
theories, especially when at first sight they look very
intuitive. We return to this point in Sec. II C.
A different approach for the construction of relativistic

viscous fluid theories was taken by Israel and Stewart in a
series of works [36,37,56–58], adapting ideas developed by
Müller in the nonrelativistic setting [59]. The resulting
theory is referred to Israel-Stewart or Müller-Israel-Stewart

(MIS) theory, or sometimes simply Israel-Stewart theory.
In the MIS theory, the energy momentum takes the form

Tμν
MIS ¼ εuμuν þ ðPþ ΠÞΔμν þQμuν þQνuμ þ πμν:

The quantities Π, πμν, and Qμ represent the bulk viscosity,
shear viscosity, and energy diffusion of the fluid, and are
referred to as viscous fluxes. We see that Tμν

Eckart corre-
sponds to the choices where the bulk scalar Π ¼ −ζ∇μuμ,
the shear-stress tensor is given by πμν ¼ −2ησμν, and the
energy diffusion reads Qμ ¼ qμ ≡ −κTðΔν

μ∇ν lnT þ
uν∇νuμÞ. In the MIS theory, however, the viscous fluxes
are taken to be new variables on the same par as the
“ordinary” variables T, uμ, etc., (see below). Because
Π; πμν;Qμ add to the number of variables, hence extending
the state space, they are known as extended (thermody-
namic) variables and theories that investigate extended
variables are referred to as extended (thermodynamic)
theories [60,61]. An important point to make (already
alluded to earlier) is that one cannot dispense with a choice
of hydrodynamic frame even in extended theories, since
one still needs to make a definition of out-of-equilibrium
temperature, flow velocity, and chemical potential.
At this point, it is convenient to make the following

definition. The variables T, uμ, μ and those derived from
them via the first law of thermodynamics and a choice of
equation of state are known as hydrodynamic variables or
fields. In other words, the hydrodynamic variables are the
“ordinary” fields already present in the case of an ideal
fluid (although the physical interpretation of these variables
is not precisely the same as in the ideal fluid case; as
discussed, the meaning of, e.g., temperature is different in
or out of equilibrium). In this language, we can say that the
Eckart and Landau and Lifshitz theories involve only the
hydrodynamic variables, whereas the MIS theory involves
both hydrodynamic and extended fields. In addition, the
gradient expansion is always an expansion in the hydro-
dynamic variables [62].
Because the MIS formalism introduces new variables in

addition to the hydrodynamic fields, it also requires new
equations of motion besides the standard conservation laws
such as ∇μT

μν
MIS ¼ 0. The desired equations are postulated

to be relaxation-type equations whose precise form is
chosen so that entropy production is non-negative—where
the entropy current is also extended from its usual form
used in ideal fluids to include the extended variables
Π; πμν;Qμ. For example, Π satisfies

τΠuμ∇μΠþ Π ¼ −ζ∇μuμ −
1

2
ζTΠ∇μ

�
τΠ
ζT

uμ
�
;

where τΠ is a relaxation time. See, e.g., Ref. [2] for the full
set of equations satisfied by Π; πμν;Qμ, the form of the
entropy current including these fields, and the derivation of
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the equations of motion from the second law of thermo-
dynamics [63].
The MIS theory enjoys the following good properties:

the equations of motion are stable, thus satisfying property
II, and their linearization about equilibrium states is causal,
thus satisfying property I [24,64]. Also, it can, in certain
limits, be derived from kinetic theory [2,57,58].
We next discuss three other theories of great interest that

employ extended variables: Denicol-Niemi-Molnar-Rischke
(DNMR), resumed Baier-Romatschke-Son-Starinets-
Stephanov (rBRSSS), and anisotropic hydrodynamics
(AHYDRO) theories. The DNMR theory is an effective
theory derived from kinetic theory via an expansion in
moments [65]. The moment expansion goes back to Grad in
his work on nonrelativistic fluids [66,67]. Applying this
formalism to the relativistic Boltzmann equations, together
with a new power-counting scheme involving Knudsen and
inverse Reynolds number expansions, DNMR arrived at a
set of equations for the hydrodynamic fields and a set of
extended variables Π, πμν, and Qμ that represent the bulk
viscosity, shear viscosity, and energy diffusion, similarly to
the MIS equations. Also similar to the MIS equation is the
fact that the equations satisfied by the viscous fluxes in the
DNMR theory are relaxation-type equations. Despite their
similarities, it is important to stress that the MIS and
DNMR equations are not the same.
The DNMR theory enjoys many good properties. It is

stable and its linearization about equilibrium states [68] is
causal [26]. When only bulk viscosity is present, the
DNMR theory is causal, locally well posed, and strongly
hyperbolic; these properties hold with and without dynami-
cal coupling to Einstein’s equations [71]. When all viscous
fluxes are present, but chemical potential is absent, the
DNMR equations have recently been shown to be causal
(again, with or without coupling to Einstein’s equations)
[72] (see Refs. [26,73,74] for related results under sym-
metry assumptions). Hence, property II holds in general for
the DNMR equations; properties I, III, and IV hold if shear
viscosity and heat conduction are absent (with or without
dynamical coupling to Einstein’s equations); and property
I holds with all viscous fluxes present but in the absence of
chemical potential [75] (with or without dynamical cou-
pling to Einstein’s equations). Most importantly, the
DNMR theory has been very successful in phenomeno-
logical studies of the quark-gluon plasma, particularly in
numerical simulations of its dynamical behavior; see, e.g.,
Refs. [5,76].
We now move to discuss the resumed Baier-

Romatschke-Son-Starinets-Stephanov theory [77]. In order
to do so, we need to start with the (plain, not resumed)
BRSSS theory [77]. This is an effective theory obtained
from the gradient expansion truncated at second order. As
such, it involves only the hydrodynamic fields, and the
equations of motion were chosen in Ref. [77] to be defined
in the Landau frame. This effective theory-based approach

was originally developed for conformal fluids in Ref. [77],
and the same equations of motion for a conformal system
were concurrently derived in Ref. [44] through the fluid-
gravity correspondence, a powerful technique introduced in
that work which was motivated by the holographic duality
of string theory [78]. In order to address the issues with
causality and stability, Baier et al. [77] proposed a MIS-like
theory with transport coefficients that ensure its agreement
with the gradient expansion at second order. In the context
of Ref. [77], this approach provides a resummation of
higher-order terms and the latter explains the differences
found, for instance, between rBRSSS and DNMR.
However, at the linearized level, this resummed BRSSS
theory shares the same properties of DNMR. Furthermore,
the techniques used in Ref. [72] can be adapted to establish
causality for this theory in the nonlinear regime. The local
well-posedness and hyperbolicity aspects of rBRSSS have
not yet been established.
Because the MIS, DNMR, and rBRSSS theories share

many properties, in particular, the use of extended variables
that satisfy similar relaxation-type equations, and their
linearizations about equilibrium agree, they are sometimes
collectively referred to as Israel-Stewart or Müller-Israel-
Stewart theories, Israel-Stewart-like or Müller-Israel-
Stewart-like theories, or yet generalized Israel-Stewart or
Müller-Israel-Stewart theories. They are sometimes also
collectively referred to as second-order theories. While
there is no harm in grouping these theories together in this
fashion, especially if one is concerned only with their
general qualitative behavior, it is important to note that
when it comes to specific features, including properties I–
IV, the exact form of the equations matters and, therefore,
the differences among these theories become important.
The fourth extended theory we would like to briefly

discuss is the anisotropic hydrodynamics theory [79–83].
The latter is, in principle, more general than most
approaches as it investigates the problem of small devia-
tions around a given anisotropic nonequilibrium state.
Formally, this approach involves a resummation in both
Knudsen and inverse Reynolds numbers, which may be
interpreted as a generalization of DNMR’s power-counting
ideas [84]. The equations of motion, which are in practice
derived using kinetic theory, can be approximated to give
rise to a MIS-like theory. As such, causality and stability in
the linearized regime follow from previous results. Nothing
is known about causality in the nonlinear regime of this
theory. The local well-posedness and hyperbolicity aspects
of AHYDRO have not yet been established.
The above summary highlights how the use of extended

variables has led tomany successes in the study of relativistic
viscous fluids. These accomplishments seem even more
impressive when they are contrasted with the fact
already mentioned that first-order theories (which do not
employ extended variables) had been largely ruled out for
decades due to instabilities and lack of causality [25,55].
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Such successes nonetheless, it is important to keep in mind
several actual or potential limitations of the extended theories
discussed above, as we now discuss.
First of all, observe that none of the theories MIS,

DNMR, rBRSSS, or AHYDRO is known to satisfy all the
properties I–IV. To the extent that they satisfy some of these
properties, this happens under restrictive assumptions.
Indeed, in the case of the quark-gluon plasma it is
abundantly clear that one needs to consider situations
when all viscous fluxes are present and the chemical
potential is nonzero [85] (and it is likely that this is also
true in neutron star mergers [12,14]), in which case none of
these theories is known to be causal and locally well posed.
Moreover, while numerical simulations of the dynamics of
the quark-gluon plasma based on the DNMR equations
have been carried out for a long time [86–88], only recently,
with the aforementioned causality results [71,72], one can
determine regions in the parameter and state spaces for
which causality holds or fails. When such constraints are
taken into consideration, it is found that state-of-the-art
numerical simulations of the quark-gluon plasma violate
causality [89,90], especially at early times [90]. Although
further research is required to find out the implications of
such causality violations to our current understanding of
those properties of the quark-gluon plasma that have been
extracted from numerical simulations, such results should
serve as a definite cautionary tale about running numerical
simulations of relativistic viscous fluids whose causality
properties are poorly understood. Furthermore, if causality
violations can be a real issue in numerical simulations of
the quark-gluon plasma, which are carried out in flat
spacetime, the situation is even more precarious in simu-
lations of general relativistic viscous fluids, such as in
neutron star mergers. While some simulations have been
implemented in this setting [11], they rely on a formulation
for which the key properties I, III, and IV are not known
to hold.
Another potential limitation of the extended theories

discussed above is that they do not seem appropriate for
describing shock waves [91–93]. This is a potentially
important limitation given the preponderance of shock
waves in fluid dynamics, which is aggravated by the recent
discovery that solutions to MIS-like equations can become
singular in finite time [94]. Additionally, MIS-like and
AHYDRO theories are only expected to describe the
transient regime of dilute gases as their derivation is
most naturally understood within kinetic theory [36,65].
Therefore, their use in other types of systems, such as in
strongly coupled relativistic fluids, is a priori not justified.
In fact, it is known that MIS-like equations do not generally
describe the complex transient regime of holographic
strongly coupled gauge theories [95–97] (see Ref. [98]
for the case of higher-derivative corrections). In this aspect,
we anticipate that the causal and stable first-order theory
developed here does not describe this transient regime

either, despite satisfying properties I–IV. However, this is
not an issue per se given that the description of such a far-
from-equilibrium state is certainly beyond the regime of
applicability of first-order hydrodynamics.
Finally, MIS-like theories lack the degree of universality

expected to hold in hydrodynamics as the equations of
motion themselves change depending on the derivation. For
instance, the equations of motion in Ref. [77] have different
terms than in Ref. [65], which is explained by the different
power-counting scheme employed in those works. This
situation should be contrasted with theories derived from
the gradient expansion: although, of course, a plethora of
different effective theories can be derived in the gradient
expansion formalism, these different theories can always be
viewed as particular cases, obtained via different frame
choices, of the most general expansion truncated at a
certain order. In fact, an approach of this type is employed
in this paper; see Sec. II C.
Summarizing, despite its undeniable success in advanc-

ing our understanding of relativistic viscous fluids in
general, and of the quark-gluon plasma in particular,
MIS-like and AHYDRO theories still face many chal-
lenges, especially when it comes to settings where general
relativity is involved. Thus, it is extremely important to also
consider alternative theories of relativistic viscous fluids.
This is especially the case when pursuing the study of
viscous effects in neutron star mergers [12,14,99,100] and,
as already mentioned, it is far from clear that the MIS-like
and AHYDRO approach are the correct approaches for this
setting.
In view of the above, it is not surprising that researchers

have explored other theories of relativistic viscous fluids
than those discussed so far. A natural place to start such an
investigation is the gradient expansion, and the simplest
possibility that includes viscous effects is that of first-order
theories, i.e., effective fluid descriptions arising as a
truncation of the gradient expansion at first order. On
the other hand, since, as said, large classes of first-order
theories are acausal and unstable, one might naturally
wonder whether such an approach would be doomed to
fail. In order to answer this, it is important to understand the
assumptions involved. While it is true that the acausality
and instability results [25,64] cover large classes of first-
order theories, these results apply only to theories that
satisfy

uμuνTμν ¼ ε; ð1Þ

i.e., only to frame choices that preserve the relation (1). In
other words, the latter means that an observer moving with
the fluid always sees the energy density as if it were in
equilibrium, even for states where entropy is produced.
Therefore, the construction of stable and causal first-order
theories remains a distinct possibility as long as one avoids
constitutive relations that imply (1). First-order theories for
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which (1) holds are often collectively referred to as the
(relativistic) Navier-Stokes theory [65], although there is no
universal agreement on the terminology [35].
The physical meaning of (1), as well as of not satisfying

it, is discussed in Sec. II C. We also remark that the
assumptions in Refs. [25,64] imply other special relations
than (1). But here, for simplicity, we focus only on (1),
since our goal is not to have a detailed discussion of the
assumptions involved in those works but rather to illustrate
how their conclusions apply only for a particular class of
theories that employ very specific frame choices and,
therefore, say nothing about first-order theories that employ
other hydrodynamic frames. In other words, here the reader
can take (1) as a placeholder for the class of frames that
are assumed in the instability and acausality results
[25,64]. Such a class of frames is far from exhaustive.
Consequently, the results in Refs. [25,64] simply do not
apply if different constitutive relations are used.
This motivated researchers to construct stable and causal

first-order theories of viscous fluids. Important attempts in
this direction go back to the first decade of this century
[21,42,47,101]. The first more formal indication that causal
and stable first-order theories could be constructed if the
frame choice (1) is avoided is given in Refs. [102–104].
These works were also the first ones to carry out a
systematic study of viscous shocks in relativistic theories,
a topic that in fact seems to be one of the main goals in
these references.
The first construction of a stable and causal first-order

theory of viscous fluids was carried out by Bemfica et al.
[32] for the case of conformal fluids (see also Ref. [105] for
some of the mathematical details of Ref. [32]). These
results hold with or without dynamical coupling to
Einstein’s equations. Although Ref. [32] was restricted
to conformal fluids, it provided an unequivocal proof that
first-order stable and causal theories are possible, provided
that one avoids the frame choice (1). Soon thereafter, causal
and stable first-order theories were obtained by Kovtun [34]
and by Bemfica et al. [33] for the case of nonconformal
fluids without a chemical potential [106]—although
stability was obtained only with the help of a numerical
investigation, so it might be more precise to say that
stability was only strongly suggested and not established.
The resulting first-order theory became known in the
literature as the BDNK theory [35]. Its local well
posedness and strong hyperbolicity was established in
Refs. [107,108]. The stability and causality of the
BDNK theory in the presence of a chemical potential
was obtained in Ref. [35] (again, stability in this case was
inferred only numerically). We also mention the closely
related results [109,110]. Of course, all these results are
obtained using frame choices different than (1). Perhaps not
surprisingly, after these results, the community took a
renewed interest in first-order theories. See, e.g.,
Refs. [51,98,111–119], and references therein. We remark

that choices of frames other than (1) have been studied
before BDNK in Refs. [42,101,102,120], but, as said, the
first construction of a stable and causal first-order theory
was done in Ref. [32] in the case of a conformal fluid. We
return to the BDNK theory in Sec. II C. In what follows, we
continue with our brief review of viscous theories.
Another first-order theory of interest is the Lichnerowicz

theory [121], introduced in the 1950s but not investigated in
detail until recently (see references that follow). The
Lichnerowicz theory has been shown to be causal in the
(very special) case of irrotational fluids [122] by the second
author of this paper (see also Ref. [123]). While irrotation-
ality is too strong of a constraint to be useful for most
physical applications, Ref. [122] is of interest because it
initiated the techniques that have since then been employed
to study the causality of the BDNK theory, including the
techniques employed in this work. We should also mention
that the Lichnerowicz theory has found some interesting
applications in the study of dissipative cosmological
models [124–127].
Another formalism of importance in the study of viscous

theories is that of divergence-type (DT) theories [128]. In
this approach, all the conserved quantities describing the
dynamics of the fluid are obtained from a single generating
function χ which is a function of a dynamical set of
variables ζA ¼ ðζ; ζμ; ζμνÞ (with ζμν trace-free and sym-
metric) representing the degrees of freedom of the fluid. For
example, in the DT approach the energy-momentum tensor
is obtained as

Tμν
DT ¼ ∂χ

∂ζμ∂ζν :

DT theories provide a far-reaching subject with many
important contributions to the physics of fluids, kinetic
theory, and out-of-equilibrium phenomena. Here, we limit
ourselves to discuss DT theories with respect to properties
I–IV. See Refs. [2,61,92,128–131] for further discussion of
DT theories and Refs. [132–134] for applications of DT
theories to the quark-gluon plasma.
All information of DT theories is contained in the

generating function χ. Unfortunately, there is no prescription
on how to construct χ, not to speak of how to construct a
generating function that leads to a theory satisfying proper-
ties I–IV. In fact, we think it would be more accurate to
consider theDTapproach as a general formalism instead of a
precisely defined theory or set of theories. That is because
radically different theories, such as Eckart’s and certain
types of extended theories, can be cast in divergence-type by
the choice of a suitable generating function [128].
Properties I–IV have been investigated in the context of

DT theories in Ref. [128]. The authors constructed a DT
theory that satisfies properties I–IV for states in equilib-
rium, i.e., when ζA ¼ ζAjeq. Next, they argued that, by
continuity, these properties will also hold for ζA sufficiently
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close to ζAjeq. However, no estimate is obtained for how
close to ζAjeq the state ζA needs to be. Thus, given any
nonequilibrium state ζA, this continuity result does not
provide any information on whether this specific system
satisfies the desired properties I–IV. In particular, without a
quantitative estimate on how small ζA − ζAjeq needs to be,
one does not know whether the states ζA for which
properties I–IV hold include states of physical interest. It
could in principle happen that this continuity argument
only guarantees the desired properties in a neighborhood of
ζAjeq that is orders of magnitude smaller than the size of any
deviation from equilibrium that one typically considers in
viscous fluid dynamics.
Another way of saying this is that the results in Ref. [128]

are purely qualitative, not providing a quantitative assess-
ment of their applicability to physical systems. This should
be contrasted with the precise quantitative results we
establish here (see Secs. IV–VI) and in the predecessor
works [32,33,72], which are obtained by employing sub-
stantially more refined techniques than a general continuity
argument. In Refs. [92,130–132,134], further results have
been obtained, but they are all of the same qualitative nature
as above, relying on precisely the same continuity argument.
Thus, we believe that a fair assessment of DT theories is that
they can in principle accommodate properties I–IV, but
precise conditions ensuring that such properties hold—in
particular, conditions that allow application to concrete
physical problems—are yet unknown.
We finally briefly mention recent formulations of vis-

cous fluids [135,136] inspired by Carter’s formalism and
the variational principle [112]. Such formulations address
some of the properties I–IV but do not establish them in
completeness.
Although the review here provided is not exhaustive, we

believe that it suffices to get across the following main
point, namely, despite intense work on the subject and
many different proposals made in the last 80 years, one still
does not have a theory of relativistic viscous fluids that
incorporates all relevant viscous fluxes and chemical
potential while satisfying all the properties I–IV.
Constructing such a theory is the goal of the present paper.

C. Summary and discussion of our results

In this paper, we consider the BDNK theory with
chemical potential and all relevant viscous fluxes, namely,
bulk viscosity, shear viscosity, and heat conduction, and
show that it satisfies all the properties I–IV, i.e., causality,
stability, local well posedness, and strong hyperbolicity.
Our results hold in the full nonlinear regime for the fluid
equations in a fixed background or dynamically coupled to
Einstein’s equations. We work in 3þ 1 dimensions and do
not make any symmetry or simplifying assumptions. As
explained in the previous section, this is the first time that a
theory of relativistic viscous fluids with all these properties

is constructed. In addition, all our results are mathemati-
cally rigorous and we provide a set of precise inequalities
among scalar quantities (e.g., shear and bulk viscosity) that
determine the regions in parameter and state space for
which properties I–IV hold. Such inequalities are useful for
numerical simulations as they allow us to check, at each
time step, whether conditions for causality and stability are
fulfilled.
The key conceptual ingredient that allows us to establish

our results is the realization that the causality and stability
properties of a theory are intrinsically tied to its hydro-
dynamic frame. This happens because different choices
affect the properties of the corresponding partial differential
equations (PDEs) that describe the evolution of the fluid. In
particular, we avoid the frame choice (1), which in first-
order theories leads to acausality and instability. The frame
choice (1) has a natural intuitive appeal; namely, it states
that the energy density measured by an observer moving
with the fluid (i.e., in the fluid’s local rest frame), uμuνTμν,
can be parametrized by a single scalar that can be identified
with the energy density of the fluid in equilibrium [note that
(1) holds for an ideal fluid]. It is not surprising, therefore,
that Eckart and Landau and Lifshitz adopted frames
satisfying (1). On the other hand, such a simplicity in
the definition of the hydrodynamic fields out of equilib-
rium, while desirable, is by no means a fundamental
property. The key idea underlying the BDNK theory is
that one should let the fundamental principle of causality
(and also of stability and local well posedness) dictate
which frame choices (i.e., parametrizations of Tμν) are
allowed, rather than choose a frame based on nonfunda-
mental principles and only then investigate properties such
as causality. In passing, we note that the MIS-like theories
discussed in this section also adopt (1), although, as just
said, other frame choices can be made. Different frames
have been recently investigated in the context of extended
theories in Refs. [137,138].
The idea of exploring different frame choices to con-

struct a first-order theory that satisfies properties I–IV is not
entirely new to this work. It was, in fact, the key idea
employed in the earlier versions of the BDNK theory that
have been showed to satisfy those properties in some
particular cases (see Sec. II B). We next explain what the
new aspects of this work are, but in order to do so, we need
to first review some other key ideas employed in the earlier
constructions of the BDNK theory.
Since we do not want to make premature frame choices,

our first step is to consider the most general frame; i.e., we
write down the most general expression for Tμν (and also Jμ

in the case of the present work since we here consider
nonzero chemical potential) compatible with the gradient
expansion truncated at first order; see Eqs. (5) and (6) for
the precise expression. By considering the most general
constitutive relations compatible with the symmetries of the
problem as our starting point, we are in fact applying the
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basic tenets behind the construction of effective theories
[48,139–141] to formulate hydrodynamics as a classical
effective theory that describes the near equilibrium, long
time, long wavelength behavior of many-body systems in
terms of the same variables fT; μ; uνg already present in
equilibrium. For completeness, we remind the reader that
an effective theory is constructed to capture the most
general dynamics among low-energy degrees of freedom
that is consistent with the assumed symmetries. When this
procedure is done using an action principle, the action must
include all possible fields consistent with the underlying
symmetries up to a given operator dimension and the
coefficients of this expansion can then be computed from
the underlying microscopic theory. These coefficients are
ultimately constrained by general physical principles such
as unitarity, CPT (charge, parity, and time reversal)
invariance, and vacuum stability. Analogously, in an
effective theory formulation of relativistic viscous hydro-
dynamics, the equations of motion must take into account
all the possible terms in the constitutive relations up to a
given order in derivatives that describe deviations from
equilibrium. The coefficients that appear in this expansion
can then be computed from the underlying microscopic
theory (using, for instance, linear response theory [48]),
being ultimately constrained by general physical principles
such as causality in the case of relativistic fluids [20] and
also by the fact that the equilibrium state must be stable; i.e.,
small disturbances from equilibrium in an interacting (uni-
tary) many-body system should decrease with time [142].
Observe that by considering the most general energy-

momentum tensor at first order, we are allowing viscous
corrections to the equilibrium energy density; i.e., one has

uμuνTμν ¼ εþ ∂ðT; μÞ:
[See Eq. (7) for the precise expression.] Even though this is
in sharp contrast with (1), in hindsight it seems the natural
thing to do. After all, it is standard to do precisely the same
with the pressure, i.e., to split 1

3
ΔμνTμν into an “equilib-

rium” part and a “viscous part” (see Sec. II B) [143]. There
is no reason not to follow a similar recipe for the energy
density seen by a comoving observer.
We next investigate how causality constrains the con-

stitutive relations. The idea that one should let causality
determine which frames are allowed in a theory, while
conceptually powerful, does not tell us how to in practice
find the appropriate frames. Causality of a theory can be
determined by computing its characteristics [144].
Roughly, the characteristics are hypersurfaces in spacetime
that correspond to the propagation modes of a theory. For
example, in the case of Einstein’s equations, the character-
istics are simply the light cones gμνvμvν ¼ 0. While in
principle we can always compute the characteristics of a
system of PDEs, in practice a brute-force calculation of the
characteristics seems unattainable for a nonlinear system of

PDEs as complex as the BDNK system. In order to be able
to compute the characteristics, we take a cue from the
system’s underlying geometric properties. Inspired by
structures found in the case of ideal fluids by Disconzi
and Speck in Ref. [145], which need to be recovered in the
ideal limit, we look for acoustical-metric-like structures. In
addition, knowing what the characteristics of the system
should be in some particular limit (e.g., in the conformal
case that had already been treated) is also helpful to guide
the calculations. In the case treated here, in particular, we
already know what needs to be recovered in the limit of
zero chemical potential. Finally, physical intuition also tells
us what kinds of modes of propagation should be present in
the system. In a nutshell, by relying on geometrical and
physical intuition and an understanding of the causal
properties of the theory in some particular limits, we can
have a good educated guess for what the characteristics
should look like. This allows us to look for a specific
factorization of the characteristic determinant that points in
that direction. This is the reason why, in our calculations,
we group certain terms in certain ways, leading to expres-
sions that can be managed in the end. Naturally, a brute-
force approach would not be able to anticipate how one
should group and factor terms in a way that would allow an
explicit determination of the characteristics.
The next step is to carry out a diagonalization of the

principal part of the equations of motion in order to establish
strong hyperbolicity.We are able to do so becausewe have a
precise understanding of the system’s characteristics. Even
so, in order to carry out the diagonalization, we need towrite
the system as a system of first-order PDEs (notice that
∇μTμν ¼ 0 is a system of second-order PDEs because Tμν

involves up to first derivatives of the hydrodynamic fields).
In doing so, there is the risk of introducing spurious
characteristics. For example, in the standard linear wave
equation the characteristics are the light cones. However,
when onewrites it as a first-order system in the standardway,
the resulting system has a spurious characteristic (it corre-
sponds, in the language of eigenvalues that can be applied to
first-order systems, to a zero eigenvalue).While the presence
of spurious characteristics per se is not an obstacle to
diagonalization, the more of them there are, the more likely
there will be obstacles to the diagonalization. Thus, we seek
to choose as variables for our first-order system quantities
that have direct physical or geometrical meaning, so that the
roots of the resulting characteristic polynomial resemble as
closely as possible the ones of the original system. Of
course, this does not guarantee diagonalizability. We still
need to carry out some work mostly technical in nature to
assure that the system is diagonalizable. But mutilating the
equations upon rewriting them as first order by introducing
new, fake features is likely to only make the technical work
harder or even insurmountable.
With diagonalization at hand, we can proceed to estab-

lish local well posedness. The basic idea is that once the
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system is diagonalized, one can rely on techniques of
diagonal systems of PDEs. There is a catch, though. The
diagonalization of the system is at the level of the so-called
principal symbol (i.e., it is a purely algebraic procedure that
does not deal directly with differential operators). In order
to apply it to the actual system of PDEs, one needs to
introduce pseudo-differential operators, and the quasilinear
nature of the equations causes further complications as we
need to deal with pseudo-differential operators with limited
smoothness. While there are results available in the
literature for such situations (see, e.g., Ref. [146]), we
have not found a result that could be directly applied to our
case. Thus, Bemfica and co-workers developed the neces-
sary tools in Refs. [107,108] with applications to the
BDNK equations with zero chemical potential in mind.
From these techniques and the diagonalization, local well
posedness follows.
Finally, let us address stability. For this, one needs to find

the roots of the polynomial determining the Fourier modes
of the perturbations. More precisely, only the sign of the
roots is relevant. Since the corresponding polynomial is of
high order, there is little hope of determining its roots
exactly, and even the analysis of the sign of the roots is very
challenging. Moreover, differently than what happens to
the causality analysis, geometrical intuition is not of much
help here because the Fourier modes are not covariant
quantities. Because of these difficulties, in previous works
the stability of the BDNK equations was not determined
rigorously, being obtained numerically or only in the
homogeneous Lorentz boosted frame [33,35]. Because of
a new result demonstrated in this paper, this limitation is
eliminated, as we discuss below.
We are now ready to discuss specific novelties of the

present work. While we continue to employ the ideas
described above and in fact improve on them, especially
with respect to some of the technical aspects that are more
challenging for the complete system here considered, we
want to highlight what are the truly new aspects introduced
in this work. First, we are able to completely and rigorously
determine the stability of the system. For this, we rely on a
new stability theorem, which roughly says that stability in
the fluid’s local rest frame (which can in general be
determined because in this case the polynomial for the
modes simplifies considerably) implies stability in any
Lorentz boosted frame provided that the system is causal
and strong hyperbolic; see Sec. VI for the precise assump-
tions and statement of the theorem. The theorem thus
establishes a close relationship between causality and
stability. While connections between causality and stability
have been discussed before, see Refs. [24,26] and refer-
ences therein, these results focused on specific theories,
thus making unclear whether they were due to the specific
form of the equations of motion or if they were examples of
a yet undiscovered connection between causality and
stability as general physical principles. Our theorem, in

contrast, is a general theorem that can be applied to many
different systems, showing that the relationship between
causality and stability runs deeper and is not a feature of
specific systems. In fact, we obtain stability of the BDNK
system by showing that it satisfies the assumptions of the
general theorem.
Interestingly, recently, a related theorem was proven in

Ref. [147], albeit using entirely different methods. The
results in Ref. [147] also provide further physical intuition
on the relationship between causality and stability, showing
that lack of causality allows that dissipation in one Lorentz
frame be viewed as “antidissipation” (i.e., dissipation
running “backward in time”) in another Lorentz frame.
We also note the related work, Ref. [69]. Combined, our
paper and the works of Refs. [69,147] provide a compre-
hensive picture of the relationship between causality and
stability, an idea that was hinted at several times before in
the literature (see above references) but that had eluded the
community until now.
We now discuss strong hyperbolicity. While strong

hyperbolicity has been obtained for the BDNK theory
before in the absence of a chemical potential [33,107,108],
the introduction of a chemical potential causes new severe
difficulties and the approach used in the case without
chemical potential does not seem to work. Indeed, in
Refs. [33,107,108], the choice of variables to write the
system as first order was based primarily on their physical
interpretation. For example, the viscous correction to the
equilibrium energy density was one of the variables chosen.
As just said, a similar approach does not work here. While
it is often a good idea to consider variables with a physical
meaning, the first-order reduction we seek to establish itself
does not need to carry much physical meaning, so an
approach employing easily identifiable physical variables
might not bear any fruit. The first-order system does carry,
however, some intrinsic geometric properties, such as
natural decompositions in the directions parallel and
perpendicular to uμ or the fact that the characteristics of
the original system are preserved by the reduction to first
order. Thus, a choice of geometric variables seems more
appropriate. That is what we have done, considering new
variables that involve several tensorial decompositions of
the original variables. This has the extra advantage that
several tensorial and geometric properties of the fields can
be used to carry out the difficult calculations needed to
diagonalize the system. Yet another advantage is that while
the previous physical choice of variables was specific to the
form of the BDNK equations, the geometric approach is
much more general and, thus, can be adapted to other
theories in that similar tensorial decompositions hold for
several fluids equations. Therefore, a second novel aspect
of this work is a new framework to investigate strong
hyperbolicity in relativistic fluids. We remark that once the
diagonalization is carried out, we can rely on the techniques
developed in Refs. [107,108] to establish local well
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posedness. Thus, while local well posedness is probably the
most technical and mathematical aspect of our results, we
were able to rely more on previous techniques than any
other of the results we obtain here.
In addition, it should by no means be overlooked that,

although the proof of causality provided here follows
similar ideas as in our earlier work [33], the fact that we
are now considering the full set of equations makes the
analysis much more difficult. Thus, a third novelty of our
work is a substantial improvement of the techniques
previously employed to analyze causality. From our cau-
sality analysis, it follows that the characteristics of the
BDNK theory are the flow lines, sound waves, the so-called
second sound, corresponding to the propagation of temper-
ature perturbations [24], and shear waves (plus heat
diffusion). In addition, when coupling to Einstein’s equa-
tions is considered, we find another set of characteristics
corresponding to gravitational waves.
Finally, as already stressed many times, the main end

product of this paper is itself a major novelty, namely, the
first construction of a viscous theory containing all relevant
fields and satisfying properties I–IV. We accomplish so by
building and expanding on several previous ideas and also
by introducing a series of novel ideas, as described above.
Having discussed the new aspects of our work, we move

on to discuss how they combine with other aspects of the
BDNK theory to provide a promising theoretical tool for
the study of general relativistic viscous phenomena. We
begin by pointing out that the BDNK theory has been
shown to be derivable from kinetic theory and holographic
arguments [32,33,148]. While derivation from kinetic
theory by itself is not guarantee that a theory is physically
meaningful since the coarse-grain procedure might intro-
duce nonphysical features—indeed, recall that the Eckart
and Landau-Lifshitz theories are derivable from kinetic
theory—it is reassuring to establish this connection with a
microscopic theory. As shown in Ref. [148], the derivation
of BDNK theory from holography can be done in the
context of the fluid-gravity correspondence [44] by care-
fully taking into account the presence of zero modes of
the corresponding differential operators in the holo-
graphic bulk.
Next, we should point out that, contrary to MIS-like

theories, the BDNK theory is capable of handling shocks.
By this, we mean that Rankine-Hugoniot-type conditions
can in principle be obtained for the BDNK theory simply
due to the fact that the BDNK equations are written as the
conservation laws ∇μTμν ¼ 0 and ∇μJμ ¼ 0. Aside from
this simple observation, viscous shocks have been recently
studied for the BDNK theory in the case of a conformal
fluid using numerical methods in Ref. [149], while math-
ematically rigorously properties were established in
Ref. [150].
At this point, we need to explain the role of shocks in the

BDNK theory. Since the BDNK theory is an effective

theory truncated at first order in the gradient expansion, it is
expected to be valid when gradients are not very large,
which is precisely the opposite of shocks. In order to
explain what we mean by a description of shocks in the
BDNK formalism, let us consider for a moment an ideal
fluid. In this case, one also is assuming that gradients are
small. Alternatively, one may also see this as the limit
where microscospic length scales are much smaller than the
length scales associated with the gradients. However,
shocks are known to develop in solutions of ideal hydro-
dynamics, and the study of shocks is indeed an important
topic within the community. To what extent such shocks are
accurate depictions of the state of the physical system is a
legitimate question. Nevertheless, once we have decided to
study shocks in the context of ideal hydrodynamics, the
formalism allows us to do so in that the equations of motion
of ideal fluids can accommodate weak solutions (also
known as distributional solutions) using the Rankine-
Hugoniot conditions [23]. The same situation happens
with BDNK: the formalism in principle allows for the
study of shocks. Whether or not such solutions are
physical, or accurate in the sense that the results would
change significantly if the formalism was extended to
second order, is an important question that is beyond the
scope of our paper. However, the point we are making is
that we can, in principle, study shock solutions in the
BDNK theory.
In other words, while the derivation of BDNK theory

rests on the assumption of small gradients, one might try to
apply it to situations where in principle gradients are not
small (like shocks), just like it was done before in the
context of ideal fluids. Although this seems inconsistent, it
is precisely what it is done when one employs the equations
of ideal fluids to the study of shocks. Moreover, it is also
the case that MIS-like theories are often applied to
situations where gradients are not so small; see, e.g.,
Refs. [84,90,151–155]. It is an intriguing, almost philo-
sophical, question why one can sometimes still obtain
meaningful results in such cases, even though shocks are
formally beyond the regime of validity of any known
approach to viscous fluids—an important question, how-
ever, that is beyond our scope here.
We now discuss another aspect of importance in viscous

theories, which is entropy production. Naturally, one needs
the second law of thermodynamics to be satisfied; i.e.,
entropy production for physically realizable states of the
system must be non-negative. Before addressing this point
in the BDNK theory, however, some important points need
to be highlighted. Strictly speaking, there is no universally
understood expression for the entropy of a given system out
of equilibrium, aside from the one given by the Boltzmann
equation. Thus, while it is useful to define an out-of-
equilibrium entropy (which must, of course, reduce to the
definition of equilibrium entropy in the absence of dis-
sipation), we need to keep in mind that such a definition is
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not fundamental or even unique. Moreover, the requirement
that entropy production be non-negative on-shell uncondi-
tionally, i.e., to all orders in gradients, is certainly too
stringent. In fact, since a fluid description is an effective
description, it has a certain limit of applicability. Therefore,
one should require that entropy production be non-negative
only within the regime of validity of the theory (which is
constructed within a certain approximation scheme). This
point was stressed in Ref. [102] and discussed in detail in
Ref. [34]. In fact, enforcing non-negative entropy produc-
tion even in the presence of any size of gradients was part of
the Eckart and Landau and Lifshitz theories, but the
resulting theory is unstable and acausal, as seen, showing
that this requirement by itself is not guaranteed to lead to
sensible theories in the context of the gradient expansion.
Non-negative entropy production to all gradients is also a
guiding principle in the construction of the MIS theory, but
so far properties I, III, and IV remain open for it. On the
other hand, the DNMR equations, that are stable, causal (in
the absence of chemical potential), and are extensively used
in numerical simulations of the quark-gluon plasma, do not
have entropy production non-negative to all orders in
Knudsen and inverse Reynolds numbers, but they should
have non-negative entropy production within the limit of
validity of the theory [65]. The same is true for the BDNK
theory, as pointed out in Ref. [34] and shown in Sec. III A.
A thorough discussion of the role of entropy in viscous
theories can be found in Ref. [51].
We finally comment on the ability of the BDNK theory

to describe realistic physical systems. In order to go beyond
theoretical aspects and make connection with experiments,
one needs to carry out realistic numerical simulations of the
BDNK equations. Not surprisingly, given how recent the
theory is, such investigations are at an initial stage, but the
results so far have been encouraging. In Ref. [149], the
authors carry out numerical simulations of the BDNK
theory in 1þ 1 dimensions in the case of a conformal fluid
and compare the results with simulations of MIS (rBRSSS)
equations in the same setting. They found that for small
values of the coefficient of shear viscosity, BDNK and MIS
provide essentially the same evolution, but their dynamics
differ for larger viscosity values. Given that small viscosity
is one of the main regimes of interest of both theories
(higher-order corrections might become relevant in both
theories if viscosity is not small), this shows that at least in
this test case the BDNK theory reproduces the well-studied
and considerably successful behavior of MIS theory. In
addition, the BDNK theory also reproduces well-known
behavior considering Bjorken [156] and Gubser [157–159]
flows, including the presence of a hydrodynamic attractor
[32]. Further numerical studies of BDNK theory can be
found in Refs. [160,161].
We also stress the obvious point that being a causal,

stable, and locally well-posed theory are themselves
fundamental properties that need to be satisfied as a

prerequisite for describing actual physical phenomena.
Thus, while on the one hand a theory possessing these
properties is only of formal interest if it is not connected to
experiments, on the other hand, a theory that has some
phenomenological success but violates, say, causality,
cannot be taken as an accurate description of real relativ-
istic physical phenomena. In this regard, we once more
remark that, in view of the results presented in this paper,
the BDNK theory is currently the only theory that satisfies
the fundamental requirements I–III and the additional
property IV when all viscous contributions and chemical
potential are incorporated, including in the case when
dynamical coupling to Einstein’s equations is considered.

III. GENERALIZED NAVIER-STOKES THEORY

We consider a general-relativistic fluid described by an
energy-momentum tensor Tμν and a timelike conserved
current Jμ associated with a global Uð1Þ charge that we
take to represent baryon number. In our approach, the
equations of relativistic fluid dynamics are given by the
conservation laws,

∇μJμ ¼ 0 and ∇μTμν ¼ 0; ð2Þ

which are dynamically coupled to Einstein’s field equa-
tions:

Rμν −
R
2
gμν ¼ 8πGTμν: ð3Þ

For the sake of completeness, we begin by recalling the
case of a fluid in local equilibrium [2]. In this limit, one
uses the following expressions in the conservation laws:

Tμν ¼ εuμuν þ PΔμν and Jμ ¼ nuμ; ð4Þ

where ε is the equilibrium energy density, n is the
equilibrium baryon density, P ¼ Pðε; nÞ is the thermody-
namical pressure defined by the equation of state, uμ is a
normalized timelike vector (i.e., uμuμ ¼ −1) called the
flow velocity, and Δμν ¼ gμν þ uμuν is a projector onto the
space orthogonal to uμ. The thermodynamical quantities in
equilibrium are connected via the first law of thermody-
namics εþ P ¼ Tsþ μn, where T is the temperature, s is
the equilibrium entropy density, and μ is the chemical
potential associated with the conserved baryon charge. We
note that uμ∇με ¼ 0 and uμ∇μn ¼ 0 in global equilibrium.
These are much stronger constraints on the dynamical
variables than in the case of local equilibrium where, e.g.,
only the combination uμ∇μεþ ðεþ PÞ∇μuμ vanishes. In
local equilibrium, both uμTμν and Jν are proportional to uν

and, thus, the flow velocity may be defined using either
quantity [2].
The system of equations (2) and (3) for an ideal fluid

[defined by Eq. (4)] is causal in the full nonlinear regime.
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Furthermore, given suitably defined initial data for the
dynamical variables, solutions for the nonlinear problem
exist and are unique. The latter properties establish that the
equations of motion of ideal relativistic fluid dynamics are
locally well posed in general relativity [16,17].
Let us now consider the effects of dissipation. Without

any loss of generality, one may decompose the current and
the energy-momentum tensor in terms of an arbitrary
future-directed unit timelike vector uμ as follows [48]:

Jμ ¼ N uμ þ J μ; ð5Þ

Tμν ¼ Euμuν þ PΔμν þ uμQν þ uνQμ þ T μν; ð6Þ

where N ¼ −uμJμ, E ¼ uμuνTμν, and P ¼ ΔμνTμν=3 are
Lorentz scalars while the vectors J ν ¼ Δν

μJμ, Qν ¼
−uμTμλΔν

λ, and the traceless symmetric tensor
T μν ¼ Δμν

αβT
αβ, with Δμν

αβ ¼ 1
2
ðΔμ

αΔν
β þ Δμ

βΔν
α − 2

3
ΔμνΔαβÞ,

are all transverse to uν. Observe that this decomposition is
purely algebraic and simply expresses the fact that a vector
and a symmetric two-tensor can be decomposed relatively
to a future-directed unit timelike vector. The physical
content of the theory is prescribed by relating the several
components in this decomposition to physical observables,
which will then evolve [162] according to Eqs. (5) and (6).
The general decomposition in Eqs. (5) and (6) expresses

fJμ; Tμνg in terms of 17 variables fE;N ;P; uμ;J μ;
Qμ; T μνg, and the conservation laws in Eq. (2) give five
equations of motion for these variables. Therefore, addi-
tional assumptions must be made to properly define the
evolution of the fluid. As mentioned before, the NS theory,
including the standard approach in Refs. [15,52], assumes
that E ¼ ε and N ¼ n. The same assumption is usually
made in the MIS theory [36], though different prescriptions
can be easily defined in the context of kinetic theory
[46,65,163]. A further constraint is usually imposed on the
transverse vectors, i.e., either J μ ¼ 0 or Qμ ¼ 0 through-
out the evolution. For instance, the former gives Jμ ¼ nuμ

and Tμν ¼ εuμuν þ ðPþ ΠÞΔμν þ uμQν þ uνQμ þ T μν,
where Π is the bulk viscous pressure (in equilibrium,
Π ¼ 0, Qν ¼ 0, and T μν ¼ 0). In this case, in an extended
variable approach such as MIS [36], Π, Qν, and T μν obey
additional equations of motion that must be specified and
solved together with the conservation laws, whereas in the
NS approach these quantities are expressed in terms of uμ,
ε, and its derivatives.
In this paper, we investigate the problem of viscous

fluids in general relativity using the BDNK formulation of
relativistic fluid dynamics. See Secs. II B and II C for a
detailed discussion of the origins of the BDNK theory and
the conceptual framework that it entails. As explained
in those sections, the starting point in the formulation of
the BDNK theory is the most general expression for
the energy-momentum tensor and the baryon current at
first order.

In practice, the most general expressions for the con-
stitutive relations that define the quantities in Eqs. (5) and
(6), truncated to first order in derivatives, are (following the
notation in Ref. [34])

E ¼ εþ ε1
uα∇αT

T
þ ε2∇αuα þ ε3uα∇αðμ=TÞ; ð7aÞ

P ¼ Pþ π1
uα∇αT

T
þ π2∇αuα þ π3uα∇αðμ=TÞ; ð7bÞ

N ¼ nþ ν1
uα∇αT

T
þ ν2∇αuα þ ν3uα∇αðμ=TÞ; ð7cÞ

Qμ ¼ θ1
Δμν∇νT

T
þ θ2uα∇αuμ þ θ3Δμν∇νðμ=TÞ; ð7dÞ

J μ ¼ γ1
Δμν∇νT

T
þ γ2uα∇αuμ þ γ3Δμν∇νðμ=TÞ; ð7eÞ

T μν ¼ −2ησμν; ð7fÞ

where σμν ¼ Δμναβ∇αuβ is the shear tensor. The transport
parameters fεi; πi; θi; νi; γig and the shear viscosity η are
functions of T and μ. Thermodynamic consistency of the
equilibrium state (i.e., that ε, P, and n have the standard
interpretations of equilibrium quantities connected via
well-known thermodynamic relations) imposes that γ1 ¼
γ2 and θ1 ¼ θ2 [34]. The final equations of motion for
fT; μ; uαg, which are of second order in derivatives, are
found by substituting the expressions above in the con-
servation laws. In the language of Sec. II A, expressions (7)
for Eqs. (5) and (6) correspond to the most general choice
of a hydrodynamic frame for a first-order theory. As
stressed in Ref. [34], it is of course impossible to not
choose a hydrodynamic frame since the latter actually
defines the meaning of the variables fT; μ; uμg out of
equilibrium (see Sec. II A for details).
In fact, in the regime of validity of the first-order theory,

one may shift fT; μ; uμg by adding terms that are of first
order in derivatives, shifting also the transport parameters
fεi; πi; θi; νi; γig, without formally changing the physical
content of Tμν and Jμ [34]. However, there are combina-
tions of the transport parameters that remain invariant under
these field redefinitions. In fact, the shear viscosity η and
the combination of coefficients that give the bulk viscosity
ζ and charge conductivity σ are invariant under first-order
field redefinitions, as explained in Ref. [34]. Additional
constraints among the transport parameters appear when
the underlying theory displays conformal invariance, as
discussed in detail in Ref. [32] at μ ¼ 0, and at finite
chemical potential in Refs. [34,35] (see also Ref. [110]).
Hoult and Kovtun [35] investigated Eq. (7) at nonzero

chemical potential using a class of hydrodynamic frames
where ε3 ¼ π3 ¼ θ3 ¼ 0. This corresponds to the case
where there are nonequilibrium corrections to both the
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conserved current and the heat flux. This choice is useful
when considering relativistic fluids where the net baryon
density is not very large, as in high-energy heavy-ion
collisions. Conditions for causality were derived and limit-
ing cases were studied that strongly indicated that this
choice of hydrodynamic frame is stable against small
disturbances around equilibrium. Further studies are
needed to better understand the nonlinear features of its
solutions (well posedness) and also the stability properties
of this class of hydrodynamic frames at nonzero baryon
density in a wider class of equilibrium states.
In this paper, we consider another class of hydrodynamic

frames that we believe can be more naturally implemented
in simulations of the baryon-rich matter formed in neutron
star mergers or in low-energy heavy-ion collisions. Our
choice for the hydrodynamic frame is closer to Eckart’s as
we define the flow velocity using the baryon current; i.e.,
Jμ ¼ nuμ holds throughout the evolution (γi ¼ νi ¼ 0).
Clearly, this limits the domain of applicability of the theory
to problems where there are many more baryons than
antibaryons so the net baryon charge is large.
In this case, it is more convenient to use ε and n as

dynamical variables instead of T and μ=T because the most
general expressions for the Lorentz scalar contributions to
the constitutive relations involve only linear combinations
of uμ∇με and ∇μuμ, given that current conservation implies
that the replacement uλ∇λn ¼ −n∇λuλ is valid. For sim-
plicity, we choose to parametrize the out-of-equilibrium
corrections to the scalars as follows [we note that θ1 ¼ θ2
and γ1 ¼ γ2, and in practice, 8 out of the 14 parameters in
Eq. (7) can be set using first-order field redefinitions [34],
so one is then left with η, ζ, σ, and three other parameters]:

E ¼ εþ τε½uλ∇λεþ ðεþ PÞ∇λuλ�; ð8aÞ

P ¼ P − ζ∇λuλ þ τP½uλ∇λεþ ðεþ PÞ∇λuλ�; ð8bÞ

where τε and τP have dimensions of a relaxation time and ζ
is the bulk viscosity transport coefficient. When evaluated
on the solutions of the equations of motion, one can see that
these quantities assume their standard form as in Eckart’s
theory up to second order in derivatives because E ∼
εþOð∂2Þ and P ¼ P − ζ∇μuμ þOð∂2Þ on shell (we
follow traditional terminology where a given quantity is
said to be on shell when it is evaluated using the solutions
to the equations of motion).
In fact, we remind the reader that in Eckart’s theory [52]

the energy-momentum tensor is given by Tμν ¼
εuμuν þ ðP − ζ∇λuλÞΔμν − 2ησμν þ uμQν þ uνQμ, with
heat flux Qμ ¼ −κTðuλ∇λuμ þ Δλ

μ∇λT=TÞ, where κ ¼
ðεþ PÞ2σ=ðn2TÞ is the thermal conductivity coefficient.
However, as remarked in Ref. [34], in the domain of validity
of the first-order theory one may rewrite the Eckart expres-
sion for the heat flux as Qν ¼ σT½ðεþ PÞ=n�Δλ

ν∇λðμ=TÞ
plus second-order terms. This is done by noticing that

ðεþ PÞuλ∇λuμ þ Δμλ∇λP ¼ 0þOð∂2Þ on shell, which
implies that one may write, using the standard thermody-
namic relation ½ðdPÞ=ðεþPÞ�¼½ðdTÞ=T�þ½ðnTÞ=ðεþPÞ�×
dðμ=TÞ,

uλ∇λuα þ
Δαλ∇λT

T
¼ −

nT
εþ P

Δαλ∇λðμ=TÞ þOð∂2Þ: ð9Þ

Therefore, one can always choose the coefficients such
that the heat flux Qμ has the same physical content of
Eckart’s theory plus terms that are of second order on shell.
We use this to write this quantity as

Qν ¼ σT
ðεþ PÞ

n
Δλ

ν∇λðμ=TÞ
þ τQ½ðεþ PÞuλ∇λuν þ Δλ

ν∇λP�; ð10Þ

where τQ has dimensions of a relaxation time.
In this work, we make the following choice for the

constitutive relations that give the energy-momentum
tensor and the baryon current:

Jμ ¼ nuμ; ð11aÞ

Tμν ¼ ðεþAÞuμuν þ ðPþ ΠÞΔμν − 2ησμν

þ uμQν þ uνQμ; ð11bÞ

A ¼ τε½uλ∇λεþ ðεþ PÞ∇λuλ�; ð11cÞ

Π ¼ −ζ∇λuλ þ τP½uλ∇λεþ ðεþ PÞ∇λuλ�; ð11dÞ

Qν ¼ τQðεþ PÞuλ∇λuν þ βεΔνλ∇λεþ βnΔνλ∇λn; ð11eÞ

where

βε ¼ τQ

�∂P
∂ε

�
n
þ σTðεþ PÞ

n

�∂ðμ=TÞ
∂ε

�
n
; ð12aÞ

βn ¼ τQ

�∂P
∂n

�
ε

þ σTðεþ PÞ
n

�∂ðμ=TÞ
∂n

�
ε

; ð12bÞ

and τε, τP, and τQ quantify the magnitude of second-order
corrections to the out-of-equilibrium contributions to the
energy-momentum tensor given by the energy density
correction A, the bulk viscous pressure Π, and the heat
flux Qμ. In other words, Eqs. (11) and (12) correspond to
the frame we consider in this work; thus they provide a
definition of what we mean by the nonequilibrium hydro-
dynamic fields.
The reason for considering the constitutive relations (11)

and (12) is that they lead to a theory satisfying properties I–
IV, as we show below. We refer the reader to Sec. II C for a
discussion of the ideas and techniques that led to the
particular choice of Eqs. (11) and (12).
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The equations of motion for the fluid variables are
obtained from the conservation laws and they can be
written explicitly as

uλ∇λnþ n∇λuλ ¼ 0; ð13aÞ

uλ∇λεþðεþPÞ∇λuλ¼−uλ∇λA− ðAþΠÞ∇λuλ

−∇μQμ−Qμuλ∇λuμþ2ησμνσ
μν;

ð13bÞ

ðεþ PÞuν∇νuβ þ Δβλ∇λP

¼ −ðAþ ΠÞuν∇νuβ − Δβλ∇λΠþ Δβ
λ∇μð2ησμλÞ

− uλ∇λQβ −
4

3
∇λuλQβ −Qμσ

μβ −Qμω
μβ; ð13cÞ

where ωμν ¼ 1
2
ðΔλ

μ∇λuν − Δλ
ν∇λuμÞ is the kinematic

vorticity tensor [2]. The equations above show that,
on shell,A ∼ 0þOð∂2Þ,Π ∼ −ζ∇μuμ þOð∂2Þ, andQν ¼
σT½ðεþ PÞ=n�Δλ

ν∇λðμ=TÞ þOð∂2Þ. Equations (11)–(13)
define a causal and stable generalization of Eckart’s theory
that is fully compatible with general relativity, as we prove
in the next sections. We remark that when one neglects the
effects of a conserved current altogether, the theory reduces
to the case studied in Refs. [33,34]. For additional
discussion about the case without a chemical potential,
including far-from-equilibrium behavior and also the pres-
ence of analytical solutions, see Refs. [111,116,117].

A. Entropy production

It is instructive to investigate how the second law of
thermodynamics is obeyed in this general first-order
approach. This was discussed in detail by Kovtun in
Ref. [34] and, more recently, by other authors in Ref. [51].
The standard covariant definition of the entropy current

based on the first law of thermodynamics TSμ ¼
Puμ − uνTνμ − μJμ [36], together with Eq. (11), can be
used to show that the entropy density measured by a
comoving observer is given by

−uμSμ ¼ sþA
T
: ð14Þ

Note that in our system one finds that A ¼ 0þOð∂2Þ on
shell. Furthermore, using Eqs. (11) and (13) one finds that
the divergence of the entropy current is given by

∇μSμ ¼ 2ησμνσ
μν

T
−
Π
T
∇μuμ þ

n
εþ P

QνΔλ
ν∇λðμ=TÞ

−
Qν

T

�
uλ∇λuν þ

Δλ
ν∇λP
εþ P

�
−
A
T
uλ∇λT

T
: ð15Þ

It is crucial to note [34] that in a first-order approach ∇μSμ

can only be correctly determined up to second order in

derivatives [recall that in this argument terms such as
∇μ∇νϕ and ð∇μϕÞð∇νϕÞ, for any field ϕ, count as second-
order terms; see Sec. II A]. This means that not all the terms
in Eq. (15) actually contribute to this expression at second
order. For instance, when evaluating Eq. (15) on shell one
must keep in mind that the last two terms in Eq. (15) are
already at least of third order and must, thus, be dropped.
A similar argument can be used to show that the term
Π∇μuμ ¼ −ζð∇μuμÞ2 þOð∂3Þ. Therefore, one can see that

∇μSμ ¼ 2ησμνσ
μν

T
þ ζð∇μuμÞ2

T
þ σT½Δλ

ν∇λðμ=TÞ�½Δνα∇αðμ=TÞ� þOð∂3Þ; ð16Þ

which is non-negative when η, ζ, σ ≥ 0. Hence, there are no
violations of the second law of thermodynamics in the
domain of validity of the first-order theory—higher-order
derivative terms Oð∂3Þ in the entropy production can only
be understood by considering terms of higher order in
derivatives in the constitutive relations in Tμν and Jμ, which
is beyond the scope of the first-order approach.

IV. CAUSALITY

In order to determine the conditions under which
causality holds in this theory, we need to understand the
system’s characteristics. Our system is a mixed first-
second-order system of PDEs. While the principal part
and characteristics of systems of this form can be inves-
tigated using Leray’s theory [21,105,164], here it is simpler
to transform our equations into a system where all
equations are of second order. We thus apply uμ∇μ on
Eq. (13a). In this case, the conservation laws (2) coupled to
Einstein’s equations (3) written in harmonic gauge,
gμνΓα

μν ¼ 0, read

uβuα∂2
αβnþnδανuβ∂2

αβu
νþ B̃1ðn;u;gÞ∂2g¼B1ð∂n;∂u;∂gÞ;

ð17aÞ

ðτεuαuβ þ βεΔαβÞ∂2
αβεþ βnΔαβ∂2

αβn

þ ρðτε þ τQÞuðαδβÞν ∂2
αβu

ν þ B̃2ðε; n; u; gÞ∂2g

¼ B2ð∂ε; ∂n; ∂u; ∂gÞ; ð17bÞ

ðβε þ τPÞuðαΔβÞμ∂2
αβεþ βnuðαΔβÞμ∂2

αβnþ Cμαβν ∂2
αβu

ν

þ B̃μ
3ðε; n; u; gÞ∂2g ¼ Bμ

3ð∂ε; ∂n; ∂u; ∂gÞ; ð17cÞ

gαβ∂2
αβg

μν ¼ Bμν
4 ð∂ε; ∂n; ∂u; ∂gÞ; ð17dÞ

where ∂2
αβ ¼ ∂α∂β (using standard partial derivatives),

ρ¼ðεþPÞ, and AðαBβÞ ¼ ðAαAβ þ AβBαÞ=2. The remain-
ing notation is as follows. We use ∂lϕ to indicate that a
term depends on at most l derivatives of ϕ. A term of the
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form Bð∂l1ϕ1;…; ∂lkϕkÞ∂lϕi, i ∈ f1;…; kg, indicates an
expression that is linear in ∂lϕi with coefficients depending
on at most l1 derivatives of ϕ1;…;lk derivatives of ϕk. For
example, the term ðuμ∂μεþ ∂μuμÞgαβ∂2

αβgγδ would be
written as Bð∂ε; ∂u; gÞ∂2g (a term of this form is not
present in our system; we write it here only for illustration).
The terms B̃ above are top order in derivatives of g and thus
belong to the principal part, although, as we will see, their
explicit form is not needed for our argument, whereas the B
terms are lower order and do not contribute to the principal
part. We have also defined

Cμαβν ¼
�
τPρ−ζ−

η

3

�
ΔμðαδβÞν þðρτQuαuβ−ηΔαβÞδμν : ð18Þ

We notice that by taking uμ∇μ of Eq. (13a) we are not
introducing new characteristics in the system. This can be
viewed from the characteristic determinant computed
below which contains an overall factor of uμξμ to a power
greater than one. Theorem I below establishes necessary
and sufficient conditions for causality to hold in our system
of equations. We show that the assumptions of Theorem I
are not empty in Sec. VII A. Throughout this paper, we use
the following definition for the speed of sound cs:

c2s ¼
�∂P
∂ε

�
s̄
¼

�∂P
∂ε

�
n
þ n

ρ

�∂P
∂n

�
ε

; ð19Þ

where s̄ is the equilibrium entropy per particle. Also, we
define

κs ¼
ρ2T
n

�∂ðμ=TÞ
∂ε

�
s̄
¼ ρ2T

n

�∂ðμ=TÞ
∂ε

�
n
þ Tρ

�∂ðμ=TÞ
∂n

�
ε

:

ð20Þ

Theorem I.—Let ðε; n; uμ; gαβÞ be a solution to Eqs. (3)
and (13), with uμuμ ¼ −1, defined in a globally hyperbolic
spacetime ðM; gαβÞ. Assume that Assumption 1

ðA1Þ ρ ¼ εþ P; τε; τQ; τP > 0 and η; ζ; σ ≥ 0:

Then, causality holds for ðε; n; uμ; gαβÞ if, and only if, the
following conditions are satisfied:

ρτQ > η; ð21aÞ
�
τε

�
ρc2sτQþ ζþ 4η

3
þ σκs

�
þ ρτPτQ

�
2

≥ 4ρτετQ

�
τPðρc2sτQþ σκsÞ− βε

�
ζþ 4η

3

��
≥ 0; ð21bÞ

2ρτετQ > τε

�
ρc2sτQþζþ4η

3
þσκs

�
þρτPτQ ≥ 0; ð21cÞ

ρτετQ þ σκsτP > τε

�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�

þ ρτPτQð1 − c2sÞ þ βε

�
ζ þ 4η

3

�
: ð21dÞ

The same result holds true for Eqs. (13) if the metric is not
dynamical.
Proof.—The proof can be reduced to a computation of

the characteristics of Eq. (17) [164]. Technical details are
found in Appendix A.

V. STRONG HYPERBOLICITY
AND LOCAL WELL POSEDNESS

In this section, we investigate the initial-value problem
for Eqs. (3) and (13). The goal is to show that the system is
causal and locally well posed under very general condi-
tions. First, we briefly discuss the initial data required to
solve the system of equations. Then, we rewrite our system
as a first-order system. We show that this first-order system
is diagonalizable in the sense of Proposition I. This means,
in particular, that the system is strong hyperbolic according
to the usual definition of the term, as in, e.g., Refs. [2,23].
The importance of having strongly hyperbolic equations is
due to its implications for the initial-value problem. As
already mentioned, one is generally interested in evolution
equations that are locally well posed [165]. For equations
with constant coefficients, local well posedness is equiv-
alent to strong hyperbolicity [166]. For nonconstant coef-
ficients and nonlinear systems, such an equivalence does
not hold [167–169]. However, there remains a close
connection between strong hyperbolicity and local well
posedness. For most reasonable systems, once diagonaliz-
ability is available, one can use known techniques to derive
energy estimates which, in turn, can be used to prove local
well posedness; see Sec. II C for more discussion on the
techniques involved. This is precisely the case for our
system of equations. Even though our equations consist of a
system of second-order PDEs, we can use the diagonalized
system of first-order equations to derive energy estimates.
Once these estimates are available, we use a standard
approximation argument as in Refs. [17,170] to obtain local
well posedness (see Theorem II).

A. Initial data

Equations (13) are second order in ε, n, and uμ.
Thus, initial data along a noncharacteristic hypersurface
consist of the values of ε, n, uμ and their first-order time
derivatives. Clearly, the initial uμ has to satisfy uμuμ ¼ −1.
Also, it is important to note that Eq. (13a) is first order and,
thus, the initial data cannot be arbitrary but must satisfy a
compatibility condition ensuring that Eq. (13a) holds at
t ¼ 0. Therefore, one can use Eq. (13a) to write the time
derivative of n in terms of the time derivative of uμ
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(this feature would also appear in Navier-Stokes theory in
the Eckart hydrodynamic frame).
A natural choice to determine the initial conditions for

the matter sector is to set an initial state that is within the
regime of validity of the first-order theory and closely
reproduces Eckart’s theory. First, one can directly extract n
and uμ from Jμ at the initial spacelike hypersurface. Then,
one sets the nonequilibrium correction to the energy density
A in Eq. (11) to zero in the initial state, so then the initial
value for ε equals Tμνuμuν and the first-order time
derivative of ε is defined in terms of the first-order time
derivative of the flow velocity (plus spatial derivatives that
are known in the initial state). Clearly, A will be different
than zero later during the actual evolution, and its value can
be used to check if the simulations remain within the
regime of validity of the first-order approach (i.e., jAj=ε
must remain less than unity). Finally, the time derivative of
the flow velocity can be set by imposing that the second-
order on-shell term ðεþ PÞuλ∇λuν þ Δνλ∇λP vanishes.
Hence, one can obtain the time derivative of the flow
velocity and all the other required initial data in the regime
of validity of the first-order approach, emulating Eckart’s
theory as much as possible.
We recall that the initial data for the gravitational sector

has to further satisfy the well-known Einstein constraint
equations. We briefly make some comments on this in
Sec. VIII.

B. Diagonalization and eigenvectors

In this section, we write Eqs. (3) and (13) as a first-order
system, as discussed above. For this, we begin defining the
variables V ¼ uα∂αε, Vμ ¼ Δμα∂αε, W ¼ uα∂αn, Wμ ¼
Δμα∂αn, Sμ ¼ uα∇αuμ, Sν

λ ¼ Δα
λ∇αuν, Fμν ¼ uα∂αgμν, and

F λ
μν ¼ Δλα∂αgμν. Then, the equations of motion can be

cast as

τεuα∂αVþ τQρ∂νSνþτερuα∂αSννþβε∂νVνþβn∂νWν¼ r1;

ð22aÞ

τPΔμα∂αV þ τQρuα∂αSμ þ βεuα∂αVμ þ βnuα∂αWμ

þ ηΠμλα
ν ∂αSνλ ¼ rμ2; ð22bÞ

uα∂αVμ − Δμα∂αV ¼ rμ3; ð22cÞ

uα∂αWμ þ nΔμα∂αSν
ν ¼ rμ4; ð22dÞ

uα∂αSν
λ − Δα

λ∂αSν − X νAα
λ ∂αFA − YνAα

λδ ∂αF δ
A ¼ rν5λ; ð22eÞ

uα∂αFA − Δα
δF

δ
A ¼ r6A; ð22fÞ

uα∂αF δ
A − Δδα∂αFA ¼ rδ7A; ð22gÞ

uα∂αε ¼ r8; ð22hÞ

uα∂αn ¼ r9; ð22iÞ

uα∂αuμ ¼ rμ10; ð22jÞ

uα∂αgA ¼ r11A; ð22kÞ

where the r’s are functions of the fields ε; uν;…;F λ
μν but

not its derivatives and A ¼ σβ for σ ≥ β; i.e., A takes the 10
independent values 00,01,02,03,11,12,13,22,23,33 with
repeated index A summing from 00 to 33,

Πμλα
ν ¼−ηðΔμλδανþΔαλδμνÞþ

�
ρτP−ζþ2η

3

�
Δμαδλν; ð23aÞ

X νAð¼σβÞα
λ ¼ 1

2
½gνðσΔβÞ

λ u
α−uðσΔβÞ

λ g
να−uðσΔβÞνΔα

λ �ð2−δAÞ;
ð23bÞ

YνAð¼σβÞα
λδ ¼ 1

2
uðσuβÞΔα

λδ
ν
δð2 − δAÞ: ð23cÞ

By δA we mean the Kronecker delta in the sense that when
A ¼ σβ, then δA ¼ δσδ, which equals one when σ ¼ β and
zero otherwise. Also, the terms rmay be functions of the 95
variables. Equations (22) were obtained as follows.
Equations (22a) and (22b) come from the conservation
law ∇νTμν ¼ 0 when projected into the directions parallel
and perpendicular to uν, respectively. Equations (22c),
(22d), (22e), and (22g) correspond, respectively, to the
identities ∇α∇βε −∇β∇αε ¼ 0, ∇α∇βn −∇β∇αn ¼ 0,
∇α∇βuν−∇β∇αuν¼Rν

αβσu
σ ¼ð∂αΓν

βσ−∂βΓν
ασÞuσþ terms

of order zero in derivatives, and ∂α∂βgμν − ∂β∂αgμν ¼ 0,

all contracted with uαΔβ
λ . Equations (22f) is the Einstein

equation in the harmonic gauge, i.e., gαβ∂α∂βgμν ¼ terms of
lower order in derivatives, while Eqs. (22h)–(22k) are the
definitions of V, W (also using the identity uα∇αnþ
n∇αuα ¼ W þ nSα

α ¼ 0 to eliminate W thoroughly), Sμ,
and FA, respectively. We may now define the 95 × 1
column vectors Ψ and B as

Ψ ¼

2
64
ψm

ψg

ψd

3
75; ð24Þ

and B¼ðr1;…;r11AÞT , where ψm ¼ ðV;Sν;Vν;Wν;
Sν
0;S

ν
1;S

ν
2;S

ν
3ÞT ∈ R29, ψg¼ðFA;F 0

A;F
1
A;F

2
A;F

3
AÞT∈R50,

and ψd ¼ ðε; n; uν; gAÞT ∈ R16, to write the quasilinear
first-order system (22) in matrix form as

Aα∂αΨ ¼ B; ð25Þ

where, here, Aα ¼ Aα ⊕ uαI16 (⊕ being the direct sum).
The matrix Aα is split in the following way:
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Aα ¼
�

Aα
m −Lα

050×29 Aα
g

�
; ð26Þ

where

Aα
m ¼

2
6666666666666664

τεuα ρτQδ
α
ν βεδ

α
ν βnδ

α
ν ρτεuαδ0ν ρτεuαδ1ν ρτεuαδ2ν ρτεuαδ3ν

τPΔμα ρτQuαδ
μ
ν βεuαδ

μ
ν βnuαδ

μ
ν Πμ0α

ν Πμ1α
ν Πμ2α

ν Πμ3α
ν

−Δμα 04×4 uαδμν 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 uαδμν nΔμαδ0ν nΔμαδ1ν nΔμαδ2ν nΔμαδ3ν

04×1 −Δα
0δ

μ
ν 04×4 04×4 uαδμν 04×4 04×4 04×4

04×1 −Δα
1δ

μ
ν 04×4 04×4 04×4 uαδμν 04×4 04×4

04×1 −Δα
2δ

μ
ν 04×4 04×4 04×4 04×4 uαδμν 04×4

04×1 −Δα
3δ

μ
ν 04×4 04×4 04×4 04×4 04×4 uαδμν

3
7777777777777775

; ð27Þ

while

Aα
g ¼

2
6666664

uαI10 −Δα
0I10 −Δα

1I10 −Δα
2I10 −Δα

3I10
−Δ0αI10 uαI10 010×10 010×10 010×10

−Δ1αI10 010×10 uαI10 010×10 010×10

−Δ2αI10 010×10 010×10 uαI10 010×10

−Δ3αI10 010×10 010×10 010×10 uαI10

3
7777775

ð28Þ

and

Lα ¼

2
6666666666666664

01×10 01×10 01×10 01×10 01×10

04×10 04×10 04×10 04×10 04×10

04×10 04×10 04×10 04×10 04×10

04×10 04×10 04×10 04×10 04×10

XμAα
0 YμAα

00 YμAα
01 YμAα

02 YμAα
03

XμAα
1 YμAα

10 YμAα
11 YμAα

12 YμAα
13

XμAα
2 YμAα

20 YμAα
21 YμAα

22 YμAα
23

XμAα
3 YμAα

30 YμAα
31 YμAα

32 YμAα
33

3
7777777777777775

: ð29Þ

We are now ready to establish that, when written as a
first-order system as above, the equations of motion are
strongly hyperbolic. In Sec. VII A, we show that the
assumptions of Proposition I are not empty.
Proposition I.—Consider the system (22). Assume that

(A1) with η > 0 holds and that Eq. (21) in Theorem I holds
in strict form, i.e., with > instead of ≥. Let ξ be a timelike
covector. Then, (i) detðAαξαÞ ≠ 0, and (ii) for any spacelike
vector ζ, the eigenvalue problem ðζα þ ΛξαÞAαR ¼ 0 has
only real eigenvalues Λ and a complete set of right
eigenvectors R.

Proof.—The proof of this proposition is very lengthy and
we refer the interested reader to check all the details and the
proof presented in Appendix B.

C. Local well posedness

In this section, we establish the local existence and
uniqueness of solutions to the nonlinear equations of
motion in Eqs. (3) and (13).
We begin by noticing that Eq. (13) used the normaliza-

tion uμuμ ¼ −1 to project the divergence of Tμν and Jμ onto
the directions parallel and orthogonal to uμ. In order to
show that the condition uμuμ ¼ −1 is propagated by the
flow, it is more convenient to work directly with Eqs. (2)
and (3). In order to complete the system, we differentiate
uμuμ ¼ −1 twice in the uμ direction:

uβ∇β½uα∇αðuαuαÞ� ¼ 0: ð30Þ

We also differentiate ∇μJμ ¼ 0 once, as in Sec. IV:

uμ∇μð∇νJνÞ ¼ 0: ð31Þ

Observe that Eqs. (30) and (31) imply that uμuμ ¼ −1 and
∇μJμ ¼ 0 hold at later times if these hold at the initial time.
The main result of this section can be found below.
Theorem II.—Let ðΣ; g∘αβ; κ̂αβ; ε∘; ε̂; n∘ ; n̂; u∘ α; ûαÞ be an

initial-data set for the system composed of Einstein’s
equations (2) and ∇μJμ ¼ 0, where Tαβ and Jμ are given

in Eq. (11). Assume that u
∘ μu∘ μ ¼ −1, n∘ > 0 [171], and that

∇μJμ¼0 holds for the initial data. Assume (A1) with η > 0

and suppose that Eqs. (21) of Theorem I hold in strict form
and that the transport coefficients are analytic functions of

their arguments. Finally, assume that g
∘
αβ; ε

∘
; n
∘
; u
∘ α ∈ HNðΣÞ

and that κ̂αβ; ε̂; n̂; ûα ∈ HN−1ðΣÞ, N ≥ 5, where HN is the
Sobolev space. Then, there exists a globally hyperbolic
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development of the initial data. This globally hyperbolic
development is unique if taken to be the maximum globally
hyperbolic development of the initial data.
Proof.—The proof is found in Appendix C.

VI. NEW THEOREM ABOUT LINEAR STABILITY

Any ordinary fluid must be stable against small devia-
tions from the thermodynamic equilibrium state [15]. (We
only consider systems such that the equilibrium state is
unique and has a finite correlation length. Therefore, in
principle, our discussion does not apply to systems where
the correlation length in equilibrium can become arbitrarily
large, such as at a critical point.) We recall that in
equilibrium βμ ¼ uμ=T must be a Killing vector, i.e.,
∇μβν þ∇νβμ ¼ 0, and also ∇αðμ=TÞ ¼ 0 [36,172,173].
In Minkowski spacetime, nonrotating equilibrium corre-
sponds to a class of states with constant T and μ and
background flow velocity uμ ¼ γð1; vÞ defined by a con-
stant subluminal three-velocity v, where γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
.

(In this paper, we neglect the constant thermal vorticity
term; see Ref. [172] for a nice discussion of its physical
content and consequences.) In the local rest frame v ¼ 0
and the background flow is simply uμ ¼ ð1; 0; 0; 0Þ. In a
stable theory, small disturbances from the general equilib-
rium state T → T þ δTðt;xÞ, μ → μþ δμðt;xÞ, and uμ →
uμ þ δuμðt;xÞ (with uμδuμ ¼ 0) lead to small variations in
the energy-momentum tensor and current, δTμνðt;xÞ and
δJμðt;xÞ, which decay with time.
The standard theories from Eckart and Landau-Lifshitz

are unstable, as shown by Hiscock and Lindblom many
years ago [25]. This instability appears because such
theories possess exponentially growing, hence unstable,
nonhydrodynamic modes, which spoil linear stability
around equilibrium even at vanishing wave number.
(The frequency of a hydrodynamic mode, such as a sound
wave, vanishes in a spatially uniform state. On the other
hand, a nonhydrodynamic mode correspond to a collective
excitation that possesses nonzero frequency even at zero
wave number.) For Landau-Lifshitz theory at zero chemical
potential, this instability is only observed when considering
a general equilibrium state with nonzero v [25,26,73],
while in the case of Eckart the instability already appears
even when v ¼ 0. The lack of causality in these approaches
implies that it is not sufficient to investigate only the static
v ¼ 0 case in order to determine the stability properties of a
general equilibrium state where v ≠ 0, even though such
states are in principle connected via a simple Lorentz
transformation.
The necessity to investigate the stability properties of

general equilibrium states where v ≠ 0 makes linear sta-
bility analyses of viscous hydrodynamic theories very
complicated. Already in the local rest frame, finding
whether the linear modes of the system are stable requires
determining the sign of the imaginary part of the roots of a

high-order polynomial, which becomes a daunting task
when v ≠ 0 (see Refs. [35,70] for recent examples of how
complicated a v ≠ 0 analysis can become in BDNK and
MIS theory, respectively).
We prove below a new theorem that gives sufficient

conditions for causal fluid dynamic equations to be linearly
stable against disturbances of a general nonrotating equi-
librium state with arbitrary background velocity. In this
case, proving stability for the local rest frame implies
stability in any other frame (note that the word frame here is
used in the standard context of special relativity, i.e., to
refer to an inertial observer, and has nothing to do with the
concept of a hydrodynamic frame discussed in previous
sections, which concerned the definition of hydrodynamic
variables out of equilibrium) connected to the local rest
frame via a Lorentz transformation. This general feature is
expected to hold in any interacting relativistic system; i.e.,
no issues should appear if one simply observes a given
system in another inertial frame. We then use this theorem
in Sec. VII to find conditions under which the hydro-
dynamic theory presented here is stable. We remark that our
results can be used to establish stability at nonzero v ≠ 0 in
other theories as well, e.g., MIS, as long as the conditions
discussed below are fulfilled.

A. Transforming a second-order system of linear
differential equations into a first-order one

We begin by showing how one may convert a system of
linear second-order PDEs into a first order one, as this is
needed for the theory discussed in this paper. Let the system
of linearized second-order PDEs be given by

X
b

Mð∂ÞabδψbðXÞ ¼ Nð∂δψÞa; ð32Þ

where a and b run from 1 to n,Mð∂Þba are differential linear
operators of order 2, Nð∂ΨÞ are linear terms containing
derivatives of the perturbed fields δΨ up to order 1, and
δψ1ðXÞ;…; δψnðXÞ are the perturbed fields (for instance,
δε, δn, etc.). We suppose that Eq. (32) arises from the
conservation laws −uα∂βδTαβ ¼ 0, Δμ

α∂βδTαβ ¼ 0, and
∂αδJα ¼ −uβuα∂αδJβ þ Δαβ∂αδJβ ¼ 0, where the first
two come from ∂αδTαβ ¼ 0, while the last equation appears
only when Jμ is included. In this manner, the derivatives in
the equations of motion in Eq. (32) shall always appear as
combinations of uα∂α and Δαβ∂β only. Thus, if the system
in Eq. (32) has one or more second-order equations,
it can be rewritten as a first-order system in the N ≡ 5n
new variables δψ̄aðXÞ ¼ uα∂αψ

aðXÞ and δψ̃a
μðXÞ ¼

Δν
μ∂νψ

aðXÞ. These definitions automatically lead (32) to
n first-order linear equations. One then needs to supplement
those with the 4n dynamical equations that are missing. By
means of the identity ∂α∂βψ

aðXÞ − ∂β∂αψ
aðXÞ ¼ 0, one

may find the extra 4n dynamical equations
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uα∂αδψ̃
a
μðXÞ − Δα

μ∂αδψ̄
aðXÞ ¼ 0, giving the needed 5n

first-order dynamical equations, as required. In matrix
form it becomes

Aα∂αδΨðXÞ þ BδΨðXÞ ¼ 0; ð33Þ

where Aα and B are N × N constant real matrices
and δΨðXÞ is a N × 1 column vector with entries
δψ̄1; δψ̃1

ν;…; δψ̄n; δψ̃n
ν . This ends the procedure.

However, if one of the equations in Eq. (32) is already
of first order but contains variables that have second-order
derivative in other equations, then one can eliminate this
equation by using it as a constraint to eliminate one of the
variables. For example, consider the case of the ideal
current Jμ ¼ nuμ. In this case, the conservation equation
∂αJα ¼ 0 becomes uα∂αδnðXÞ þ n∂αδuαðXÞ ¼ 0. If Tμν

has shear or bulk contributions, for example, then the other
equations must have second-order derivatives of δuμ. Thus,
one must write ∂αδJα ¼ 0 as δψ̄ þ nδψ̃μ

μ ¼ 0, where δψ̃μ
ν ¼

Δα
ν∂αuμ and δψ̄ ¼ uα∂αn. This is a zeroth-order equation in

the new variables and, therefore, is just a constraint. One
may use this constraint in order to eliminate the variable δψ̄
in the other dynamical equations. Then, in this case one
ends up with 5n − 1 dynamical equations for the 5n − 1
fields.
Finally, we remark that other approaches to viscous

relativistic fluids, such as MIS, are already written in the
format (33) in the linearized regime so the procedure to
reduce the order of the equations of motion described above
is not needed and one can move directly to the part below.

B. New linear stability theorem

To study linear stability, let us expand the perturbed
fields in the Fourier modes Kμ ¼ ðiΓ; kiÞ by substituting
δΨðXÞ → expðiKμXμÞδΨðKÞ ¼ expðΓtþ ikixiÞδΨðKÞ in
Eq. (33). The result is

iKμAμδΨðKÞ þ BδΨðKÞ ¼ 0: ð34Þ

Since Kμ appears, as aforementioned, as combinations of
−uαKα ¼ γðiΓ − kiviÞ and ΔμνKμKν¼ðuμKμÞ2þΓ2þk2,
where k2 ¼ kiki, then the direction of ki is not relevant
once one keeps vi arbitrary. Thus, we may write
Kμ ¼ −nμnνKν þ ζμζνKν, where nμ is timelike and ζμ is
spacelike, with nμnμ ¼ −1, nμζμ ¼ 0, and ζμζ

μ ¼ 1 [for
example, it is common to choose Kμ ¼ ðK0; k; 0; 0Þ so that
nμ and ζν are ð−1; 0; 0; 0Þ and (0,1,0,0), respectively]. In
this case we define Ω ¼ nαKα and κ ¼ ζαKα such that
Kμ ¼ −Ωnμ þ κζμ [70]. Then, Eq. (34) can be written as

iΩð−nαAαÞδΨðKÞ ¼ −iκζαAαδΨðKÞ − BδΨðKÞ: ð35Þ

The general form of the covectors n and ζ is nα ¼
γnð−1; ciÞ for any ci such that 0 ≤ cici < 1 and where

γn ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cici

p
≥ 1, and ζα ¼ γζð−d̂jcj; d̂iÞ ≥ 1, where

d̂id̂i ¼ 1 for an arbitrary unitary d̂i and γζ ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðd̂iciÞ2

q
≥ 1. From the Cauchy-Schwarz inequality

ðd̂iciÞ2 ≤ jcij2 (here, jcij ¼
ffiffiffiffiffiffiffiffi
cici

p
), then one obtains that

γn ≥ γζ: ð36Þ

Stability demands that the perturbed modes Γ ¼ ΓðkiÞ are
such that ΓR ≤ 0. Now, consider the eigenvalue problem,

ðΛnα þ ζαÞAαr ¼ 0; ð37Þ

where here Λ is the eigenvalue associated with the right
eigenvector r.
Proposition II.—If Eq. (33) is causal, then the

eigenvalues Λ are real and lie in the range ½−1; 1�.
Furthermore, detðnαAαÞ ≠ 0.
Proof.—Causality demands that the roots of QðξÞ ¼

detðξαAαÞ ¼ 0 are such that (i) ξ0 ¼ ξ0ðξiÞ ∈ R and that
(ii) the curves ξ0 lie outside or over the light cone. In other
words, ξαξα ≥ 0. If one writes ξα ¼ Λnα þ ζα, where n and
ζ are real, then condition (i) means that Λ is real. On the
other hand, since n and ζ are orthonormal, then condition
(ii) means that ξαξα ¼ −Λ2 þ 1 ≥ 0, which demands that
Λ2 ≤ 1, i.e., Λ ∈ ½−1; 1�. Now, since QðξÞ ¼ 0 if and
only if ξ is spacelike or lightlike, this means that
detðnαAαÞ ≠ 0. ▪
Theorem III.—Let Eq. (37) have a set of N linearly

independent (LI) real eigenvectors fr1;…; rNg. If Eq. (33)
is causal and stable in the local rest frame O, then it is also
stable in any other Lorentz frame O0 connected to O by a
Lorentz transformation.
Proof.—The details of the proof are found in

Appendix D. However, we summarize some steps here.
Note that causality enables us to invert the matrix ð−nαAαÞ.
Then, it is possible to rewrite Eq. (35) as

iΩδΨðKÞ†ðRTÞ−1R−1δΨðKÞ
¼ −iκδΨðKÞ†ðRTÞ−1R−1ð−nαAαÞ−1ðζαAαÞδΨðKÞ
− δΨðKÞ†ðRTÞ−1R−1ð−nαAαÞ−1BδΨðKÞ; ð38Þ

where the dagger stands for the matrix transpose and
complex conjugate operations altogether,T stands formatrix
transpose operation, while R is the square matrix that
diagonalizes ð−nαAαÞ−1ðζαAαÞ, since Eq. (37) has a com-
plete set of real eigenvectors inRnwith only real eigenvalues.
Then, we can expand δΨðKÞ in terms of these eigenvectors.
In the proof, it is shown that δΨðKÞ†ðRTÞ−1R−1δΨðKÞ and
δΨðKÞ†ðRTÞ−1R−1ð−nαAαÞ−1ðζαAαÞδΨðKÞ are real for any
Lorentz frame. After somework, we demonstrate that, under
the theorem’s statements, stability reduces to the condition
that the term δΨðKÞ†ðRTÞ−1R−1ð−nαAαÞ−1BδΨðKÞmust be
greater than or equal to zero. Since this is proven to be a scalar
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under Lorentz boosts, it can be computed in any frame.
Thus, this implies that if the theory is stable in the LRF and
obeys the other conditions of the theorem, it is stable in any
other Lorentz frame.
We note that this result implies that the original system of

linearized second-order PDEs in Eq. (32) is stable under the
stated assumptions.

1. Applying the stability theorem to a toy model

To illustrate the application of the stability theorem,
consider the simple model described by the fields ϕ and ψμ

that obey the first-order dynamical linear equations:

uα∂αϕ − αΔα
ν∂αψ

ν þ λϕ ¼ 0; ð39aÞ
uα∂αψ

μ − βΔμα∂αϕ ¼ 0: ð39bÞ
We consider the case where uμ is constant [uμ ¼ γð1; viÞ,
with γ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
and v2 ¼ vivi < 1] as done in the

stability theorem of the last section. If we write Eq. (39) in
matrix form as

Aα∂αΨðXÞ þ BΨðXÞ ¼ 0; ð40Þ

where ΨðXÞ ¼ ðϕ;ψνÞ is a 5 × 1 column vector,

B ¼
�

λ 01×4

04×1 04×4

�

and

Aα ¼
�

uα −αΔα
ν

−βΔμα uαδμν

�
ð41Þ

are 5 × 5 matrices, the propagation modes ω ¼ ωðkiÞ are
obtained by means of the Fourier transform
ΨðXÞ → eiKμXμΨ̃ðKÞ, where Kμ ¼ ðω; kiÞ, and are the
roots of det½iKαAα þ B� ¼ 0. Let us write ω ¼ iΓ. Then,
stability requires that ReðΓÞ ≤ 0. In the local rest frame,
these equations are Γ ¼ 0 and Γ2 þ λΓþ αβk2 ¼ 0, where
k2 ¼ kiki. Then, stability in the LRF implies the conditions

αβ ≥ 0; ð42aÞ

λ ≥ 0: ð42bÞ

As for the boosted frame obtained by the Lorentz transform
Γ → γðΓþ ivikiÞ and k2 → Γ2 þ k2 − γ2ðΓþ ivikiÞ2, the
first root is Γ ¼ −iviki, which is stable, while the remain-
ing two roots demand (after a long but straightforward
computation)

λ ≥ 0; ð43aÞ

0 ≤ αβ ≤ 1: ð43bÞ

To verify stability via the stability theorem proven in this
paper, we must verify conditions where Eq. (39) is causal
and if the matrix ΦαAα (with Φα ¼ Λnα þ ζα, n and ζ are
the unitary timelike and spacelike covectors defined in the
text) has a complete set of eigenvectors in R5. Proposition I
guarantees that if Eq. (39) is causal, then Λ ∈ R. In order to
study causality, we compute the characteristics ξα of the
system, which reduces to the roots of detðAαξαÞ ¼
ðuαξαÞ3½ðuβξβÞ2 − αβΔμνξμξν� ¼ 0. Causal roots must be
real and obey ξμξ

μ ≥ 0, which gives the conditions
0 ≤ αβ ≤ 1. These conditions, together with stability in
the LRF, coincide with the conditions obtained by means of
the above direct calculation. However, if we did not know,
a priori, the conditions for stability in any frame (which is
the case when considering higher-order polynomials
for the modes), we would still have to obtain the eigen-
vectors of

ΦαAα ¼
�

uαΦα −αΔα
νΦα

−βΔμαΦα uαΦαδ
μ
ν

�
: ð44Þ

We can do it firstly by obtaining the eigenvalues Λ, which
may be easily obtained by changing ξα → Φα in the
computation of the characteristics. With that result one

obtains the eigenvalue Λð1Þ that is the root of uαΦð1Þ
α ¼ 0

with multiplicity 3 and the eigenvalue Λð2Þ
� , which give the

two roots of ðuβΦð2Þ
�βÞ2 − αβΔμνΦð2Þ

�μΦ
ð2Þ
�ν ¼ 0. The corre-

sponding eigenvectors are as follow.
(i) For uαΦð1Þ

α ¼ 0, the system Φð1Þ
α Aαrð1Þa ¼ 0 has as

eigenvectors the three linearly independent vectors
given by

rð1Þa ¼
�
0

wν
a

�
; ð45Þ

where fwν
ag3a¼1 is a set of three linearly independent

vectors orthogonal to the vector ΔμαΦð1Þ
α .

(ii) For ðuβΦð2Þ
�βÞ2 − αβΔμνΦð2Þ

�μΦ
ð2Þ
�ν ¼ 0, we assume

αβ ≠ 0 and obtain the two eigenvectors,

rð2Þ� ¼
�

uαΦð2Þ
�α

βΔναΦð2Þ
�α

�
: ð46Þ

[Note that in the special case αβ ¼ 0, the root uαΨα ¼ 0 is
the only root with multiplicity 5. We end up with two
distinct situations: first, if α ≠ 0 or β ≠ 0 with αβ ¼ 0, then
one obtains four LI eigenvectors as can be seen from
Eqs. (40) and (41). On the other hand, if α ¼ β ¼ 0, then
the system is already diagonal and the theorem applies
directly.] Thus, Eq. (46) completes the remaining two
linearly independent eigenvectors since Λ� are distinct
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eigenvalues, giving the five LI eigenvectors. Then, the
stability theorem states that the system is stable if λ ≥ 0 and
0 < αβ ≤ 1 or if λ ≥ 0 and α ¼ β ¼ 0. Note that there is a
slight difference from the condition obtained from the
direct calculation. To wit, it does not include the case αβ ¼
0 with α or β different from zero. The conclusion is that
stability in any frame does not necessarily imply strong
hyperbolicity. However, strong hyperbolicity plus causality
plus stability in the LRF implies stability in any boosted
frame. In other words, stability may occur outside the
conditions imposed by the theorem.

2. Applying the stability theorem to the MIS system

As another example of the usefulness of Theorem III,
let us briefly comment how it can be used to recover
the stability conditions of the MIS equations [24] in the
presence of bulk viscosity. More precisely, we take the
MIS-like equations studied in Ref. [71] where only bulk
viscous effects have been considered. In that case, it was
proven that there exist conditions such that the system of
PDEs is nonlinearly causal and symmetric hyperbolic;
hence the principal part of the equations is diagonalizable.
The linear version of such equations forms a system that is
also symmetric hyperbolic and the conditions for stability
needed for the application of Theorem III can be shown to
agree with those found in Ref. [24] for the case where only
bulk viscosity is present.

VII. CONDITIONS FOR LINEAR STABILITY

We now apply the theorem proved in the last section
to determine conditions that ensure the stability of the
hydrodynamic theory proposed in this paper. Let us first
define

D≡ ρc2sðτε þ τQÞ þ ζ þ 4η

3
þ σκε ð47Þ

and

E≡ σ½p0
εκs − c2sκε�

¼ σTρ

��∂P
∂ε

�
n

�∂ðμ=TÞ
∂n

�
ε

−
�∂P
∂n

�
ε

�∂ðμ=TÞ
∂ε

�
n

�
;

ð48Þ

where κs¼ðTρ2=nÞ½∂ðμ=TÞ=∂ε�s̄¼κεþκn, κε ¼ ðTρ2=nÞ×
½∂ðμ=TÞ=∂ε�n, κn¼ðTρÞ½∂ðμ=TÞ=∂n�ε, and p0

ε¼ð∂P=∂εÞn.
Standard thermodynamic identities imply that p0

εκs −
c2sκε > 0, then E≥0 from (A1). By assuming the
Cowling approximation [174] with gμν ¼ ημν ¼
diagð−1; 1; 1; 1Þ and δgμν ¼ 0, we find that the system
described by Eq. (13) is linearly stable if it is causal within
the strict form of the inequalities in Eq. (21) together with
the additional restriction η > 0 in (A1) and

ðτε þ τQÞjBj ≥ τετQD ≥ ρc2sτετQðτε þ τQÞ; ð49aÞ

ðτε þ τQÞjBjDþ ρτετQðτε þ τQÞE
> τετQD2 þ ρðτε þ τQÞ2C; ð49bÞ

c2sD − E ≥ ρc4sðτε þ τQÞ; ð49cÞ

ðτε þ τQÞ½jBjðc2sD − 2EÞ þ 2c2sρτετQEþ CD�
> 2c2sρðτε þ τQÞ2Cþ τετQDðc2sD − EÞ; ð49dÞ

jBjD½Cðτε þ τQÞ þ EτετQ� þ 2ρτετQðτε þ τQÞCE
> ρC2ðτε þ τQÞ2 þ τετQðCD2 þ ρτετQE2Þ
þ B2Eðτε þ τQÞ; ð49eÞ

where B and C are given by

B≡ −τε
�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�
− ρτPτQ; ð50aÞ

C≡ τPðρc2sτQ þ σκsÞ − βε

�
ζ þ 4η

3

�
; ð50bÞ

as in Eq. (A5), with jBj ¼ −B > 0 from Eq. (21c) in the
strict form.
Toprove the statement above, as beforewemay expand the

perturbations δΨ ¼ ðδε; δuμ; δnÞ in Fourier modes bymeans
of the substitution δΨðXÞ → exp½TðΓtþ kixiÞ�δΨðKÞ,
whereKμ ¼ ðiΓ; kiÞ is dimensionless due to the introduction
of background temperature T in the exponent. We begin by
proving stability in the local rest frame, where the modes are
the roots of the shear and sound polynomials,

shear channel∶ τ̄QΓ2 þ η̄k2 þ Γ ¼ 0; ð51aÞ

sound channel∶ a0Γ5þa1Γ4þa2Γ3þa3Γ2þa4Γþa5¼0;

ð51bÞ

where k2 ¼ kiki and

a0 ¼ τ̄ετ̄Q; ð52aÞ

a1 ¼ τ̄ε þ τ̄Q; ð52bÞ

a2 ¼ 1þ k2jB̄j; ð52cÞ

a3 ¼ k2D̄; ð52dÞ

a4 ¼ c2sk2 þ k4C̄; ð52eÞ

a5 ¼ k4Ē: ð52fÞ
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We defined the dimensionless quantities τ̄Q ¼ TτQ,
τ̄ε ¼ Tτε, η̄ ¼ Tη=ρ, B̄ ¼ ðT2=ρÞB, C̄ ¼ ðT2=ρÞC, D̄ ¼
ðT=ρÞD, and Ē ¼ ðT=ρÞE. From the second inequality in
Eq. (21c) in its strict form one obtains that B̄ < 0 (see the
definition of a2). The analysis of stability in the LRF goes as
follows.
Shear stability conditions.—The second-order polyno-

mial (51a) has two roots with ΓR ≤ 0 only if τQ > 0 and
η ≥ 0, which is in accordance with assumption (A1). One
can see that τQ clearly acts as a relaxation time (the same
role is played by the shear relaxation time coefficient τπ
present in MIS theory) for the shear channel, which
ensures causality. In fact, the condition τQ > 0 is clear
since the leading contribution to the nonhydrodynamic
frequency in this channel goes as 1=τQ at zero wave
number.
Sound stability conditions.—As for the sound channel in

the rest frame, by means of the Routh-Hurwitz criterion
[175], the necessary and sufficient conditions for ΓR < 0
are (i) a0, a1 > 0, (ii) a1a2 − a0a3 > 0, (iii) a3ða1a2−
a0a3Þ−a1ða1a4−a0a5Þ> 0, (iv) ða1a4−a0a5Þ½a3ða1a2−
a0a3Þ−a1ða1a4−a0a5Þ�−a5ða1a2−a0a3Þ2>0, and
(v) a5 > 0. Condition (i) is already satisfied from (A1).
Condition (ii) corresponds to the first inequality
in Eq. (49a), while (iii) is the second inequality in
Eqs. (49a) and (49b). Condition (iv) corresponds to
Eqs. (49c)–(49e). Given that E ≥ 0, thus, when E ¼ 0
and (i)–(iv) are observed, then ΓR ≤ 0, which is in
accordance with stability. Also, if k ¼ 0, then ΓR ≤ 0
(three zero roots and two negative roots) because
a0; a1; a2 > 0 from (A1). Hence, the system is linearly
stable in the local rest frame.
We remark that our system displays three types of

hydrodynamic modes and three nonhydrodynamic modes.
In the small k expansion that typically defines the linearized
hydrodynamic regime, our shear channel gives a diffusive
hydrodynamic mode with (real) frequency ωðkÞ ¼
−ik2η=ðεþ PÞ þ � � �, while in the sound channel one finds
proper sound waves with ωðkÞ ¼ �csk − ik2Γs=2þ � � �
and also a heat diffusion mode with ωðkÞ ¼ −iDk2 þ � � �,
where D ∼ σ, and Γs ¼ Γsðη; ζ; σÞ just as in Eckart theory
(see Ref. [35] for their detailed expressions). Therefore, our
theory has the same physical content of Eckart’s theory in
the hydrodynamic regime. On the other hand, the shear
channel has a nonhydrodynamic mode with frequency
given by ωðkÞ ¼ −i=τQ þ � � �, while the sound channel
has two nonhydrodynamic modes with frequency ωðkÞ ¼
−i=τε þ � � � and ωðkÞ ¼ −i=τQ þ � � � in the low k limit.
These nonhydrodynamic modes parametrize the UV behav-
ior of the system in a way that ensures causality and

stability, making sure that the theory is well defined
(though, of course, not accurate) even outside the typical
domain of validity of hydrodynamics.
The complete proof of linear stability demands an

analysis of the linearized system around an equilibrium
state at nonzero velocity. In this regard, we shall use the
results presented in Sec. VI B. We first write the system in
Eq. (13) as a first-order linear system of PDEs. Then, since
we already have proven causality and also linear stability in
the LRF, it remains to be shown that the first-order
counterpart of Eq. (13) is diagonalizable in the sense of
Eq. (D2). This is done below.
First-order system.—Following Sec. VI A, we may

define δV ¼ uα∂αδε, δVμ ¼ Δμα∂αδε, δW ¼ uα∂αδn,
δWμ ¼ Δμα∂αδW, δSμ ¼ uα∂αδuμ, δSν

λ ¼ Δα
λ∂αδuν.

Since the current is ideal, i.e., Jμ ¼ nuν, then the linearized
conservation equation ∂μδJμ ¼ δW þ nδSν

ν ¼ 0 enables us
to eliminate δW from the new system of equations. Hence,
the first-order equations become

τεuα∂αδV þ ρτQ∂αδSα þ βε∂αδVα þ βn∂αδWα

þ ρτεuα∂αδSν
ν þ δV þ ρδSν

ν ¼ 0; ð53aÞ

τPΔμα∂αδV þ ρτQuα∂αδSμ þ βεuα∂αδVμ þ βnuα∂αδWμ

þ Πμλα
ν ∂νδSν

λ þ p0
εδVμ þ p0

nδWμ þ ρδSμ ¼ 0; ð53bÞ

uα∂αδVμ − Δμα∂αδV ¼ 0; ð53cÞ

uα∂αδWμ þ nΔμα∂αδSν
ν ¼ 0; ð53dÞ

uα∂αδS
μ
λ − Δα

λ∂αδSμ ¼ 0; ð53eÞ

where p0
n ¼ ð∂P=∂nÞε and

Πμλα
ν ¼−ηðΔμλδαν þΔλαδμνÞþ

�
ρτP−ζþ2η

3

�
Δμαδλν: ð54Þ

The supplemental equations (53c)–(53e) come from the
identities ∂α∂βδε − ∂β∂αδε ¼ 0, ∂α∂βδn − ∂β∂αδn ¼ 0,
and ∂α∂βδuμ − ∂β∂αδuμ ¼ 0, respectively, when con-
tracted with uαΔβλ. In particular, in Eq. (53d) we have
substituted δW ¼ −nδSν

ν that comes from the conservation
equation of Jμ. Then, we may write Eq. (53) in matrix form,
Aα∂αδΨðXÞ þ BΨðXÞ ¼ 0, were δΨðXÞ is the 29 × 1
column matrix with entries δV; δSν; δVν; δWν; δSν

0;
δSν

1; δS
ν
2; δS

ν
3,
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Aα ¼

2
6666666666666664

τεuα ρτQδ
α
ν βεδ

α
ν βnδ

α
ν ρτεuαδ0ν ρτεuαδ1ν ρτεuαδ2ν ρτεuαδ3ν

τPΔμα ρτQuαδ
μ
ν βεuαδ

μ
ν βnuαδ

μ
ν Πμ0α

ν Πμ1α
ν Πμ2α

ν Πμ3α
ν

−Δμα 04×4 uαδμν 04×4 04×4 04×4 04×4 04×4

04×4 04×4 04×4 uαδμν nΔμαδ0ν nΔμαδ1ν nΔμαδ2ν nΔμαδ3ν

04×1 −Δα
0δ

μ
ν 04×4 04×4 uαδμν 04×4 04×4 04×4

04×1 −Δα
1δ

μ
ν 04×4 04×4 04×4 uαδμν 04×4 04×4

04×1 −Δα
2δ

μ
ν 04×4 04×4 04×4 04×4 uαδμν 04×4

04×1 −Δα
3δ

μ
ν 04×4 04×4 04×4 04×4 04×4 uαδμν

3
7777777777777775

; ð55Þ

and

B¼

2
66666666666664

1 01×4 01×4 01×4 ρδ0ν ρδ1ν ρδ1ν ρδ3ν

04×1 ρδμν p0
εδ

μ
ν p0

nδ
μ
ν 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 04×4 04×4 04×4 04×4 04×4

3
77777777777775

:

ð56Þ

Wemust now obtain the eigenvectors of Eq. (37). However,
note that Aα above is exactly the same as the matrix Aα

m in
Eq. (27) with the difference that now the coefficients of Aα

are constants. We have already proven in Sec. V that the
matrix Aα

m in Eq. (37) has real eigenvalues and a complete
set of eigenvectors in R29. The same solution is true for Aα

in Eq. (37) if we change ξα → nα (and also Aα
m → Aα) in

the results for the matter sector in Sec. V. Thus, the 29 × 29

matrix ð−nαAαÞζβAβ is diagonalizable, completing the
requirements from Theorem III. This shows that the theory
is linearly stable in any other reference frame O0 connected
via a Lorentz transformation. Therefore, one then obtains
that our set of linearized second-order PDEs is stable in any
equilibrium state.

A. Fulfilling the causality, local well posedness,
and linear stability conditions

We now give a simple example that illustrates that the set
of linear stability conditions (and consequently, causality
and local well posedness, since those are part of the linear
stability conditions) is not empty. Let us analyze the case
where τQ ¼ τε and τP ¼ c2sτε, assuming an equation of
state P ¼ PðεÞ, with c2s ¼ p0

ε ¼ 1=2. Also, assume that
ζ þ 4η=3 > 0 (their specific values are not relevant as far as
they are positive and η > 0 for the sake of the stability and
well-posedness theorems). Then, one may easily verify that

the causality conditions (21) hold in their strict form, as
required, and that the remaining conditions (49) are also
observed when ρτε ¼ 8ðζ þ 4η=3Þ, κε ¼ κs=2 ¼ 1=4, and
in the three different situations, namely, σ=ðζ þ 4η=3Þ ¼ 0,
1=4, and 1.

VIII. CONCLUSIONS AND OUTLOOK

In this work, we presented the first generalization of
relativistic Navier-Stokes theory that simultaneously sat-
isfies the following properties: the system, with or without
coupling to Einstein’s equations, is causal, strongly hyper-
bolic, and locally well posed (see the content of Theorems I
and II); equilibrium states in flat spacetime are stable
(consequence of Theorem III); all dissipative contributions
(shear viscosity, bulk viscosity, and heat conductivity) are
included; and finally the effects from nonzero baryon
number are also taken into account. All of the above hold
without any simplifying symmetry assumptions and are
mathematically rigorously established. In addition, entropy
production is non-negative in the regime of validity of this
effective theory.
This is accomplished in a natural way using a general-

ized Navier-Stokes theory containing only the original
hydrodynamic variables, which is different than other
approaches where the space of variables is extended (such
as in Müller-Israel-Stewart theory). However, it is impor-
tant to remark that the meaning of the hydrodynamic
variables in our work is different than in standard
approaches, such as Refs. [15,52]. In fact, in the context
of the formalism put forward by Bemfica et al. [32,33] and
Kovtun [34], our formulation uses a definition for the
hydrodynamic variables (i.e., our choice of hydrodynamic
frame) that is not standard as there are nonzero out-of-
equilibrium corrections to the energy density and there is
energy and heat diffusion even at zero baryon density.
Despite these necessary differences (imposed by causality
and stability), the theory still provides the simplest causal
and strongly hyperbolic generalization of Eckart’s original
theory [52], sharing the same physical properties in the
hydrodynamic regime (for instance, both theories have
the same spectrum of hydrodynamic modes). However,
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differently than Eckart’s approach, our formulation is fully
compatible with the postulates of general relativity, and its
physical content in dynamical settings can be readily
investigated using numerical relativity simulations. In fact,
we hope that the framework presented here will provide the
starting point for future systematic studies of viscous
phenomena in the presence of strong gravitational fields,
such as in neutron star mergers.
Motivated by the task of establishing stability of general

equilibrium states in flat spacetime, in this work we also
proved a new general result (see Theorem III) concerning
the stability of relativistic fluids. In fact, we found con-
ditions that causal relativistic fluids should satisfy such that
stability around the static equilibrium state directly implies
stability in any other equilibrium state at nonzero back-
ground velocity. Theorem III is very general and its regime
of applicability goes beyond BDNK theories and it could
also be relevant when investigating the stability properties
of other sets of linear equations of motion as well. In this
regard, see the discussion in Sec. II B, and see also Secs VI
B 1 and VI B 2 for further examples of the applicability of
Theorem III.
Our generalized Navier-Stokes theory can be used to

understand how matter in general relativity starts to deviate
from equilibrium. An immediate application is in the
modeling of viscous effects in neutron star mergers. Our
approach can be useful in simulations that aim at determin-
ing the fate of the hypermassive remnant formed after the
merger of neutron stars, hopefully leading to a better
quantitative understanding of their evolution and eventual
gravitational collapse toward a black hole. Differently than
any other approach in the literature, the new features
displayed by our formulation and its strongly hyperbolic
character make it a suitable candidate to be used in such
simulations. This will be especially relevant also when
considering how viscous effects may modify the gravita-
tional wave signals emitted soon after the merger [12,14].
In this regard, we remark that previous simulations per-
formed in Ref. [11] employed a formulation of relativistic
viscous hydrodynamics where the key properties studied
here (causality, strong hyperbolicity, and local well posed-
ness) are not known to hold in the nonlinear regime.
Our work is applicable in the case of baryon-rich matter,

such as that formed in neutron star mergers or in low-
energy heavy-ion collisions. The latter include the exper-
imental efforts in the beam energy scan program at RHIC
[176], the STAR fixed-target program [176], the HADES
experiment at GSI [177], the future FAIR facility at GSI
[178], and also NICA [179]. For a discussion of viscous
effects in low-energy heavy-ion collisions at nonzero
density, see Refs. [85,113,180]. High-energy heavy-ion
collisions, such as those studied at the LHC, involve a
different regime than the one considered here where the net
baryon number can be very small and, thus, that case is
better understood using a different formulation such as the

one proposed in Ref. [35], also in the context of the BDNK
formalism.
In our approach, we only take into account first-order

derivative corrections to the dynamics. Therefore, the
domain of validity of our theory is currently limited by
the size of such deviations. Hence, further work is needed
to extend our analysis, incorporating higher-order deriva-
tive corrections, to get a better understanding of what
happens as the system gets farther and farther from
equilibrium. In this context, it would be interesting to
extend our equations to include second-order corrections
and consider also, more generally, the large order behavior
of the gradient expansion in an arbitrary hydrodynamic
frame. The latter will be different than most approaches to
the gradient expansion since in BDNK the constitutive
relations contain time derivatives even in the local rest
frame of the fluid. This essential difference has important
consequences in a kinetic theory formulation; see the
original references [32,33]. The large order behavior of
the relativistic gradient series has been recently the focus of
several works [84,181–194], and it would be interesting to
extend such analyses to include the type of theories
investigated here.
There are a number of ways in which our work could be

extended or improved. First, it would be useful to obtain a
better qualitative understanding of why some hydrody-
namic frames (such as the Landau-Lifshitz frame or the
Eckart frame) are not compatible with causality and
stability in the BDNK approach, given that the situation
is different in other formulations. In fact, the Landau frame
seems to display no significant issues in the case of MIS-
like theories in the nonlinear regime at least at zero
chemical potential, as demonstrated in Ref. [72]. Perhaps
a more in-depth investigation of how BDNK emerges in
kinetic theory, going beyond the original work done in
Refs. [32,33], can be useful in this regard (see also the
recent work [148]). Also, it would be interesting to use the
BDNK approach to investigate causality and stability in
more exotic cases, such as in relativistic superfluids.
Furthermore, the inclusion of electromagnetic field effects
in the dynamics of relativistic viscous fluids can also be of
particular relevance, especially in the context of neutron
star mergers [195] and high-energy heavy-ion collisions
[196]. This problem has been recently investigated using
other formulations of viscous fluid dynamics, see for
instance Refs. [197–202], and also most recently in the
BDNK approach in Ref. [203]. Consistent modeling of
relativistic viscous fluid dynamics coupled to electromag-
netic fields can also be relevant to determine the importance
of dissipative processes in the dynamics and radiative
properties of slowly accreting black holes, as discussed
in Ref. [197].
Further work needs to be done to understand the global

in-time features of solutions of relativistic viscous fluid
dynamics. For instance, one may investigate the presence
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of shocks, which is a topic widely investigated in the
context of ideal fluids [21,145,204–206] and was done in
Ref. [94] for the MIS theory (see Sec. II B for further
discussion on shocks). The importance of hydrodynamic
shocks has been recognized both in an astrophysical setting
[197] as well as in the study of jets in the quark-gluon
plasma [207–219]. We also remark that one task that we
have not done here was the construction of initial data for
the full Einstein plus fluid system by solving the Einstein
constraint equations. We believe that standard arguments to
handle the constraints [21] will be applicable in our case.
This will be investigated in detail in a future work.
We believe our work will also be relevant to give insight

into the physics of turbulent fluids embedded in general
relativity. The fact that the equations of motion of the
viscous fluid must be hyperbolic in relativity stands in
sharp contrast to the parabolic nature of the nonrelativistic
Navier-Stokes equations, usually employed in studies of
turbulence. Recent works in Refs. [18,220] tackled the
problem of turbulence in the relativistic regime and our
formulation may be very useful in this regard, as it provides
a simple strongly hyperbolic generalization of Eckart’s
theory that is fully compatible with general relativity.
In summary, in this paperwe propose a new solution to the

question initiated byEckart in 1940 concerning themotion of
viscous fluids in relativity. Our approach is rooted in well-
known physical principles and solid mathematics, displays a
number of desired properties, and extends the state of the art
of the field in a number of ways. Potential applications of the
formalism presented here spread across a numbers of areas,
including astrophysics, nuclear physics, cosmology, and
mathematical physics. This work establishes for the first
time a common unifying framework, from heavy-ion colli-
sions to neutron stars, that can be used to discover the novel
properties displayed by ultradense baryonic matter as it
evolves in spacetime.
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APPENDIX A: PROOF OF THEOREM I

We only consider the 10 independent components of the
metric and, thus, this system of equations can be written in

terms of a 16 × 1 column vector Ψ ¼ ðε; n; uν; gμνÞ, and its
equation of motion in Eq. (17) can be expressed in matrix
form asMð∂ÞΨ ¼ N, whereN contains the B terms that do
not enter in the principal part. The matrixMð∂Þ is given by

Mð∂Þ ¼
�Mð∂Þ bð∂Þ
06×10 I10gαβ∂2

αβ

�
; ðA1Þ

where the 6 × 10 matrix bð∂Þ contains the B̃ terms and

Mð∂Þ ¼

2
664

0 uαuβ nδðαν uβÞ

ðτεuαuβþβεΔαβÞ βnΔαβ ρðτεþ τQÞuðαδβÞν
ðβεþ τPÞuðαΔβÞμ βnuðαΔβÞμ Cμαβ

ν

3
775

×∂2
αβ: ðA2Þ

The system’s characteristics are obtained by replacing
∂α → ξα and determining the roots of det½MðξÞ� ¼ 0.
The system is causal when the solutions for ξα ¼
ðξ0ðξiÞ; ξiÞ are such that condition 1 (Cond-1) ξα is real
and condition 2 (Cond-2) ξμξμ≥0 [21]. It is easy to see that
det½MðξÞ� ¼ ðξαξαÞ10 det½MðξÞ�. The roots associated with
the vanishing of the overall factor ðξαξαÞ10 ¼ 0 coming
from the gravitational sector are clearly causal. The
remaining roots come from det½MðξÞ� ¼ 0, which we will
investigate next.
We first define b≡ uαξα and vα ≡ Δαβξβ, which

gives ξα ¼ −buα þ vα and ξαξ
α ¼ −b2 þ v · v, where

v · v ¼ Δαβξαξβ. We proceed by also defining the tensor

Dμ
ν ¼ Cμαβν ξαξβ

¼
�
τPρ − ζ −

η

3

�
vμξν þ ½ρτQb2 − ηðv · vÞ�δμν ; ðA3Þ

which gives

det½AðξÞ� ¼ det

2
64

0 b2 nbξν
τεb2þβεðv ·vÞ βnðv ·vÞ ρðτεþ τQÞbvν
ðβεþ τPÞbvμ βnbvμ Dμ

ν

3
75

¼−b2½ρτQb2−ηðv ·vÞ�3
× ½Ab4þBb2ðv ·vÞþCðv ·vÞ2� ðA4aÞ

¼ −ρ4τ4QτεðuαξαÞ2
Y

a¼1;�
½ðuαξαÞ2 − caΔαβξαξβ�na ;

ðA4bÞ
where, to shorten notation in Eq. (A4a) we defined

A≡ ρτετQ; ðA5aÞ

B≡ −τε
�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�
− ρτPτQ; ðA5bÞ

C≡ τPðρc2sτQ þ σκsÞ − βε

�
ζ þ 4η

3

�
; ðA5cÞ
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and used the fact that βε þ nβn=ρ ¼ τQc2s þ σκs=ρ. In
Eq. (A4a) it becomes evident that assumption (A1) guar-
antees that vμ ≠ 0, eliminating one of the possible acausal
roots. From Eqs. (A4a)–(A4b) we defined n1 ¼ 3, n� ¼ 1,
c1 ¼ ½η=ðρτsÞ�, and c� ¼ ½ð−B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ=2A�. Note

that since ξαξα ¼ −b2 þ ðv · vÞ, the roots in Eq. (A4b) can
be cast as b2 ¼ caðv · vÞ. Then, (Cond-1) demands that
ca ∈ R together with ca ≥ 0 and (Cond-2) that ca < 1 for
causality [221], which comes from the fact that the root
b2 ¼ cav · v must obey ξμξ

μ ¼ −b2 þ v · v ¼
ð1 − caÞv · v > 0. Thus, causality is ensured if 0 ≤ ca <
1 in the matter sector. Clearly, the root b ¼ uαξα ¼ 0 is
causal. Also, the six roots related to c1 are causal when
Eq. (21a) is observed. As for the roots c�, they are real if
B2 − 4AC ≥ 0, i.e., if the first inequality in Eq. (21b) holds.
On the other hand, c� ≥ 0 is obtained whenever c− ≥ 0,
which is guaranteed if −B ≥ 0 [second inequality in
condition (21c)] together with C ≥ 0 [second inequality
of Eq. (21a)], while c� < 1 is ensured if cþ < 1, which
demands that 2Aþ B > 0 [first inequality in condition
(21c)] and Aþ Bþ C > 0 [condition (21d)]. ▪
We observe that, although we employed the harmonic

gauge to calculate the system’s characteristics, the causality
established in Theorem I does not depend on any gauge
choices. This follows from well-known properties of
Einstein’s equations [22] and the geometric invariance of
the characteristics [144]. See the end of Sec. V C for further
comments in this direction.

The analysis above and the conditions we obtained for
causality are valid in the full nonlinear regime of the theory.
However, we remark in passing that the principal part
concerning only the fluid equations would have exactly
the same structure if one were to linearize the fluid dynamic
equations about equilibrium with nonzero flow in
Minkowski spacetime. This is a generic feature of the
BDNK approach (at least, when truncated at first order),
i.e., the analysis of the system’s characteristics, and thusof its
causality properties, is formally the same in the nonlinear
regime and in the linearization about a generic equilibrium
state.This isnot, however, ageneral featureof hydrodynamic
models as it does not hold in MIS-like theories. In fact, as
discussed at length in Refs. [71,72], in MIS the thermody-
namic fluxes explicitly enter in the calculation of the
characteristics, but they are not present in the linear analysis.

APPENDIX B: PROOF OF PROPOSITION I

To prove (i) we may compute the determinant
detðξαAαÞ ¼ detðξαAα

mÞ detðξαAα
gÞðuαξαÞ16. Note that

uαξα ≠ 0 if ξ is timelike. We must then look into the
matter and gravity sector in what follows. We again define
b ¼ uαξα and vμ ¼ Δμαξα, v · v ¼ Δμνξμξν, and introduce

Ξμ
ν ¼ vλΠ

μλα
ν ξα

¼ −ηðv · vÞδμν − ηvμξν þ
�
ρτP − ζ þ 2η

3

�
vμvν ðB1Þ

to obtain

detðξαAα
mÞ ¼ det

2
6666666666666664

τεb ρτQξν βεξν βnξν ρτεbδ0ν ρτεbδ1ν ρτεbδ2ν ρτεbδ3ν

τPvμ ρτQbδ
μ
ν βεbδ

μ
ν βnbδ

μ
ν Πμ0α

ν ξα Πμ1α
ν ξα Πμ2α

ν ξα Πμ3α
ν ξα

−vμ 04×4 bδμν 04×4 04×4 04×4 04×4 04×4

04×1 04×4 04×4 bδμν nvμδ0ν nvμδ1ν nvμδ2μ nvμδ3ν

04×1 −v0δ
μ
ν 04×4 04×4 bδμν 04×4 04×4 04×4

04×1 −v1δ
μ
ν 04×4 04×4 04×4 bδμν 04×4 04×4

04×1 −v2δ
μ
ν 04×4 04×4 04×4 04×4 bδμν 04×4

04×1 −v3δ
μ
ν 04×4 04×4 04×4 04×4 04×4 bδμν

3
7777777777777775

¼ b19 det
�
τεb2 þ βεðv · vÞ b2ðρτQξν þ ρτεvνÞ − nβnðv · vÞvν
ðτP þ βεÞvμ ρτQb2δ

μ
ν þ Ξμ

ν − nβnvμvν

�

¼ b19½ρτQb2 − ηðv · vÞ�3½Ab4 þ Bb2ðv · vÞ þ Cðv · vÞ2�
¼ ρ4τ4Qτεb

19
Y

a¼1;�
½b2 − caðv · vÞ�na ; ðB2Þ

where, as we have obtained in Eqs. (A4) and (A5), and in
the text below it,

A≡ ρτετQ; ðB3aÞ

B≡ −τε
�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�
− ρτPτQ; ðB3bÞ

C≡ τPðρc2sτQ þ σκsÞ − βε

�
ζ þ 4η

3

�
; ðB3cÞ
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n1 ¼ 3, n� ¼ 1, c1 ¼ ½η=ðρτsÞ�, and c� ¼ ½ð−B�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ=2A�. It is worth mentioning that the assump-

tions of Proposition I guarantee that 0 < c1; c� < 1. Under
assumptions (A1), η > 0, and conditions (21) in the strict
form, then one obtains that detðξαAα

mÞ¼0 only if 0≤ca<1

(with the equality holding only in the case a ¼ 0); i.e., the
equation b2a − caðva · vaÞ ¼ 0 gives ξa;α such that ξa;αξαa ¼
−b2a þ va · va ¼ ð1 − caÞva · va > 0. Thus, if ξ is timelike,
then (i) is guaranteed for the matter sector as well. As for
the gravity sector, one obtains that

detðξαAα
gÞ ¼ det

2
6666664

bI10 −v0I10 −v1I10 −v2I10 −v3I10
−v0I10 bI10 010×10 010×10 010×10

−v1I10 010×10 bI10 010×10 010×10

−v2I10 010×10 010×10 bI10 010×10

−v3I10 010×10 010×10 010×10 bI10

3
7777775

¼ 1

b10
det

2
6666664

ðb2 − vνvνÞI10 010×10 010×10 010×10 010×10

−v0I10 bI10 010×10 010×10 010×10

−v1I10 010×10 bI10 010×10 010×10

−v2I10 010×10 010×10 bI10 010×10

−v3I10 010×10 010×10 010×10 bI10

3
7777775

¼ ðuαξαÞ30ðξαξαÞ10: ðB4Þ

Again, note that if ξ is timelike, then detðξαAα
gÞ ≠ 0. This

completes the proof of (i).
As for (ii), let us define ϕα ¼ ζα þ Λξα and make the

changes ξ → ϕ in the determinant calculations above.
Then, the eigenvalues Λ are obtained from the roots
of detðϕαAαÞ ¼ detðϕαAα

mÞ detðϕαAα
gÞðuαϕαÞ16 ¼ 0. Note

that the general form of the equations implies that the roots
ϕα ¼ −uαuβϕβ þ Δβ

αϕβ obey

ðuαϕαÞ2 − βΔαβϕαϕβ ¼ 0; ðB5Þ

where, from causality, in any of the above cases we have
that 0 ≤ β ≤ 1. Then, for each β, the eigenvalues Λ are

Λ ¼ βðΔαβξαζβÞ − ðuαξαÞðuαζαÞ �
ffiffiffiffi
Z

p

ðuαξαÞ2 − βΔαβξαξβ
; ðB6Þ

where, since ξαξ
α < 0, then ðuαξαÞ2 − βΔαβξαξβ > 0

because 0 ≤ β ≤ 1 and

Z ¼ βfΔαβζαζβðuμξμÞ2 þ ΔαβξαξβðuμζμÞ2 − 2ðuαξαÞðuβζβÞΔμνξμζν − β½ðΔαβζαζβÞðΔμνξμξνÞ − ðΔαβξαζβÞ2�g
> β½ΔαβζαζβðuμξμÞ2 þ ΔαβξαξβðuμζμÞ2 − 2ðuαξαÞðuβζβÞΔμνξμζν − ðΔαβζαζβÞðΔμνξμξνÞ þ ðΔαβξαζβÞ2�
¼ βfð−ξαξαÞðζβζβÞ þ ½ðuαξαÞðuβζβÞ − Δαβξαζβ�2g > 0: ðB7Þ

In the operations above we used the fact that 0 ≤ β ≤ 1,
ðΔαβξαζβÞ2 ≤ ðΔαβξαξβÞðΔμνζμζνÞ from the Cauchy-
Schwarz inequality and that ξ is timelike and ζ spacelike.
Thus, causality guarantees reality of the eigenvalues.
Now we turn to the problem of completeness of the set of

eigenvectors. We begin by counting the linearly indepen-
dent eigenvectors of ϕðmÞ

a;αAα
m, where ϕðmÞ

a;α ¼ ζα þ ΛðmÞ
a ξα

and ΛðmÞ
a are the eigenvalues of the matter sector and are

obtained by means of Eq. (B6) in the cases β ¼ c0 ¼ 0
when a ¼ 0 and β ¼ ca when a ¼ 1;�. Let us define an
arbitrary vector,

rðmÞ ¼

2
66666666666664

F

Gν

Hμ

Iμ

Jν0
Jν1
Jν2
Jν3

3
77777777777775

: ðB8Þ
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Then, for each of the eigenvaluesΛðmÞ
a , a ¼ 0; 1;�, wemust

verify howmanyof the 29variables in thevector (B8) are free

parameters under the equation ϕðmÞ
a;αAα

mr
ðmÞ
a ¼ 0. In fact, this

is the dimension of the null space of the matrix ϕðmÞ
a;αAα

m and
corresponds to the number of linearly independent eigen-

vectors of ΛðmÞ
a . The eigenvectors are the following.

(i) ΛðmÞ
0 : This root has multiplicity 19. The eigenvector

that obeys ϕðmÞ
0;αA

αrðmÞ
0 ¼ 0 is

rðmÞ
0 ¼

2
66666666666664

0

04×1

Hμ

Iμ

Jν0
Jν1
Jν2
Jν3

3
77777777777775

; ðB9Þ

where only 19 out of the 24 components Hμ; Iμ; Jνλ
are free variables because of the 1þ 1þ 3 con-

straints βεϕ
ðmÞ
0;ν H

ν þ βnϕ
ðmÞ
0;ν I

ν ¼ 0, Jλλ ¼ 0, and

ΔμλϕðmÞ
0;ν J

ν
λ þ ΔλβϕðmÞ

0;β J
μ
λ ¼ 0 (note that the last

four equations are not all independent since the
contraction with uμ is identically zero, resulting in
three independent constraints). Thus, the multiplic-
ity of Λ0 equals the number of LI eigenvectors,
i.e., 19.

(ii) ΛðmÞ�
1 : In this case each of the two eigenvalues have

multiplicity 3 since n1 ¼ 3 in Eq. (B2) (note that
since we assumed here that η > 0, then c1 ≠ 0 and,
thus, c1 ≠ c0 and the eigenvalues are different from
the case c0 ¼ 0). We may perform some elementary

row operations over the linear system ϕðmÞ
1;αA

αrðmÞ
1 ¼

0 to obtain, by imposing b2 − c1ðv · vÞ ¼ 0 (remem-
ber that b ¼ uαϕα and vα ¼ Δαβϕβ after the change
ξ → ϕ),

2
6666666666666664

τεb2 þ βεðv · vÞ bρτQϕν þ bρτεvν −
nβnðv·vÞ

b vν 01×4 01×4 01×4 01×4 01×4 01×4

04×1 Kνvμ 04×4 04×4 04×4 04×4 04×4 04×4

−vμ 04×4 bδμν 04×4 04×4 04×4 04×4 04×4

04×1
nvμvν
b 04×4 bδμν 04×4 04×4 04×4 04×4

04×1 −v0δ
μ
ν 04×4 04×4 bδμν 04×4 04×4 04×4

04×1 −v1δ
μ
ν 04×4 04×4 04×4 bδμν 04×4 04×4

04×1 −v2δ
μ
ν 04×4 04×4 04×4 04×4 bδμν 04×4

04×1 −v3δ
μ
ν 04×4 04×4 04×4 04×4 04×4 bδμν

3
7777777777777775

rðmÞ
1 ¼ 0; ðB10Þ

where

Kν¼
�
−ηξνþ

�
ρτP−ζþ2η

3
−nβn

�
vν

�

× ½τεb2þβεðv ·vÞ�− ðτPþβεÞ½b2ρτQξν
þb2ρτεvν−nβnðv ·vÞvν�: ðB11Þ

This enables us to find the eigenvectors,

�rðmÞ
1 ¼

2
66666666666664

F�
Gν

�
Hν

�
Iν�
�Jν0
�Jν1
�Jν2
�Jν3

3
77777777777775

; ðB12Þ

where, from the 29þ 29 ¼ 58 components of the

above eigenvectors (29 for ΛðmÞþ
1 and 29 ΛðmÞ−

1

cases), they are subjected to the following 26þ 26
constraints: 1þ 1 ¼ 2 constraints,

½τεb2� þ βεðv� · v�Þ�F� þ b�ρτQ
�
ϕðmÞ
1;νG

ν

þ b�ρτεv�ν Gν −
nβnðv� · v�Þ

b�
v�ν Gν

� ¼ 0;

1þ 1 ¼ 2 constraints K�
ν Gν

� ¼ 0, 4þ 4 ¼ 8 con-
straints b�H

μ
� ¼ vμ�F�, 4þ 4 ¼ 8 constraints

nvμ�v
�
ν Gν þ b2�I

μ
� ¼ 0, and the 16þ 16 ¼ 32 con-

straints b��Jμ�λ ¼ v�λ G
μ
�, where

�
ϕðmÞ
1;α ¼ �ΛðmÞ

1 ξα þ
ζα and b� and vα� are defined in terms of �

ϕðmÞ
1;ν .

Hence, there is a total of 3þ 3 ¼ 6 free parameters.
Once again, the degeneracy equals the number of LI
eigenvectors.
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(iii) ðΛ�Þ�: Since there is no degeneracy in these four
last eigenvalues and they are distinct from the others
because c� ≠ 0 in the strict form of the inequalities
in Eq. (21) and different among them, then one has
four LI eigenvectors.

Thus, the system has 19þ 6þ 4 ¼ 29 LI eigenvectors.
Therefore, there is a complete set in R29, namely,

frðmÞ
b g29b¼1 such that ϕðmÞ

a Aα
mr

ðmÞ
b ¼ 0. Hence, we can use

the 29 linearly independent set SðmÞ ¼ fRðmÞ
b g29b¼1 to verify

that

RðmÞ
b ¼

�
rðmÞ
b

066×1

�
ðB13Þ

obeys ðζα þ ΛðmÞ
a ξαÞAαRðmÞ

b ¼ 0.
Now, before we discuss the gravity sector fFA;F δ

Ag, let
us look at the sector containing the original fields ε, n, uν,
and gμν. In this case, let us define

RðdÞ ¼
�
079×1

rðdÞ

�
; ðB14Þ

where rðdÞ is a 16 × 1 column vector. Then, ðζα þ
ΛðdÞ
a ξαÞAαRðdÞ

a ¼ 0 reduces to the eigenvalue problem

uαϕðdÞ
α I16rðdÞ ¼ 0 whose eigenvalues are uαϕðdÞ

α ¼ 0, i.e.,
ΛðdÞ ¼ ζαuα=ξαuα. Thus, the eigenvectors may be any basis

ofR16. Let frðdÞa g16a¼1 be a basis ofR
16. Then, the set SðdÞ ¼

fRðdÞ
a g16a¼1 is a linearly independent set of 16 eigenvectors

of ϕðdÞ
α Aα.

To finalize the eigenvector counting we have to analyze
the sector containing FA and F δ

A. In this case, let us define

RðgÞ ¼

2
64

w

rðgÞ

016×1

3
75; ðB15Þ

where w is some 29 × 1 columns vector while rðgÞ is a
50 × 1 columns vector. The eigenvalues of this sector are in

Eq. (B4) and are given by ΛðgÞ
0 ¼ uαζα=uβξβ, coming from

uαϕðgÞ
0;α ¼ 0 (here ϕðgÞ

a;α ¼ ζα þ ΛðgÞ
a ξα) with multiplicity 30

and corresponding to β ¼ 0, and the two roots �ΛðgÞ
1 with

multiplicity 10 each coming from �
ϕðgÞ
1;α

�
ϕðgÞα
1 ¼

−½uα�ϕðgÞ
1;α�2 þ Δαβ�ϕðgÞ

1;α
�
ϕðgÞ
1;β ¼ 0, which corresponds to

β ¼ 1, i.e., gravitational waves moving at the speed of

light. Then, the eigenvalue problem ϕðgÞ
a;αAαRðgÞ

a ¼ 0
reduces to the two equations:

ϕðgÞ
a;αAα

mwa ¼ LαrðgÞa ; ðB16aÞ

ϕðgÞ
a;αAα

gr
ðgÞ
a ¼ 0: ðB16bÞ

For the eigenvalues �ΛðgÞ
1 , one obtains that det½�ϕðgÞ

1;αA
α
m� ≠

0 because the root β ¼ 1 has been eliminated from the
matter sector (remember that ca < 1). Thus, there exists a

solution of Eq. (B16a) for each rðgÞa in Eq. (B16b). One

needs to count the number of linearly independent rðgÞ1 for

ΛðgÞ
1 , i.e., the number of vectors in the basis of the kernel of

ϕðgÞ
1;αA

α
g . In this case, after some elementary row operations

[look at the second equality in Eq. (B4) after setting
b2 ¼ v · v] one obtains that

�
ϕðgÞ
1;αA

α
g ∼

2
6666666664

010×10 010×10 010×10 010×10 010×10

−Δ0α�ϕðgÞ
1;αI10 ðuα�ϕðgÞ

1;αÞI10 010×10 010×10 010×10

−Δ1α�ϕðgÞ
1;αI10 010×10 ðuα�ϕðgÞ

1;αÞI10 010×10 010×10

−Δ2α�ϕðgÞ
1;αI10 010×10 010×10 ðuα�ϕðgÞ

1;αÞI10 010×10

−Δ3α�ϕðgÞ
1;αI10 010×10 010×10 010×10 ðuα�ϕðgÞ

1;αÞI10

3
7777777775
; ðB17Þ

which has 40 pivots and 10 independent variables (corre-
sponding to the variables associated to the first 10 col-
umns). Thus, there are 10 linearly independent vectors for

each eigenvalue �ΛðgÞ
1 ; i.e., there is a set f−rðgÞ1;b;

þrðgÞ1;bg10b¼1 of

20 linearly independent vectors with corresponding w�
1;b ¼

½�ϕðgÞ
1;αA

α
m�−1La�rðgÞ1;b coming from Eq. (B16a) such that

SðgÞ
1 ¼ fþRðgÞ

1;b;
−RðgÞ

1;bg10b¼1, where

�RðgÞ
1;b ¼

2
64

w�
1;b

�rðgÞ1;b

016×1

3
75

is a linearly independent set of 20 eigenvectors

of ϕðgÞ
1;αA

α.
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As for the eigenvalue ΛðgÞ
0 , note that in this case

det½ϕðgÞ
0;αA

α
m� ¼ 0 because β ¼ c0 ¼ 0 is also a root of this

equation. Thus, for every solution rðgÞa in Eq. (B16b),
Eq. (B16a) can be either undetermined or have infinite
solutions. However, for any two different solutions, say, w1

a

and w2
a for one rðgÞa , the difference between RðgÞ1

a − RðgÞ2
a

corresponds to a vector in the space spanned by SðmÞ, that
lies in the kernel of ϕðgÞ

0;αA
α
m. Therefore, since we are

counting the number of linearly independent eigenvectors,
we must choose one particular solution wa, if it exists, for

each rðgÞa . We begin by solving Eq. (B16b). Let flμ1 ¼
uμ; lμ2; l

μ
3g be a set of linearly independent vectors that are

orthogonal to ϕðgÞ
0;α ¼ ζα þ ΛðgÞ

0 ξα, to wit, lαcϕ
ðgÞ
0;α ¼ 0 and

feag10a¼1 be any basis of R10. Then, one may verify that the
30 linearly independent vectors

rðgÞ0;ac ¼

2
6666664

010×1

l0cea
l1cea
l2cea
l3cea

3
7777775

ðB18Þ

satisfy ϕðgÞ
0;αA

α
gr

ðgÞ
0;ac ¼ 0. Now we must solve Eq. (B16a),

where

ϕðgÞ
0;αL

αrðgÞ0;ac ¼

2
666666664

013×1

ϕðgÞ
0;αY

μAα
0δ lδcðeaÞA

ϕðgÞ
0;αY

μAα
1δ lδcðeaÞA

ϕðgÞ
0;αY

μAα
2δ lδcðeaÞA

ϕðgÞ
0;αY

μAα
3δ lδcðeaÞA

3
777777775
¼Ka

2
666666664

013×1

ϕðgÞ
0;0l

μ
c

ϕðgÞ
0;1l

μ
c

ϕðgÞ
0;2l

μ
c

ϕðgÞ
0;3l

μ
c

3
777777775
; ðB19Þ

where we defined

Ka ≡ 1

2

�X
σ;β
σ≤β

ð2 − δσβÞuðσuβÞðeaÞσβ
�
:

Let us look for the particular solution

wac ¼

2
6664

0

−βεyνac
ρτQyνac
020×1

3
7775: ðB20Þ

Note that

ϕðgÞ
0;αA

α
mwac¼

2
666666664

013×1

βεϕ
ðgÞ
0;0y

μ
ac

βεϕ
ðgÞ
0;1y

μ
ac

βεϕ
ðgÞ
0;2y

μ
ac

βεϕ
ðgÞ
0;3y

μ
ac

3
777777775
;

ðB21Þ

and then, by inserting Eqs. (B19) and (B21) into
Eq. (B16a), one finds that

βεϕ
ðgÞ
0;νy

μ
ac ¼ Kaϕ

ðgÞ
0;νl

μ
c: ðB22Þ

This leads to the solution yμac ¼ Kal
μ
c=βε and, thus,

wac ¼

2
6664

0

−Kalνc
ρτQ
βε

Kalνc

020×1

3
7775: ðB23Þ

As a consequence, the set SðgÞ
0 ¼ fRðgÞ

1;1; R
ðgÞ
1;2; R

ðgÞ
1;3;…;

RðgÞ
10;1; R

ðgÞ
10;2; R

ðgÞ
10;3g with

RðgÞ
ac ¼

2
64

wac

rðgÞ0;ac

016×1

3
75

is a linearly independent set of 30 eigenvectors of ϕðgÞ
0;αA

α.

Thus, S ¼ SðmÞ ∪ SðdÞ ∪ SðgÞ
1 ∪ SðgÞ

0 contains a complete
set of eigenvectors R of ϕαAαR ¼ 0 in R95. This completes
the proof. ▪
We remark that the assumption that the inequalities hold

in strict form is technical. If equality is allowed, then the
multiplicity of the eigenvalues might change. This is
because with equality one can have ca ¼ 0 for a ¼ 1 or
� and thus the characteristics defined by b2 − caðv · vÞ ¼ 0
can degenerate into the characteristics b ¼ 0. Since the
latter is already present in the system, the multiplicity of the
characteristics would change. This does not mean that the
system would not be diagonalizable. Nor does it imply that
local well posedness, established in the next section, would
fail [222]. However, a different proof would be needed to
show diagonalization in the case ca ¼ 0 in the cases a ¼ 1
or �. We believe that treating this very special case here
would be a distraction from the main points of the paper.
We also recall that already in the case of an ideal fluid, a
different approach to local well posedness has to be
employed when the characteristics degenerate [223].
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APPENDIX C: PROOF OF THEOREM II

As usual in studies of the initial-value problem for
Einstein’s equations [22], we embed Σ into R × Σ and
work in harmonic coordinates in the neighborhood of a
point. Observe that we already know the system to be
causal under our assumptions, thus localization arguments
are allowed.
The equations to be studied read

uαuβ∂2
αβnþnuαδβν∂2

αβu
νþ B̃1ðn;u;gÞ∂2g¼B1ð∂n;∂u;∂gÞ;

ðC1aÞ

uνuαuβ∂α∂βuν þ B̃2ðn; ε; u; gÞ∂2g ¼ B2ð∂n; ∂ε; ∂u; ∂gÞ;
ðC1bÞ

βnðuμΔαβ þ ΔμðαuβÞÞ∂α∂βnþ Eμαβ∂α∂βεþ C̄μαβν ∂α∂βuν

þ B̃μ
3ðn; ε; u; gÞ∂2g ¼ Bμ

3ð∂n; ∂ε; ∂u; ∂gÞ; ðC1cÞ

gαβ∂α∂βgμν ¼ B4μνð∂n; ∂ε; ∂u; ∂gÞ; ðC1dÞ

where

C̄μαβν ¼
�
τPρ − ζ −

η

3

�
ΔμðαδβÞν − ηΔαβδμν

þ ρðτε þ τQÞuμΔðα
ν uβÞ þ τQρuαuβδ

μ
ν ; ðC2aÞ

Eμαβ ¼ uμðβεΔαβ þ τεuαuβÞ þ ðβε þ τPÞΔμðαuβÞ; ðC2bÞ

and the notation for the B̃’s and B’s follow the same
construction as in Sec. IV.
We can write Eq. (C1) in matrix form as

Mð∂ÞΨ ¼ Nð∂ΨÞ; ðC3Þ

where Ψ ¼ ðε; n; uν; gμνÞT is a 16 × 1 column vector (we
count only the 10 independent gμν),Bð∂ΨÞ is also a 16 × 1

column vector containing the N’s, i.e., the lower-order
terms in derivatives of each equation, and

Mð∂Þ ¼
�
Mð∂Þ bð∂Þ
010×6 gαβ∂α∂βI10

�
: ðC4Þ

The 6 × 10 matrix bð∂Þ contains the terms B̃∂2g, while

Mð∂Þ¼
2
64

0 uαuβ nδðαν uβÞ

0 0 uνuαuβ

Eμαβ βnðuμΔαβþΔμðαuβÞÞ C̄μαβν

3
75∂2

αβ: ðC5Þ

Let us compute the characteristic determinant of the system
and its roots, i.e., det½MðξÞ� ¼ det½MðξÞ�ðξαξαÞ10 ¼ 0,
where the substitution ∂ → ξ takes place. The pure gravity

sector has the roots ξαξα ¼ 0. As for the matter sector, by
again defining b ¼ uαξα, vμ ¼ Δμνξν, v · v ¼ vμvμ, and

C̃μν ¼ C̄μαβν ξαξβ

¼ ½τQρb2 − ηðv · vÞ�δμν þ
�
τPρ − ζ −

η

3

�
vμξν

þ ρðτε þ τQÞbuμvν; ðC6aÞ

Dμ
ν ¼

�
τPρ − ζ −

η

3
− nβn

�
vμξν þ ½τQρb2 − ηðv · vÞ�δμν ;

ðC6bÞ

Ẽμ ¼ Eμαβξαξβ

¼ ½βεðv · vÞ þ τεb2�uμ þ ðβε þ τPÞbvμ; ðC6cÞ

where Dμ
ν is the same as the one defined in Eq. (A3), we

obtain that (by carrying out some elementary row operations)

det½MðξÞ�¼det

2
64

0 b2 nbξν
0 0 b2uν
Ẽμ βn½uμðv ·vÞþbvμ� C̃μν

3
75

¼ b3

τQρb2−ηðv ·vÞ

×det

2
64

0 b nξν
τεb2þβεðv ·vÞ βnðv ·vÞ ρðτεþτQÞbvν
ðβεþτþPÞbvμ βnbvμ Dμ

ν

3
75:

ðC7Þ

The last determinant is the same as the one obtained in
Eq. (A4) and the result turns out to be

det½MðξÞ� ¼ −b4½ρτQb2 − ηðv · vÞ�2
× ½Ab4 þ Bb2ðv · vÞ þ Cðv · vÞ2�

¼ −ρ4τ4QτεðuαξαÞ4
Y

a¼1;�
½ðuαξαÞ2 − caΔαβξαξβ�ña ;

ðC8Þ

where, as in Eqs. (A5),

A≡ ρτετQ; ðC9aÞ

B≡ −τε
�
ρc2sτQ þ ζ þ 4η

3
þ σκs

�
− ρτPτQ; ðC9bÞ

C≡ τPðρc2sτQ þ σκsÞ − βε

�
ζ þ 4η

3

�
; ðC9cÞ

while c1 ¼ ½η=ðρτsÞ� and c� ¼ ½ð−B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 − 4AC

p
Þ=2A�,

while ñ1 ¼ 2 and ñ� ¼ 1. Note that the characteristics are
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still the same as in Sec. IV, as expected, although the
multiplicity of the roots changed (and there was no reason
for the multiplicities to be the same). We conclude that the
characteristic determinant of the system is a product of strictly
hyperbolic polynomials.Weverify at once that the system is a
Leray-Ohya system [21,224] for which the results of
Ref. [225] (see also Ref. [105]) apply. Thus, if the initial
data are quasianalytic (see Ref. [75]), we obtain quasianalytic
solutions.
Denote the initial dataset in the theorem by D and let Dl

be a sequence of quasianalytic initial data converging to D
in HN (see Ref. [27] for the definition of HN). Let Ψl be
solutions corresponding to Dl (which exist by the fore-
going). In order to finish the proof of the theorem, it
suffices to show that Ψl has a limit in HN . The limit will
then be a solution with the desired properties because we
can pass to the limit in the equations since N ≥ 5.
According to the arguments given in Sec. 16.2 of

Ref. [146] or in Refs. [107,108], the diagonalization
obtained in Sec. V B implies that Ψ defined in Eq. (24)
admits a uniform bound in HN−1, and uniform difference
bounds in HN−2 also holds. We apply these bounds to the
vector Ψl corresponding to Ψl. We see at once that the
uniformHN−1 bounds forΨl imply uniformHN bounds for
Ψl, and the difference bounds imply that Ψl is a Cauchy
sequence in HN−3, thus converging in this space. But low-
norm convergence combined with high-norm boundedness
implies that the limit is in fact in HN [226]. ▪
We observe that a similar local well-posedness result

holds for the fluid equations in a fixed background.
We recall that a standard tensorial argument [22]

guarantees that the solution established in Theorem II is
intrinsically defined; i.e., given the data, which are defined
independently of coordinates or gauge choices, there exists
a spacetime where Einstein’s equations are satisfied, and
this spacetime is defined without any reference to coor-
dinates or gauge choices—even if in the process of proving
that this spacetime exists one has to work in a specific
gauge and coordinate system. Therefore, even though we
used the harmonic gauge in the proof, the existence of the
solution is guaranteed for other choices as well. This logic
is similar to showing that a map from a finite-dimensional
vector space into itself is invertible: one can choose a basis,
write the matrix of the linear transformation with respect to
that basis, and compute its determinant. The map is
invertible if and only if the determinant is nonzero, and
this conclusion (the invertibility or not of the linear map) is
independent of any basis choice—even if to show that the
map is invertible we picked a basis and computed the
determinant with respect to that basis.
We note, however, the following subtlety which is very

relevant for numerical simulations. The fact that a unique
solution is guaranteed to exist for given initial data, and that
this solution is well defined regardless of gauge choices,
does not imply that such a solution can always be

reconstructed from an arbitrary gauge. In other words,
supposewewrite the equations in a different gauge. Ifwe can
numerically integrate them, wewill obtain the solution found
in Theorem II written on that gauge (modulo numerical
accuracy). However, it is possible that the gauge we chose is
not adequate to solve the equations numerically, so that our
numerical simulation will not produce a solution. This does
not mean, of course, that solutions do not exist; it simply
means that the guaranteed-to-exist solution given by
Theorem II cannot be accessed from that specific gauge.
To use again our analogy with determinants, suppose we
computed the determinant on a basis b1 and found it to be
nonzero, but now we are interested in computing the
determinant numerically using another basis b2.
Depending on the basis b2 and the numerical algorithm
we use, this might not be possible, which, of course, does not
mean that the determinant is zero or ill defined.
Thus, the practical matter of solving the equations

numerically is not settled by an abstract existence and
uniqueness result as Theorem II. Such theorems are
naturally important as they provide the foundations on
which numerical investigations can be built; i.e., it makes
sense to look for solutions numerically because solutions
do exist. But these theorems do not, in general, point to how
to recover solutions numerically. That is why there is a
great deal of work dedicated to writing Einstein’s equations
in different forms and special gauges, even if basic
existence results for Einstein’s equations coupled to most
matter models are known, as reviewed in Refs. [2,29].

APPENDIX D: PROOF OF THEOREM III

From causality one obtains that detðnαAαÞ ≠ 0 as far as n
is timelike. Thus, we can rewrite Eq. (35) as

iΩδΨðKÞ ¼ −iκð−nαAαÞ−1ζβAβδΨðKÞ
− ð−nαAαÞ−1BδΨðKÞ: ðD1Þ

Since the eigenvalue problem (37) contains N linearly
independent vectors ra, one may write Eq. (37) as

ð−nαAαÞ−1ζβAβra ¼ Λara ðD2Þ

and define the N × N invertible matrix R ¼ ½r1 � � � rN �
whose columns are the eigenvectors r1;…; rn and the
N × N matrix

L≡ R−1 ¼

2
64
l1

..

.

lN

3
75;

where the rows la are the left eigenvectors of ð−nαAαÞζβAβ

which, consequently, obey larb ¼ δab (because RL ¼ IN).
Then, we can write
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δΨðKÞ ¼ RLδΨðKÞ ¼
X
a

caðKÞra ¼ Rc; ðD3Þ

where caðKÞ ¼ laδΨðKÞ is a c-number and c is the N × 1
matrix

c ¼ LδΨðKÞ ¼

2
664
c1ðKÞ

..

.

cNðKÞ

3
775:

Therefore, Eq. (D1) becomes

iΩRc ¼ −iκRDc − ð−nαAαÞ−1BRc; ðD4Þ

where D is the N × N real diagonal matrix D ¼
diagðΛ1;…;ΛNÞ and, thus, ð−nαAαÞ−1ζβAβR ¼ RD. By
multiplying Eq. (D4) by c†R−1 from the left one obtains that

iΩjcj2 ¼ −iκc†Dc − c†R−1ð−nαAαÞ−1BRc: ðD5Þ

Since D is real and diagonal (which gives c†Dc ∈ R),
Ω ¼ γnð−iΓþ cikiÞ, and κ ¼ γζð−id̂jciΓþ d̂jkjÞ, then

ΓRc†ðγnIN þ γζd̂
jcjDÞc ¼ −Re½c†R−1ðnαAαÞ−1BRc�: ðD6Þ

On the other hand, note that γnIN þ γζd̂
jcjD is diagonal

with elements

ðγnIN þ γζd̂
jcjDÞaa ¼ γn þ γζd̂

jcjΛa > 0 ðD7Þ

because jd̂jcjj ≤ jcij < 1, Λ ∈ ½−1; 1�, and γn ≥ γζ from

Eq. (36). Hence, γnIN þ γζd̂
jcjD is a positive Hermitian

matrix and c†ðγnIN þ γζd̂
jcjDÞc > 0. The consequence is

that ΓR ≤ 0 if and only if

Re½c†R−1ðnαAαÞ−1BRc� ≥ 0: ðD8Þ

Now, letO be the LRF andO0 some other boosted frame.
The connection between the two frames is given by the
Lorentz transform t0 ¼ γðt − vixiÞ, x0ik ¼ γðxik − vitÞ, and
x0i⊥ ¼ xi⊥, where k and ⊥ stand for the components parallel
and perpendicular to vi, respectively. This can be com-
pactly written as X0μ ¼ Λμ

νXν. Thus, one obtains that K0μ ¼
Λμ
νKν and δΨ0ðK0Þ ¼ MδΨðKÞ from the structure of

Eq. (33) (where M is an N × N invertible matrix), leading
to A0μ ¼ Λμ

νMAμM−1 and B0 ¼ MBM−1. In particular,
ζαAα ¼ M−1ζ0αA0αM and nαAα ¼ M−1ðn0αA0αÞM. From
Eq. (37), these relations give R0 ¼ MR, with the same
eigenvalue Λ in both frames. Then, since δΨðKÞ ¼ Rc and
δΨ0ðK0Þ ¼ R0c0 ¼ MRc, one concludes that c ¼ c0, i.e.,
c0aðK0Þ ¼ caðKÞ. Therefore, one arrives at the following
identity:

c0†R0−1ð−n0αA0αÞ−1B0R0c0 ¼ c†R−1ð−nαAαÞ−1BRc: ðD9Þ

However, if the system is stable in the LRF, then Eq. (D8)
holds and, from Eq. (D9), one automatically obtains that
Γ0
R ≤ 0, proving that the system is also stable in any other

frame O0 obtained via a Lorentz transformation. ▪
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The Relativistic Euler Equations:
Remarkable Null Structures and Regularity
Properties

Marcelo M. Disconzi and Jared Speck

Abstract. We derive a new formulation of the relativistic Euler equa-
tions that exhibits remarkable properties. This new formulation consists
of a coupled system of geometric wave, transport, and transport-div-curl
equations, sourced by nonlinearities that are null forms relative to the
acoustical metric. Our new formulation is well-suited for various appli-
cations, in particular, for the study of stable shock formation, as it is
surveyed in the paper. Moreover, using the new formulation presented
here, we establish a local well-posedness result showing that the vorticity
and the entropy of the fluid are one degree more differentiable compared
to the regularity guaranteed by standard estimates (assuming that the
initial data enjoy the extra differentiability). This gain in regularity is
essential for the study of shock formation without symmetry assump-
tions. Our results hold for an arbitrary equation of state, not necessarily
of barotropic type.
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1. Introduction

The relativistic Euler equations are the most well-studied PDE system in rel-
ativistic fluid mechanics. In particular, they play a prominent role in cosmol-
ogy, where they are often used to model the evolution of the average matter-
energy content of the universe; see, for example, Weinberg’s well-known mono-
graph [40] for an account of the role that the relativistic Euler equations play
in the standard model of cosmology. The equations are also widely used in
astrophysics and high-energy nuclear physics, as is described, for example,
in [28]. Our main result in this article is our derivation of a new formulation
of the relativistic Euler equations that reveals remarkable new regularity and
null structures that are not visible relative standard order formulations. The
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new formulation is available for an arbitrary equation of state, not necessar-
ily of barotropic1 type. Below we will describe potential applications that we
anticipate will be the subject of future works. We mention already that our
new formulation of the equations provides a viable framework for the rigorous
mathematical study of stable shock formation without symmetry assumptions
in solutions to the relativistic Euler equations; for reasons to be explained,
standard first-order formulations are not adequate for tracking the behavior of
solutions (without symmetry assumptions) all the way to the formation of a
shock or for extending the solution (uniquely, in a weak sense tied to suitable
selection criteria) past the first singularity.

We derive the new formulation by differentiating a standard first-order
formulation with various geometric differential operators and observing re-
markable cancellations.2 The calculations are rather involved and make up the
bulk of the article. We have carefully divided them into manageable pieces; see
Sects. 4–8. Readers can jump ahead to Theorem 1.2 for a rough statement of
the equations and Theorem 3.1 for the precise version.

As we alluded to above, the relativistic Euler equations are typically
formulated as a first-order quasilinear hyperbolic PDE system. In our new for-
mulation, the equations take the form of a system of covariant wave equations
coupled to transport equations and to two transport-div-curl systems. The new
formulation is well suited for various applications in ways that first-order for-
mulations are not. In particular, the equations of Theorem 3.1 can be used to
prove that the vorticity and entropy are one degree more differentiable than one
might naively expect (assuming that the gain in differentiability is present in
the initial data). This gain in differentiability is crucial for the rigorous math-
ematical study of some fundamental phenomena that occur in fluid dynamics.
In particular, this gain, as well as other structural aspects of the new formula-
tion, is essential for the study of shock waves (without symmetry assumptions)
in relativistic fluid mechanics; see Sect. 1.2 for further discussion. Although the
gain in differentiability for the vorticity had previously been observed relative
to Lagrangian coordinates [13,15], Lagrangian coordinates are inadequate, for
example, for the study of the formation of shock singularities because they are
not adapted to the acoustic characteristics, whose intersection corresponds to
a shock. Hence, it is of fundamental importance that our new formulation al-
lows one to prove the gain in differentiability relative to arbitrary vectorfield
differential operators (with suitably regular coefficients). In this vein, we also
mention the works [9–11] on the non-relativistic compressible Euler equations,
in which a gain in differentiability for the vorticity was shown relative to La-
grangian coordinates, and the first author’s joint work [12], in which elliptic

1Barotropic equations of state are such that the pressure is a function of the proper energy
density ρ alone.
2In observing many of the cancellations, the precise numerical coefficients in the equations
are important; roughly, these cancellations lead to the presence of the null-form structures
described below. However, for most applications, the overall coefficient of the null forms is
not important; what matters is that the cancellations lead to null forms.
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estimates were used to show that for the non-relativistic barotropic compress-
ible Euler equations, it is possible to gain one derivative on the density relative
to the velocity (again, assuming that the gain is present in the initial data).

We also highlight the following key advantage of our new formulation:

It dramatically enlarges the set of energy estimate techniques that
can be applied to the study of the relativistic Euler equations. More
precisely, the new formulation partially decouples the “wave parts”
and “transport parts” of the system and unlocks our ability to apply
the full power of the commutator and multiplier vectorfield methods
to the study of the wave part; see Sect. 9.6 for further discussion.

For applications to shock waves, it is fundamentally important that one is able
to use the full scope of the vectorfield method on the wave part of the system;
see the introduction of [23] for a discussion of this issue in the related context
of the non-relativistic barotropic compressible Euler equations with vorticity.
In particular, our new formulation of the equations allows one to derive a
coercive energy estimate for the wave part of the system for any multiplier
vectorfield that is causal relative to the acoustical metric g of Definition 2.6
and on any hypersurface that is null or spacelike relative to g; see Sect. 9.6.1
for further discussion. In contrast, for first-order hyperbolic systems (a special
case of which is the relativistic Euler equations) without additional structure,
there is, up to scalar function multiple, only one3 available energy estimate on
each causal or spacelike hypersurface.

Our second result in this article is that we provide a proof of local well-
posedness for the relativistic Euler equations that relies on the new formula-
tion; see Theorem 9.12. The new feature of Theorem 9.12 compared to standard
proofs of local well-posedness for the relativistic Euler equations is that it pro-
vides the aforementioned gain in differentiability for the vorticity and entropy.
Although many aspects of the proof of the theorem are standard, we also rely
on some geometric and analytic insights that are tied to the special struc-
ture of our new formulation of the equations and thus are likely not known to
the broader PDE research community; see the end of Sect. 1.2.3 for further
discussion of this point.

3Here we further explain how standard first-order formulations of the relativistic Euler
equations limit the available energy estimates. In deriving energy estimates for the relativistic
Euler equations in their standard first-order form, one is effectively controlling the wave and
transport parts of the system at the same time, and, up to a scalar function multiple, there is
only one energy estimate available for transport equations. To see this limitation in a more
concrete fashion, one can rewrite the relativistic Euler equations in first-order symmetric
hyperbolic form as Aα(V)∂αV = 0, where V is the array of solution variables and the Aα

are symmetric matrices with A0 positive definite; see, for example, [27] for a symmetric
hyperbolic formulation of the general relativistic Euler equations in the barotropic case.
The standard energy estimate for symmetric hyperbolic systems is obtained by taking the
Euclidean dot product of both sides of the equation with V and then integrating by parts
over an appropriate spacetime domain foliated by spacelike hypersurfaces. The key point
is that for systems without additional structure, no other energy estimate is known, aside
from rescaling the standard one by a scalar function.
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For convenience, throughout the article, we restrict our attention to the
special relativistic Euler equations, that is, the relativistic Euler equations on
the Minkowski spacetime background (R1+3,η), where η is the Minkowski met-
ric. However, using arguments similar to the ones given in the present article,
our results could be extended to apply to the relativistic Euler equations on
a general Lorentzian manifold; such an extension could be useful, for exam-
ple, in applications to fluid mechanics in the setting of general relativity. For
use throughout the article, we fix a standard rectangular coordinate system
{xα}α=0,1,2,3, relative to which ηαβ := diag(−1, 1, 1, 1). See Sect. 2.1 for our
index conventions. We clarify that in Sect. 9, we prove local well-posedness for
the relativistic Euler equations (including the aforementioned gain in regular-
ity for the vorticity and entropy) on the flat spacetime background (R×T

3,η),
where the “spatial manifold” T

3 is the three-dimensional torus and we recy-
cle the notation in the sense that {xα}α=0,1,2,3 denotes standard coordinates
on R × T

3 (see Sect. 9.1.1 for further discussion) and η again denotes the
Minkowski metric; the compactness of T3 allows for a simplified approach to
some technical aspects of the argument while allowing us to illustrate the ideas
needed to exhibit the gain in regularity for the vorticity and entropy.

Our work here can be viewed as extensions of the second author’s previous
joint work [22], in which the authors derived a similar formulation of the
non-relativistic compressible Euler equations under an arbitrary barotropic
equation of state, as well as the second author’s work [33], which extended the
results of [22] to a general equation of state. However, since the geo-analytic
structures revealed by [22,33] are rather delicate (that is, quite unstable under
perturbations of the equations), it is far from obvious that similar results hold
in the relativistic case. We also stress that compared to the non-relativistic
case, our work here is substantially more intricate in that it extensively relies
on decompositions of various spacetime tensors into tensors that are parallel
to the four-velocity u and tensors that are η-orthogonal to u. In particular, we
heavily exploit that many of the tensorfields appearing in our analysis exhibit
improved regularity under u-directional differentiation or contraction against
u.

1.1. Rough Statement of the New Formulation

In this subsection, we provide a schematic version of our new formulation of the
equations; in Sect. 1.2, we will refer to the schematic version when describing
potential applications. In any formulation of the relativistic Euler equations,
there is great freedom in choosing state-space variables (i.e., the fundamental
unknowns in the system). In this article, as state-space variables, we use the
logarithmic enthalpy h, the entropy s, and the four-velocity u, which is a
future-directed timelike vectorfield normalized by ηαβuαuβ = −1. Other fluid
quantities such as the proper energy density ρ, the pressure p will also play
a role in our discussion, but these quantities can be viewed as functions of
the state-space variables; see Sect. 2 for detailed descriptions of all of these
variables as well as the first-order formulation of the equations that forms the
starting point for our ensuing analysis.
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As we mentioned earlier, our new formulation comprises a system of co-
variant wave equations coupled to transport equations and to two transport-
div-curl systems. Roughly, the wave equations correspond to the propagation
of sound waves, while the transport equations correspond to the transporting
of vorticity and entropy along the integral curves of u. The transport-div-
curl systems are needed to control the top-order derivatives of the vorticity
and the entropy and to exhibit the aforementioned gain in differentiability. In
addition to the state-space variables h, s, and u, our formulation also involves a
collection of auxiliary4 fluid variables, including the entropy gradient one-form
Sα := ∂αs and the vorticity �α, which is a vectorfield that is η-orthogonal to
u (see Definition 2.2). Among these auxiliary variables, of crucial importance
for our work is that we have identified new combinations of fluid variables that
solve transport equations with unexpectedly good structure. These structures
can be used to show that the combinations exhibit a gain in regularity com-
pared to what can be inferred from a standard first-order formulation of the
equations. We refer to these special combinations as “modified variables,” and
throughout, we denote them by Cα and D; see Definition 2.8.

The remaining discussion in this subsection relies on some schematic
notation and refers to some geometric objects that are not precisely defined
until later in the article:

• The notation “∼” below means that we are only highlighting the maxi-
mum number of derivatives of the state-space variables that the auxiliary
variables depend on. We note, however, that in practice, the precise struc-
ture of many of the terms that we encounter is important for observing
the cancellations that lie behind our main results.

• “∂” schematically denotes the spacetime gradient with respect to the rect-
angular coordinates, and “∂2” schematically denotes two differentiations
with respect to the rectangular coordinates.

• g = g(h, s, u) denotes the acoustical metric, which is Lorentzian (see
Definition 2.6).

• � ∼ ∂u + ∂h is the vorticity vectorfield (see Definition 2.2).
• Sα := ∂αs is the entropy gradient one-form.
• Cα ∼ ∂2u + ∂2h is a modified version of the vorticity of �, that is, the

vorticity of the vorticity (see Definition 2.8).
• D ∼ ∂2s is a modified version of ∂αSα (see Definition 2.8).
• Q(∂T1, . . . , ∂Tm) denotes special terms that are quadratic in the ten-

sorfields ∂T1, . . . , ∂Tm. More precisely, the Q(∂T1, . . . , ∂Tm) are linear
combinations of the standard null forms relative to g; see Definition 1.1
for the definitions of the standard null forms relative to g and Sect. 1.2.2
for a discussion of the significance that the special structure of these null
forms plays in the context of the study of shock waves.

• L(∂T1, . . . , ∂Tm) denotes linear combinations of terms that are at most
linear in ∂T1, . . . , ∂Tm; see Sect. 1.2.2 for a discussion of the significance
of the linear dependence in the context of the study of shock waves.

4By “auxiliary,” we mean that they are determined by h, s, and u.
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Before schematically stating our main theorem, we first provide the def-
initions of the standard null forms relative to g.

Definition 1.1 (Standard null forms relative to g). We define the standard null
forms relative to g (which we refer to as “standard g-null forms” for short) as
follows, where φ and ψ are scalar functions and 0 ≤ μ < ν ≤ 3:

Q(g)(∂φ, ∂ψ) := (g−1)αβ(∂αφ)(∂βψ),

Qμν(∂φ, ∂ψ) := (∂μφ)(∂νψ) − (∂νφ)(∂μψ). (1.1)

We now present the schematic version of our main theorem; see Theo-
rem 3.1 for the precise statements.

Theorem 1.2 (New formulation of the relativistic Euler equation (schematic
version)). Assume that (h, s, uα) is a C3 solution to the (first-order) relativistic
Euler equations (2.17)–(2.19) + (2.20). Then h, uα, and s also verify the
following covariant5 wave equations, where the schematic notation “�” below
means that we have ignored the coefficients of the inhomogeneous terms and
also harmless (from the point of view of applications to shock waves) lower-
order terms, which are allowed to depend on h, s, u, S, and � (but not their
derivatives):

�gh � D + Q(∂h, ∂u) + L(∂h), (1.2a)

�gu
α � Cα + Q(∂h, ∂u) + L(∂h, ∂u), (1.2b)

�gs � D + L(∂h). (1.2c)

In addition, s, Sα, and �α verify the following transport equations:

uκ∂κs = 0, (1.3a)

uκ∂κSα � L(∂u), (1.3b)

uκ∂κ�α � L(∂h, ∂u). (1.3c)

Moreover, Sα verifies the following transport-div-curl system:

uκ∂κD � C + Q(∂S, ∂h, ∂u) + L(∂h, ∂u), (1.4a)

vortα(S) = 0, (1.4b)

where the vorticity operator vort is defined in Definition 2.1.
Finally, �α verifies the following transport-div-curl system:

∂κ�κ � L(∂h), (1.5a)

uκ∂κCα � C + D + Q(∂S, ∂�, ∂h, ∂u) + L(∂S, ∂�, ∂h, ∂u). (1.5b)

5Relative to arbitrary coordinates, for scalar functions f , we have

�gf =
1

√|detg|∂α

(√
|detg|(g−1)αβ∂βf

)
.
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1.2. Connections to the Study of Shock Waves

As we have mentioned, the relativistic Euler equations are an example of a
quasilinear hyperbolic PDE system. A central feature of the study of such
systems is that initially smooth solutions can form shock singularities in fi-
nite time. By a “shock,” we roughly mean that one of the solution’s partial
derivatives with respect to the standard coordinates blows up in finite time
while the solution itself remains bounded. In the last decade, for interesting
classes of quasilinear hyperbolic PDEs in multiple spatial dimensions, there
has been dramatic progress [4,8,23–25,32,34,36,37] on our understanding of
the formation of shocks as well as our understanding of the subsequent behav-
ior of solutions past their singularities [5,7] (where the equations are verified
in a weak sense past singularities).

The works cited above have roots in the work of John [16] on singularity
formation for quasilinear wave equations in one spatial dimension as well as
Alinhac’s foundational works [2,3], which were the first to provide a construc-
tive description of shock formation for quasilinear wave equations in more than
one spatial dimension without symmetry assumptions. More precisely, Alin-
hac’s approach allowed him to follow the solution precisely to the time of first
blowup, but not further. His work yielded sharp information about the first
singularity, but only for a subset of “non-degenerate” initial data such that
the solution’s first singularity is isolated in the constant-time hypersurface of
first blowup; in particular, his proof did not apply to spherically symmetric
initial data, where the “first” singularity typically corresponds to blowup on
a sphere.

Subsequently, Christodoulou [4] proved a breakthrough result on the for-
mation of shocks for solutions to the relativistic Euler equations in irrotational
(that is, vorticity free) and isentropic regions of spacetime. More precisely, for
the family of quasilinear wave equations that arise in the study of the ir-
rotational and isentropic relativistic Euler equations,6 Christodoulou gave a
complete description of the maximal development of an open set (without
symmetry assumptions) of initial data and showed in particular that an open
subset of these data lead to shock-forming7 solutions. Moreover, he gave a
precise geometric description of the set of spacetime points where blowup oc-
curs by showing that the singularity formation is exactly characterized by the
intersection of the acoustic characteristics. In practice, he accomplished this
by constructing an acoustical eikonal function U , whose level sets are acoustic

6For solutions with vanishing vorticity and constant entropy, one can introduce a potential
function Φ and reformulate the relativistic Euler equations as a quasilinear wave equation
in Φ.
7One of the key results of [4] is conditional: For small data, the only possible singularities
that can form are shocks driven by the intersection of the acoustic characteristics. Here
“small” means a small perturbation of the data of a non-vacuum constant fluid state, where
the size of the perturbation is measured relative to a high-order Sobolev norm. Another
result of [4] is that there is an open subset of small data, perhaps strictly contained in the
aforementioned set of data, such that the acoustic characteristics do in fact intersect in finite
time. The results of [4] leave open the possibility that there might exist some non-trivial

small global solutions.



Vol. 20 (2019) Relativistic Euler 2181

characteristics (see Sect. 1.2.1 for further discussion), and then constructing
an initially positive geometric scalar function μ ∼ 1/∂U known as the inverse
foliation density of the characteristics, such that μ → 0 corresponds to the
intersection of the characteristics and the blowup of ∂U and of the fluid solu-
tion’s derivatives too. Analytically, μ plays the role of a weight that appears
throughout the work [4], and the main theme of the proof is to control the
solution all the way up to the region where μ = 0. We stress that [4] was the
first work that provided sharp information about the boundary of the maxi-
mal development in more than one spatial dimension in the context of shock
formation. Roughly, the maximal development is the largest possible classical
solution that is uniquely determined by the initial data; see [29,41] for further
discussion.

To prove his results, Christodoulou relied on a novel formulation of the
relativistic Euler equations. However, since he studied the shock formation
only in irrotational and isentropic regions, he was able to introduce a po-
tential function Φ, and his new formulation of the equations was drastically
simpler than the equations of Theorem 1.2. In fact, the equations are exactly
the covariant wave equation system �g̃∂αΦ = 0 (with α = 0, 1, 2, 3), where
g̃ is an appropriate scalar function multiple of the acoustical metric g and
g̃ = g̃(∂Φ). In particular, Christodoulou was able to avoid deriving/relying on
the transport-div-curl equations from Theorem 1.2, and he therefore did not
need to derive elliptic estimates for the fluid variables. In total, the potential
formulation leads to dramatic simplifications compared to the equations of
Theorem 1.2, especially in the context of the study of shock waves; it seems
quite miraculous that the equations of Theorem 1.2 have structures that are
compatible with extending Christodoulou’s results away from the irrotational
and isentropic case (see below for further discussion).

Although the sharp information that Christodoulou derived about the
maximal development is of interest in itself, it is also an essential ingredient
for setting up the shock development problem. The shock development prob-
lem, which was recently partially8 solved in the breakthrough work [5] (see
also the precursor work [7] in spherical symmetry), is the problem of con-
structing the shock hypersurface of discontinuity (across which the solution
jumps) as well as constructing a unique weak solution in a neighborhood of
the shock hypersurface (uniqueness is enforced by selection criteria that are
equivalent to the well-known Rankine–Hugoniot conditions). Christodoulou’s
description of the maximal development provided substantial new information
that was not available under Alinhac’s approach; as we mentioned above, due
to some technical limitations tied to his reliance on Nash–Moser estimates,
Alinhac was able to follow the solution only to the constant-time hypersurface
of first blowup. In contrast, by exploiting some delicate tensorial regularity
properties of eikonal functions for wave equations (see below for more details),

8In [5], Christodoulou solved the “restricted” shock development problem, in which he ig-
nored the jump in entropy and vorticity across the shock hypersurface.
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Christodoulou was able to avoid Nash–Moser estimates; this was a key ingredi-
ent in his following the solution to the boundary of the maximal development.
Readers can consult [14] for a survey of some of these works, with a focus on
the geometric and analytic techniques that lie behind the proofs.

We now aim to connect the works mentioned above to the new formula-
tion of the relativistic Euler equations that we provide in this paper. To this
end, for the equations in the works mentioned above, we first highlight the
main structural features that allowed the proofs to go through. Specifically,
the works [4,8,23–25,32,34,36,37] crucially relied on the following ingredients:

1. (Nonlinear geometric optics). The authors relied on geometric decompo-
sitions adapted to the characteristic hypersurfaces (also known as “char-
acteristics” or “null hypersurfaces” in the context of wave equations)
corresponding to the solution variable whose derivatives blow up. This
was implemented with the help of an eikonal function U , whose level sets
are characteristics. The eikonal function is a solution to the eikonal equa-
tion, which is a fully nonlinear transport equation that is coupled to the
solution in the sense that the coefficients of the eikonal equation depend
on the solution. Moreover, the authors showed that the intersection of
the characteristics corresponds to the formation of a singularity in the
derivatives of the eikonal function and in the derivatives of the solution.

2. (Quasilinear null structure). The authors found a formulation of the equa-
tions exhibiting remarkable null structures, where the notion of “null” is
tied to the true characteristics, which are solution-dependent in view of
the quasilinear nature of the equations. These structures allow one to de-
rive sharp, fully nonlinear decompositions along characteristic hypersur-
faces that reveal exactly which directional derivatives blow up and that
precisely identify the terms driving the blowup (which are typically of
Riccati-type, i.e., in analogy with the nonlinearities in the ODE ẏ = y2).

3. (Regularity properties and singular high-order energy estimates). The
authors’ formulation allows one to derive sufficient L2-type Sobolev reg-
ularity for all unknowns in the problem, including the eikonal func-
tion, whose regularity properties are tied to the regularity of the solu-
tion through the dependence of the coefficients of the eikonal equation on
the solution. In particular, to close these estimates, the authors had to
show that various solution variables are one degree more differentiable
compared to the degree of differentiability guaranteed by standard energy
estimates.

4. (Structures amenable to commutations with geometric vectorfields). The
authors’ formulation is such that one can commute all of the equations
with geometric vectorfields constructed out of the eikonal function U ,
generating only controllable commutator error terms. By “controllable,”
we mean both from the point of view of regularity and from the point of
view of the strength of their singular nature. In the works [23,34,36] that
treat systems with multiple characteristic speeds, these are particularly
delicate tasks that are quite sensitive to the structure of the equations;
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one key reason behind their delicate nature is that the eikonal function
(and thus the geometric vectorfields constructed from it) can be fully
adapted only to “one speed,” that is, to the characteristics whose inter-
section correspond to the singularity.
In the remainder of this subsection, we explain why our new formulation

of the relativistic Euler equations has all four of the features listed above and
is therefore well-suited for studying shocks without symmetry assumptions.
Readers can consult the works [22,33,35] for related but extended discussion
in the case of the non-relativistic compressible Euler equations.

1.2.1. Nonlinear Geometric Optics and Geometric Coordinates. First, to im-
plement nonlinear geometric optics, one can construct an eikonal function. In
the context of the relativistic Euler equations, one would construct an eikonal
function U adapted to the acoustic characteristics, that is, a solution to the
eikonal equation

(g−1)αβ∂αU∂βU = 0, (1.6)

supplemented by appropriate initial conditions, where g = g(h, s, u) is the
acoustical metric (see Definition 2.6). Note that U is adapted to the “wave
part” of the system and not the transport part. In the context of the rel-
ativistic Euler equations, this is reasonable in the sense that the transport
part corresponds to the evolution of vorticity and entropy, and there are no
known blowup results for these quantities, even in one spatial dimension.9 Put
differently, U is adapted to the “portion” of the relativistic Euler flow that
is expected to develop singularities. More generally, eikonal functions are a
natural tool for the study of wave-like systems, regardless of whether or not
one is studying shocks. We also stress that introducing an eikonal function is
essentially the same as relying on the method of characteristics. However, in
more than one spatial dimension, the method of characteristics must be sup-
plemented with an exceptionally technical ingredient that we further describe
below: energy estimates that hold all the way up to the shock.

The first instance of an eikonal function being used to study the global
properties of solutions to a quasilinear hyperbolic PDE occurred not in the
context of singularity formation, but rather in a celebrated global existence re-
sult: the Christodoulou–Klainerman [6] proof of the stability of the Minkowski
spacetime as a solution to the Einstein vacuum equations. Alinhac’s aforemen-
tioned works [2,3] were the first instances in which an eikonal function was
used to study a non-trivial set of solutions (without symmetry assumptions) to
a quasilinear wave equation all the way up to the first singularity. Eikonal func-
tions also played a fundamental role in all of the other shock formation results
mentioned above. They have also played a role in other contexts, such as low-
regularity local well-posedness for quasilinear wave equations [20,21,30,39]. In
all of these works, the eikonal equation is a fully nonlinear hyperbolic PDE that
is coupled to the PDE system of interest (here the relativistic Euler equations)
through its coefficients [here through the acoustical metric, since g = g(h, s, u)].

9In one spatial dimension, the vorticity must vanish, but the entropy can be dynamic.
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As we mentioned above, in the case of the relativistic Euler equations, the level
sets of U are characteristics for the “wave part” of the system. Following Al-
inhac [2,3] and Christodoulou [4], in order to study the formation of shocks in
relativistic Euler solutions, one completes U to a geometric coordinate system

(t, U, ϑ1, ϑ2) (1.7)

on spacetime, where t = x0 is the Minkowski time coordinate and the ϑA are
solutions to the transport equation (g−1)αβ∂αU∂βϑA = 0 supplemented by ap-
propriate initial conditions on the initial constant-time hypersurface Σ0. Note
that (t, ϑ1, ϑ2) can be viewed as a coordinate system along each characteristic
hypersurface {U = const}.

1.2.2. Nonlinear Null Structure. We now aim to explain the role that the
nonlinear null structure of the equations played in the works [4,8,23–25,32,
34,36,37] and to explain why the equations of Theorem 1.2 enjoy the same
good structures. In total, one could say that the equations of Theorem 1.2
have been geometrically decomposed into terms that are capable of generat-
ing shocks and “harmless” terms, whose nonlinear structure is such that they
do not interfere with the shock formation mechanisms. To flesh out these no-
tions, we first provide some background material. In the works cited above,
the main idea behind proving shock formation is to study the solution rela-
tive to the geometric coordinates (1.7) and to show that in fact, the solution
remains rather smooth in these coordinates, all the way up to the shock. This
approach allows one to transform the problem of shock formation into a more
traditional one in which one tries to derive long-time estimates for the solu-
tion relative to the geometric coordinates. One then recovers the blowup of
the solution’s derivatives with respect to the original coordinates by showing
that the geometric coordinates degenerate in a precise fashion relative to the
standard rectangular coordinates as the shock forms; the degeneration is ex-
actly tied to the vanishing of the inverse foliation density μ that we mentioned
earlier. Although the above description might seem compellingly simple, as we
explain in Sect. 1.2.3, in implementing this approach, one encounters severe
analytical difficulties.

We now highlight another key aspect of the proofs in the works cited
above: showing that Euclidean-unit-length derivatives of the solution in di-
rections tangent to the characteristics remain bounded all the way up to the
shock. It turns out that in terms of the geometric coordinates (1.7), this is
equivalent to showing that the ∂

∂t and ∂
∂ϑA derivatives of the solution remain

bounded all the way up to the shock. Put differently, the following holds:
The singularity occurs only for derivatives of the solution with re-
spect to vectorfields that are transversal to the characteristics and
non-degenerate10 with respect to the rectangular coordinates.

10In all known shock formation results, at the location of shock singularities, the geometric

partial derivative vectorfield ∂
∂U

has vanishing Euclidean length (i.e., δab

(
∂

∂U

)a (
∂

∂U

)b
= 0,

where
{(

∂
∂U

)a}

a=1,2,3
denotes the rectangular spatial components of ∂

∂U
and δab is the
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In the works cited above, to prove all of these facts, the authors had to con-
trol various inhomogeneous error terms by showing that they enjoy a good
nonlinear null structure relative to the wave characteristics. A key conclusion
of the present article is that the derivative-quadratic inhomogeneous terms in
the equations of Theorem 1.2 enjoy the same good structure (which we fur-
ther describe just below). In fact, all terms on the RHSs of all equations of
Theorem 1.2 are harmless in that they do not drive the Riccati-type blowup
that lies behind shock formation. Consequently, the equations of Theorem 1.2
pinpoint the dangerous nonlinear terms in the relativistic Euler equations:

The terms capable of driving shock formation are of Riccati-type
and are hidden in the covariant wave operator terms on LHSs (1.2a)–
(1.2b). These terms become visible only when the covariant wave
operator terms are expanded relative to the standard coordinates.
In view of the above remarks, one might wonder why it is important to

“hide” the dangerous terms in the covariant wave operator. The answer is that
there is an advanced framework for constructing geometric vectorfields adapted
to wave equations, and the framework is tailored to covariant wave operators.11

As we explain later in this subsection, this geometric framework seems to be
essential in more than one spatial dimension,12 when one is forced to commute
the wave equations with suitable vectorfields and to derive energy estimates.

We now further describe the good structure found in the terms on the
RHSs of the equations of Theorem 1.2. The good nonlinear “null structure” is
found precisely in the (quadratic) null-form terms Q appearing on the RHSs of
the equations of Theorem 1.2. More precisely, these Q are null forms relative to
the acoustical metric g, which means that they are linear combinations (with
coefficients that are allowed to depend on the solution variables—but not their
derivatives) of the standard null forms relative to g (see Definition 1.1). The
key property of null forms relative to g is that given any hypersurface H that
is characteristic relative to g [e.g., any level set of any eikonal function U that
solves Eq. (1.6)], we have the following well-known schematic decomposition:

Q(∂φ, ∂ψ) = T φ · ∂ψ + T ψ · ∂φ, (1.8)

where T denotes a differentiation in a direction tangent to H and ∂ denotes
a generic directional derivative; see, for example, [22] for a standard proof
of (1.8). Equation (1.8) implies that even though Q is quadratic, it never in-
volves two differentiations in directions transversal to any characteristic. Since,

Footnote 10 continued
Kronecker delta). That is, at the shock singularities, ∂

∂U
degenerates with respect to the

rectangular coordinates. Due to this degeneracy, the solution’s ∂
∂U

derivatives can remain

bounded all the way up to the shock, even though ∂
∂U

is transversal to the characteristics.
11Roughly, these covariant wave operators are equivalent to divergence-form wave operators.
In this way, one could say that a better theory is available for divergence-form wave operators
than for non-divergence-form wave operators. This reminds one of the situation in elliptic
PDE theory, where better results are known for elliptic PDEs in divergence form compared
to ones in non-divergence form.
12In one spatial dimension, one can rely exclusively on the method of characteristics and
thus avoid energy estimates.
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in all known proofs, it is precisely the transversal derivatives that blow up when
a shock forms (since the Riccati-type terms that drive the blowup are precisely
quadratic in the transversal derivatives), we see that g-null forms are linear
in the tensorial component of the solution that blows up. This can be viewed
as the absence of the worst possible combinations of terms in Q. In terms of
the geometric coordinates (1.7), null forms do not contain any “dangerous”
terms proportional to ∂

∂U φ · ∂
∂U ψ. We also note that, obviously, the terms L

from Theorem 1.2 cannot contain any dangerous quadratic terms since they
are linear in the solution’s derivatives. In contrast, upon expanding the co-
variant wave operator terms on LHSs (1.2a)–(1.2b) relative to the standard
coordinates, one typically encounters terms that are quadratic in derivatives of
h and u that are transversal to the characteristics; as we highlighted above, it
is precisely such “Riccati-type” terms that can drive the formation of a shock.
We stress that near a shock, such transversal-derivative-quadratic terms are
much larger than the null form terms. We also stress that for the relativistic
Euler equations, one encounters such transversal-derivative-quadratic terms
on LHSs (1.2a)–(1.2b) under any equation of state aside from a single ex-
ceptional one. In the irrotational and isentropic case (in which case the rel-
ativistic Euler equations reduce to a quasilinear wave equation satisfied by a
potential function), this exceptional equation of state was identified in [4]; it
corresponds to the quasilinear wave equation satisfied by a timelike minimal
surface graph in an ambient Minkowski spacetime, which can be expressed as

follows: ∂α

{
(η−1)αβ∂βΦ

√
1 + (η−1)κλ(∂κΦ)(∂λΦ)

}

= 0.

In view of the previous paragraph, we would like to highlight the following
point:

Proofs of shock formation are unstable under typical perturbations
of the equations by nonlinear terms that are of quadratic
or higher order in derivatives. However, proofs of shock formation
for wave equations typically are stable under perturbations of the
equations by null forms that are adapted to the metric of the shock-
forming wave. By “stable,” we mean in the following sense: as the
shock forms, null form terms become “asymptotically negligible”
compared to the shock-driving terms (for the reasons described
above).

The reason that the precise structure of the nonlinearities is so important for
the proofs is that the known framework is designed precisely to handle specific
kinds of singularity-driving derivative-quadratic terms: the kind that are hid-
den in the covariant wave operator terms on LHSs (1.2a)–(1.2b). In the context
of the relativistic Euler equations, this means that if any of the equations of
Theorem 1.2 had contained, on the right-hand side, an inhomogeneous non-g-
null-form quadratic term of type (∂h)2, ∂u · ∂h, (∂u)2, etc., or a term of type
(∂h)3, (∂h)4, etc., then the only known framework for proving shock formation
would not work. The difficulty is that adding such terms to the equation could
in principle radically alter the expected blowup rate or even altogether prevent
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the formation of a singularity; either way, this would invalidate13 the known
approach for proving shock formation. One might draw an analogy with the
Riccati ODE ẏ = y2, which we suggest as a caricature model for the formation
of shocks (in the case of the relativistic Euler equations, y should be identified
with ∂h and/or ∂u). Note that for all data y(0) = y0 with y0 > 0, the solution
to the Riccati ODE blows up in finite time. Now if one perturbs the Riccati
ODE to obtain the perturbed equation ẏ = y2 ± εy3, with ε a small positive
number, then depending on the sign of ±, the perturbed solutions with y0 > 0
will either exist for all time or will blow up at a quite different rate compared
to the blowup rate for the unperturbed equation.

1.2.3. Regularity Properties and Singular High-Order Energy Estimates. In
the rigorous mathematical study of quasilinear hyperbolic PDEs in more than
one spatial dimension, one is forced to derive energy estimates for the solution’s
higher derivatives by commuting the equations with appropriate differential
operators. Indeed, all known approaches to studying even the basic local well-
posedness theory for such equations rely on deriving estimates in L2-based
Sobolev spaces. In the works [4,8,23–25,32,34,36,37] on shock formation in
multiple spatial dimensions, the authors controlled the solutions’ higher geo-
metric derivatives by differentiating the equations with geometric “commuta-
tor vectorfields” Z that are adapted to the characteristics, more precisely to
the characteristics corresponding to the variables that form a shock singularity.
As we mentioned earlier, the Z are designed to avoid generating uncontrollable
commutator error terms. It turns out that all Z that have been successfully
used to study shock formation have the schematic structure Zα ∼ ∂U , where
Zα denotes a rectangular component of Z and U is the eikonal function.

Although the geometric vectorfields Z exhibit good commutation prop-
erties with the differential operators corresponding to the characteristics to
which they are adapted, the regularity theory of the vectorfields themselves
is very delicate and is intimately tied to that of the solution. We now further
explain this fact in the context of wave equations whose principal operator is
(g−1)αβ∂α∂β . The corresponding eikonal equation is the nonlinear transport
equation (g−1)αβ∂αU∂βU = 0. The key point is that the standard regularity
theory of transport equations yields only that U is as regular as its coefficients,
that is, as regular as gαβ . In the context of the relativistic Euler equations
(where the formation of a shock corresponds to the intersection of the wave
characteristics and g = g(h, s, u)), this suggests that one might expect U to be
only as regular as h, s, and u. Since, as we mentioned in the previous paragraph,
we have Zα ∼ ∂U , this leads to the following severe difficulty: In commuting
equation the wave equation (1.2a) with Z, one obtains the wave equation

13As is explained in [22], in the known framework for proving shock formation, one crucially
relies on the fact that the derivatives of the solution blow up at a linear rate, that is like

C
T(Lifespan)−t

, where C is a constant and T(Lifespan) > 0 is the (future) classical lifespan of

the solution; if one perturbs the equation by adding terms that are expected to alter this
blowup rate, then one should expect that the known approach for proving shock formation
will not work (at least in its current form).
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�g(Zh) = �gZ
α · ∂αh + · · · ∼ ∂3U · ∂h + · · · (one would obtain similar wave

equations for Zs and Zuα upon commuting equations (1.2b) and (1.2c) with
Z). The difficulty is that the above discussion suggests that the factor ∂3U can
be controlled only in terms of three derivatives of h, s, and u, while standard
energy estimates for the wave equations �g(Zh) = · · · , �g(Zs) = · · · , and
�g(Zuα) = · · · yield control of only two derivatives of h, s, and u. This sug-
gests that there is a loss of regularity and in fact, this is the reason that Alinhac
used Nash–Moser estimates in his works [2,3]. However, for wave equations,
one can in fact overcome this loss of regularity by exploiting some delicate
tensorial properties of the eikonal equation (g−1)αβ∂αU∂βU = 0 and of the
wave equation itself relative to geometric coordinates, which together can be
used to show that in directions tangent to the characteristics, some geometric
tensors constructed out of the derivatives of U are one degree more differ-
entiable than one might naively expect. In particular, the factor ∂3U in the
aforementioned product ∂3U · ∂h has special structure and enjoys this gain
in regularity. These crucial structures were first observed by Christodoulou–
Klainerman in their proof [6] of the stability of Minkowski spacetime as a
solution to Einstein’s equations, and later by Klainerman–Rodnianski in their
proof of improved regularity local well-posedness [20] for a general class of
scalar quasilinear wave equations. In total, using this gain in regularity along
the characteristics and carefully accounting for the precise tensorial structure
of the product ∂3U ·∂h highlighted above, one can avoid the loss of derivatives
tied to the product ∂3U · ∂h.

Despite the fact that the procedure described above allows one to avoid
losing derivatives, at least in the context of wave equations,14 one pays a steep
price: It turns out that upon implementing this procedure, one introduces a
dangerous factor into the wave equation energy identities, one that in fact
blows up as the shock forms. More precisely, the singular factor is 1/μ, where
μ is the inverse foliation density mentioned earlier, with μ → 0 signifying the
formation of a shock. This leads to singular top-order a priori energy estimates
for the wave equation solutions relative to the geometric coordinates. At first
glance, these singular geometric energy estimates might seem to obstruct the
philosophy of obtaining regular estimates relative to the geometric coordinates.
However, below the top derivative level, one can allow the loss of a derivative,
and it turns out that this allows one to derive improved (i.e., less singular)
energy estimates below the top derivative level. In fact, by an induction-from-
the-top-down argument, one can show that the mid-derivative-level and below
geometric energies remain bounded up to the shock. This allows one to show
that indeed, the solution remains rather smooth relative to the geometric co-
ordinates, which in practice is a crucial ingredient that is needed to close the
proof. It also turns out that many steps are needed to descend to the level of
a non-singular energy, which in practice means that one must assume that the

14Actually, it is not known whether or not the derivative-loss-avoiding procedure can be
implemented for general systems of wave equations featuring more than one distinct wave
operator. From this perspective, we find it fortunate that the equations of Theorem 1.2
feature only one wave operator.
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data have a lot of Sobolev regularity to close the proof; see [14] for an in-depth
overview of these issues in the context of quasilinear wave equations.

The structures described above, which allow one to avoid the loss of
derivatives in eikonal functions for quasilinear wave equations, are rather deli-
cate. Thus, it is not a priori clear that one can also avoid the loss of derivatives
in eikonal functions for the relativistic Euler equations. A key advantage of our
new formulation of the relativistic Euler equations is that it can be used to
prove that one can still avoid the loss of derivatives, even though there is deep
coupling between the wave and transport equations in the new formulation.
That is, one can show that the acoustic eikonal function U [see (1.6), where
g = g(h, s, u) is the acoustical metric from Definition 2.6] for the relativis-
tic Euler equations has enough regularity to be used in the study of shock
formation; see three paragraphs below for further discussion. However, this
requires one to first prove that the fluid variables have a consistent amount
of regularity among themselves. At first thought, the desired consistency of
regularity might seem to follow from standard local well-posedness. However,
all standard local well-posedness results for the relativistic Euler equations
are based on first-order formulations, which are not known to be sufficient for
avoiding a loss of derivatives in the eikonal function U ; the above outline for
how to avoid derivative loss in U implicitly relied on the assumption that h,
s, and uα solve wave equations whose source terms have an allowable amount
of regularity, which, as we will explain, for the relativistic Euler equations is
a true—but deep—fact. Moreover, the first-order formulations do not seem
to be sufficient for studying solutions all the way up to a shock; as we have
mentioned, the known framework for studying shocks crucially relies on the
special null structures exhibited by the equations of Theorem 1.2.

In view of the regularity concerns raised in the previous paragraph, one
must carefully check that (under suitable assumptions on the initial data),
all terms in the equations of Theorem 1.2 have a consistent amount of reg-
ularity. We stress that this is not obvious, as we now illustrate by count-
ing derivatives. For example, to control ∂uα in L2 using standard energy
estimates for the wave equation (1.2b), one must control, also in L2, the
source term Cα on RHS (1.2b). Note that from the point of view of regu-
larity, we have the schematic relationship [see (2.16a) for the definition of Cα]
Cα ∼ vortα(�) ∼ ∂�. Moreover, since � solves the transport equation (1.3c),
whose source term depends on ∂u and ∂h, this suggests that ∂� should be
no more regular15 than (∂2u, ∂2h) and thus Cα should be no more regular
than (∂2u, ∂2h). In total, this discussion suggests that the wave equation for
u has the following schematic structure from the point of view of regularity:
�gu

α = ∂2u+ · · · . That is, this discussion suggests that in order to control ∂u
in L2 using standard energy estimates for wave equations, we must control ∂2u
in L2. This approach therefore seems to lead to a loss in derivatives, which is
a serious obstacle to using the equations of Theorem 1.2 to prove any rigorous

15In the absence of special structures, solutions to transport equations are not more regular
than their source terms.
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result. Similar difficulties arise in the study of h and s, due to the source term
D in the wave equations (1.2a) and (1.2c).

A crucial feature of the equations of Theorem 1.2 is that one can in fact
overcome the loss of derivative difficulty for the fluid variables described in
the previous paragraph. To this end, one must rely on the transport-div-curl
equations for � and S; see Sect. 9.5 and the proofs of Proposition 9.22 and
Theorem 9.12 for the details on how one can use these equations and elliptic
estimates to avoid the loss of derivatives. Equally important for applications to
shock waves is the fact that the elliptic div-curl estimates, which occur across
space, are compatible with the proof of the formation of a spatially localized
shock singularity and with the singular high-order geometric energy estimates
described earlier in this subsubsection. These are delicate issues, especially
since the elliptic estimates involve derivatives in directions transversal to the
characteristics, i.e., in the singular directions; see [22] for an overview of how to
derive the relevant elliptic estimates in the context of shock-forming solutions
to the non-relativistic compressible Euler equations.

We now return to the issue of the regularity of the acoustic eikonal func-
tion U for the relativistic Euler equations [see (1.6), where g = g(h, s, u) is the
acoustical metric from Definition 2.6]. As we explained above, in order to avoid
a loss of regularity in U , one needs to show that its regularity theory is com-
patible with the regularity of the fluid variables. It turns out that this requires
proving, in particular, that �gh, �gs, and �gu

α have the same regularity as
∂h, ∂s, and ∂uα. The connection between �gh, �gs, and �gu

α and the reg-
ularity theory of U is through the null mean curvature of the level sets of U ,
a critically important geometric quantity whose evolution equation16 depends
on a certain component of the Ricci curvature tensor of the Lorentzian met-
ric g(h, s, u), whose rectangular components can be shown to depend on �gh,
�gs, and �gu

α. We will not further discuss this crucial technical issue here; we
instead refer readers to [14, Section 3.4] for further discussion of the regularity
theory of eikonal functions in the context of shock formation for quasilinear
wave equations. In view of the wave equations (1.2a)–(1.2c), we see that ob-
taining the desired regularity for �gh, �gs, and �gu

α requires, in particular,
establishing that the source terms Cα and D on RHSs (1.2a)–(1.2c) have the
same regularity as ∂h, ∂s, and ∂uα. This is again tantamount to showing that
the vorticity and entropy are one degree more differentiable compared to the
regularity guaranteed by deriving standard energy estimates for first-order for-
mulations of the equations; to obtain the desired extra regularity for Cα and
D, one can again rely on the transport-div-curl equations mentioned in the
previous paragraph. We prove a rigorous version of this gain in regularity in
Theorem 9.12, in which we use the new formulation of the relativistic Euler
equations to prove a local well-posedness result that, in particular, yields the
desired extra differentiability (assuming that it is present in the initial data).

16The evolution equation is in fact the famous Raychaudhuri equation, which plays an
important role in general relativity.
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Although one might view the results of Theorem 9.12 as expected conse-
quences of our new formulation of the relativistic Euler equations, we highlight
that its proof relies on a few ingredients that are not entirely straightforward:

(i) Time-continuity for the L2 norms of the vorticity and entropy at top-
order, i.e., including the extra differentiability of these variables, is non-
standard in view of the necessity of invoking elliptic–hyperbolic estimates.

(ii) The transport-div-curl systems featured in the new formulation of the
equations involve spacetime divergence and curl operators, but we need to
extract L2 regularity along the constant-time hypersurfaces. This requires
connecting the spacetime divergence and curl to spatial elliptic estimates,
which in turn requires some geometric and technical insights.

(iii) For the wave equation energy estimates, one cannot use the multiplier17

∂t when the three-velocity is large, since the corresponding energy will
not necessarily be coercive18 in this case. Consequently, one has to use
the four-velocity as a multiplier.19

1.2.4. Structures Amenable to Commutations with Geometric Vectorfields.
A key point is that the geometric vectorfields Z described in Sect. 1.2.3 are
adapted only to the principal part of the shock-forming solution variables, e.g.,
the operator �g in the case that a wave equation solution is the shock-forming
variable. However, to close the proof of shock formation for a system in which
wave equations of the type �g· = · · · are coupled to other equations, one
must commute that Z through all of the equations in the system. One then
has to handle the commutator terms generated by commuting the Z through
the other equations. It turns out, perhaps not surprisingly, that commuting Z
through a generic second-order differential operator ∂2 leads to uncontrollable
error terms, from the point of view of regularity and from the point of view of
the singular nature of the commutator error terms; see the work [22] on the
non-relativistic compressible barotropic Euler equations for further discussion
on this point. However, as was first shown in [22], it is possible to commute the
Z through an arbitrary first-order differential operator ∂ by first weighting it
by μ (where μ is the inverse foliation density mentioned above); it can be shown

17See Sect. 9.6.1 for additional details regarding the multiplier method in the context of
wave equations.
18Equations (2.11), (2.20), and (2.13a) collectively imply that when

∑3
a=1 |ua| is large,

g(∂t, ∂t) = g00 = −1 + (c−2 − 1)uaua can be positive, i.e., ∂t can be spacelike with respect
to the acoustical metric g; it is well known that this can lead to indefinite energies if the
standard partial time derivative vectorfield ∂t is used as a multiplier in the wave equation
energy estimates.
19The use of u as a multiplier is likely familiar to researchers who have previously studied
the relativistic Euler equations, but it might be unknown to the broader PDE community.
We also remark that in searching the literature, we were unable to find results that, given
our new formulation of the relativistic Euler equations, could be directly applied to establish
points (i) and (ii) above. Moreover, we were not able to locate a local well-posedness result
for elliptic–hyperbolic systems that can be directly applied to our new formulation of the
equations. In particular, we could not locate a result that would directly imply continuous
dependence of solutions on the initial data up to top order, i.e., a result that applies in the
case when the vorticity and entropy enjoy the aforementioned extra regularity.
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that this leads to commutator error terms that are controllable under the scope
of the approach. It is for this reason that we have formulated Theorem 1.2 in
such a way that all of the equations are of the type �g· = · · · or are first-
order; i.e., the equations of Theorem 1.2 are such that the approach described
in [22] can be applied. Put differently, the geometric vectorfields Z that are
of essential importance for commuting the wave equations of Theorem 1.2 can
also be commuted through all of the remaining equations, generating only
controllable error terms.

2. A First-Order Formulation of the Relativistic Euler
Equations, Geometric Tensorfields, and the Modified Fluid
Variables

In this section, we introduce some notation, define the fluid variables that play
a role in the subsequent discussion, introduce some geometric tensorfields as-
sociated to the flow, and provide the standard first-order formulation of the
relativistic Euler equations that will serve as a starting point for our main
results. Most of the discussion here is standard and therefore, we are some-
what terse; we refer readers to [4, Chapter 1] for a detailed introduction to the
relativistic Euler equations. Section 2.2.5, however, is not standard. In that
subsubsection, we define modified fluid variables, which are special combina-
tions of the derivatives of the vorticity and entropy. The structures revealed by
Theorem 3.1 imply (see the proof of Theorem 9.12 for additional details) that
these special combinations enjoy a gain of one derivative compared to the reg-
ularity afforded by standard estimates. As we mentioned in the introduction,
this gain is crucial for applications to shock waves.

2.1. Notation and Conventions

We somewhat follow the setup of [4], but there are some differences, including
sign differences and notational differences.

Greek “spacetime” indices α, β, . . . take on the values 0, 1, 2, 3, while
Latin “spatial” indices a, b, . . . take on the values 1, 2, 3. Repeated indices are
summed over (from 0 to 3 if they are Greek, and from 1 to 3 if they are
Latin). Greek and Latin indices are lowered and raised with the Minkowski
metric η and its inverse η−1, and not with the acoustical metric g of Defini-
tion 2.6. Moreover, εαβγδ denotes the fully antisymmetric symbol normalized
by ε0123 = 1. Note that ε0123 = −1.

If Xα is a vectorfield and ξα1···αl

β1···βm
is a type

(
l
m

)
tensorfield, then

(LXξ)α1···αl

β1···βm
= Xκ∂κξα1···αl

β1···βm
−

l∑

a=1

(∂κXαa)ξα1···αa−1καa+1···αl

β1···βm

+
m∑

b=1

(∂βb
Xκ)ξα1···αl

β1···βb−1κβb+1···βm
(2.1)

denotes the Lie derivative of ξ with respect to X.
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We derive all of our results relative to a Minkowski-rectangular coordi-
nate system {xα}α=0,1,2,3, that is, a coordinate system on R

1+3 in which the
Minkowski metric η takes the form ηαβ := diag(−1, 1, 1, 1). {∂α}α=0,1,2,3 de-
notes the corresponding rectangular coordinate partial derivative vectorfields.
We sometimes use the alternate notation x0 := t and ∂t := ∂0.

Throughout, d denotes the exterior derivative operator. In particular,
if f is a scalar function, then (df)α := ∂αf , and if V is a one-form, then
(dV )αβ := ∂αVβ − ∂βVα. We use the notation V� to denote the one-form that
is η-dual to the vectorfield V , i.e., (V�)α := ηακV κ.

2.2. Definitions of the Fluid Variables and Related Geometric Quantities

In this subsection, we define the fluid variables and geometric quantities that
play a role in the subsequent discussion.

2.2.1. The Basic Fluid Variables. The fluid four velocity uα is future-directed
and normalized by uαuα = −1. p denotes the pressure, ρ denotes the proper
energy density, n denotes the proper number density, s denotes the entropy
per particle, θ denotes the temperature, and

H = (ρ + p)/n (2.2)

is the enthalpy per particle. Thermodynamics supplies the following laws:

H =
∂ρ

∂n
|s , θ =

1
n

∂ρ

∂s
|n , dH =

dp

n
+ θds, (2.3)

where ∂
∂n |s denotes partial differentiation with respect to n at fixed s and

∂
∂s |n denotes partial differentiation with respect to s at fixed n. Below we
employ similar partial differentiation notation, and in Definition 2.7, we intro-
duce alternate partial differentiation notation, which we use throughout the
remainder of the article.

2.2.2. The u-orthogonal Vorticity of a One-Form and Auxiliary Fluid Vari-
ables. In this subsubsection, we define some auxiliary fluid variables that will
play a role throughout the paper. By “auxiliary,” we mean that they are de-
termined by the variables introduced in Sect. 2.2.1.

We start by defining the u-orthogonal vorticity of a one form.

Definition 2.1 (The u-orthogonal vorticity of a one form). Given a one-form
V , we define the corresponding u-orthogonal vorticity vectorfield as follows:

vortα(V ) := −εαβγδuβ∂γVδ. (2.4)

Definition 2.2 (Vorticity vectorfield). We define the vorticity vectorfield �α as
follows:

�α := vortα(Hu) = −εαβγδuβ∂γ(Huδ). (2.5)

We find it convenient to work with the natural log of the enthalpy.

Definition 2.3 (Logarithmic enthalpy). Let H > 0 be a fixed constant value of
the enthalpy. We define the (dimensionless) logarithmic enthalpy h as follows:

h := ln
(
H/H

)
. (2.6)
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Definition 2.4 (The quantity q). We define the quantity q as follows:

q :=
θ

H
. (2.7)

Definition 2.5 (Entropy gradient one-form). We define the entropy gradient
one-form Sα as follows:

Sα := ∂αs. (2.8)

2.2.3. Equation of State and Speed of Sound. To obtain a closed system of
equations, we assume an equation of state of the form p = p(ρ, s). The speed
of sound is defined by

c :=

√
∂p

∂ρ
| s. (2.9)

For reasons that will become clear in Sect. 2.3, in the rest of the article, we
view the speed of sound to be a function of h and s:

c = c(h, s). (2.10)

In this article, we will confine our study to equations of state and solutions
that verify

0 < c ≤ 1. (2.11)

The upper bound in (2.11) signifies that the speed of sound is no bigger than
the speed of light. In this article, we exploit both inequalities in (2.11). We
use the bound c ≤ 1 to ensure that we can always solve for time derivatives
of the solution in terms of spatial derivatives; see the discussion surrounding
Eq. (2.28). The bound c > 0 is important because some of the equations
featured in Theorem 3.1 contain factors of c−1.

2.2.4. Projection Onto the Minkowski-Orthogonal Complement of the Four-
Velocity and the Acoustical Metric. We start by introducing the tensorfield
Παβ , defined by

Παβ := (η−1)αβ + uαuβ . (2.12)

It is straightforward to see Π is the projection onto the η-orthogonal comple-
ment of u. In particular, Πακuκ = 0.

We now introduce the acoustical metric g. It is a Lorentzian20 metric
that drives the propagation of sound waves.

Definition 2.6 (Acoustical metric and its inverse). We define the acoustical
metric gαβ and its inverse21 (g−1)αβ as follows:

gαβ := c−2ηαβ + (c−2 − 1)uαuβ , (2.13a)

(g−1)αβ := c2Παβ − uαuβ = c2(η−1)αβ + (c2 − 1)uαuβ . (2.13b)

20That is, the signature of the 4×4 matrix gαβ , viewed as a quadratic form, is (−, +, +, +).
21It is straightforward to check that (g−1)ακgκβ = δα

β , where δα
β is the Kronecker delta.

That is, g−1 is indeed the inverse of g.
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It is straightforward to compute that relative to the rectangular coordi-
nates, we have

detg = −c−6, (2.14a)

|detg|1/2(g−1)αβ = c−1(η−1)αβ + (c−1 − c−3)uαuβ . (2.14b)

The notation featured in the next definition will allow for a simplified
presentation of various equations.

Definition 2.7 (Partial derivatives with respect to h and s). If Q is a quantity
that can be expressed as a function of (h, s), then

Q;h = Q;h(h, s) :=
∂Q

∂h
|s , (2.15a)

Q;s = Q;s(h, s) :=
∂Q

∂s
|h , (2.15b)

where ∂
∂h |s denotes partial differentiation with respect to h at fixed s and

∂
∂s |h denotes partial differentiation with respect to s at fixed h.

2.2.5. Modified Fluid Variables. In our analysis, we will have to control the
vorticity of the vorticity, that is, vortα(�). The following modified version of
vortα(�), denoted by Cα obeys a transport equation [see (3.11b)] with a better
structure (from the point of view of the regularity of the RHS and also the
null structure of the RHS) than the one satisfied by vortα(�). Similar remarks
apply to the modified version of the divergence of entropy gradient, which we
denote by D [see Eq. (3.9a) for the transport equation verified by D].

Definition 2.8 (Modified fluid variables).

Cα := vortα(�) + c−2εαβγδuβ(∂γh)�δ

+ (θ − θ;h)Sα(∂κuκ) + (θ − θ;h)uα(Sκ∂κh)

+ (θ;h − θ)Sκ((η−1)αλ∂λuκ), (2.16a)

D :=
1
n

(∂κSκ) +
1
n

(Sκ∂κh) − 1
n

c−2(Sκ∂κh). (2.16b)

2.3. A Standard First-Order Formulation of the Relativistic Euler Equations

In formulating the relativistic Euler equations as a first-order hyperbolic sys-
tem, we will consider h, s, and {uα}α=0,1,2,3 to be the fundamental unknowns.22

In terms of these variables and the quantities defined in (2.9), (2.12), and (2.7),
the relativistic Euler equations are

uκ∂κh + c2∂κuκ = 0, (2.17)

uκ∂κuα + Πακ∂κh − q(η−1)ακ∂κs = 0, (2.18)

uκ∂κs = 0. (2.19)

22On might argue that it is more accurate to think of u0 as being “redundant” in the sense
that it is algebraically determined in terms of {ua}a=1,2,3 via the condition u0 > 0 and
the normalization condition (2.20). In fact, in most of Sect. 9, we adopt this point of view.
However, prior to Sect. 9, we do not adopt this point of view.
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It is straightforward to see that the following constraint is preserved by the
flow of Eqs. (2.18)–(2.19).

uκuκ = −1. (2.20)

Remark 2.9 (More common first-order formulations). Many authors define the
relativistic Euler equations to be the system comprising (2.20), (2.25), and the
four equations ∂κTακ = 0, where Tαβ := (ρ+ p)uαuβ + p(η−1)αβ is the fluid’s
energy–momentum tensor. These equations are in fact equivalent (at least in
the case of C1 solutions with ρ > 0) to Eqs. (2.17)–(2.20). We refer readers
to [4, Chapter 1] for background material that is sufficient for understanding
the equivalence.

Note that (2.19) is equivalent to

uκSκ = 0. (2.21)

Equation (2.18) can be written more explicitly as

uκ∂κuα + ∂αh + uαuκ∂κh − qSα = 0. (2.22)

Also, from (2.22), we easily derive

uκ∂κ(Huα) + ∂αH − θSα = 0. (2.23)

Moreover, differentiating (2.19) with a rectangular coordinate partial de-
rivative, we deduce

uκ∂κSα = −Sκ(∂αuκ). (2.24)

In our analysis, we will also use the following evolution equation for n:

uκ∂κn + n∂κuκ = 0. (2.25)

To obtain (2.25), we first use Eqs. (2.17) and (2.19), the thermodynamic
relation dH = dp/n + θds, and the relation H = (ρ + p)/n to deduce
uκ∂κp + c2(ρ + p)∂κuκ = 0. We then use this equation, (2.9), and (2.19)
to deduce uκ∂κρ + (ρ + p)∂κuκ = 0. Next, using this equation and Eq. (2.19),
we deduce ∂ρ(n,s)

∂n |s uκ∂κn + (ρ + p)∂κuκ = 0. Finally, from this equation and
the thermodynamic relation ρ + p = n∂ρ(n,s)

∂n |s , we conclude (2.25).
For future use, we also note that Eqs. (2.17)–(2.19) can be written [us-

ing (2.20)] in the form

Aα∂α

⎛

⎜⎜
⎜⎜⎜⎜
⎝

h
u0

u1

u2

u3

s

⎞

⎟⎟
⎟⎟⎟⎟
⎠

= 0, (2.26)
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where for α = 0, 1, 2, 3, Aα is a 6 × 6 matrix that is a smooth function of the
solution array (h, u0, u1, u2, u3, s). In particular, we compute that

A0 =

⎛

⎜⎜⎜⎜
⎜⎜
⎝

u0 c2 0 0 0 0
uaua u0 0 0 0 q
u0u1 0 u0 0 0 0
u0u2 0 0 u0 0 0
u0u3 0 0 0 u0 0

0 0 0 0 0 u0

⎞

⎟⎟⎟⎟
⎟⎟
⎠

, (2.27)

and we compute that

detA0 = (u0)6 − c2(u0)4uaua = (1 + uaua)4
{
1 + (1 − c2)ubu

b
}

. (2.28)

In particular, in view of (2.11), we deduce from (2.28) that A0 is invertible.

3. The New Formulation of the Relativistic Euler Equations

In the next theorem, we provide the main result of the article: the new formu-
lation of the relativistic Euler equations.

Theorem 3.1 (New formulation of the relativistic Euler equations). For C3

solutions (h, s, uα) to the relativistic Euler equations (2.17)–(2.19) + (2.20),
the following equations hold, where the phrase “g-null form” refers to a linear
combination of the standard g-null forms of Definition 1.1 with coefficients
that are allowed to depend on the quantities (h, s, uα, Sα,�α) (but not their
derivatives).

Wave equations. The logarithmic enthalpy h verifies the following covariant
wave equation (see Footnote 5 on pg. 6 for a formula for the covariant wave
operator):

�gh = nc2qD + Q(h) + L(h), (3.1)

where Q(h) is the g-null form defined by

Q(h) := −c−1c;h(g−1)κλ(∂κh)(∂λh)

+ c2
{
(∂κuκ)(∂λuλ) − (∂λuκ)(∂κuλ)

}
, (3.2a)

and L(h), which is at most linear in the derivatives of (h, s, uα, Sα,�α), is
defined by

L(h) :=
{
(1 − c2)q + c2q;h − cc;s

}
(Sκ∂κh) + c2q;sSκSκ. (3.2b)

Moreover, the rectangular four-velocity components23 uα verify the fol-
lowing covariant wave equations:

�gu
α = − c2

H
Cα + Q(uα) + L(uα), (3.3)

23We stress that on LHS (3.3), the components uα are treated as scalar functions under the
action of the covariant wave operator �g .
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where Q(uα) is the g-null form defined by

Q(uα) := (η−1)αλ {(∂κuκ)(∂λh) − (∂λuκ)(∂κh)}
+ c2uα

{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}

− {1 + c−1c;h

}
(g−1)κλ(∂κh)(∂λuα), (3.4a)

and L(uα), which is at most linear in the derivatives of (h, s, uα, Sα,�α), is
defined by

L(uα) := − c2

H
εαβγδ(∂βuγ)�δ +

(1 − c2)
H

εαβγδuβ(∂γh)�δ

+
(1 − c2)q

H
εαβγδSβuγ�δ

+ {q − cc;s} (Sκ∂κuα) + q(c2 − 1)uαSκ(uλ∂λuκ)

+ Sκ

{
c2q +

(θ − θ;h)c2

H

}
((η−1)αλ∂λuκ)

+
{
2c−1c;hqSα + 2c−1c;sS

α − q;hSα
}

(uκ∂κh)

+ Sα

{
(θ − θ;h)c2

H
− q

}
(∂κuκ) +

(θ − θ;h)c2

H
uα(Sκ∂κh). (3.4b)

Auxiliary wave equation for s. The entropy s verifies the following covari-
ant wave equation24:

�gs = c2nD + L(s), (3.5)

where L(s), which is at most linear in the derivatives of (h, s, uα, Sα,�α), is
defined by

L(s) :=
{
1 − c2 − cc;h

}
(Sκ∂κh) − cc;sSκSκ. (3.6)

Transport equations. The rectangular components of the entropy gradient
vectorfield Sα, whose η-dual is defined in (2.8), verify the following transport
equations:

uκ∂κSα = −Sκ((η−1)αλ∂λuκ). (3.7)

Moreover, the rectangular components of the vorticity vectorfield �α,
which is defined in (2.5), verify the following transport equations:

uκ∂κ�α = −uα(�κ∂κh) + �κ∂κuα − �α(∂κuκ)

+ (θ − θ;h)εαβγδuβ(∂γh)Sδ + quα�κSκ. (3.8)

Transport-div-curl systems. The modified divergence of the entropy gradi-
ent D [which is defined in (2.16b)] and the rectangular components vortα(S)

24The wave equation (3.5) is auxiliary in the sense that we do not use it in our proof of
Theorem 9.12. However, in applications (for example, in the study of shock formation), one
has to compute �g applied to the scalar component functions gαβ , and, by virtue of the

chain rule, the quantity �gs arises in such computations. It is for this reason that we have

included Eq. (3.5) in this paper.
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of the u-orthogonal vorticity of the entropy gradient vectorfield [see defini-
tion (2.4)] verify the following transport-div-curl system:

uκ∂κD =
2
n

{
(∂κSκ)(∂λuλ) − (∂λSκ)(∂κuλ)

}

+
1
n

c−2uκ
{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}

+
SκCκ

nH
+ Q(D) + L(D), (3.9a)

vortα(S) = 0, (3.9b)

where Q(D) is the g-null form defined by

Q(D) :=
1
n

c−2Sκ
{
(∂κuλ)(∂λh) − (∂λuλ)(∂κh)

}
, (3.10a)

and L(D), which is linear in the derivatives of (h, s, uα, Sα,�α), is defined by

L(D) :=
(1 − c−2)

nH
εαβγδSαuβ(∂γh)�δ +

1
nH

εαβγδSα(∂βuγ)�δ

+
SκSλ

n

{
(θ − θ;h)

H
− 2q

}
(∂κuλ)

+
SκSκ

n

{
(θ;h − θ)

H
+ 2c−1c;s − c2q;h + q

}
(∂λuλ). (3.10b)

Finally, the divergence of the vorticity vectorfield �α (which is defined
in (2.5)) and the rectangular components Cα of the modified vorticity of the
vorticity (which is defined in (2.16a)) verify the following equations:

∂α�α = −�κ∂κh + 2q�κSκ, (3.11a)

uκ∂κCα = Cκ∂κuα − 2Cα(∂κuκ) + uαCκ(uλ∂λuκ)

− 2εαβγδuβ(∂γ�κ)(∂δuκ)

+ (θ;h − θ)
{
(η−1)ακ + 2uαuκ

}{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}

+ (θ − θ;h)nuα(uκ∂κh)D
+ (θ − θ;h)qSα(∂κSκ) + (θ;h − θ)qSκ((η−1)αλ∂λSκ)

+ Q(Cα) + L(Cα), (3.11b)

where Q(Cα) is the g-null form defined by

Q(Cα) := −c−2εκβγδ(∂κuα)uβ(∂γh)�δ

+ (c−2 + 2)εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2εαβγδuβ�δ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)}
+
{
(θ;h;h − θh) + c−2(θ − θ;h)

}
uκ(η−1)αλSβ×

{(∂κh)(∂λuβ) − (∂λh)(∂κuβ)}
+ (θ;h − θ)Sκuλ {(∂κuα)(∂λh) − (∂λuα)(∂κh)}
+ (θ;h − θ)

{
(η−1)ακ + uαuκ

}
Sβ
{
(∂κuβ)(∂λuλ) − (∂λuβ)(∂κuλ)

}
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+ (θ;h − θ)Sα
{
(∂κuλ)∂λuκ − (∂λuλ)(∂κuκ)

}

+ (θ;h − θ)Sκ
{
(∂κuα)(∂λuλ) − (∂λuα)(∂κuλ)

}

+ Sα
{
c−2(θh − θ;h;h) + c−4(θ;h − θ)

}
(g−1)κλ(∂κh)(∂λh), (3.12a)

and L(Cα), which is linear in the derivatives of (h, s, uα, Sα,�α), is defined by

L(Cα) :=
2q

H
(�κSκ�α) − 2

H
�α(�κ∂κh)

+ 2c−3c;sε
αβγδuβSγ�δ(uκ∂κh)

− 2qεαβγδuβSγ�κ(∂δuκ) − qεαβγδSβuγ�δ(∂κuκ)

+
1
H

(θ − θ;h)εκβγδ(∂κuα)Sβuγ�δ + c−2qεαβγδSβ(∂γh)�δ

− c−2quαεκβγδSκuβ(∂γh)�δ

+ (θ;h − θ)qSκSκ(uλ∂λuα)

+ uαSκSκ {(θ;h − θ)q + (θ;h;s − θ;s)} (uλ∂λh)

+ Sα {(θ;s − θ;h;s) + (θ − θ;h)q;h} (Sκ∂κh)

+ SκSκ{(θ;h;h − θh)q + (θ;h;s − θ;s) + (θ − θ;h)qc−2 + (θ;h − θ)q;h}×
((η−1)αλ∂λh). (3.12b)

Remark 3.2 (Special structure of the inhomogeneous terms). We emphasize
the following two points, which are of crucial importance for applications to
shock waves (see Sect. 1.2.2 for further discussion): (i) all inhomogeneous terms
on the RHSs of the equations of the theorem are at most quadratic in the
derivatives of (h, s, uα, Sα,�α) and (ii) all derivative-quadratic terms on the
RHSs of the equations of the theorem are linear combinations of standard g-
null forms. In particular, the following are linear combinations of standard g-
null forms, even though we did not explicitly state so in the theorem: the terms
on the first and second lines of RHS (3.9a) and the terms on the second and
third lines of RHS (3.11b). We have separated these null forms, which involve
the derivatives of � and S, because they need to be handled with elliptic
estimates, at least at the top derivative level (see the proof of Theorem 9.12).
This is different compared to the terms Q(h), Q(uα), Q(D), and Q(Cα), which
can be handled with standard energy estimates at all derivative levels.

Proof. Theorem 3.1 follows from a lengthy series of calculations, most of which
we derive later in the paper, except that we have somewhat reorganized (using
only simple algebra) the terms on the right-hand sides of the equations of the
theorem. More precisely, we prove (3.1)–(3.2b) in Proposition 5.2.

We prove (3.3)–(3.4b) in Proposition 5.3.
We prove (3.5)–(3.6) in Proposition 5.4.
Equation (3.7) follows from raising the indices of (2.24) with the inverse

Minkowski metric.
We prove (3.8) in Proposition 7.1.
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Except for (3.9b), (3.9a)–(3.10b) follow from Proposition 6.2.
Equation (3.9b) is a simple consequence of definition (2.4) and the symme-
try property ∂αSβ = ∂βSα [see (4.1)].

Finally, we prove (3.11a)–(3.12b) in Proposition 8.2. �

4. Preliminary Identities

In the next lemma, we derive some preliminary identities that we will later
use when deriving the equations stated in Theorem 3.1.

Lemma 4.1 (Some useful identities). Assume that (h, s, uα) is a C2 solution
to (2.17)–(2.19) + (2.20), and let Vα be any C1 one-form. Then the following
identities hold:

∂αSβ = ∂βSα, (4.1)

�κuκ = 0, (4.2)

κ∂αuκ = 0, (4.3)

uκ∂αSκ = −Sκ∂αuκ, (4.4)

uκ∂α�κ = −�κ∂αuκ, (4.5)

∂α = −uαuκ∂κ + Π κ
α ∂κ, (4.6)

∂κV κ = −uκuλ∂λV κ + Πκλ∂κVλ, (4.7)

∂αVβ − ∂βVα = εαβγδu
γvortδ(V ) + uαuκ∂βVκ − uβuκ∂αVκ

+ uβuκ∂κVα − uαuκ∂κVβ , (4.8)

ΠαβΠγδ(∂αVγ − ∂γVα)(∂βVδ − ∂δVβ) = 2Παβvortα(V )vortβ(V ). (4.9)

Moreover, if uκVκ = 0, then

∂αVβ − ∂βVα = εαβγδu
γvortδ(V ) − uαVκ∂βuκ + uβVκ∂αuκ

+ uβuκ∂κVα − uαuκ∂κVβ . (4.10)

In addition, the following identity holds, where the indices for ε on
LHS (4.11) are raised before Lie differentiation:

Lu(εαβγδ) = (−∂κuκ)εαβγδ. (4.11)

Furthermore, the following identities hold:

Lu(u�)α = uκ∂κuα = −∂αh − uαuκ∂κh + qSα, (4.12)
Lud(Hu�) = dLu(Hu�), (4.13)

[Lud(Hu�)]αβ = θ;h(∂αh)∂βs − θ;h(∂αs)∂βh, (4.14)

∂α(Huβ) − ∂β(Huα) = εαβγδu
γ�δ + θ {Sαuβ − Sβuα} , (4.15)

εαβγδ∂γ(Huδ) = �αuβ − uα�β + θεαβγδSγuδ, (4.16)

∂αuβ − ∂βuα =
1
H

εαβγδu
γ�δ − (∂αh)uβ + (∂βh)uα

+q {Sαuβ − Sβuα} , (4.17)
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(uκ∂κuλ)Sλ = −Sκ∂κh + qSκSκ, (4.18)

(uκ∂κSλ)uλ = Sκ∂κh − qSκSκ, (4.19)

Sκ∂αuκ = Sκ∂κuα + (Sκ∂κh)uα − qSκSκuα +
1
H

εακγδS
κuγ�δ

= Sκ∂κuα − (Sκuλ∂λuκ)uα +
1
H

εαβγδS
βuγ�δ, (4.20)

�κ∂κuα = �κ∂αuκ − (�κ∂κh)uα + q�κSκuα, (4.21)

εαβγδ∂γuδ =
1
H

�αuβ − 1
H

uα�β − εαβγδ(∂γh)uδ + qεαβγδSγuδ, (4.22)

εαβγδuβ∂γuδ = − 1
H

�α, (4.23)

∂γ�δ − ∂δ�γ = εγδκλuκvortλ(�) − (uκ∂κ�δ)uγ + uκ(∂δ�κ)uγ

+(uκ∂κ�γ)uδ − uκ(∂γ�κ)uδ, (4.24)

εαβγδ∂γ�δ = vortα(�)uβ − uαvortβ(�) + εαβγδ(uκ∂κ�γ)uδ

− εαβγδuκ(∂γ�κ)uδ.
(4.25)

Proof. (4.1) follows from definition (2.8) and the symmetry property ∂α∂βs =
∂β∂αs. Equation (4.2) is a simple consequence of definition (2.2). Equation (4.3)
follows from differentiating (2.20) with ∂α. Equation (4.4) follows from differ-
entiating (2.21) with ∂α. Equation (4.5) follows from differentiating (4.2) with
∂α. Equation (4.6) follows directly from definition (2.12). Equation (4.7) then
follows from (4.6).

To prove (4.8), we first use definition (2.4) to express the first product
on RHS (4.8) as follows:

εαβγδu
γvortδ(V ) = −εαβγδε

δθκλuγuθ∂κVλ. (4.26)

Next, we observe the following identity for the first two factors on RHS (4.26):

−εαβγδε
δθκλ = εαβγδε

θκλδ

= δθ
αδκ

γδλ
β − δθ

αδλ
γδκ

β + δλ
αδθ

γδκ
β − δλ

αδκ
γδθ

β + δκ
αδλ

γδθ
β − δκ

αδθ
γδλ

β .
(4.27)

Using (4.27) to substitute on RHS (4.26), we deduce, in view of (2.20), the
following identity:

−εαβγδε
δθκλuθ∂κVλuγ = uαuκ∂κVβ − uαuκ∂βVκ − ∂βVα

− uβuκ∂κVα + uβuκ∂αVκ + ∂αVβ . (4.28)

Combining (4.26) and (4.28) and rearranging the terms, we arrive at the de-
sired identity (4.8). Equation (4.10) then follows from (4.8) and the relation
uκ∂αVκ = −Vκ∂αuκ, which follows from differentiating the assumed identity
uκVκ = 0 with ∂α.



Vol. 20 (2019) Relativistic Euler 2203

To prove (4.9), we first use (4.8) to deduce

ΠαβΠγδ(∂αVγ − ∂γVα)(∂βVδ − ∂δVβ)

= ΠαβΠγδεαγκλεβδμνuκvortλ(V )uμvortν(V ). (4.29)

Next, we note the following identity, which follows easily from definition (2.12):

ΠαβΠγδεαγκλεβδμνuκvortλ(V )uμvortν(V )

= (η−1)αβ(η−1)γδεαγκλεβδμνuκvortλ(V )uμvortν(V )

= εαβκλεαβμνuκvortλ(V )uμvortν(V ). (4.30)

From (4.30), the identity εαβκλεαβμν = 2δλ
μδκ

ν − 2δκ
μδλ

ν , (2.20), and the simple
identity uαvortα(V ) = 0 [which follows easily from definition (2.4)], we find
that RHS (4.30) = 2vortα(V )vortα(V ). Again using that uαvortα(V ) = 0, we
conclude, in view of definition (2.12), the desired identity (4.9). Equation (4.11)
is a standard geometric identity, as is (4.13).

To prove (4.12), we first note the Lie differentiation identity Lu(u�)α =
uκ∂κuα + uκ∂αuκ, which follows from (2.1). Equation (4.12) follows from this
identity, (2.22), and (4.3).

To prove (4.14), we first use (2.23) and the Lie derivative formula (2.1) to
deduce that Lu(Hu�)α = uκ∂κ(Huα)+Huκ∂αuκ = −∂αH +θ∂αs+Huκ∂αuκ.
From (4.3), we see that the last product on the RHS of this identity vanishes.
Hence, taking the exterior derivative of the identity, we obtain [dLu(Hu�)]αβ =
θ;h(∂αh)∂βs − θ;h(∂αs)∂βh. The desired identity (4.14) now follows from this
identity and (4.13).

To prove (4.15), we first use definition (2.5) to compute that

εαβγδu
γ�δ = −εαβγδε

δκθλuγuκ∂θ(Huλ).

Using the identity εαβγδε
δκθλ = −εαβγδε

λκθδ = δλ
αδκ

βδθ
γ − δλ

αδθ
βδκ

γ + δκ
αδθ

βδλ
γ −

δκ
αδλ

βδθ
γ + δθ

αδλ
βδκ

γ − δθ
αδκ

βδλ
γ , we deduce, in view of (2.20), that

−εαβγδε
δκθλuγuκ∂θ(Huλ) = ∂α(Huβ) − ∂β(Huα)

− uβuκ∂κ(Huα) − uαuκ∂β(Huκ)

+ uαuκ∂κ(Huβ) + uβuκ∂α(Huκ). (4.31)

Using (2.20), (2.23), and (4.3), we compute that the last four products on
RHS (4.31) sum to θ(uαSβ − uβSα), which yields the desired identity (4.15).

To prove (4.16), we first contract 1
2εαβγδ against (4.15) to obtain the

identity

εαβγδ∂γ(Huδ) =
1
2
εαβγδεγδκλuκ�λ + θεαβγδSγuδ. (4.32)

(4.16) now follows from using the identity 1
2εαβγδεγδκλ = δβ

κδα
λ − δα

κδ
β
λ to

substitute for the factor 1
2εαβγδεγδκλ on RHS (4.32). Equation (4.17) follows

from (4.15) and simple computations.
To prove (4.18), we contract Sα against Eq. (2.22) and use Eq. (2.21).

Equation (4.19) then follows from (4.4) and (4.18).
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To prove the first equality in (4.20), we contract Sβ against (4.17) and
use Eq. (2.21). To obtain the second equality in (4.20), we use the first equality
and the identity (4.18). Equation (4.21) follows from contracting (4.17) against
�α and using (4.2).

To prove (4.22), we first use (4.17) to deduce that

εαβγδ∂γuδ =
1
2

1
H

εαβγδεγδκλuκ�λ − εαβγδ(∂γh)uδ + qεαβγδSγuδ. (4.33)

(4.22) now follows from using the identity 1
2εαβγδεγδκλ = δβ

κδα
λ − δα

κδ
β
λ to

substitute for the product 1
2εαβγδεγδκλ on RHS (4.33).

To prove (4.23), we contract (4.22) against uβ and use (2.20) and (4.2).
To prove (4.24), we first use definition (2.4) to express the first product

on RHS (4.24) as follows:

εγδκλuκvortλ(�) = −εγδκλελθαβuκuθ∂α�β . (4.34)

Next, we use the identity −εγδκλελθαβ = εγδκλεθαβλ = δθ
γδ

β
δ δα

κ − δθ
γδα

δ δβ
κ +

δα
γ δθ

δδ
β
κ − δα

γ δ
β
δ δθ

κ + δβ
γδα

δ δθ
κ − δβ

γδθ
δδ

α
κ to substitute on RHS (4.34), thereby

obtaining, in view of (2.20), the following identity:

εγδκλuκvortλ(�) = uγuκ∂κ�δ − uγuκ∂δ�κ + uδu
κ∂γ�κ + ∂γ�δ

− ∂δ�γ − uδu
κ∂κ�γ . (4.35)

Finally, we note that it is straightforward to see that (4.35) is equivalent to
the desired identity (4.24).

To prove (4.25), we first contract (4.24) against 1
2εαβγδ to deduce

εαβγδ∂γ�δ =
1
2
εαβγδεγδκλuκvortλ(�) + εαβγδ(uκ∂κ�γ)uδ

− εαβγδuκ(∂γ�κ)uδ. (4.36)

Using the identity 1
2εαβγδεγδκλ = 1

2εγδαβεγδκλ = δβ
κδα

λ −δα
κδ

β
λ to substitute in

the first product on RHS (4.36), we arrive at the desired identity (4.25). �

5. Wave Equations

In this section, with the help of the preliminary identities of Lemma 4.1, we
derive the covariant wave equations (3.1), (3.3), and (5.18).

5.1. Covariant Wave Operator

We start by establishing a formula for the covariant wave operator of the
acoustical metric acting on a scalar function.

Lemma 5.1 (Covariant wave operator of g). Assume that (h, s, uα) is a C2

solution to (2.17)–(2.19) + (2.20). Then the covariant wave operator of the
acoustical metric g = g(h, s, u) (see Definition 2.6) acts on scalar functions φ
as follows, where RHS (5.1) is expressed relative to the rectangular coordinates:
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�gφ = (c2 − 1)uκ∂κ(uλ∂λφ) + c2((η−1)κλ∂κ∂λφ)

+ (c2 − 1)(∂κuκ)(uλ∂λφ) + 2c−1c;h(uκ∂κh)(uλ∂λφ)

− c−1c;h(g−1)κλ(∂κh)(∂λφ)

− cc;s(Sκ∂κφ). (5.1)

Proof. It is a standard fact that relative to arbitrary coordinates (and in par-
ticular relative to the rectangular coordinates), we have

�gφ =
1

√|detg|∂κ

(√
|detg|(g−1)κλ∂λφ

)
.

Using this formula and (2.14a)–(2.14b), we compute that

�gφ = c3∂κ

{−(c−3 − c−1)uκ(uλ∂λφ) + c−1((η−1)κλ∂λφ)
}

= −(1 − c2)uκ∂κ(uλ∂λφ) − (1 − c2)(∂κuκ)(uλ∂λφ)

+ (3c−1 − c)(uκ∂κc)(uλ∂λφ) − c(η−1)κλ(∂κc)(∂λφ)

+ c2((η−1)κλ∂κ∂λφ). (5.2)

The desired identity (5.1) now follows from (5.2), (2.13b), the evolution equa-
tion (2.19), and straightforward computations. �

5.2. Covariant Wave Equation for the Logarithmic Enthalpy

We now derive the covariant wave equation (3.1).

Proposition 5.2 (Covariant wave equation for the logarithmic enthalpy). As-
sume that (h, s, uα) is a C2 solution to (2.17)–(2.19) + (2.20). Then the log-
arithmic enthalpy h verifies the following covariant wave equation:

�gh = nc2qD − c−1c;h(g−1)κλ(∂κh)(∂λh)

+ c2
{
(∂κuκ)(∂λuλ) − (∂κuλ)(∂λuκ)

}

+ (1 − c2)q(Sκ∂κh) − cc;s(Sκ∂κh) + c2q;h(Sκ∂κh) + c2q;sSκSκ. (5.3)

Proof. From (5.1) with φ := h, we deduce

�gh = (c2 − 1)uκ∂κ(uλ∂λh) + c2((η−1)κλ∂κ∂λh)

+ (c2 − 1)(∂κuκ)(uλ∂λh) + 2c−1c;h(uκ∂κh)(uλ∂λh)

− c−1c;h(g−1)κλ(∂κh)(∂λh)

− cc;s(Sκ∂κh). (5.4)

Next, we differentiate Eq. (2.22) with ∂β , contract against (η−1)αβ , and
multiply by c2 to obtain the identity

c2((η−1)κλ∂κ∂λh) = −c2(uκ∂κ∂λuλ) − c2(∂κuλ)(∂λuκ)

− c2uκ∂κ(uλ∂λh) − c2(∂κuκ)(uλ∂λh)

+ c2q(∂κSκ) + c2q;h(Sκ∂κh) + c2q;sS
κSκ. (5.5)
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Next, we use (2.17) and the evolution equation (2.19) to rewrite the first
product on RHS (5.5) as follows:

−c2(uκ∂κ∂λuλ) = c2uκ∂κ(c−2uλ∂λh)

= uκ∂κ(uλ∂λh) − 2c−1c;h(uκ∂κh)(uλ∂λh). (5.6)

Using (5.6) to substitute for the first product on RHS (5.5) and then
using the resulting identity to substitute for the product c2(η−1)κλ∂κ∂λh on
RHS (5.4), we deduce

�gh = −c2(∂κuλ)(∂λuκ) − (∂κuκ)(uλ∂λh)

− c−1c;h(g−1)κλ(∂κh)(∂λh)

− cc;s(Sκ∂κh) + c2q(∂κSκ) + c2q;h(Sκ∂κh) + c2q;sS
κSκ. (5.7)

Finally, we use Eq. (2.17) to substitute for the factor uλ∂λh in the second
product on RHS (5.7), and we use definition (2.16b) to express the product
c2q(∂κSκ) on RHS (5.7) as nc2qD + (1 − c2)q(Sκ∂κh), which in total yields
the desired Eq. (5.3). �

5.3. Covariant Wave Equation for the Rectangular Components of the Four-
Velocity

We now derive the covariant wave equation (3.3).

Proposition 5.3 (Covariant wave equation for the rectangular four-velocity
components). Assume that (h, s, uα) is a C2 solution to (2.17)–(2.19) + (2.20).
Then the rectangular velocity components uα verify the following covariant
wave equations:

�gu
α = − c2

H
Cα

− c2

H
εαβγδ(∂βuγ)�δ +

(1 − c2)
H

εαβγδuβ(∂γh)�δ

+
(1 − c2)q

H
εαβγδSβuγ�δ

− (g−1)κλ(∂κh)(∂λuα) − c−1c;h(g−1)κλ(∂κh)(∂λuα)

+ (η−1)αλ {(∂κuκ)(∂λh) − (∂λuκ)(∂κh)}
+ c2uα

{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}

− cc;s(Sκ∂κuα) + q(Sκ∂κuα)

+ (c2 − 1)quα(Sκuλ∂λuκ) + c2qSκ((η−1)αλ∂λuκ)

+ 2c−1c;sS
α(uκ∂κh) + 2c−1c;hqSα(uκ∂κh)

− q;hSα(uκ∂κh) − qSα(∂κuκ)

+ (θ − θ;h)
c2

H
Sα(∂κuκ) + (θ − θ;h)

c2

H
uα(Sκ∂κh)

+ (θ;h − θ)
c2

H
Sκ((η−1)αλ∂λuκ). (5.8)



Vol. 20 (2019) Relativistic Euler 2207

Proof. From (5.1) with φ := uα, we deduce

�guα = (c2 − 1)uκ∂κ(uλ∂λuα) + c2((η−1)κλ∂κ∂λuα)

+ (c2 − 1)(∂κuκ)(uλ∂λuα) + 2c−1c;h(uκ∂κh)(uλ∂λuα)

− c−1c;h(g−1)κλ(∂κh)(∂λuα) − cc;s(Sκ∂κuα). (5.9)

Next, we use Eqs. (2.19), (2.22), and the second line of (6.1) [where below,
we derive (6.1) using an independent argument] to rewrite the first product on
RHS (5.9) as follows:

(c2 − 1)uκ∂κ(uλ∂λuα) = (1 − c2)(uκ∂κ∂αh) + (1 − c2)
{
uκ∂κ(uλ∂λh)

}
uα

+ (1 − c2)(uκ∂κuα)(uλ∂λh) + (c2 − 1)uκ∂κ(qSα)

= (1 − c2)(uκ∂κ∂αh) + (1 − c2)
{
uκ∂κ(uλ∂λh)

}
uα

+ (1 − c2)(uκ∂κuα)(uλ∂λh) + (c2 − 1)q;h(uκ∂κh)Sα

+ (1 − c2)q(Sκ∂κuα) +
1
H

(1 − c2)qεαβγδS
βuγ�δ

+ (c2 − 1)qSκ(uλ∂λuκ)uα. (5.10)

Next, we use definition (2.16b), the identity (4.17), and the evolution
equations (2.17), (2.19), and (2.24) to rewrite the second product on RHS (5.9)
as follows:

c2((η−1)κλ∂κ∂λuα) = c2(∂α∂κuκ)

+ c2(η−1)κλ∂κ

{ 1
H

ελαγδu
γ�δ − (∂λh)uα + (∂αh)uλ+

qSλuα − qSαuλ

}

= (c2 − 1)(uκ∂κ∂αh) − (∂αuκ)(∂κh)

+ 2c−1c;h(∂αh)(uκ∂κh) + 2c−1c;sSα(uκ∂κh)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ

+ c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ

+ c2 1
H

ελαγδu
γ((η−1)κλ∂κ�δ)

− c2((η−1)κλ∂κ∂λh)uα − c2(η−1)κλ(∂κh)(∂λuα)

+ c2(∂αh)(∂κuκ)

+ c2q;h(Sκ∂κh)uα + c2q;sSκSκuα

+ c2q(∂κSκ)uα + c2q(Sκ∂κuα)

− c2q;h(uκ∂κh)Sα − c2q(uκ∂κSα) − c2q(∂κuκ)Sα

= nc2qDuα

+ (c2 − 1)(uκ∂κ∂αh) − (∂αuκ)(∂κh)
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+ 2c−1c;h(∂αh)(uκ∂κh)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ

+ c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ

+ c2 1
H

ελαγδu
γ((η−1)κλ∂κ�δ)

− c2((η−1)κλ∂κ∂λh)uα − c2(η−1)κλ(∂κh)(∂λuα)

+ c2(∂αh)(∂κuκ)

+ c2q;h(Sκ∂κh)uα + c2q;sSκSκuα + c2q(Sκ∂κuα)

− c2q;h(uκ∂κh)Sα + c2q(∂αuκ)Sκ − c2q(∂κuκ)Sα

+ (1 − c2)q(Sκ∂κh)uα + 2c−1c;s(uκ∂κh)Sα. (5.11)

Next, we use the identity (5.1) with φ := h to substitute for the term
�gh on LHS (5.3), which yields the identity

c2((η−1)κλ∂κ∂λh) = c2
{
(∂κuκ)(∂λuλ) − (∂λuκ)(∂κuλ)

}

+ (1 − c2)uκ∂κ(uλ∂λh) + (1 − c2)(∂κuκ)(uλ∂λh)

− 2c−1c;h(uκ∂κh)(uλ∂λh)

+ nc2qD
+ (1 − c2)q(Sκ∂κh) + c2q;h(Sκ∂κh) + c2q;sSκSκ. (5.12)

From (5.12), it follows that the product −c2((η−1)κλ∂κ∂λh)uα on
RHS (5.11) can be expressed as

−c2((η−1)κλ∂κ∂λh)uα = c2
{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}
uα

+ (c2 − 1)
{
uκ∂κ(uλ∂λh)

}
uα

+ (c2 − 1)(∂κuκ)(uλ∂λh)uα

+ 2c−1c;h(uκ∂κh)(uλ∂λh)uα

− nc2qDuα

+ (c2 − 1)q(Sκ∂κh)uα − c2q;h(Sκ∂κh)uα

− c2q;sSκSκuα. (5.13)

Using (5.13) to substitute for the term −c2((η−1)κλ∂κ∂λh)uα on
RHS (5.11), we obtain the identity

c2((η−1)κλ∂κ∂λuα) = (c2 − 1)(uκ∂κ∂αh) − (∂αuκ)(∂κh)

+ 2c−1c;h(∂αh)(uκ∂κh)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ

+ c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ



Vol. 20 (2019) Relativistic Euler 2209

+ c2 1
H

ελαγδu
γ((η−1)κλ∂κ�δ)

+ c2
{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}
uα

+ (c2 − 1)
{
uκ∂κ(uλ∂λh)

}
uα

+ (c2 − 1)(∂κuκ)(uλ∂λh)uα

+ 2c−1c;h(uκ∂κh)(uλ∂λh)uα

− c2(η−1)κλ(∂κh)(∂λuα) + c2(∂αh)(∂κuκ)

+ c2q(Sκ∂κuα)

− c2q;h(uκ∂κh)Sα + c2q(∂αuκ)Sκ − c2q(∂κuκ)Sα

+ 2c−1c;s(uκ∂κh)Sα. (5.14)

Using (5.10) and (5.14) to substitute for the first and second products on
RHS (5.9), and reorganizing the terms, we deduce [where we have added and
subtracted (∂κuκ)(∂αh) on the third and fourth lines of RHS (5.15)]

�guα = c2 1
H

ελαγδu
γ((η−1)κλ∂κ�δ)

+ (1 − c2)(uκ∂κuα)(uλ∂λh) − c2(η−1)κλ(∂κh)(∂λuα)

+ {(∂κuκ)(∂αh) − (∂αuκ)(∂κh)}
+ (c2 − 1)(∂κuκ)(∂αh) + (c2 − 1)(∂κuκ)(uλ∂λh)uα

+ (c2 − 1)(∂κuκ)(uλ∂λuα)

+ 2c−1c;h(∂αh)(uκ∂κh) + 2c−1c;h(uκ∂κh)(uλ∂λh)uα

+ 2c−1c;h(uκ∂κh)(uλ∂λuα)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ + c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ

+ c2
{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}
uα

− c−1c;h(g−1)κλ(∂κh)(∂λuα) − cc;s(Sκ∂κuα)

+ 2c−1c;s(uκ∂κh)Sα − q;h(uκ∂κh)Sα + c2q(∂αuκ)Sκ

− c2q(∂κuκ)Sα + q(Sκ∂κuα)

+
1
H

(1 − c2)qεαβγδS
βuγ�δ + (c2 − 1)q(Sκuλ∂λuκ)uα. (5.15)

Next, using (2.13b), we observe the following identity for the two terms
on the second line of RHS (5.15):

(1 − c2)(uκ∂κuα)(uλ∂λh) − c2(η−1)κλ(∂κh)(∂λuα)

= −(g−1)κλ(∂κh)(∂λuα). (5.16)

Moreover, using Eq. (2.22), we see that the terms on the fourth through sev-
enth lines of RHS (5.15) sum to (c2 − 1)q(∂κuκ)Sα + 2c−1c;hq(uκ∂κh)Sα. In
addition, appealing to definition (2.4) with Vα := �α, we obtain the following
identity for the first product on RHS (5.15): c2 1

H ελαγδu
γ((η−1)κλ∂κ�δ) =
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−c2 1
H vortα(�). From these facts, (5.15), and (5.16), we obtain the following

equation:

�guα = −c2 1
H

vortα(�)

− c2 1
H

ελαγδ((η−1)κλ∂κh)uγ�δ + c2 1
H

ελαγδ((η−1)κλ∂κuγ)�δ

+ {(∂κuκ)(∂αh) − (∂αuκ)(∂κh)} − (g−1)κλ(∂κh)(∂λuα)

+ c2
{
(∂κuλ)(∂λuκ) − (∂λuλ)(∂κuκ)

}
uα

− c−1c;h(g−1)κλ(∂κh)(∂λuα) − cc;s(Sκ∂κuα)

+ 2c−1c;s(uκ∂κh)Sα − q;h(uκ∂κh)Sα + c2q(∂αuκ)Sκ

+ q(Sκ∂κuα) +
1
H

(1 − c2)qεαβγδS
βuγ�δ

+ (c2 − 1)q(Sκuλ∂λuκ)uα

− q(∂κuκ)Sα + 2c−1c;hq(uκ∂κh)Sα. (5.17)

Using definition (2.16a) to express the product −c2 1
H vortα(�) on RHS (5.17)

as −c2 1
H Cα + · · · , reorganizing the terms on the RHS of the resulting identity,

and raising the α index with η−1, we arrive at the desired identity (5.8). �

5.4. Covariant Wave Equation for the Entropy

In this subsection, we derive the covariant wave equation (3.5).

Proposition 5.4 (Covariant wave equation for s). Assume that (h, s, uα) is a
C2 solution to (2.17)–(2.19) + (2.20). Then the entropy s verifies the following
covariant wave equation:

�gs = c2nD + Sκ∂κh − c2Sκ∂κh − cc;hSκ∂κh − cc;sSκSκ. (5.18)

Proof. Applying (5.1) with φ := s, using (2.13b) to algebraically substitute for
the factor of (g−1)κλ on RHS (5.1), and using the evolution equation (2.19)
[which implies that many factors on RHS (5.1) vanish], we deduce, in view of
definition (2.8), that

�gs = c2∂κSκ − cc;hSκ∂κh − cc;sSκSκ. (5.19)

We then solve for ∂κSκ in terms of the remaining terms in definition (2.16b)
and then use the resulting identity to algebraically substitute for the factor
∂κSκ in the first product on RHS (5.19), which in total yields the desired
Eq. (5.18). �

6. Transport Equations for the Entropy Gradient and the
Modified Divergence of the Entropy

In this section, with the help of the preliminary identities of Lemma 4.1, we
derive Eqs. (3.7) and (3.9a). We start by deriving (3.7) (more precisely, its
η-dual).
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Proposition 6.1 (Transport equation for the entropy gradient). Assume that
(h, s, uα) is a C2 solution to (2.17)–(2.19) + (2.20). Then the rectangular
components the Sα of the entropy gradient vectorfield (see Definition 2.5) verify
the following transport equations:

uκ∂κSα = −Sκ∂κuα − 1
H

εαβγδS
βuγ�δ − (Sκ∂κh)uα + qSκSκuα

= −Sκ∂κuα − 1
H

εαβγδS
βuγ�δ + Sκ(uλ∂λuκ)uα. (6.1)

Proof. From Eq. (2.24), the identity (4.17), (2.20), and (2.21), we deduce

uκ∂κSα = −Sκ∂κuα − 1
H

εαβγδS
βuγ�δ + (∂αh)Sκuκ − (Sκ∂κh)uα

− q {SαSκuκ − SκSκuα}
= −Sκ∂κuα − 1

H
εαβγδS

βuγ�δ − (Sκ∂κh)uα + qSκSκuα, (6.2)

which yields the first line of (6.1). To obtain the second line of (6.1) from the
first, we use the identity (4.18). �

We now derive Eq. (3.9a).

Proposition 6.2 (Transport equation for the modified divergence of the en-
tropy). Assume that (h, s, uα) is a C3 solution to (2.17)–(2.19) + (2.20). Then
the modified divergence of the entropy gradient D, which is defined in (2.16b),
verifies the following transport equation:

uκ∂κD =
2
n

{
(∂κSκ)(∂λuλ) − (∂λSκ)(∂κuλ)

}

+
1
n

c−2uκ
{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}

+
1
n

c−2Sκ
{
(∂κuλ)(∂λh) − (∂λuλ)(∂κh)

}

+
SκCκ

nH

+
(1 − c−2)

nH
εαβγδSαuβ(∂γh)�δ +

1
nH

εαβγδSα(∂βuγ)�δ

+
(θ − θ;h)

nH
Sκ(Sλ∂λuκ) − 2q

n
Sκ(Sλ∂λuκ)

+
(θ;h − θ)

nH
SκSκ(∂λuλ) +

2c−1c;s

n
SκSκ(∂λuλ)

− c2q;h

n
SκSκ(∂λuλ) +

q

n
SκSκ(∂λuλ). (6.3)

Proof. We apply (η−1)αλ∂λ to Eq. (6.1) [where we use the first equality in (6.1)]
and use the evolution equation (2.19) and the identity (4.18) to deduce

uκ∂κ∂λSλ = −uκ∂κ(Sλ∂λh) − 2(∂λSκ)(∂κuλ)

− Sκ∂κ∂λuλ − (Sκ∂κh)(∂λuλ)
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+
1
H

εαβγδ(∂αh)Sβuγ�δ − 1
H

εαβγδSβuγ(∂α�δ)

− 1
H

εαβγδSβ(∂αuγ)�δ

+ q;hSκSκ(uλ∂λh) + 2qSκ(uλ∂λSκ) + qSκSκ(∂λuλ). (6.4)

Next, we use the evolution equations (2.17) and (2.19) to rewrite the third
product on RHS (6.4) as follows:

−Sκ∂κ∂λuλ = Sκ∂κ(c−2uλ∂λh)

= c−2(Sκuλ∂λ∂κh) − 2c−3c;h(Sκ∂κh)(uλ∂λh)

− 2c−3c;sSκSκ(uλ∂λh) + c−2(Sκ∂κuλ)(∂λh)

= uκ∂κ(c−2Sλ∂λh) + c−2(Sκ∂κuλ)(∂λh) − c−2(uκ∂κSλ)(∂λh)

− 2c−3c;sSκSκ(uλ∂λh). (6.5)

Next, with the help of the evolution equation (2.17), we decompose the second
and third products on RHS (6.5) as follows:

c−2(Sκ∂κuλ)(∂λh) = c−2(Sκ∂κh)(∂λuλ)

+ c−2
{
(Sκ∂κuλ)(∂λh) − (∂λuλ)(Sκ∂κh)

}
, (6.6)

−c−2(uκ∂κSλ)(∂λh) = −c−2(uκ∂κh)(∂λSλ)

+ c−2
{
(uκ∂κh)(∂λSλ) − (uκ∂κSλ)(∂λh)

}

= (∂κuκ)(∂λSλ)

+ c−2
{
(uκ∂κh)(∂λSλ) − (uκ∂κSλ)(∂λh)

}
. (6.7)

Using (6.6)–(6.7) to substitute for the second and third products on RHS (6.5)
and then using the resulting identity to substitute for the third product on
RHS (6.4), we obtain the following equation:

uκ∂κ

{
∂λSλ + Sλ∂λh − c−2(Sλ∂λh)

}

= (∂κSκ)(∂λuλ) − 2(∂λSκ)(∂κuλ)

− (Sκ∂κh)(∂λuλ) + c−2(Sκ∂κh)(∂λuλ)

+ c−2
{
(Sκ∂κuλ)(∂λh) − (∂λuλ)(Sκ∂κh)

}

+ c−2
{
(uκ∂κh)(∂λSλ) − (uκ∂κSλ)(∂λh)

}

+
1
H

εαβγδ(∂αh)Sβuγ�δ − 1
H

εαβγδSβuγ(∂α�δ) − 1
H

εαβγδSβ(∂αuγ)�δ

+ q;hSκSκ(uλ∂λh) + 2qSκ(uλ∂λSκ) + qSκSκ(∂λuλ)

− 2c−3c;sSκSκ(uλ∂λh). (6.8)

We now multiply both sides of (6.8) by 1/n, commute the factor of 1/n under
the operator uκ∂κ on LHS (6.8), use Eq. (2.25) (which in particular implies
that uκ∂κ(1/n) = (1/n)∂κuκ), and use Eq. (2.17) to replace the two factors of
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uλ∂λh on the last and next-to-last lines of RHS (6.8) with −c2∂λuλ, thereby
obtaining the following equation:

uκ∂κ

{
1
n

(∂λSλ) +
1
n

(Sλ∂λh) − 1
n

c−2(Sλ∂λh)
}

=
2
n

{
(∂κSκ)(∂λuλ) − (∂λSκ)(∂κuλ)

}

+
1
n

c−2
{
(Sκ∂κuλ)(∂λh) − (∂λuλ)(Sκ∂κh)

}

+
1
n

c−2
{
(uκ∂κh)(∂λSλ) − (∂λh)(uκ∂κSλ)

}

+
1

nH
εαβγδ(∂αh)Sβuγ�δ − 1

nH
εαβγδSβuγ(∂α�δ)

− 1
nH

εαβγδSβ(∂αuγ)�δ

+
2q

n
Sκ(uλ∂λSκ) +

2c−1c;s

n
SκSκ(∂λuλ) − c2q;h

n
SκSκ(∂λuλ)

+
q

n
SκSκ(∂λuλ). (6.9)

Next, we use definitions (2.4) and (2.16a) and the identity (2.21) to obtain the
following identity for the second product on the fourth line of RHS (6.9):

− 1
nH

εαβγδSβuγ(∂α�δ) = − 1
nH

εαβγδSαuβ(∂γ�δ)

=
CκSκ

nH
− 1

nH
c−2εαβγδSαuβ(∂γh)�δ

+
(θ;h − θ)

nH
SκSκ(∂λuλ) +

(θ − θ;h)
nH

Sκ(Sλ∂λuκ).

(6.10)

Using (6.10) to substitute for the second product on the fourth line of RHS (6.9),
using (2.24) to express the first product on the next-to-last line of RHS (6.9) as
2q
n Sκ(uλ∂λSκ) = − 2q

n Sκ(Sλ∂λuκ), and noting that the terms in parentheses
on LHS (6.9) are equal to D [see (2.16b)], we arrive at the desired evolution
equation (6.3). �

7. Transport Equation for the Vorticity

In this section, with the help of the preliminary identities of Lemma 4.1, we
derive Eq. (3.8). We also derive some preliminary identities that, in the next
section, we will use when deriving Eq. (3.11b). We collect all of these results
in the following proposition.

Proposition 7.1 (Transport equation for the vorticity). Assume that (h, s, uα)
is a C3 solution to (2.17)–(2.19) + (2.20). Then the rectangular components
�α of the vorticity vectorfield defined in (2.5) verify the following transport
equations:
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uκ∂κ�α = �κ∂κuα − (∂κuκ)�α − (�κ∂κh)uα

+ (θ − θ;h)εαβγδuβ(∂γh)Sδ + q�κSκuα. (7.1)

Moreover, the following identity holds:

(Lu��)α = �κ∂κuα + �κ(∂αuκ) − (∂κuκ)�α + (uκ∂κuλ)uα�λ

+ (θ − θ;h)ε βγδ
α uβ(∂γh)Sδ. (7.2)

In addition, the following identity holds:

(dLu��)αβ

= (∂α�κ)(∂κuβ) − (∂β�κ)(∂κuα)

+ �κ∂κ∂αuβ − �κ∂κ∂βuα

+ (∂α�κ)(∂βuκ) − (∂β�κ)(∂αuκ)

− (∂α∂κuκ)�β + (∂β∂κuκ)�α

− (∂κuκ)(∂α�β) + (∂κuκ)(∂β�α)

+ (∂αuβ)�λ(uκ∂κuλ) − (∂βuα)�λ(uκ∂κuλ)

+ uβ(∂α�λ)(uκ∂κuλ) − uα(∂β�λ)(uκ∂κuλ)

+ uβ�λ(∂αuκ)(∂κuλ) − uα�λ(∂βuκ)(∂κuλ)

+ uβ�λ(uκ∂κ∂αuλ) − uα�λ(uκ∂κ∂βuλ)

+ (θh − θ;h;h)ε γδ
βκ uκ(∂αh)(∂γh)Sδ

+ (θ;h;h − θh)ε γδ
ακ uκ(∂βh)(∂γh)Sδ

+ (θ;s − θ;h;s)ε
γδ

βκ uκSα(∂γh)Sδ + (θ;h;s − θ;s)ε γδ
ακ uκSβ(∂γh)Sδ

+ (θ − θ;h)ε γδ
βκ (∂αuκ)(∂γh)Sδ + (θ;h − θ)ε γδ

ακ (∂βuκ)(∂γh)Sδ

+ (θ − θ;h)ε γδ
βκ uκ(∂α∂γh)Sδ + (θ;h − θ)ε γδ

ακ uκ(∂β∂γh)Sδ

+ (θ − θ;h)ε γδ
βκ uκ(∂γh)(∂αSδ) + (θ;h − θ)ε γδ

ακ uκ(∂γh)(∂βSδ). (7.3)

Finally, the rectangular components vortα(�) of the vorticity of the vor-
ticity, which is defined by (2.4) and (2.5), verify the following transport equa-
tions:

uκ∂κvortα(�) = vortκ(�)∂κuα − (∂κuκ)vortα(�)

+ uα(uκ∂κuβ)vortβ(�)

+ εαβγδuβ(∂γ∂κuκ)�δ − εαβγδuβ(�κ∂κ∂γuδ)

+ εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ + εαβγδ(uκ∂κuβ)�λ(∂δuλ)uγ

− εαβγδuβ(∂γ�κ)(∂δuκ) − εαβγδuβ(∂γ�κ)(∂κuδ)

+ εαβγδuβ(∂κuκ)(∂γ�δ)

− εαβγδuβ(∂γuδ)�λ(uκ∂κuλ)

+ (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)
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+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)uα(Sκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)

+ (θ − θ;h)Sα(∂κuκ)(uλ∂λh) + (θ;h − θ)(Sκ∂κuα)(uλ∂λh)

+ (θ − θ;h)Sα((η−1)κλ∂κ∂λh) + (θ − θ;h)Sα(uκuλ∂κ∂λh)

+ (θ;h − θ)uα(Sκuλ∂κ∂λh) + (θ;h − θ)(η−1)αλ(Sκ∂κ∂λh)

+ (θ − θ;h)(η−1)κλ(∂κh)(∂λSα) + (θ − θ;h)(uκ∂κh)(uλ∂λSα)

+ (θ;h − θ)uα(uκ∂κh)(∂λSλ) + (θ;h − θ)((η−1)ακ∂κh)(∂λSλ)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ)

+ (θ − θ;h)uα(η−1)κλ∂κh)uβ(∂λSβ). (7.4)

Remark 7.2 Note that RHS (7.4) features some terms that explicitly depend
on two derivatives of u, falsely suggesting that there is derivative loss, that is,
that vortα(�) cannot be more regular than ∂2u. For this reason, Eq. (7.4) is not
suitable for obtaining top-order energy estimates for vortα(�). To overcome
this difficulty, we will derive a transport-div-curl system for � that does not
lose derivatives; see Proposition 8.2.

Proof of Proposition 7.1. We first prove (7.1). From definition (2.5) and the
Lie differentiation formula (2.1), we deduce that

uκ∂κ�α − �κ∂κuα = Lu�α = −1
2
Lu

{
εαβγδuβ(d(Hu�))γδ

}
. (7.5)

Using (7.5), the Leibniz rule for Lie derivatives, definition (2.5), (4.11), the
first identity in (4.12), (4.14), and (4.16), we compute that

uκ∂κ�α = �κ∂κuα − (∂κuκ)�α + (uκ∂κuλ)uα�λ − (uκ∂κuλ)uλ�α

− θεαβγδ(uκ∂κuβ)Sγuδ − θ;hεαβγδuβ(∂γh)Sδ. (7.6)

Using (4.3), we see that the fourth product on RHS (7.6) vanishes. Next, we
use (2.22) and (4.2) to obtain the following identity for the third product on
RHS (7.6): (uκ∂κuλ)uα�λ = −(�κ∂κh)uα + q�κSκuα. Next, we use (2.22) to
obtain the following identity for the fifth product on RHS (7.6):
−θεαβγδ(uκ∂κuβ)Sγuδ = θεαβγδ(∂βh)Sγuδ = θεαβγδuβ(∂γh)Sδ. Substituting
these two identities for the third and fifth products on RHS (7.6), we arrive
at the desired identity (7.1).

Equation (7.2) follows from the Lie derivative identity

(Lu��)α = uκ∂κ�α + �κ∂αuκ

[see (2.1)], from using (4.3) to observe the vanishing of the fourth product
on RHS (7.6), and from using the identity for the fifth product on RHS (7.6)
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proved in the previous paragraph. Equation (7.3) then follows from taking the
exterior derivative of Eq. (7.2) and carrying out straightforward computations.

To derive (7.4), we first use definition (2.4) to deduce

Luvortα(�) = −1
2
Lu(εαβγδuβ(d��)γδ). (7.7)

Next, we use (7.7), the Leibniz rule for Lie derivatives, (4.11), the first equality
in (4.12), and the standard commutation identity Lud�� = dLu�� to deduce

Luvortα(�) = −(∂κuκ)vortα(�) − 1
2
εαβγδ(uκ∂κuβ)(d��)γδ

− 1
2
εαβγδuβ(dLu��)γδ. (7.8)

Next, using (4.25), we express the second product on RHS (7.8) as follows:

−1
2
εαβγδ(uκ∂κuβ)(d��)γδ = −vortα(�)(uκ∂κuβ)uβ

+ uα(uκ∂κuβ)vortβ(�)

− εαβγδ(uκ∂κuβ)(uλ∂λ�γ)uδ

+ εαβγδ(uκ∂κuβ)(uλ∂γ�λ)uδ. (7.9)

Next, using (4.3), we observe that the first product on RHS (7.9) vanishes.
From this fact, the Lie derivative identity Luvortα(�) = uκ∂κvortα(�) −
vortκ(�)∂κuα [see (2.1)], (7.8), and (7.9), we deduce

uκ∂κvortα(�) = vortκ(�)∂κuα − (∂κuκ)vortα(�)

+ uα(uκ∂κuβ)vortβ(�)

+ εαβγδ(uκ∂κuβ)(uλ∂γ�λ)uδ

− εαβγδ(uκ∂κuβ)(uλ∂λ�γ)uδ

− 1
2
εαβγδuβ(dLu��)γδ. (7.10)

Next, we use (4.5) and the antisymmetry of ε··· to express the product
on the third line of RHS (7.10) as

εαβγδ(uκ∂κuβ)(uλ∂γ�λ)uδ = εαβγδ(uκ∂κuβ)�λ(∂δuλ)uγ ,

use the antisymmetry of ε··· to express the product on the fourth line of
RHS (7.10)

−εαβγδ(uκ∂κuβ)(uλ∂λ�γ)uδ = εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ ,

use (7.3) to substitute for the factor (dLu��)γδ in the last product on
RHS (7.10), and carry out straightforward computations, thereby deducing
that

uκ∂κvortα(�) = vortκ(�)∂κuα − (∂κuκ)vortα(�)

+ uα(uκ∂κuβ)vortβ(�)

+ εαβγδuβ(∂γ∂κuκ)�δ − εαβγδuβ(�κ∂κ∂γuδ)



Vol. 20 (2019) Relativistic Euler 2217

+ εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ

+ εαβγδ(uκ∂κuβ)�λ(∂δuλ)uγ

− εαβγδuβ(∂γ�κ)(∂δuκ) − εαβγδuβ(∂γ�κ)(∂κuδ)

+ εαβγδuβ(∂κuκ)(∂γ�δ)

− εαβγδuβ(∂γuδ)�λ(uκ∂κuλ)

+ (θ;h;h − θh)εαβγδε
μν

δκ uβuκ(∂γh)(∂μh)Sν

+ (θ;h;s − θ;s)εαβγδε
μν

δκ uβuκSγ(∂μh)Sν

+ (θ;h − θ)εαβγδε
μν

δκ uβ(∂γuκ)(∂μh)Sν

+ (θ;h − θ)εαβγδε
μν

δκ uβuκ(∂γ∂μh)Sν

+ (θ;h − θ)εαβγδε
μν

δκ uβuκ(∂μh)(∂γSν). (7.11)

Finally, we use the identity

εαβγδε
μν

δκ = (η−1)ναδβ
κ(η−1)μγ − (η−1)ναδγ

κ(η−1)μβ

+ (η−1)νγδα
κ(η−1)μβ − (η−1)νγδβ

κ(η−1)μα

+ (η−1)νβδγ
κ(η−1)μα − (η−1)νβδα

κ(η−1)μγ

to substitute for the five products εαβγδε
μν

δκ on RHS (7.11). Also using
(2.20), (2.21), and (4.3), we arrive at the desired identity (7.4). �

8. The Transport-div-curl System for the Vorticity

Our main goal in this section is to derive Eqs. (3.11a) and (3.11b). We ac-
complish this in Proposition 8.2. Before proving the proposition, we will first
establish some preliminary identities.

8.1. Preliminary Identities

In the next lemma, we derive a large collection of identities that we will use in
deriving the transport equation verified by the vectorfield Cα defined in (2.16a).

Lemma 8.1 (Identification of the null structure of some terms tied to the
transport-div-curl system for the vorticity). Assume that (h, s, uα) is a C2

solution to (2.17)–(2.19) + (2.20). Then the following identities hold for some
of the terms on the third through seventh lines of RHS (7.4):

εαβγδuβ(∂γ∂κuκ)�δ = −uκ∂κ

{
c−2εαβγδuβ(∂γh)�δ

}

− 2(∂κuκ)c−2εαβγδuβ(∂γh)�δ

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

+ c−2εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)
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+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ c−2εαβγδuβ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)} �δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ, (8.1a)

−εαβγδuβ(�κ∂κ∂γuδ) =
1
H

(�κ∂κ�α) − 1
H

�α(�κ∂κh)

− 1
H

uα�λ(�κ∂κuλ) + εαβγδuβ(∂γh)�κ(∂δuκ)

− qεαβγδuβSγ�κ(∂δuκ), (8.1b)

εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ = −εαβγδ(∂βh)uγ�κ(∂δuκ)

+ (∂κuκ)εαβγδ(∂βh)uγ�δ

+ (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ qεαβγδSβuγ�κ(∂δuκ)

− q(∂κuκ)εαβγδSβuγ�δ

+ q(θ;h − θ)((η−1)κα∂κh)SλSλ

+ q(θ;h − θ)uα(uκ∂κh)SλSλ

+ q(θ − θ;h)Sα(Sκ∂κh), (8.1c)

εαβγδ(uκ∂κuβ)uγ�λ(∂δuλ) = −εαβγδ(∂βh)uγ�λ(∂δuλ)

+ qεαβγδSβuγ�λ(∂δuλ), (8.1d)

−εαβγδuβ(∂γ�κ)(∂κuδ) = −εαβγδuβ(∂γ�κ)(∂δuκ)

− εαβγδuβ(∂γh)�κ(∂δuκ)

− 1
H

(�κ∂κ�α) +
1
H

�α(∂κ�κ)

− 1
H

�α�λ(uκ∂κuλ) +
1
H

uα�λ(�κ∂κuλ)

− qεαβγδuβ(∂γuκ)�κSδ, (8.1e)

εαβγδuβ(∂κuκ)(∂γ�δ) = −(∂κuκ)vortα(�), (8.1f)

−εαβγδuβ(∂γuδ)�λ(uκ∂κuλ) =
1
H

�α�λ(uκ∂κuλ). (8.1g)

Moreover, we have

(θ − θ;h)Sα((η−1)κλ∂κ∂λh) + (θ − θ;h)Sα(uκuλ∂κ∂λh)

= uκ∂κ

{
(θ;h − θ)Sα(∂λuλ)

}

+ (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ) + (θ − θ;h)(uκ∂κSα)(∂λuλ)
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+ (θ;h − θ)Sα(∂κuλ)(∂λuκ) + (θ;h − θ)Sα(uκ∂κuλ)(∂λh)

+ (θ;h − θ)Sα(∂κuκ)(uλ∂λh)

+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh) + (θ − θ;h)q;sS
αSκSκ,

(8.2a)

(θ;h − θ)uα(Sκuλ∂κ∂λh) = uκ∂κ

{
(θ;h − θ)uα(Sλ∂λh)

}

+ (θh − θ;h;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ − θ;h)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κSλ)(∂λh), (8.2b)

(θ;h − θ)(η−1)αλ(Sκ∂κ∂λh) = uκ∂κ

{
(θ − θ;h)(η−1)αλSβ(∂λuβ)

}

+ (θ;h;h − θh)(uκ∂κh)(η−1)αλSβ(∂λuβ)

+ (θ;h − θ)(uκ∂κSβ)(η−1)αλ(∂λuβ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)

+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

+ (θ − θ;h)q((η−1)αλ∂λSβ)Sβ

+ (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ

+ 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ. (8.2c)

Identities that reveal null-form structure and cancellations. The fol-
lowing identities hold25:

Q2 := (θ;h − θ)((η−1)ακ∂κh)∂λSλ + (θ − θ;h)(η−1)κλ(∂κh)(∂λSα)

= (θ;h − θ)(η−1)ακ
{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}
, (8.3a)

Q4 := (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh) + (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ)

= c−2(θh − θ;h;h)Sα(g−1)κλ(∂κh)(∂λh), (8.3b)

Q5 := (θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;h;h − θh)(uκ∂κh)(η−1)αλSβ(∂λuβ)

= (θ;h;h − θh)Sβuκ(η−1)αλ {(∂κh)(∂λuβ) − (∂λh)(∂κuβ)}
+ (θ;h;h − θh)q((η−1)ακ∂κh)SλSλ, (8.3c)

Q6 := c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh) + (θ − θ;h)Sα(∂κuκ)(∂λuλ)

= c−4(θ;h − θ)Sα(g−1)κλ(∂κh)(∂λh), (8.3d)

25Our labeling of the terms Q2, Q3, etc. is tied to the order in which terms appear in our
proof of (8.41).
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Q7 := (θ;h − θ)Sα(uκ∂κh)(uλ∂λh) + (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ (θ;h − θ)Sα(uκ∂κuλ)(∂λh)

= (θ;h − θ)qSα(Sκ∂κh), (8.3e)

Q9 := (θ;h − θ)(Sκ∂κuα)(∂λuλ) + (θ;h − θ)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)((η−1)κλ∂κuα)Sβ(∂λuβ)

= (θ;h − θ)Sκ
{
(∂κuα)(∂λuλ) − (∂λuα)(∂κuλ)

}

+
1
H

(θ − θ;h)εκβγδ(∂κuα)Sβuγ�δ + q(θ;h − θ)(uκ∂κuα)SλSλ, (8.3f)

Q11 := (θ − θ;h)(uκ∂κSα)(∂λuλ) + (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

= (θ;h − θ)Sβ(η−1)ακ
{
(∂κuβ)(∂λuλ) − (∂λuβ)(∂κuλ)

}
, (8.3g)

Q12 := 2(θ;h − θ)(∂κuκ)(η−1)αλSβ(∂λuβ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= (θ;h − θ)(η−1)ακSβ
{
(∂κuβ)(∂λuλ) − (∂λuβ)(∂κuλ)

}

+ c−2(θ;h − θ)(η−1)ακSβuλ {(∂λuβ)(∂κh) − (∂κuβ)(∂λh)}
+ qc−2(θ − θ;h)SκSκ((η−1)αλ∂λh), (8.3h)

Q13 := (θ − θ;h)uα(∂κuκ)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κuλ)Sβ(∂λuβ)

= (θ;h − θ)uαSβuλ {(∂κuκ)(∂λuβ) − (∂λuκ)(∂κuβ)}
+ q(θ − θ;h)uαSκSκ(∂λuλ), (8.3i)

Q14 := (θ − θ;h)uα(∂κuκ)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ)

= n(θ − θ;h)uα(uκ∂κh)D
+ (θ;h − θ)uαuκ

{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}
, (8.3j)

Q15 := (∂κuκ)εαβγδ(∂βh)uγ�δ + c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

= c−2qεαβγδSβ(∂γh)�δ, (8.3k)

Q16 := −c−2uαεσβγδ(uκ∂κuσ)uβ(∂γh)�δ

= −c−2quαεκβγδSκuβ(∂γh)�δ, (8.3l)

Q18 := (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ)

= q(θ − θ;h)SκSκ((η−1)αλ∂λh), (8.3m)

Q19 := (θ;h − θ)uα(uκ∂κuσ)Sσ(∂λuλ)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

= q(θ;h − θ)uαSκSκ(∂λuλ), (8.3n)
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Q20 := (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)

+ (θ − θ;h)(uκ∂κh)(uλ∂λSα)

= 0, (8.3o)

Q21 := (θ;h − θ)uα(uκ∂κuβ)uβ(Sλ∂λh)

= 0. (8.3p)

Proof. We split the proof into many pieces.

• Proof of (8.1a): We first use Eq. (2.17) to deduce

εαβγδuβ(∂γ∂κuκ)�δ = −εαβγδuβ

{
∂γ(c−2uκ∂κh)

}
�δ

= −εαβγδuβ(c−2uκ∂κ∂γh)�δ

+ 2c−3c;h(uκ∂κh)εαβγδuβ(∂γh)�δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ

− c−2εαβγδuβ(∂γuκ)(∂κh)�δ. (8.4)

Next, we rewrite the first term on RHS (8.4) as a perfect uκ∂κ derivative plus
error terms, thereby obtaining, with the help of (2.19), the following identity:

εαβγδuβ(∂γ∂κuκ)�δ = −uκ∂κ

{
εαβγδc−2uβ(∂γh)�δ

}

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

+ c−2εαβγδuβ(∂γh)(uκ∂κ�δ)

− c−2εαβγδuβ(∂γuκ)(∂κh)�δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ. (8.5)

Using Eq. (7.1) to substitute for the factor uκ∂κ�δ in the third product on
RHS (8.5), we deduce

εαβγδuβ(∂γ∂κuκ)�δ = −uκ∂κ

{
c−2εαβγδuβ(∂γh)�δ

}

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

+ c−2εαβγδuβ(∂γh)(�κ∂κuδ)

− c−2(∂κuκ)εαβγδuβ(∂γh)�δ

+ c−2(θ − θ;h)εαβγδε κλ
δν uβuν(∂γh)(∂κh)Sλ

− c−2εαβγδuβ(∂γuκ)(∂κh)�δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ. (8.6)

Next, using the identity (4.21), we express the third product on RHS (8.6) as
follows:

c−2εαβγδuβ(∂γh)(�κ∂κuδ) = c−2εαβγδuβ(∂γh)�κ(∂δuκ). (8.7)
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Next, using the identity

−εαβγδε κλ
δν = (η−1)λβδα

ν (η−1)κγ − (η−1)λβδγ
ν(η−1)κα

+ (η−1)λγδβ
ν (η−1)κα − (η−1)λγδα

ν (η−1)κβ

+ (η−1)λαδγ
ν(η−1)κβ − (η−1)λαδβ

ν (η−1)κγ

and Eqs. (2.20), (2.21), and (4.2), we express the third-from-last product on
RHS (8.6) as follows:

c−2(θ − θ;h)εαβγδε κλ
δν uβuν(∂γh)(∂κh)Sλ

= c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh). (8.8)

Using (8.7) and (8.8) to substitute for the relevant products on RHS (8.6),
adding and subtracting c−2εαβγδuβ�δ(∂κuκ)(∂γh), and reorganizing the terms,
we arrive at the desired identity (8.1a).

• Proof of (8.1b): We first use (4.22) to deduce

εαβγδuβ(�κ∂κ∂γuδ)

= uβ�κ∂κ

{
1
H

�αuβ − 1
H

uα�β − εαβγδ(∂γh)uδ + qεαβγδSγuδ

}
. (8.9)

The desired identity (8.1b) now follows from (2.6), (2.20), (4.2), (4.3), (4.5),
(4.21), (8.9), and straightforward calculations.

• Proof of (8.1c): We first use Eq. (2.22) to substitute for the factor uκ∂κuβ

on LHS (8.1c), thereby obtaining the identity

εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ = −εαβγδ(∂βh)(uλ∂λ�δ)uγ

+ qεαβγδSβ(uλ∂λ�δ)uγ . (8.10)

We then use Eq. (7.1) to substitute for the two factors of uλ∂λ�δ on RHS (8.10),
which yields the identity

εαβγδ(uκ∂κuβ)(uλ∂λ�δ)uγ = −εαβγδ(∂βh)uγ(�κ∂κuδ)

+ (∂κuκ)εαβγδ(∂βh)uγ�δ

+ (θ;h − θ)εαβγδε κλ
δν (∂βh)uν(∂κh)Sλuγ

+ qεαβγδSβuγ(�κ∂κuδ)

− q(∂κuκ)εαβγδSβuγ�δ

+ q(θ − θ;h)εαβγδε κλ
δν uν(∂κh)SλSβuγ . (8.11)

Next, we use the identity (4.21) to express the first and fourth products on
RHS (8.11) as follows:

−εαβγδ(∂βh)(�λ∂λuδ)uγ = −εαβγδ(∂βh)�λ(∂δuλ)uγ , (8.12)
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qεαβγδSβuγ(�κ∂κuδ) = qεαβγδSβuγ�κ(∂δuκ). (8.13)

We then use the identity

εαβγδε κλ
δν = (η−1)λβδγ

ν(η−1)κα − (η−1)λβδα
ν (η−1)κγ

+ (η−1)λγδα
ν (η−1)κβ − (η−1)λγδβ

ν (η−1)κα

+ (η−1)λαδβ
ν (η−1)κγ − (η−1)λαδγ

ν(η−1)κβ

and Eqs. (2.20) and (2.21) to express the third product on RHS (8.11) as
follows:

(θ;h − θ)εαβγδε κλ
δν (∂βh)uν(∂κh)Sλuγ

= (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh). (8.14)

Similarly, we express the last product on RHS (8.11) as follows:

q(θ − θ;h)εαβγδε κλ
δν uν(∂κh)SλSβuγ = q(θ;h − θ)((η−1)κα∂κh)SλSλ

+ q(θ;h − θ)uα(uκ∂κh)SλSλ

+ q(θ − θ;h)Sα(Sκ∂κh). (8.15)

Using (8.12)–(8.13) and (8.14)–(8.15) to substitute for the relevant prod-
ucts on RHS (8.11), we arrive at the desired identity (8.1c).

• Proof of (8.1d): (8.1d) follows easily from using Eq. (2.22) to substitute for
the factor uκ∂κuβ on the LHS.

• Proof of (8.1e): We first use the identity (4.17) to deduce

εαβγδuβ(∂γ�κ)(∂κuδ) = εαβγδuβ(∂γ�κ)(∂δuκ)

+
1
H

εαβγδεκδθλuθ�λuβ(∂γ�κ)

+ εαβγδuβ(∂γ�κ)uκ(∂δh) − qεαβγδuβ(∂γ�κ)uκSδ.

(8.16)

Next, we note the identity

εαβγδεκδθλ = −εαβγδεκλθδ = δα
κδ

β
λδ

γ
θ − δβ

κδα
λδ

γ
θ

+ δβ
κδ

γ
λδα

θ − δα
κδ

γ
λδ

β
θ + δγ

κδα
λδ

β
θ − δγ

κδ
β
λδα

θ ,

which, in view of (2.20), (4.2), and (4.5), allows us to express the second
product on RHS (8.16) as follows:

1
H

εαβγδεκδθλuθ�λuβ(∂γ�κ) = − 1
H

�αuλ(uκ∂κ�λ)

+
1
H

uαuλ(�κ∂κ�λ)
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+
1
H

(�κ∂κ�α) − 1
H

�α(∂κ�κ)

=
1
H

�α�λ(uκ∂κuλ) − 1
H

uα�λ(�κ∂κuλ)

+
1
H

(�κ∂κ�α) − 1
H

�α(∂κ�κ). (8.17)

Using (8.17) to substitute for the second product on RHS (8.16), and us-
ing (4.5) to express the third product on RHS (8.16) as εαβγδuβ(∂γ�κ)uκ(∂δh)
= −εαβγδuβ�κ(∂γuκ)(∂δh) = εαβγδuβ(∂γh)�κ(∂δuκ) and the last product on
RHS (8.16) as −qεαβγδuβ(∂γ�κ)uκSδ = qεαβγδuβ(∂γuκ)�κSδ, we arrive at
the desired identity (8.1e).

• Proof of (8.1f): (8.1f) follows from definition (2.4) with Vδ := �δ.

• Proof of (8.1g): (8.1g) is a straightforward consequence of (4.22), (2.20),
and (4.2).

• Proof of (8.2a): We first use (5.5) to express LHS (8.2a) as follows:

(θ − θ;h)Sα((η−1)κλ∂κ∂λh) + (θ − θ;h)Sα(uκuλ∂κ∂λh)

= (θ;h − θ)Sα(uλ∂λ∂κuκ) + (θ;h − θ)Sα(∂κuλ)(∂λuκ)

+ (θ;h − θ)Sα(uκ∂κuλ)(∂λh) + (θ;h − θ)Sα(∂κuκ)(uλ∂λh)

+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh) + (θ − θ;h)q;sS
αSκSκ.

(8.18)

Next, with the help of Eq. (2.19), we rewrite the first product on RHS (8.18)
as follows:

(θ;h − θ)Sα(uλ∂λ∂κuκ) = uκ∂κ

{
(θ;h − θ)Sα(∂λuλ)

}

+ (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ)

+ (θ − θ;h)(uκ∂κSα)(∂λuλ). (8.19)

Using (8.19) to substitute for the first product on RHS (8.18), we arrive at the
desired identity (8.2a).

• Proof of (8.2b): (8.2b) is a straightforward consequence of Eq. (2.19).

• Proof of (8.2c): We first differentiate Eq. (4.18) with (η−1)αλ∂λ and then
multiply the resulting identity by (θ;h − θ) to obtain

(θ;h − θ)(η−1)αλ(Sκ∂κ∂λh) = (θ − θ;h)(η−1)αλSβ(uκ∂κ∂λuβ)

+ (θ − θ;h)((η−1)αλ∂λSκ)(∂κh)

+ (θ − θ;h)((η−1)αλ∂λSβ)(uκ∂κuβ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

+ (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ

+ 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ. (8.20)
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Next, with the help of Eq. (2.19), we rewrite the first product on RHS (8.20)
as follows:

(θ − θ;h)(η−1)αλSβ(uκ∂κ∂λuβ)

= uκ∂κ

{
(θ − θ;h)(η−1)αλSβ(∂λuβ)

}

+ (θ;h;h − θh)(uκ∂κh)(η−1)αλSβ(∂λuβ)

+ (θ;h − θ)(uκ∂κSβ)(η−1)αλ(∂λuβ). (8.21)

Next, we use Eqs. (2.22) and (4.4) to express the sum of the second and third
products on RHS (8.20) as follows:

(θ − θ;h)((η−1)αλ∂λSκ)(∂κh) + (θ − θ;h)((η−1)αλ∂λSβ)(uκ∂κuβ)

= (θ;h − θ)((η−1)αλ∂λSβ)uβ(uκ∂κh) + (θ − θ;h)q((η−1)αλ∂λSβ)Sβ

= (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh) + (θ − θ;h)q((η−1)αλ∂λSβ)Sβ .
(8.22)

Using (8.21) to substitute for the first product on RHS (8.20), and using (8.22)
to substitute for the second and third products on RHS (8.20), we arrive at
the desired identity (8.2c).

• Proof of (8.3a): We simply use (4.1) to express the second product on
LHS (8.3a) as follows:

(θ − θ;h)(η−1)κλ(∂κh)(∂λSα) = (θ − θ;h)(η−1)ακ(∂λh)(∂κSλ).

• Proof of (8.3b): We use Eq. (2.17) to substitute for the last factor ∂λuλ on
LHS (8.3b) and then appeal to Eq. (2.13b).

• Proof of (8.3c): We first use (4.18) to express the first product on LHS (8.3c)
as follows:

(θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

= (θh − θ;h;h)((η−1)ακ∂κh)(uλ∂λuβ)Sβ

+ (θ;h;h − θh)q((η−1)ακ∂κh)SλSλ. (8.23)

Using (8.23) to substitute for the first product on LHS (8.3c), we arrive at the
desired identity.

• Proof of (8.3d): To prove (8.3d), we first use Eq. (2.17) to express the last
product on LHS (8.3d) as follows:

(θ − θ;h)Sα(∂κuκ)(∂λuλ) = c−4(θ − θ;h)Sα(uκ∂κh)(uλ∂λh). (8.24)

Using (8.24) to substitute for the last product on LHS (8.3d) and appealing
to Eq. (2.13b), we arrive at the desired identity.

• Proof of (8.3e): We first use (2.22) to substitute for the factor uκ∂κuλ in the
last product on LHS (8.3e), thereby obtaining the following identity:

(θ;h − θ)Sα(uκ∂κuλ)(∂λh) = (θ − θ;h)Sα(η−1)κλ(∂κh)(∂λh)
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+ (θ − θ;h)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)qSα(Sκ∂κh). (8.25)

Using (8.25) to substitute for the last product on LHS (8.3e), we arrive at the
desired identity.

• Proof of (8.3f): We first use (4.1), (4.4), and the first equality in (6.1) to
express the last product on LHS (8.3f) as follows:

(θ − θ;h)((η−1)κλ∂κuα)Sβ(∂λuβ) = (θ;h − θ)(∂κuα)(uβ∂βSκ)

= (θ − θ;h)(∂κuα)(Sλ∂λuκ)

+
1
H

(θ − θ;h)εκβγδ(∂κuα)Sβuγ�δ

+ (θ − θ;h)(uκ∂κuα)(Sλ∂λh)

+ q(θ;h − θ)(uκ∂κuα)SλSλ. (8.26)

Using (8.26) to substitute for the last product on LHS (8.3f), we arrive at the
desired identity.

• Proof of (8.3g): We use (4.1) and (4.4) to express the first product on
LHS (8.3g) as follows:

(θ − θ;h)(uκ∂κSα)(∂λuλ) = (θ − θ;h)(uκ(η−1)αβ∂βSκ)(∂λuλ)

= (θ;h − θ)Sβ((η−1)ακ∂κuβ)(∂λuλ). (8.27)

Using (8.27) to substitute for the first product on LHS (8.3g), we conclude the
desired identity.

• Proof of (8.3h): To prove (8.3h), we first note the following identity, which
we derive below:

c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= (θ − θ;h)Sκ(∂βuκ)((η−1)αλ∂λuβ)

+ c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ − θ;h)((η−1)ακ∂κuβ)Sβ(uλ∂λh)

+ (θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ) + qc−2(θ − θ;h)SβSβ((η−1)ακ∂κh).

(8.28)

Using (8.28) to substitute for the sum of the second and third products on
LHS (8.3h), we conclude the desired identity (8.3h).

It remains for us to prove (8.28). To proceed, we first use (4.1) and (4.4)
to express the second product on LHS (8.28) as follows:

(θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= (θ;h − θ)(uκ∂βSκ)((η−1)αλ∂λuβ)

= (θ − θ;h)(Sβ∂λuβ)((η−1)ακ∂κuλ)
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= (θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ)

+ (θ;h − θ)((η−1)ακ∂κuβ)Sβ(∂λuλ)

+ (θ − θ;h)(Sβ∂λuβ)((η−1)ακ∂κuλ), (8.29)

where to obtain the last equality, we have added and subtracted

(θ;h − θ)((η−1)ακ∂κuβ)Sβ(∂λuλ).

Next, we use Eq. (2.17) to substitute for the factor ∂λuλ in the first product
on RHS (8.29), which allows us to express the product as follows:

(θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ)

= c−2(θ;h − θ)((η−1)ακ∂κuβ)Sβ(uλ∂λh)

= c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ − θ;h)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ;h − θ)((η−1)ακ∂κuβ)Sβ(uλ∂λh), (8.30)

where to obtain the last equality, we have added and subtracted

c−2(θ − θ;h)(uλ∂λuβ)Sβ((η−1)ακ∂κh).

Next, we use Eq. (4.18) to express the first product on RHS (8.30) as follows:

c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

= c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ qc−2(θ;h − θ)SκSκ((η−1)αλ∂λh). (8.31)

Combining (8.29)–(8.31), we find that

c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

= (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

+ (θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ) + (θ;h − θ)(Sβ∂λuβ)((η−1)ακ∂κuλ)

+ c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ − θ;h)((η−1)ακ∂κuβ)Sβ(uλ∂λh)

+ qc−2(θ − θ;h)SκSκ((η−1)αλ∂λh). (8.32)

Using (8.32) to substitute for the first product on LHS (8.28), we deduce

c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= 2(θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

+ (θ − θ;h)((η−1)ακ∂κuβ)Sβ(∂λuλ) + (θ;h − θ)(Sβ∂λuβ)(η−1)ακ(∂κuλ)

+ c−2(θ;h − θ)(uλ∂λuβ)Sβ((η−1)ακ∂κh)

+ c−2(θ − θ;h)((η−1)ακ∂κuβ)Sβ(uλ∂λh)

+ qc−2(θ − θ;h)SκSκ((η−1)αλ∂λh). (8.33)
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Next, we use (4.1) and (4.4) to express the first product on RHS (8.33) as

2(θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

= 2(θ;h − θ)(uκ∂βSκ)((η−1)αλ∂λuβ)

= 2(θ − θ;h)(Sκ∂βuκ)((η−1)αλ∂λuβ). (8.34)

Using (8.34) to substitute for the first product on RHS (8.33), we arrive at the
desired identity (8.28). This completes the proof of (8.3h).

• Proof of (8.3i): We use the identity (4.18) to substitute for the factor Sλ∂λh
on LHS (8.3i), thus obtaining

(θ − θ;h)uα(∂κuκ)(Sλ∂λh) = (θ;h − θ)uα(∂κuκ)Sβ(uλ∂λuβ)

+ (θ − θ;h)quα(∂κuκ)SλSλ. (8.35)

Using (8.35) to substitute for the first product on LHS (8.3i), we arrive at the
desired identity.

• Proof of (8.3j): We first use Eq. (4.1) to express the last product on LHS (8.3j)
as follows:

(θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ)

= (θ − θ;h)uα(∂κh)(uβ∂βSκ)

= (θ − θ;h)uα(uκ∂κh)(∂λSλ)

+ (θ;h − θ)uαuλ {(∂λh)(∂κSκ) − (∂κh)(∂λSκ)} , (8.36)

where to obtain the second equality in (8.36), we added and subtracted
(θ;h − θ)uα(uκ∂κh)(∂λSλ). Next, we solve for ∂λSλ in terms of the remaining
terms in definition (2.16b) and then use the resulting identity to algebraically
substitute for the factor ∂λSλ in the first product on RHS (8.36), which yields
the identity

(θ − θ;h)uα(uκ∂κh)(∂λSλ) = n(θ − θ;h)uα(uκ∂κh)D
+ (θ;h − θ)uα(uκ∂κh)(Sλ∂λh)

+ c−2(θ − θ;h)uα(uκ∂κh)(Sλ∂λh). (8.37)

Next, we use Eq. (2.17) to substitute for the factor uκ∂κh in the last product
on RHS (8.37), which yields the identity

(θ − θ;h)uα(uκ∂κh)(∂λSλ) = n(θ − θ;h)uα(uκ∂κh)D
+ (θ;h − θ)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)uα(∂κuκ)(Sλ∂λh). (8.38)

Substituting RHS (8.38) for the first product on RHS (8.36) and then using
the resulting identity to substitute for the last product on LHS (8.3j), we arrive
at the desired identity (8.3j).
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• Proof of (8.3k): We first use Eq. (2.22) to substitute for the factor of uκ∂κuβ

in the second product on LHS (8.3k), which yields the identity

(∂κuκ)εαβγδ(∂βh)uγ�δ + c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

= (∂κuκ)εαβγδ(∂βh)uγ�δ − c−2(uκ∂κh)εαβγδuβ(∂γh)�δ

+ c−2qεαβγδSβ(∂γh)�δ. (8.39)

Using Eq. (2.17) to substitute for the factor ∂κuκ in the first product on
RHS (8.39) and taking into account the antisymmetry of ε, we see that the
first and second products on RHS (8.39) cancel, which yields the desired iden-
tity (8.3k).

• Proof of (8.3l): We simply use Eq. (2.22) to substitute for the factor uκ∂κuσ

on LHS (8.3l).

• Proof of (8.3m): We simply multiply Eq. (4.19) by (θ;h − θ)(η−1)ακ∂κh.

• Proof of (8.3n): We use Eq. (4.18) to substitute for the factor (uκ∂κuσ)Sσ

in the first product on LHS (8.3n) and Eq. (2.17) to substitute for the factor
uλ∂λh in the second product on LHS (8.3n).

• Proof of (8.3o): We simply use Eq. (2.24) to substitute for the factor uλ∂λSα

in the second product on LHS (8.3o).

• Proof of (8.3p): (8.3p) follows from (4.3). �

8.2. The Transport-div-curl System

Armed with Lemma 8.1, we now derive the main result of this section.

Proposition 8.2 (The transport-div-curl system for the vorticity). Assume that
(h, s, uα) is a C3 solution to (2.17)–(2.19) + (2.20). Then the divergence of
the vorticity vectorfield �α defined in (2.5) verifies the following identity:

∂α�α = −�κ∂κh + 2q�κSκ. (8.40)

Moreover, the rectangular components Cα of the modified vorticity of the
vorticity, which is defined in (2.16a), verify the following transport equations:

uκ∂κCα = Cκ∂κuα − 2(∂κuκ)Cα + uα(uκ∂κuλ)Cλ

− 2εαβγδuβ(∂γ�κ)(∂δuκ)

+ (θ;h − θ)
{
(η−1)ακ + 2uαuκ

}{
(∂κh)(∂λSλ) − (∂λh)(∂κSλ)

}

+ n(θ − θ;h)uα(uκ∂κh)D
+ (θ − θ;h)qSα∂κSκ + (θ;h − θ)q((η−1)αλ∂λSκ)Sκ

+ Q(Cα) + L(Cα), (8.41)

where Q(Cα) is the linear combination of null forms defined by

Q(Cα) := −c−2εκβγδ(∂κuα)uβ(∂γh)�δ

+ (c−2 + 2)εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2εαβγδuβ�δ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)}
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+
{
(θ;h;h − θh) + c−2(θ − θ;h)

}
(η−1)αλSβuκ×

{(∂κh)(∂λuβ) − (∂λh)(∂κuβ)}
+ (θ;h − θ)Sκuλ {(∂κuα)(∂λh) − (∂λuα)(∂κh)}
+ (θ;h − θ)

{
(η−1)ακ + uαuκ

}
Sβ×

{
(∂κuβ)(∂λuλ) − (∂λuβ)(∂κuλ)

}

+ (θ;h − θ)Sα
{
(∂κuλ)(∂λuκ) − (∂κuκ)(∂λuλ)

}

+ (θ;h − θ)Sκ
{
(∂κuα)(∂λuλ) − (∂λuα)(∂κuλ)

}

+ Sα
{
c−2(θh − θ;h;h) + c−4(θ;h − θ)

}
(g−1)κλ(∂κh)(∂λh), (8.42)

and L(Cα), which is at most linear in the derivatives of the solution variables,
is defined by

L(Cα) :=
2q

H
�κSκ�α − 2

H
�α(�κ∂κh)

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ

− 2qεαβγδuβSγ�κ(∂δuκ) − q(∂κuκ)εαβγδSβuγ�δ

+
1
H

(θ − θ;h)εκβγδ(∂κuα)Sβuγ�δ + c−2qεαβγδSβ(∂γh)�δ

− c−2quαεκβγδSκuβ(∂γh)�δ

+ q(θ;h − θ)SκSκ(uλ∂λuα)

+ q(θ;h − θ)uαSκSκ(uλ∂λh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ − θ;h)q;hSα(Sκ∂κh)

+ q(θ;h;h − θh)SκSκ((η−1)αλ∂λh) + (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)

+ qc−2(θ − θ;h)SκSκ((η−1)αλ∂λh) + (θ;h − θ)q;hSκSκ((η−1)αλ∂λh).
(8.43)

Proof. We split the proof into several pieces.

• Proof of (8.40): First, from definition (2.5) and the antisymmetry of εκλγδ,
we deduce

∂κ�κ = −εκλγδ(∂κuλ)∂γ(Huδ). (8.44)

Next, using (4.16), we deduce that

RHS (8.44) = �λ(uκ∂κuλ) − �κuλ(∂κuλ) − θεκλγδ(∂κuλ)Sγuδ. (8.45)

Using (4.3), we see that the second product on RHS (8.45) vanishes. Moreover,
using Eq. (2.22) and the identity (4.2), we can express the first product on
RHS (8.45) as follows:

�λ(uκ∂κuλ) = −�κ∂κh + q�κSκ. (8.46)

In addition, using definition (2.7) and the identity (4.23), we can express the
last product on RHS (8.45) as follows:

−θεκλγδ(∂κuλ)Sγuδ = q�κSκ. (8.47)
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Combining these calculations, we arrive at the desired identity (8.40).

• Proof of (8.41): The proof is a series of lengthy calculations in which we
observe many cancellations. We start by using (8.1a)–(8.1g) to substitute for
all of the terms on the third through seventh lines of RHS (7.4) except for
the term −εαβγδuβ(∂γ�κ)(∂δuκ) from the fifth line, which we leave as is. We
also use (8.40) to express the fourth product on RHS (8.1e) as 1

H �α(∂κ�κ) =
− 1

H �α(�κ∂κh) + 2q
H �α�κSκ, and we use (8.2a)–(8.2c) to substitute for the

four products (which depend on the second derivatives of h) on the sixth-
to-last and fifth-to-last lines of RHS (7.4), thereby obtaining the following
equation (where at this stage in the argument, we have simply performed a
term-by-term substitution and have not yet organized the terms):

uκ∂κvortα(�) = vortκ(�)∂κuα − (∂κuκ)vortα(�)

+ uα(uκ∂κuβ)vortβ(�)

− uκ∂κ

{
c−2εαβγδuβ(∂γh)�δ

}

− 2(∂κuκ)c−2εαβγδuβ(∂γh)�δ

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ

+ c−2εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ c−2εαβγδuβ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)} �δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ

+
1
H

(�κ∂κ�α) − 1
H

(�κ∂κh)�α

− 1
H

uα�λ(�κ∂κuλ) + εαβγδuβ(∂γh)�κ(∂δuκ)

− qεαβγδuβSγ�κ(∂δuκ)

− εαβγδ(∂βh)uγ�κ(∂δuκ) + (∂κuκ)εαβγδ(∂βh)uγ�δ

+ (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ qεαβγδSβuγ�κ(∂δuκ)

− q(∂κuκ)εαβγδSβuγ�δ

+ q(θ;h − θ)((η−1)κα∂κh)SλSλ
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+ q(θ;h − θ)uα(uκ∂κh)SλSλ + q(θ − θ;h)Sα(Sκ∂κh)

− εαβγδ(∂βh)uγ�λ(∂δuλ) + qεαβγδSβuγ�λ(∂δuλ)

− εαβγδuβ(∂γ�κ)(∂δuκ)

− εαβγδuβ(∂γ�κ)(∂δuκ) − εαβγδuβ(∂γh)�κ(∂δuκ)

− 1
H

(�κ∂κ�α) − 1
H

�α(�κ∂κh) +
2q

H
�α�κSκ

− 1
H

�α�λ(uκ∂κuλ) +
1
H

uα�λ(�κ∂κuλ)

− qεαβγδuβ(∂γuκ)�κSδ

− (∂κuκ)vortα(�)

+
1
H

�α�λ(uκ∂κuλ)

+ (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)uα(Sκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)

+ (θ − θ;h)Sα(∂κuκ)(uλ∂λh)

+ (θ;h − θ)(Sκ∂κuα)(uλ∂λh)

+ uκ∂κ

{
(θ;h − θ)Sα(∂λuλ)

}

+ (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ)

+ (θ − θ;h)(uκ∂κSα)(∂λuλ)

+ (θ;h − θ)Sα(∂κuλ)(∂λuκ)

+ (θ;h − θ)Sα(uκ∂κuλ)(∂λh) + (θ;h − θ)Sα(∂κuκ)(uλ∂λh)
+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh)

+ (θ − θ;h)q;sS
αSκSκ

+ uκ∂κ

{
(θ;h − θ)uα(Sλ∂λh)

}

+ (θh − θ;h;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ − θ;h)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κSλ)(∂λh)

+ uκ∂κ

{
(θ − θ;h)(η−1)αλSβ(∂λuβ)

}

+ (θ;h;h − θh)(uκ∂κh)Sβ((η−1)αλ∂λuβ)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)
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+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

+ (θ − θ;h)q((η−1)αλ∂λSβ)Sβ

+ (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ + 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ

+ (θ − θ;h)(η−1)κλ(∂κh)(∂λSα)

+ (θ − θ;h)(uκ∂κh)(uλ∂λSα)

+ (θ;h − θ)uα(uκ∂κh)(∂λSλ)

+ (θ;h − θ)((η−1)ακ∂κh)(∂λSλ)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ)

+ (θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ). (8.48)

Next, we bring the four perfect-derivative terms uκ∂κ{· · · } on RHS (8.48)
over to the left-hand side, which yields the equation

uκ∂κ

{
vortα(�) + c−2εαβγδuβ(∂γh)�δ + (θ − θ;h)Sα(∂λuλ)

+ (θ − θ;h)uα(Sλ∂λh) + (θ;h − θ)(η−1)αλSβ(∂λuβ)
}

= vortκ(�)∂κuα − 2(∂κuκ)vortα(�) + uα(uκ∂κuβ)vortβ(�) + · · · ,
(8.49)

where the terms · · · do not involve vort(�). Next, we solve for vort(�) in terms
of the remaining terms in definition (2.16a) and then use the resulting identity
to algebraically substitute for the four instances of vort(�) in Eq. (8.49) (note
in particular that the terms in braces on LHS (8.49) are equal to Cα). In total,
this yields the following equation, where we have placed the terms generated
by the algebraic substitution on the first through tenth lines of RHS (8.50):

uκ∂κCα = Cκ∂κuα − 2(∂κuκ)Cα + uα(uκ∂κuβ)Cβ

− c−2εκβγδ(∂κuα)uβ(∂γh)�δ + (θ;h − θ)(Sκ∂κuα)(∂λuλ)

+ (θ;h − θ)(uκ∂κuα)(Sλ∂λh) + (θ − θ;h)(η−1)κλ(∂κuα)Sβ(∂λuβ)

+ 2(∂κuκ)c−2εαβγδuβ(∂γh)�δ + 2(θ − θ;h)Sα(∂κuκ)(∂λuλ)

+ 2(θ − θ;h)uα(∂κuκ)(Sλ∂λh)

+ 2(θ;h − θ)(∂κuκ)Sβ((η−1)αλ∂λuβ)

− uα(uκ∂κuσ)c−2εσβγδuβ(∂γh)�δ

+ (θ;h − θ)uα(uκ∂κuσ)Sσ(∂λuλ)

+ (θ;h − θ)uα(uκ∂κuβ)uβ(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κuλ)Sβ(∂λuβ)

− 2(∂κuκ)c−2εαβγδuβ(∂γh)�δ

+ c−2εαβγδ(uκ∂κuβ)(∂γh)�δ
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+ c−2εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ c−2εαβγδuβ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)} �δ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ

+
1
H

(�κ∂κ�α) − 1
H

�α(�κ∂κh)

− 1
H

uα�λ(�κ∂κuλ) + εαβγδuβ(∂γh)�κ(∂δuκ)

− qεαβγδuβSγ�κ(∂δuκ)

− εαβγδ(∂βh)uγ�κ(∂δuκ) + (∂κuκ)εαβγδ(∂βh)uγ�δ

+ (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ;h − θ)Sα(uκ∂κh)(uλ∂λh) + (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh)

+ qεαβγδSβuγ�κ(∂δuκ)

− q(∂κuκ)εαβγδSβuγ�δ

+ q(θ;h − θ)((η−1)κα∂κh)SλSλ + q(θ;h − θ)uα(uκ∂κh)SλSλ

+ q(θ − θ;h)Sα(Sκ∂κh)

− εαβγδ(∂βh)uγ�λ(∂δuλ) + qεαβγδSβuγ�λ(∂δuλ)

− εαβγδuβ(∂γ�κ)(∂δuκ)

− εαβγδuβ(∂γ�κ)(∂δuκ) − εαβγδuβ(∂γh)�κ(∂δuκ)

− 1
H

(�κ∂κ�α) − 1
H

�α(�κ∂κh) +
2q

H
�α�κSκ

− 1
H

�α�λ(uκ∂κuλ) +
1
H

uα�λ(�κ∂κuλ)

− qεαβγδuβ(∂γuκ)�κSδ

+
1
H

�α�λ(uκ∂κuλ)

+ (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)uα(Sκ∂κh)(uλ∂λh)

+ (θ;h;h − θh)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)
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+ (θ − θ;h)Sα(∂κuκ)(uλ∂λh) + (θ;h − θ)(Sκ∂κuα)(uλ∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ) + (θ − θ;h)(uκ∂κSα)(∂λuλ)

+ (θ;h − θ)Sα(∂κuλ)(∂λuκ) + (θ;h − θ)Sα(uκ∂κuλ)(∂λh)

+ (θ;h − θ)Sα(∂κuκ)(uλ∂λh)

+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh)

+ (θ − θ;h)q;sS
αSκSκ

+ (θh − θ;h;h)uα(uκ∂κh)(Sλ∂λh) + (θ − θ;h)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)uα(uκ∂κSλ)(∂λh)

+ (θ;h;h − θh)(uκ∂κh)Sβ((η−1)αλ∂λuβ)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)

+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ)

+ (θ − θ;h)q((η−1)αλ∂λSβ)Sβ + (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ + 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ

+ (θ − θ;h)(η−1)κλ(∂κh)(∂λSα) + (θ − θ;h)(uκ∂κh)(uλ∂λSα)

+ (θ;h − θ)uα(uκ∂κh)(∂λSλ) + (θ;h − θ)((η−1)ακ∂κh)(∂λSλ)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ)

+ (θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ). (8.50)

Next, we reorganize the terms on RHS (8.50) to obtain the equation

uκ∂κCα = Cκ∂κuα − 2(∂κuκ)Cα + uα(uκ∂κuβ)Cβ +
21∑

i=1

Qi + L , (8.51)

where

Q1 := −2εαβγδuβ(∂γ�κ)(∂δuκ), (8.52)

Q2 := (θ;h − θ)((η−1)ακ∂κh)∂λSλ + (θ − θ;h)(η−1)κλ(∂κh)(∂λSα), (8.53)

Q3 := (θ;h − θ)uα(uκ∂κh)(∂λSλ) + (θ − θ;h)uα(uκ∂κSλ)(∂λh), (8.54)

Q4 := (θh − θ;h;h)Sα(η−1)κλ(∂κh)(∂λh)

+ (θh − θ;h;h)Sα(uκ∂κh)(uλ∂λh) + (θh − θ;h;h)Sα(uκ∂κh)(∂λuλ),
(8.55)

Q5 := (θ;h;h − θh)(η−1)ακ(∂κh)(Sλ∂λh)

+ (θ;h;h − θh)(uκ∂κh)Sβ((η−1)αλ∂λuβ), (8.56)

Q6 := c−2(θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ c−2(θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh) + (θ − θ;h)Sα(∂κuκ)(∂λuλ),
(8.57)
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Q7 := (θ;h − θ)Sα(uκ∂κh)(uλ∂λh)

+ (θ;h − θ)Sα(η−1)κλ(∂κh)(∂λh) + (θ;h − θ)Sα(uκ∂κuλ)(∂λh), (8.58)

Q8 := (θ;h − θ)Sα(∂κuλ)(∂λuκ) + (θ − θ;h)Sα(∂κuκ)(∂λuλ), (8.59)

Q9 := (θ;h − θ)(Sκ∂κuα)(∂λuλ) + (θ;h − θ)(uκ∂κuα)(Sλ∂λh)

+ (θ − θ;h)((η−1)κλ∂κuα)Sβ(∂λuβ), (8.60)

Q10 := (θ;h − θ)(Sκ∂κuα)(uλ∂λh) + (θ − θ;h)(uκ∂κuα)(Sλ∂λh), (8.61)

Q11 := (θ − θ;h)(uκ∂κSα)(∂λuλ)

+ (θ − θ;h)Sβ((η−1)αλ∂λuκ)(∂κuβ), (8.62)

Q12 := 2(θ;h − θ)(∂κuκ)(η−1)αλSβ(∂λuβ)

+ c−2(θ − θ;h)(Sκ∂κh)((η−1)αλ∂λh)

+ (θ;h − θ)(uκ∂κSβ)((η−1)αλ∂λuβ), (8.63)

Q13 := (θ − θ;h)uα(∂κuκ)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κuλ)Sβ(∂λuβ), (8.64)

Q14 := (θ − θ;h)uα(∂κuκ)(Sλ∂λh) + (θ − θ;h)uα(uκ∂κh)(Sλ∂λh)

+ (θ − θ;h)uα(η−1)κλ(∂κh)uβ(∂λSβ), (8.65)

Q15 := (∂κuκ)εαβγδ(∂βh)uγ�δ + c−2εαβγδ(uκ∂κuβ)(∂γh)�δ, (8.66)

Q16 := −c−2uαεσβγδ(uκ∂κuσ)uβ(∂γh)�δ, (8.67)

Q17 := −c−2εκβγδ(∂κuα)uβ(∂γh)�δ

+ (c−2 + 2)εαβγδuβ(∂γh)�κ(∂δuκ)

+ c−2εαβγδuβ�δ {(∂κuκ)(∂γh) − (∂γuκ)(∂κh)} , (8.68)

Q18 := (θ − θ;h)((η−1)ακ∂κh)(Sλ∂λh)

+ (θ;h − θ)((η−1)ακ∂κh)uβ(uλ∂λSβ), (8.69)

Q19 := (θ;h − θ)uα(uκ∂κuσ)Sσ(∂λuλ)

+ c−2(θ − θ;h)uα(Sκ∂κh)(uλ∂λh), (8.70)

Q20 := (θ − θ;h)Sβ((η−1)αλ∂λuβ)(uκ∂κh)

+ (θ − θ;h)(uκ∂κh)(uλ∂λSα), (8.71)

Q21 := (θ;h − θ)uα(uκ∂κuβ)(uβSλ∂λh), (8.72)

and

L := − 2
H

�α(�κ∂κh) +
2q

H
�α�κSκ

+ 2c−3c;s(uκ∂κh)εαβγδuβSγ�δ − qεαβγδuβSγ�κ(∂δuκ)

+ 2qεαβγδSβuγ�κ(∂δuκ)

− q(∂κuκ)εαβγδSβuγ�δ
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+ q(θ;h − θ)((η−1)κα∂κh)SλSλ + q(θ;h − θ)uα(uκ∂κh)SλSλ

+ q(θ − θ;h)Sα(Sκ∂κh)

− qεαβγδuβ(∂γuκ)�κSδ

+ (θ;s − θ;h;s)Sα(Sκ∂κh) + (θ;h;s − θ;s)uαSκSκ(uλ∂λh)

+ (θ;h;s − θ;s)SκSκ((η−1)αλ∂λh)

+ (θ − θ;h)qSα(∂κSκ) + (θ − θ;h)q;hSα(Sκ∂κh) + (θ − θ;h)q;sS
αSκSκ

+ (θ − θ;h)q((η−1)αλ∂λSβ)Sβ + (θ;h − θ)q;h((η−1)αλ∂λh)SκSκ

+ (θ;h − θ)q;sS
αSκSκ + 2(θ;h − θ)q((η−1)αλ∂λSκ)Sκ. (8.73)

Note that the terms on RHSs (8.52)–(8.72) are precisely quadratic in the
first-order derivatives of the solution variables (h, uα,�α, Sα)α=0,1,2,3 while
the terms on RHS (8.73) are at most linear in the derivatives of the solution
variables. We will now show that Q1, Q2, · · · , Q21 can be expressed as null
forms or terms that are at most linear in the derivatives of the solution vari-
ables. To this end, we simply use (8.3a)–(8.3p) to algebraically substitute for
Q2, Q4, Q5, Q6, Q7, Q9, Q11, Q12, Q13, Q14, Q15, Q16, Q18, Q19, Q20, and
Q21 (we do not substitute for Q1, Q3, Q8, Q10, and Q17 since these terms are
already manifestly linear combinations of null forms). Following this substitu-
tion, there are only two kinds of terms on RHS (8.51): null forms and terms
that are at most linear in the derivatives of the solution variables. We now place
all null forms on RHS (8.42) except for null forms that involve the derivatives
of � or S; these null forms we place directly on RHS (8.41). We then place all
terms that are linear in C, linear in D, linear in the first-order derivatives of
�, or linear in the first-order derivatives of S directly on RHS (8.41). Finally,
we place all remaining terms, which are at most linear in the derivatives of
the solution variables and do not depend on the derivatives of � or S, on
RHS (8.43). This completes the proof of the proposition. �

9. Local Well-Posedness with Additional Regularity for the
Vorticity and Entropy

Our main goal in this section is to prove Theorem 9.12, which is a local well-
posedness result for the relativistic Euler equations based on our new formu-
lation of the equations, that is, based on the equations of Theorem 3.1. The
main new feature of Theorem 9.12 compared to standard local well-posedness
results for the relativistic Euler equations (see Theorem 9.10 for a statement
of standard local well-posedness) is that it yields an extra degree of differen-
tiability for the vorticity and the entropy, assuming that the initial vorticity
and entropy enjoy the same extra differentiability. We stress that this gain
in regularity holds even though the logarithmic enthalpy and four-velocity do
not generally enjoy the same gain. As we described in Sect. 1.2, this extra
regularity for the vorticity and the entropy is essential for the study of shocks
in more than one spatial dimension.
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For convenience, instead of proving local well-posedness for the relativistic
Euler equations on the standard Minkowski spacetime background, we instead
consider the spacetime background (R×T

3,η), where the “spatial manifold” T
3

is the standard three-dimensional torus and, relative to standard coordinates
on R × T

3, ηαβ := diag(−1, 1, 1, 1) is the standard Minkowski metric. Thus,
strictly speaking, in this section, η denotes a tensor on a different manifold
compared to the rest of the paper, but this minor change has no substantial
bearing on the discussion. In particular, the relativistic Euler equations on
(R×T

3,η) take the same form that they take in Theorem 3.1. The advantage
of the compact spatial topology is that it allows for a simplified approach
to some technical aspects of the proof of local well-posedness. However, the
arguments that we give in this section feature all of the main ideas needed to
prove local well-posedness on the standard Minkowski spacetime background
(in which the spacetime manifold is diffeomorphic to R

1+3).

9.1. Notation, Norms, and Basic Tools from Analysis

9.1.1. Notation. Throughout this section, {xα}α=0,1,2,3 denote standard rect-
angular coordinates on R × T

3, where {xa}a=1,2,3 are standard local coordi-
nates on T

3, and we often use the alternate notation t := x0. Note that even
though {xa}a=1,2,3 are only locally defined on T

3, the coordinate partial de-
rivative vectorfields {∂a}a=1,2,3 can be extended to a smooth global frame on
T

3; by a slight abuse of notation, we will denote the globally defined “spa-
tial” frame by {∂a}a=1,2,3, and the corresponding globally defined “spacetime
frame” by {∂α}α=0,1,2,3. Also, we often use the alternate partial derivative
notation ∂t := ∂0.

Σt := {(t, x) | x ∈ T
3} (9.1)

denotes the standard flat constant-time hypersurface.
Throughout Sect. 9, we use the same conventions for lowering and raising

indices stated in Sect. 2.1, i.e., we lower and raise indices with the Minkowski
metric and its inverse. Note that for Latin “spatial” indices, this is equivalent
to lowering and raising via the Euclidean metric δij = diag(1, 1, 1) and its
inverse δij = diag(1, 1, 1). Finally, we note that we sometimes identify the
Euclidean metric or its inverse with the Kronecker delta.

To each “spatial multi-index” �I = (ι1, ι2, ι3), where the ιa are non-
negative integers, we associate the spatial differential operator ∂ �I := ∂ι1

1 ∂ι2
2 ∂ι3

3 .
Note that ∂ �I is an operator of order | �I| := ι1 + ι2 + ι3.

If V is a spacetime vectorfield or a one-form, then V denotes the η-
orthogonal projection of V onto Σt, that is, the “spatial part” of V . For ex-
ample, � is the vectorfield on Σt with rectangular components �i := �i for
i = 1, 2, 3. Moreover, we use the notation

(3)curli(W ) := εijk∂jWk (9.2)

to denote the standard Euclidean curl operator acting on one-forms on Σt,
where εijk is the fully antisymmetric symbol normalized by ε123 = 1.
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9.1.2. Norms.

Definition 9.1 (Lebesgue and Sobolev norms). We define the following Lebesgue
norms for scalar functions f :

‖f‖L∞(T3) := ess supx∈T3 |f(x)|, (9.3)

‖f‖L2(T3) :=
{∫

T3
f2(x) dx

}1/2

, (9.4)

where in the rest of Sect. 9, dx := dx1dx2dx3 denotes the standard volume
form on T

3 induced by the Euclidean metric diag(1, 1, 1).

Remark 9.2 (Extending the definitions of the norms from T
3 to Σt). In our

proof of local well-posedness, we will use norms in which the manifold T
3

from Definition 9.1 is replaced with the constant time slice Σt = {t} × T
3,

which is diffeomorphic to T
3. We will not explicitly define these norms along

Σt since their definitions are obvious analogs of the ones appearing in Defini-

tion 9.1. For example, ‖f‖L2(Σt) :=
{∫

Σt
f2(t, x) dx

}1/2

, which is also equal

to
{∫

T3 f2(t, x) dx
}1/2. Here, we are using that the volume form induced by

the Minkowski metric on Σt equals dx. Similar remarks apply to other norms
on T

3 introduced later in this subsubsection.

We define the following Sobolev norms for integers r ≥ 0:

‖f‖Hr(T3) :=

⎧
⎨

⎩

∑

| �I|≤r

‖∂ �If‖2
L2(R3)

⎫
⎬

⎭

1/2

, (9.5a)

‖f‖Ḣr(T3) :=

⎧
⎨

⎩

∑

| �I|=r

‖∂ �If‖2
L2(R3)

⎫
⎬

⎭

1/2

. (9.5b)

If r ∈ R is not an integer, then we define26

‖f‖Hr(T3) :=

⎧
⎨

⎩

∑

(k1,k2,k3)∈Z3

(1 + |k|2)r
∣
∣∣f̂(k1, k2, k3)

∣
∣∣
2

⎫
⎬

⎭

1/2

, (9.6)

where f̂(k1, k2, k3) :=
∫
T3 f(x)e−2πi

∑3
a=1 xaka dx is the spatial Fourier trans-

form of f and |k|2 :=
∑3

a=1 k2
a.

If U = (U1, . . . , Um) is an array of scalar-valued functions and ‖·‖ denotes
any of the norms introduced in this subsubsection, then we define

‖U‖ :=
m∑

a=1

‖Ua‖. (9.7)

26As is well known, when r is an integer, RHS (9.6) defines a norm that is equivalent to the
norm defined in (9.5a).
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Definition 9.3 (Some additional function spaces). If B is a Banach space with
norm ‖ · ‖B and r ≥ 0 is an integer, then Cr([0, T ],B) denotes the space of
r-times continuously differentiable functions from [0, T ] to B. We omit the
superscript when r = 0. We denote the corresponding norm of an element f of
this space by ‖f‖Cr([0,T ],B) := maxt∈[0,T ]

∑r
k=0 ‖f (k)(t)‖B, where f (k) denotes

the kth derivative of f with respect to t.
L∞([0, T ],B) denotes the space of functions from [0, T ] to B that are

essentially bounded over the interval [0, T ]. We denote the corresponding norm
of an element f of this space by ‖f‖L∞([0,T ],B) := ess supt∈[0,T ]‖f(t)‖B.

Cr(T3) denotes the space of functions on T
3 that are r-times contin-

uously differentiable. We omit the superscript when r = 0. We denote the
corresponding norm of an element f of this space by

‖f‖Cr(T3) :=
∑

| �I|≤r

max
x∈T3

|∂ �If(x)|.

We now fix, for the rest of Sect. 9, an integer N subject to

N ≥ 3. (9.8)

9.1.3. Basic Analytical Tools. In our analysis, we will rely on the following
standard results; see, e.g., [1,26,38] for proofs.

Lemma 9.4 (Sobolev embedding, product, difference, and interpolation
estimates). If r > 3/2, then Hr(T3) continuously embeds into C(T3), and there
exists a constant Cr > 0 such that the following estimate holds for v ∈ Hr(T3):

‖v‖C(T3) ≤ Cr‖v‖Hr(T3). (9.9)

Let r ≥ 0 be an integer and let v := (v1, . . . , vA) and w := (w1, . . . , wB)
be finite-dimensional arrays of real-valued functions on T

3 such that va ∈
Ḣr(T3) ∩ C(T3) for 1 ≤ a ≤ A and wb ∈ C(T3) 1 ≤ b ≤ B. Let

Ir :=

{

( �I1, . . . , �IA) |
A∑

a=1

| �Ia| = r

}

. (9.10)

Assume that w(T3) ⊂ intK , where K is a compact subset of RB, and let f be
a smooth real-valued function on an open subset of RB containing K . Then
the following estimate holds:

max
( �I1,..., �IA)∈Ir

∥∥∥∥∥
f(w)

A∏

a=1

∂ �Ia
va

∥∥∥∥∥
L2(T3)

≤ Cf,K ,r

A∑

a=1

‖va‖Ḣr(T3)

∏

b�=a

‖vb‖C(T3). (9.11)

Moreover, under the same assumptions stated in the previous paragraph,
if ( �I1, . . . , �IA) ∈ Ir, then the map (v, w) → f(w)

∏A
a=1 ∂ �Ia

va is continuous

from
(
Ḣr(T3) ∩ C(T3)

)A

×(C(T3)
)B to L2(T3). In particular, let δ = δw > 0
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be such that the following holds27:if d(p,w(T3)) < δ, d(q, w(T3)) < δ, and
d(p, q) < δ, where d is the standard Euclidean distance function on R

B, then
the straight-line segment joining p to q is contained in int K . Then if (v, w)
and (ṽ, w̃) are two array pairs of the type described in the previous paragraph
such that ‖w − w̃‖C(T3) ≤ δ, and if r > 3/2, then the following estimate
holds (where the function f is assumed to be the same in both appearances on
LHS (9.12) and Ir is defined by (9.10)):

max
( �I1,..., �IA)∈Ir

∥
∥∥∥∥
f(w)

A∏

a=1

∂ �Ia
va − f(w̃)

A∏

a=1

∂ �Ia
ṽa

∥
∥∥∥∥

L2(T3)

≤ Cf,K ,‖v‖Hr(T3),‖ṽ‖Hr(T3),A,r

{‖v − ṽ‖Hr(T3) + ‖w − w̃‖C(T3)

}
. (9.12)

Furthermore, if r > 3/2 and va ∈ Hr(T3) for a = 1, 2, then v1v2 ∈
Hr(T3), and there exists a constant Cr > 0 such that

‖v1v2‖Hr(T3) ≤ Cr‖v1‖Hr(T3)‖v2‖Hr(T3), (9.13)

and function multiplication (v1, v2) → v1v2 is a continuous map from Hr(T3)×
Hr(T3) to Hr(T3).

Finally, if 0 ≤ s ≤ r and v ∈ Hr(T3), then there exists a constant
Cr,s > 0 such that

‖v‖Hs(T3) ≤ Cr,s‖v‖1− s
r

L2(T3)‖v‖ s
r

Hr(T3). (9.14)

Remark 9.5 (The same estimates hold along Σt). All of the results of
Lemma 9.4 hold verbatim if we replace T

3 by Σt throughout.

9.1.4. An L2-in-time Continuity Result for Transport Equations. We will use
the following simple technical result in our proof of local well-posedness.

Lemma 9.6 (An L2-in-time continuity result for transport equations). Let T >
0. Assume that F ∈ L∞([0, T ], L2(T3)

)
, and let f be the solution to the inho-

mogeneous transport equation initial value problem

uα∂αf = F , (9.15)

f |Σ0 := f̊ ∈ L2(Σ0). (9.16)

Assume further that uα ∈ L∞([0, T ], C1(T3)
)

for α = 0, 1, 2, 3. Then

f ∈ C
(
[0, T ], L2(T3)

)
. (9.17)

Proof. We will prove right continuity at t = 0; continuity at any other time
t ∈ (0, T ] could be proved using similar arguments. More precisely, we will
show that

lim
t↓0

∥∥∥f(t, ·) − f̊
∥∥∥

L2(T3)
= 0. (9.18)

27Such a δ > 0 exists due to the compactness of w(T3) and K , where the compactness of
w(T3) follows from the assumption that the va are continuous.
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To proceed, we let {f̊k}∞
k=1 ⊂ C∞(T3) be a sequence of smooth functions such

that

‖f̊ − f̊k‖L2(Σ0) ≤ 1
k

. (9.19)

Note that

uα∂α(f − f̊k) = −ua∂af̊k + F . (9.20)

Hence, a standard integration by parts argument based on the divergence
identity

∂t

{
(f − f̊k)

}2

=
{

∂a

(
ua

u0

)}
(f − f̊k)2

+ 2
(f − f̊k)

u0

{
−ua∂af̊k + F

}

− ∂a

{(
ua

u0

)
(f − f̊k)2

}
(9.21)

yields that for 0 ≤ t ≤ T , we have

‖f − f̊k‖2
L2(Σt)

= ‖f̊ − f̊k‖2
L2(Σ0)

+
∫ t

τ=0

∫

Στ

{
∂a

(
ua

u0

)}
(f − f̊k)2 dx dτ

+ 2
∫ t

τ=0

∫

Στ

(f − f̊k)
u0

{
−ua∂af̊k + F

}
dx dτ. (9.22)

In particular, from (9.19), (9.22), our assumptions on F and uα, and Young’s
inequality, we find that if 0 ≤ t ≤ T , then there is a constant CT (independent
of k) such that

‖f − f̊k‖2
L2(Σt)

≤ 1
k2

+ CT

∫ t

τ=0

{
1 + ‖f̊k‖2

H1(Σ0)

}
dτ

+ CT

∫ t

τ=0

‖f − f̊k‖2
L2(Στ ) dτ. (9.23)

From (9.23) and Gronwall’s inequality, we deduce (allowing CT to vary from
line to line in the rest of the proof) that if 0 ≤ t ≤ T , then the following
inequality holds:

‖f − f̊k‖2
L2(Σt)

≤
{

1
k2

+ CT t
(
1 + ‖f̊k‖2

H1(Σ0)

)}
exp(CT t). (9.24)

From (9.24), (9.19), and the triangle inequality, it follows that

lim
t→0+

sup
0≤τ≤t

‖f − f̊‖L2(Στ ) ≤ 2
k

. (9.25)

Finally, allowing k → ∞ in (9.25), we conclude (9.18). We have therefore
proved the lemma. �
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9.2. The Regime of Hyperbolicity

Our proof of well-posedness relies on a standard assumption, namely that the
solution lies in the interior of the region of state space where the equations are
hyperbolic without degeneracy. This notion is precisely captured by the next
definition.

Definition 9.7 (Regime of hyperbolicity). We define the regime of hyperbolicity
H to be the following subset of state-space:

H :=
{
(h, s, u1, u2, u3) ∈ R

5 |0 < c(h, s) ≤ 1
}

. (9.26)

9.3. Standard Local Well-Posedness

Our principal goal in this subsection is to state Theorem 9.12, which is our main
local well-posedness result exhibiting the gain in regularity for the vorticity
and entropy. Most aspects of the theorem are standard. We summarize these
standard aspects in Theorem 9.10, which will serve as a precursor to our proof
of Theorem 9.12.

Remark 9.8 (Some non-standard aspects of Theorem 9.12). One of the non-
standard aspects of Theorem 9.12 is that it shows the continuous time de-
pendence of the top-order derivatives of � and s in the norm ‖ · ‖L2(Σt). The
proof relies on some results that are not easy to locate in the literature, tied
in part to the fact that the required estimates are of elliptic–hyperbolic type.
In our proof of Theorem 9.12, we will show how to obtain these top-order
time-continuity results. A second non-standard aspect of Theorem 9.12 is that
the transport-div-curl systems [specifically (3.9a)–(3.9b) and (3.11a)–(3.11b)]
leading to the gain in regularity for � and s involve spacetime divergence and
curl operators. Hence, additional arguments are needed to obtain the needed
spatial elliptic estimates along Σt; the key ingredients in this vein are provided
by the identity (9.34) and Lemma 9.20.

Remark 9.9 (The “fundamental” initial data). In the rest of Sect. 9, we view
h̊ := h|Σ0 , s̊ := s|Σ0 , and ůi := ui|Σ0 to be the “fundamental” initial data in the
following sense: with the help of the relativistic Euler equations (2.17)–(2.19)
+ (2.20), along Σ0, all of the other quantities that are relevant for our analysis
can be expressed in term of the fundamental initial data; see Lemma 9.17.

Theorem 9.10 (Standard local Well-Posedness). Let h̊ := h|Σ0 , s̊ := s|Σ0 , and
ůi := ui|Σ0 be initial data28 for the relativistic Euler equations (2.17)–(2.19)
+ (2.20). Assume that for some integer N ≥ 3, we have

h̊, s̊, ůi ∈ HN (Σ0). (9.27)

Assume moreover that there is a compact subset K ⊂ intH (where intH is the
interior of H) such that for all p ∈ Σ0, we have

(̊h(p), s̊(p), ů1(p), ů2(p), ů3(p)) ∈ intK.

28The datum u0|Σ0 is determined from the other data by virtue of the constraint (2.20).
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Then there exists a time T > 0 depending only on29 K, ‖̊h‖H3(Σ0), ‖̊s‖H3(Σ0),
and ‖ůi‖H3(Σ0), such that a unique classical solution (h, s, uα,�α) exists on
the slab [0, T ] × T

3 and satisfies (h(p), s(p), u1(p), u2(p), u3(p)) ∈ intK for p ∈
[0, T ] × T

3. Moreover, the solution depends continuously on the initial data,30

and its components relative to the standard coordinates enjoy the following
regularity properties:

h, s, uα ∈ C
(
[0, T ],HN (T3)

)
, (9.28a)

Sα, �α ∈ C
(
[0, T ],HN−1(T3)

)
. (9.28b)

Proof. (Discussion of the proof). Theorem 9.10 is standard. Readers can con-
sult, for example, [31] for detailed proofs in the case of the relativistic Euler
equations on a family of conformally flat31 spacetimes. The main step in the
proof is deriving a priori energy estimates for linearized versions of a first-order
formulation of the equations, such as (2.17)–(2.19) + (2.20). For a first-order
formulation that is equivalent (for C1 solutions) to (2.17)–(2.19) + (2.20), this
step was carried out in detail in [31] using the method of energy currents, a
technique that originated in the context of the relativistic Euler equations in
Christodoulou’s foundational work [4] on shock formation. �

Remark 9.11 (C∞ data give rise to C∞ solutions). In view of the Sobolev
embedding result (9.9), we see that Theorem 9.10 implies that C∞ initial data
give rise to (local-in-time) C∞ solutions.

We now state our main local well-posedness theorem. Its proof is located
in Sect. 9.7.

Theorem 9.12 (Local well-posedness with improved regularity for the entropy
and vorticity). Assume the hypotheses of Theorem 9.10, but in addition to (9.27),
assume also that the initial vorticity and entropy enjoy one extra degree of
Sobolev regularity. That is, assume that for some integer N ≥ 3 and i = 1, 2, 3,
we have

h̊, ůi ∈ HN (Σ0), (9.29a)

s̊, �̊i ∈ HN (Σ0), (9.29b)

where � is defined in (2.5) and �̊i := �|iΣ0
.

Then the conclusions of Theorem 9.10 hold, and the solution’s components
relative to standard coordinates enjoy the following regularity properties for

29In fact, using additional arguments not presented here, one can show that for any fixed

real number r > 5/2, the time of existence can be controlled by a function of K, ‖̊h‖Hr(Σ0),

‖̊s‖Hr(Σ0), and ‖ůi‖Hr(Σ0). Of course, if the initial data enjoy additional Sobolev regularity,

then the additional regularity persists in the solution during its classical lifespan.
30In particular, there is a

(
H3(Σ0)

)5
-neighborhood of (̊h, s̊, ůi) such that all data in the

neighborhood launch solutions that exist on the same slab [0, T ] × T
3 and, assuming also

that the data belong to
(
HN (Σ0)

)5
, enjoy the regularity properties stated in the theorem.

31More precisely, in [31], the spacetime metrics are scalar function multiples of the Minkowski
metric on R

1+3.
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α = 0, 1, 2, 3, where T > 0 is the same time from Theorem 9.10:

h, uα ∈ C
(
[0, T ],HN (T3)

)
, (9.30a)

s ∈ C
(
[0, T ],HN+1(T3)

)
, Sα, �α ∈ C

(
[0, T ],HN (T3)

)
. (9.30b)

In particular, according to (9.30b), the additional regularity of the entropy and
vorticity featured in the initial data is propagated by the flow of the equations.
Moreover, the solution depends continuously on the initial data relative the
norms corresponding to (9.30a)–(9.30b).

9.4. A New Inverse Riemannian Metric and the Classification of Various Com-
binations of Solution Variables

In our proof of Theorem 9.12, when controlling the top-order derivatives of the
vorticity and entropy, we will rely on “geometrically sharp” elliptic estimates in
which the precise details of the principal coefficients of the elliptic operators are
important for our arguments. Due to the quasilinear nature of the relativistic
Euler equations, these precise elliptic estimates involve the inverse Riemannian
metric G−1 from the next definition. In particular, we will need to use G−1-
based norms when proving that the top-order derivatives of � and S are
continuous in time with values in L2(T3) [these facts are contained within
the statement (9.30b)]; the role of G−1 in our analysis will become clear in
Sect. 9.7.

Definition 9.13 (An inverse Riemannian metric on Σt). On each Σt, we define
the inverse Riemannian metric G−1 as follows:

(G−1)ij := δij − uiuj

(u0)2
, (9.31)

where δij := diag(1, 1, 1) is the standard Kronecker delta.

Remark 9.14 From the relation ηαβuαuβ = −1, one can easily show that G−1

is Riemannian, that is, of signature (+,+,+).

In proving that the solution depends continuously on the initial data, we
will use a modified version of Kato’s framework [17–19]. His framework was
designed to handle hyperbolic systems, while our formulation of the relativistic
Euler equations is elliptic–hyperbolic. For this reason, we find it convenient to
divide the solution variables into various classes, which we provide in the next
definition. Roughly, we will handle the “hyperbolic quantities” using Kato’s
framework, and to handle the remaining quantities, we will use elliptic esti-
mates and algebraic relationships to control them in terms of the hyperbolic
quantities.

Definition 9.15 (Classification of various combinations of solution variables).
We define the hyperbolic quantities H, the elliptic quantities E, and the al-
gebraic quantities AH, AH,E, and A as follows, where the Euclidean curl
operator (3)curl is defined in (9.2):

H := (h, s, ua, ∂ah, ∂aub,�a, Sa, Ca,D)a,b=1,2,3, (9.32a)

E := (∂a�b, ∂aSb)a,b=1,2,3, (9.32b)
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AH :=
(
u0 − 1,�0, S0, C0, ∂th, ∂tu

α, ∂au0, ∂ts
)
α=0,1,2,3;a=1,2,3

∪
(
(G−1)cd∂c�d, (G−1)cd∂cSd,

(3)curla(�), (3)curla(S)
)

a=1,2,3
,

(9.32c)

AH,E := (∂t�α, ∂a�0, ∂tSα, ∂aS0, ∂b�
b, ∂bS

b)α=0,1,2,3;a=1,2,3, (9.32d)

A := AH ∪ AH,E. (9.32e)

Some remarks are in order.

• The point of introducing the algebraic quantities A is that, by virtue of
the relativistic Euler equations, they can be algebraically expressed in
terms of H and E (and thus are redundant); see Lemma 9.17. We stress
that in (9.32c), it is crucial that the inverse metric G−1 is the one from
Definition 9.13; the proof of (9.33a) will clarify that it is essential that
the inverse metric is precisely G−1.

• The elliptic quantities E can be controlled (in appropriate Sobolev norms)
in terms of H via elliptic estimates; see Lemma 9.20 and its proof.

• The hyperbolic quantities H solve evolution equations with source terms
that depend on H and E. In view of the previous point, we see that one
can bound the source terms (in appropriate Sobolev norms) in terms of
H. This will allow us to derive a closed system of energy inequalities that
can be used to estimate H. In view of the previous two points, we see
that the estimates for H imply corresponding estimates for E and A.

Remark 9.16 (The hyperbolic quantities verify first-order hyperbolic equations).
In our proof of local well-posedness, we will use the fact that the hyperbolic
quantities H solve first-order hyperbolic equations. More precisely, the ele-
ments h, s, and ua of (9.32a) satisfy the first-order hyperbolic system (2.17)–
(2.19) + (2.20), the elements ∂ah and ∂aub satisfy hyperbolic equations ob-
tained by taking one spatial derivative of the Eqs. (2.17)–(2.19) + (2.20), and
Sa, �a, Ca, and D respectively satisfy the (spatial components of the) trans-
port Eqs. (3.7), (3.8), (3.11b), and (3.9a); it is in this sense that we consider
the variables H to be “hyperbolic.”

Lemma 9.17 (Expressions for the algebraic quantities in terms of the hy-
perbolic and elliptic quantities). Assume that (h, s, uα) is a smooth solution
to (2.17)–(2.19) + (2.20). Then we can express

AH = f(H), (9.33a)

AH,E = f(H,E), (9.33b)

A = f(H,E), (9.33c)

where in (9.33a)–(9.33c), f is a schematically denoted smooth function that
satisfies f(0) = 0 and that is allowed to vary from line to line.
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Moreover, let �I be a spatial multi-index with | �I| ≥ 1. Then

(G−1)ab∂a∂ �I�b, (G−1)ab∂a∂ �ISb,
(3)curli(∂ �I�)

=
| �I|∑

M=1

| �J1|+···+| �JM |=| �I|

f �J1,..., �JM
(H)

M∏

m=1

∂ �Jm
H. (9.34)

where f �J1,..., �JM
are schematically denoted smooth functions (not necessarily

vanishing at 0) and
∏M

m=1 ∂ �Jm
H schematically denotes an order M monomial

in the derivatives of the elements of H.

Proof. Throughout this proof, f is a smooth function that can vary from line
to line and satisfies f(0) = 0 (except that the functions f �J1,..., �JM

on RHS (9.34)
do not necessarily satisfy f �J1,..., �JM

(0) = 0). Moreover, H and E are as defined
in (9.32a) and (9.32b).

We first prove (9.33a). We must show that the elements of (9.32c) can be
written as smooth functions of the elements of (9.32a) that vanish at 0. We first
note that by the normalization condition ηκλuκuλ = −1, u0 − 1 is a smooth
function of the spatial components of u that vanishes when u1 = u2 = u3 = 0.
From this fact and the identity uκSκ = 0 [see (2.21)], we deduce that S0 is a
smooth function of the spatial components of u and S that vanishes at 0. A
similar result holds for �0 by virtue of (4.2). Next, we note that, in view of the
above discussion and the discussion surrounding Eq. (2.28), we can solve for the
time derivatives of h, s, and uα in terms of their spatial derivatives. Thus far,
we have shown that u0−1,�0, S0, ∂th, ∂tu

α, ∂au0, ∂ts can be expressed as f(H).
In the rest of the proof, we will use these facts without explicitly mentioning
them every time. Next, we use definitions (2.4) and (2.16a) to deduce that
uκCκ = f(H). Using this equation to algebraically solve for C0, we deduce that
C0 = f(H), as desired. We will now show that (G−1)cd∂cSd = f(H). To begin,
we use definition (2.16b) to deduce that ∂iS

i = ∂αSα − ∂tS
0 = nD −Sκ∂κh+

c−2Sκ∂κh−∂tS
0 = f(H)−∂tS

0. Next, using the identity ∂t = uκ∂κ

u0 − ui∂i

u0 and
the evolution equation (3.7) with α = 0, we find that ∂tS

0 = f(H) − ui∂iS
0

u0 .

Moreover, using (2.21), we find that S0 = Sjuj

u0 , from which we deduce that
ui∂iS

0

u0 = f(H) + uiuj∂iSj

(u0)2 . Combining the above calculations, we find that

∂iS
i − uiuj∂iSj

(u0)2 = f(H) which, in view of definition (9.31), yields the desired
relation (G−1)cd∂cSd = f(H). The relation (G−1)cd∂c�d = f(H) can be proved
using a similar argument based on Eqs. (3.8) and (3.11a), and we omit the
details. To show that (3)curla(�) = f(H), we first note that by definition (9.2),
it suffices to show that ∂i�j − ∂j�i = f(H) for i, j = 1, 2, 3. To proceed, we
use (4.10) with V := � [which is applicable in view of (4.2)], definition (2.16a),
and the transport Eq. (3.8) to deduce that ∂i�j − ∂j�i = εijγδu

γvortδ(�) +
uju

κ∂κ�i −uiu
κ∂κ�j +f(H) = f(H), which is the desired result. The fact that

(3)curla(S) = 0 = f(H) is a trivial consequence of the symmetry property (4.1)
and definition (9.2). We have therefore proved (9.33a).
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We now prove (9.33b). We must show that elements of (9.32d) can
be written as smooth functions of the elements of (9.32a) and the elements
of (9.32b) that vanish at 0. To handle ∂t�i,we use the identity ∂t = uκ∂κ

u0 − uj∂j

u0

and the transport Eq. (3.8) to deduce that ∂t�i = uκ∂κ�i

u0 +f(H,E) = f(H,E)
as desired. To handle ∂t�0, we simply use (4.2) to obtain the identity �0 =
�juj

u0 , differentiate this identity with respect to ∂t, and then use the already
proven facts that �j , uα − δα

0 , and their time derivatives are equal to f(H,E).

Similarly, by differentiating the identity �0 = �juj

u0 with ∂a, we conclude that
∂a�0 = f(H,E). The relations ∂tSα = f(H,E) and ∂aS0 = f(H,E) can be
proved using a similar argument based on Eqs. (2.21) and (3.7), and we omit
the details. The facts that ∂b�

b = f(H,E) and ∂bS
b = f(H,E) follow trivially

from the definitions. We have therefore proved (9.33b). Equation (9.33c) then
follows from definition (9.32e) and (9.33a)–(9.33b).

To prove (9.34), we first note that definition (9.32c) and (9.33a) im-
ply that (G−1)ab∂a�b, (G−1)ab∂aSb, and (3)curli(�) are all of the form f(H).
Hence, (9.34) follows from the Leibniz and chain rules and the definition (9.32a)
of H. �

9.5. Elliptic Estimates and the Corresponding Energies

In this subsection, we construct the energies that we will use to control the
top-order derivatives of the vorticity and entropy; see Definition 9.19. The
proof that the energies are coercive relies on elliptic estimates; see the proof
of Lemma 9.20. We start by defining a bilinear form on the relevant Hilbert
space of functions. Lemma 9.20 shows that the bilinear form induces a norm
on the Hilbert space.

Definition 9.18 (A new Hilbert space inner product). Let (�,S) denote the
array of spatial components of the vorticity and entropy gradient (i.e., the
η-orthogonally projection of (�,S) onto Σt, as in Sect. 9.1.1). Let α > 0 be a
parameter and let M−1(t, ·) be an inverse Riemannian metric on Σt. We define
the following bilinear form on the corresponding Hilbert space

(
HN (Σt)

)3 ×
(
HN (Σt)

)3:
〈
(�,S) ,

(
�̃, S̃

)〉

M−1;α
(t)

:= α
∑

| �I|=N−1

∫

Σt

{
(M−1)ab∂a∂ �I�b

}{
(M−1)cd∂c∂ �I�̃d

}
dx

+ α
∑

| �I|=N−1

∫

Σt

{
(M−1)ab∂a∂ �ISb

}{
(M−1)cd∂c∂ �I S̃d

}
dx

+ α
∑

| �I|=N−1

∫

Σt

(M−1)ab(M−1)cdεaciεbdj
(3)curli(∂ �I�)(3)curlj(∂ �I�̃) dx

+ α
∑

| �I|=N−1

∫

Σt

(M−1)ab(M−1)cdεaciεbdj
(3)curli(∂ �IS)(3)curlj(∂ �I S̃) dx
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+
∑

| �I|≤N−1

∫

Σt

δab(∂ �I�a)(∂ �I�̃b) dx +
∑

| �I|≤N−1

∫

Σt

δab(∂ �ISa)(∂ �I S̃b) dx,

(9.35)

where δab is the standard Kronecker delta and εabc is the fully antisymmetric
symbol normalized by ε123 = 1.

We now define the family of energies that we will use to control the
top-order derivatives of the vorticity and entropy.

Definition 9.19 (“Elliptic” energy). Let N ≥ 3 be an integer, let α > 0 be a
parameter (below we will choose it to be sufficiently small), and let M−1(t, ·)
be a C1 inverse Riemannian metric on Σt. We define the square of the “elliptic”
energy EN ;M−1;α[(�,S)] = EN ;M−1;α[(�,S)](t) ≥ 0 as follows:

E
2
N ;M−1;α[(�,S)](t) := 〈(�,S) , (�,S)〉M−1;α (t). (9.36)

In the next lemma, with the help of elliptic estimates, we exhibit the
coercivity of EN ;M−1;α[(�,S)](t). The lemma shows in particular that if α > 0
is sufficiently small (depending on the inverse Riemannian metric M−1), then
the bilinear form from Definition 9.18 is a Hilbert space inner product.

Lemma 9.20 (Energy-norm comparison estimate based on elliptic estimates).
Let T > 0, and let M−1 = M−1(t, x) be an inverse Riemannian metric de-
fined for (t, x) ∈ [0, T ] × T

3. Let λ be the infimum of the eigenvalues of the
3×3 matrix (M−1)ij(t, x) over (t, x) ∈ [0, T ]×T

3, and let Λ be the supremum
of the eigenvalues of the 3 × 3 matrix (M−1)ij(t, x) over (t, x) ∈ [0, T ] × T

3,
and assume that 0 < λ ≤ Λ < ∞. Let EN ;M−1;α[(�,S)] be as in Defini-
tion 9.19. There exist a small constant α∗ > 0 and a large constant C > 0
such that α−1

∗ and C depend continuously in an increasing fashion on (i)
maxi,j=1,2,3 ‖(M−1)ij‖

C
(
[0,T ],C1(T3)

); (ii) Λ; and (iii) λ−1, such that the fol-

lowing comparison estimates hold for t ∈ [0, T ]:

EN ;M−1;α∗ [(�,S)](t) ≤ C

3∑

a=1

‖�a‖HN (Σt)
+ C

3∑

a=1

‖Sa‖HN (Σt)
, (9.37a)

3∑

a=1

‖�a‖HN (Σt)
+

3∑

a=1

‖Sa‖HN (Σt)
≤ CEN ;M−1;α∗ [(�,S)](t). (9.37b)

Proof. We prove only (9.37b) since (9.37a) can be proved using similar but
simpler arguments. Throughout the proof, C > 0 denotes a constant with the
dependence-properties stated in the lemma. To proceed, we note the following
divergence identity for one-forms V on Σt, which can be directly verified:

(M−1)ab(M−1)cd(∂aVb)(∂cVd)

+

1
2 (M−1)ab(M−1)cd(∂aVc−∂cVa)(∂bVd−∂dVb)

︷ ︸︸ ︷
1
2
(M−1)ab(M−1)cdεaciεbdj

(3)curli(V )(3)curlj(V )
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= (M−1)ab(M−1)cd(∂aVc)(∂bVd)

+
1
2
{
∂a

[
(M−1)ab(M−1)cd

]}
[Vc∂bVd + Vc∂dVb]

+
1
2
{
∂c

[
(M−1)ab(M−1)cd

]}
[Va∂bVd + Va∂dVb]

− 1
2
{
∂b

[
(M−1)ab(M−1)cd

]}
[Va∂cVd + Vc∂aVd]

− 1
2
{
∂d

[
(M−1)ab(M−1)cd

]}
[Va∂cVb + Vc∂aVb]

+
1
2
∂b

{
(M−1)ab(M−1)cd [Va∂cVd + Vc∂aVd]

}

+
1
2
∂d

{
(M−1)ab(M−1)cd [Va∂cVb + Vc∂aVb]

}

− 1
2
∂a

{
(M−1)ab(M−1)cd [Vc∂bVd + Vc∂dVb]

}

− 1
2
∂c

{
(M−1)ab(M−1)cd [Va∂bVd + Va∂dVb]

}
. (9.38)

We now integrate (9.38) over Σt with respect to dx and note that the integrals
of the last four (perfect spatial derivative) terms on the right-hand side vanish.
In view of our assumptions on the eigenvalues of (M−1)ij(t, ·), we see that the
integral of the first term (M−1)ab(M−1)cd(∂aVc)(∂bVd) on RHS (9.38) is ≥
λ2
∑3

a,b=1 ‖∂aVb‖2
L2(Σt)

. Also using Young’s inequality, we see that the integrals
of the second through fifth terms on RHS (9.38) (in which a derivative falls on
M−1) are collectively bounded from below by ≥ −λ2

2

∑3
a,b=1 ‖∂aVb‖2

L2(Σt)
−

C
λ2

∑3
a=1 ‖Va‖2

L2(Σt)
. It follows that the integral of (9.38) is bounded from

below by

≥ λ2

2

3∑

a,b=1

‖∂aVb‖2
L2(Σt)

− C

λ2

3∑

a=1

‖Va‖2
L2(Σt)

.

The desired estimate (9.37b) now follows from these considerations with �
and S in the role of V , and definitions (9.35) and (9.36), where α := α∗ > 0 is
chosen so that α∗ C

λ2 = 1
2 , and C

λ2 is the (absolute value of the) coefficient from
the previous inequality. We clarify that, by our conventions, factors of 1

λ2 can
be absorbed into the constant C on RHS (9.37b). �

In the next lemma, we show that some Sobolev norms of the elliptic vari-
ables E can be bounded by corresponding Sobolev norms of the hyperbolic
variables H. We also derive related estimates for the difference of two solu-
tions. The main ingredients in the proofs are the elliptic estimates provided
by Lemma 9.20.

Lemma 9.21 (Controlling Sobolev norms of the elliptic variables in terms of
Sobolev norms of the hyperbolic variables).

(A) Let h̊ := h|Σ0 , s̊ := s|Σ0 , and ůi := ui|Σ0 be initial data for the relativistic
Euler equations (2.17)–(2.19) + (2.20), let �̊i := �i|Σ0 , and let (h, s, uα)
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be the solution provided by Theorem 9.10. In particular, let N ≥ 3 be an
integer, let [0, T ] × T

3 be the slab of existence provided by the theorem,
and let K be the set featured in Theorem 9.10. Assume in addition that
the rectangular components of the initial data are elements of C∞(Σ0),
and note that by Theorem 9.10 and the Sobolev embedding result (9.9),
the rectangular components of the solution belong to C∞([0, T ]×T

3). Let
E and H be the corresponding elliptic and hyperbolic variables as defined
in Definition 9.15. Then there exists a constant C > 0, depending only
on:

1. N
2. K
3. ‖̊h‖HN (Σ0) + ‖̊s‖HN+1(Σ0) +

∑3
a=1 ‖ůa‖HN (Σ0) +

∑3
a=1 ‖�̊a‖HN (Σ0)

4.

‖h‖
C
(
[0,T ],C1(T3)

) + ‖s‖
C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖ua‖
C
(
[0,T ],C1(T3)

)

+
3∑

a=1

‖Sa‖
C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖�a‖
C
(
[0,T ],C1(T3)

),

such that the following estimate holds for t ∈ [0, T ]:

‖E‖HN−1(Σt) ≤ C‖H‖HN−1(Σt). (9.39)

(B) For i = 1, 2, let (h(i), s(i), u(i)) be classical solutions to the relativistic
Euler equations (2.17)–(2.19) + (2.20) that have the properties stated in
part (A). Assume that the slab of existence [0, T ] × T

3 is the same for
both solutions and that the set K is the same for both solutions, that is,
that there exists a compact set K ⊂ intH such that for i = 1, 2, we have
(h(i), s(i), u

1
(i), u

2
(i), u

3
(i))([0, T ] ×T

3) ⊂ intK. Let E(i) and H(i) be the cor-
responding elliptic and hyperbolic variables as defined in Definition 9.15.
Then there exist constants δ > 0 and C > 0, depending only on:

1. N
2. K
3.

2∑

i=1

{
‖̊h(i)‖HN (Σ0) + ‖̊s(i)‖HN+1(Σ0) +

3∑

a=1

‖ůa
(i)‖HN (Σ0) +

3∑

a=1

‖�̊a
(i)‖HN (Σ0)

}

4.

2∑

i=1

{
‖h(i)‖C

(
[0,T ],C1(T3)

) + ‖s(i)‖C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖ua
(i)‖C

(
[0,T ],C1(T3)

)

+
3∑

a=1

‖Sa
(i)‖C

(
[0,T ],C1(T3)

) +
3∑

a=1

‖�a
(i)‖C

(
[0,T ],C1(T3)

)
}
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5.
2∑

i=1

{
‖h(i)‖C

(
[0,T ],HN (T3)

) +
3∑

a=1

‖ua
(i)‖C

(
[0,T ],HN (T3)

)

+ ‖s(i)‖C
(
[0,T ],HN+1(T3)

) +
3∑

a=1

‖�a
(i)‖C

(
[0,T ],HN (T3)

)
}

,

such that if ‖H(1) − H(2)‖C(Σt) ≤ δ, then the following estimate holds for
t ∈ [0, T ]:

‖E(1) − E(2)‖HN−1(Σt) ≤ C‖H(1) − H(2)‖HN−1(Σt). (9.40)

Proof. Throughout this proof, C denotes a constant with the dependence-
properties stated in the lemma. We begin by establishing (9.39). Invoking
definitions (9.32a), (9.32b), (9.35), and (9.36), using the fact that (3)curl(S) =
0 [see (4.1)], and using the estimate (9.37b) with M−1 := G−1 and with α∗ > 0
as in the statement of Lemma 9.20 (where G−1 is defined in Definition 9.13,
and we stress that the proof of (9.37b) relied on elliptic estimates), we find
that

‖E‖HN−1(Σt) ≤ CEN ;G−1;α∗ [(�,S)](t)

≤ C
∑

| �I|=N−1

∥
∥(G−1)ab∂a∂ �I�b

∥
∥

L2(Σt)

+ C
∑

| �I|=N−1

∥
∥(G−1)ab∂a∂ �ISb

∥
∥

L2(Σt)

+ C
∑

| �I|=N−1

3∑

a=1

∥∥∥(3)curla(∂ �I�)
∥∥∥

L2(Σt)

+ C‖H‖HN−1(Σt). (9.41)

Next, using (9.34), we see that the terms (G−1)ab∂a∂ �I�b, (G−1)ab∂a∂ �ISb,
and (3)curla(∂ �I�) on RHS (9.41) are smooth functions of H and its spatial
derivatives. Thus, using inequality (9.11) to bound RHS (9.34) in the norm
‖ · ‖L2(Σt), we arrive at the desired estimate (9.39). We stress that RHS (9.11)
is linear in the order r derivatives of the solution; this is the reason that
RHS (9.39) is linear in ‖H‖HN−1(Σt).

We now prove (9.40). For i = 1, 2, we let G−1
(i) denote the inverse Riemann-

ian metric corresponding to the ith solution, that is, the inverse Riemannian
metric whose rectangular components are formed by evaluating RHS (9.31)
at the solution corresponding to the labeling index i. To proceed, we use
definitions (9.32a), (9.32b), (9.35), and (9.36), the fact that (3)curl(S(1)) =
(3)curl(S(2)) = 0 [see (4.1)], and the comparison estimate (9.37b) with M−1 :=
G−1

(1) and with α∗ > 0 as in the statement of Lemma 9.20 to deduce that

‖E(1) − E(2)‖HN−1(Σt)

≤ CEN ;G−1
(1);α∗ [(�(1) − �(2), S(1) − S(2))](t)
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≤ C
∑

| �I|=N−1

∥
∥∥(G−1

(1))
ab∂a∂ �I

(
�(1)b − �(2)b

)∥∥∥
L2(Σt)

+ C
∑

| �I|=N−1

∥∥
∥(G−1

(1))
ab∂a∂ �I

(
S(1)b − S(2)b

)∥∥
∥

L2(Σt)

+ C
∑

| �I|=N−1

3∑

a=1

∥∥∥(3)curla
(
∂ �I(�(1) − �(2))

)∥∥∥
L2(Σt)

+ C‖H(1) − H(2)‖HN−1(Σt). (9.42)

Next, using the triangle inequality, we find that

RHS (9.42)

≤ C
∑

| �I|=N−1

∥∥∥(G−1
(1))

ab∂a∂ �I�(1)b − (G−1
(2))

ab∂a∂ �I�(2)b

∥∥∥
L2(Σt)

+ C
∑

| �I|=N−1

∥
∥∥(G−1

(2))
ab − (G−1

(1))
ab
∥
∥∥

C(Σt)

∥∥∂a∂ �I�(2)b

∥∥
L2(Σt)

+ C
∑

| �I|=N−1

∥
∥∥(G−1

(1))
ab∂a∂ �IS(1)b − (G−1

(2))
ab∂a∂ �IS(2)b

∥
∥∥

L2(Σt)

+ C
∑

| �I|=N−1

∥∥
∥(G−1

(2))
ab − (G−1

(1))
ab
∥∥
∥

C(Σt)

∥∥∂a∂ �IS(2)b

∥∥
L2(Σt)

+ C
∑

| �I|=N−1

3∑

a=1

∥∥∥(3)curla(∂ �I�(1)) − (3)curla(∂ �I�(2))
∥∥∥

L2(Σt)

+ C‖H(1) − H(2)‖HN−1(Σt). (9.43)

Using the assumed bounds
∑

| �I|=N−1

∑3
a,b=1

∥∥∂a∂ �I�(2)b

∥∥
L2(Σt)

≤ C and
∑

| �I|=N−1

∑3
a,b=1

∥
∥∂a∂ �IS(2)b

∥
∥

L2(Σt)
≤ C, (9.34), (9.9), and (9.12) (where the

hypotheses needed to invoke (9.12) are satisfied if ‖H(1) − H(2)‖C(Σt) is suf-
ficiently small), we see that the terms on the first, third, and fifth lines of
RHS (9.43) are ≤ C‖H(1) −H(2)‖HN−1(Σt) as desired. To handle the terms on
the second and fourth lines of RHS (9.43), we use the assumed bounds

∑

| �I|=N−1

3∑

a,b=1

∥∥∂a∂ �I�(2)b

∥∥
L2(Σt)

≤ C,
∑

| �I|=N−1

3∑

a,b=1

∥∥∂a∂ �IS(2)b

∥∥
L2(Σt)

≤ C,

the mean value theorem estimate
∣∣∣(G−1

(2))
ab − (G−1

(1))
ab
∣∣∣ ≤ C

∣∣H(1) − H(2)

∣∣

(where we are using that RHS (9.31) can be viewed as a smooth function of
(u1, u2, u3)), and the Sobolev embedding result (9.9) to deduce that the terms
on the second and fourth lines of RHS (9.43) are ≤ C‖H(1) − H(2)‖C(Σt) ≤
C‖H(1) − H(2)‖HN−1(Σt) as desired. We have therefore proved (9.40). �
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9.6. Energies for the Wave Equations via the Vectorfield Multiplier Method

In this subsection, we derive a priori estimates for our new formulation of the
relativistic Euler equations. The main result is provided by the next proposi-
tion. The proposition shows in particular that the vorticity and entropy are
one degree more differentiable compared to the standard estimates that fol-
low from first-order formulations of the equations. The main analytic tools in
the proof of the proposition are the elliptic estimates from Sect. 9.5 and the
vectorfield method for wave equations (see Sect. 9.6.1).

Proposition 9.22 (A priori estimates for solutions to the relativistic Euler
equations). Let h̊ := h|Σ0 , s̊ := s|Σ0 , and ůi := ui|Σ0 be initial data for the
relativistic Euler equations (2.17)–(2.19) + (2.20) obeying the assumptions of
Theorem 9.10, and let (h, s, u0, u1, u2, u3) be the corresponding solution. In
particular, let N ≥ 3 be an integer, let [0, T ] × T

3 be the slab of existence
provided by the theorem, and let K be the set featured in theorem. Assume in
addition that the components of the initial data relative to standard coordinates
belong to C∞(T3) and note that by Remark 9.11, the solution components be-
long to C∞([0, T ] × T

3). Let � be the vorticity (see Definition 2.2), and let
�̊i := �i|Σ0 be its initial spatial components.

Then there exists a constant C > 0, depending only on:
1. N
2. K
3. ‖̊h‖HN (Σ0) +

∑3
a=1 ‖ůa‖HN (Σ0) + ‖̊s‖HN+1(Σ0) +

∑3
a=1 ‖�̊a‖HN (Σ0)

4.

‖h‖
C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖ua‖
C
(
[0,T ],C1(T3)

) + ‖s‖
C
(
[0,T ],C1(T3)

)

+
3∑

a=1

‖Sa‖
C
(
[0,T ],C1(T3)

) +
3∑

a=1

‖�a‖
C
(
[0,T ],C1(T3)

)

such that for t ∈ [0, T ], the components of the solution relative to the standard
coordinates verify the following estimates:

‖h‖HN (Σt) +
3∑

a=0

‖uα − δα
0 ‖HN (Σt) + ‖s‖HN+1(Σt)

+
3∑

α=0

‖Sα‖HN (Σt) +
3∑

α=0

‖�α‖HN (Σt)

≤ C exp(Ct) ≤ C exp(CT ) := C∗, (9.44)

where δα
0 is the Kronecker delta.

The proof of Proposition 9.22 is located in Sect. 9.6.4. We will first derive
some preliminary results. We start by noting that we can rewrite the spatial
components of (3.1), (3.3), (3.7), (3.8), (3.9a), and (3.11b) in concise form as
follows, where f denotes a smooth function of its arguments that is free to vary
from line to line and that satisfies f(0) = 0, V denotes η-orthogonal projection
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of V onto constant-time hypersurfaces (see Sect. 9.1.1), and the hyperbolic
variables H and the elliptic variables E are as in Definition 9.15:

�gh = f(H), (9.45a)

�gu = f(H), (9.45b)

uα∂αS = f(H), (9.45c)

uα∂α� = f(H), (9.45d)

uα∂αD = f(H,E), (9.45e)

uα∂αC = f(H,E). (9.45f)

The crux of the proof of Proposition 9.22 is to derive energy estimates
for the covariant wave equations (9.45a) and (9.45b), energy estimates for the
transport equations (9.45c), (9.45d), (9.45e), and (9.45f), and elliptic estimates
to handle the terms E on RHSs (9.45e) and (9.45f). We have already derived
the necessary elliptic estimates in Sect. 9.5. In the next three subsections, we
will outline the energy estimates, which are standard.

9.6.1. Energy Estimates for Covariant Wave Equations. The wave operator
in (9.45a) and (9.45b) is with respect to the acoustical metric g introduced in
Definition 2.6. These are covariant wave equations for the scalar quantities h
and uα. Estimates for such equations can be derived by using the well-known
vectorfield multiplier method32 for wave equations, which we outline in this
subsubsection.

Let ϕ be any element of {h, u1, u2, u3} (in practice, we will not need to
derive separate energy estimates for u0 since estimates for u0 can be obtained
as a consequence of the estimates for the spatial components of u and the
normalization condition ηκλuκuλ = −1). We start by defining the energy-
momentum tensor associated to a scalar function ϕ:

Tαβ = Tαβ [ϕ] := (∂αϕ)(∂βϕ) − 1
2
gαβ(g−1)μν(∂μϕ)(∂νϕ). (9.46)

A crucial property of Tαβ is that it satisfies the dominant energy condition:
TαβXαY β ≥ 0 whenever the vectorfields X and Y are future-directed33 and
timelike34 with respect to g. In practice, the dominant energy condition allows
one to construct energies that are coercive along causal (with respect to g)
hypersurfaces;35 see Eq. (9.56) below for the energy that we use in deriving a
priori estimates for h and u.

32In deriving a priori estimates, in addition to the multiplier method, we will use only the
simplest version of the vectorfield commutator method. Specifically, we will commute the
equations only with the coordinate spatial derivative operators ∂ �I .
33By a “future-directed” vectorfield X, we mean that X0 > 0.
34X is defined to be timelike with respect to g if gαβXαXβ < 0.
35By a “causal hypersurface,” we mean a hypersurface whose future-directed unit normal is
either timelike with respect to g or null with respect to g at each point.



2256 M. M. Disconzi, J. Speck Ann. Henri Poincaré

Next, for any vectorfield X (soon to be employed in the role of a “mul-
tiplier vectorfield”), we let (X)π be its deformation tensor relative to g, which
takes the following form relative to arbitrary coordinates:

(X)παβ := gβμ∇αXμ + gαμ∇βXμ. (9.47)

In (9.47) and in the rest of this subsubsection, ∇ is the covariant derivative
induced by g. Next, we define the energy current vectorfield corresponding to
X as follows:

(X)Jα = (X)Jα[ϕ] := (g−1)αμTμβ [ϕ]Xβ − Xαϕ2. (9.48)

From straightforward computations, we derive the following identity:

∇α
(X)Jα = (�gϕ)Xα∂αϕ +

1
2
(g−1)αγ(g−1)βδTαβ

(X)πγδ

− (∇αXα)ϕ2 − 2ϕ(Xα∂αϕ). (9.49)

Applying the divergence theorem on the spacetime slab [0, T ] × T
3 and us-

ing (9.49), we deduce the following identity:
∫

Σt

gαβ
(X)Jα[ϕ]N̂β dμg

=
∫

Σ0

gαβ
(X)Jα[ϕ]N̂β dμg

−
∫

[0,t]×T3

{
(�gϕ)Xα∂αϕ +

1
2
(g−1)αγ(g−1)βδTαβ

(X)πγδ

}
dμg

+
∫

[0,t]×T3

{
(∇αXα)ϕ2 + 2ϕ(Xα∂αϕ)

}
dμg. (9.50)

In (9.50), dμg is the volume form that g induces on [0,t] ×T
3, N̂ is the future-

directed unit normal to Σt with respect to the metric g, and dμg is the volume
form that g induces on Σt, where g is the first fundamental form of Σt, that
is, g

ij
:= gij for 1 ≤ i, j ≤ 3. We also note that relative to the standard

coordinates, N̂α = − (g−1)α0√
|(g−1)00| , dμg =

√|detg| dx1dx2dx3dx0, and dμg =
√

detg dx1dx2dx3 =
√|(g−1)00|√|detg|dx1dx2dx3, where the last equality is

a basic linear algebraic identity. Note that N̂ is future-directed and timelike
with respect to g, and that we used the fact that (g−1)00 < 0 (which is a simple
consequence of the formula (2.13b) and our assumption that 0 < c ≤ 1).

From the above discussion, it follows that along any spacelike (with re-
spect36 to g) hypersurface with future-directed unit normal N̂ , we can con-
struct a positive-definite energy density gαβ

(X)Jα[ϕ]N̂β using any multiplier
vectorfield X that is future-directed and timelike with respect to g. For the
basic a priori estimates of interest to us, we will apply the above constructions
along Σt with X := u, which is future-directed timelike with respect to g. As we
described in Footnote 18, we cannot generally use X := ∂t because g(∂t, ∂t) > 0

36A hypersurface is spacelike with respect to g if, at each point, its unit normal is timelike
with respect to g.
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can occur when
∑3

a=1 |ua| is large; in contrast, note that by (2.13a) and the
normalization condition ηκλuκuλ = −1, we have gκλuκuλ = −1. Thus, we
define the following energy (where N̂α = − (g−1)α0√

|(g−1)00| ):

Ewave(t) = Ewave[ϕ](t) :=
∫

Σt

gαβ
(u)Jα[ϕ]N̂β dμg. (9.51)

From (9.50), definition (9.51), and the standard expansion37 of covariant deriva-
tives in terms of partial derivatives and Christoffel symbols (which in particular
can be used to derive the identity (u)παβ = uκ∂κgαβ + gακ∂βuκ + gβκ∂αuκ),
we deduce the following energy identity relative to the standard coordinates:

Ewave[ϕ](t) = Ewave[ϕ](0) −
∫

[0,t]×T3
(�gϕ)uκ∂κϕ dμg

− 1
2

∫

[0,t]×T3
(g−1)αγ(g−1)βδTαβ [ϕ]uκ∂κgγδ dμg

−
∫

[0,t]×T3
(g−1)βδTαβ [ϕ]∂δu

α dμg

+
∫

[0,t]×T3

{
(∂κuκ)ϕ2 + Γ κ

κ λuλϕ2 + 2ϕuκ∂κϕ
}

dμg. (9.52)

On RHS (9.52),

Γ γ
α β :=

1
2
(g−1)γδ {∂αgδβ + ∂βgαδ − ∂δgαβ} (9.53)

are the Christoffel symbols of g relative to the standard coordinates. Note that
by (2.13a)–(2.13b) we have that

Γ γ
α β = f(h, s, u, ∂h, S, ∂u), (9.54)

where f is a smooth function (depending on α, β, and γ).
Next, with the help of (2.13a)–(2.13b) and the normalization condition

ηκλuκuλ = −1, we compute that

gαβ
(u)Jα[ϕ]N̂β

=
{
c2T0β [ϕ]uβ + (1 − c2)u0Tαβ [ϕ]uαuβ + u0ϕ2

} 1
√|(g−1)00|

=
1
2u0
{
c2(∂tϕ)2 + c2δab(∂aϕ)∂bϕ + (1 − c2)(uα∂αϕ)2

}

√|(g−1)00|

+

{
c2(∂tϕ)ua∂aϕ + u0ϕ2

}

√|(g−1)00| , (9.55)

where δab is the Kronecker delta. From (9.51) and (9.55), it follows that

37For example, ∇αXβ = ∂αXβ + Γ β
α γXγ , where Γ β

α γ is defined by (9.53).



2258 M. M. Disconzi, J. Speck Ann. Henri Poincaré

Ewave[ϕ](t)

=
1
2

∫

Σt

u0
{
c2(∂tϕ)2 + c2δab(∂aϕ)∂bϕ + (1 − c2)(uα∂αϕ)2

} dμg
√|(g−1)00|

+
∫

Σt

{
c2(∂tϕ)ua∂aϕ + u0ϕ2

} dμg
√|(g−1)00| . (9.56)

The energy Ewave[ϕ](t) will yield L2 control of ϕ and its first derivatives. In
Sect. 9.6.3, we will establish the coerciveness Ewave[ϕ](t). To obtain L2 control
of the higher-order spatial derivatives of ϕ, one can use energies of the form
Ewave[∂ �Iϕ], where �I is a spatial multi-index.

9.6.2. Energy Estimates for Transport Equations. One can derive energy es-
timates for transport equations of the form uα∂αϕ = f by relying on the
following energy:

Etransport[ϕ](t) :=
∫

Σt

ϕ2 dx, (9.57)

as in the proof of Lemma 9.6. The analog of the wave equation energy iden-
tity (9.52) is the following integral identity, whose simple proof follows from
the ideas featured in the proof of Lemma 9.6:

Etransport[ϕ](t) = Etransport[ϕ](0) +
∫ t

0

∫

Στ

{
∂a

(
ua

u0

)}
ϕ2 dx dτ

+ 2
∫ t

0

∫

Στ

ϕ
uα∂αϕ

u0
dx dτ. (9.58)

To control the higher-order derivatives of ϕ, one can rely on energies of the form
Etransport[∂ �Iϕ]. We mention that the argument we have sketched here relies
on the basic fact that u0 > 0, which allows us to divide by u0 on RHS (9.58);
for the relativistic Euler equations, this fact follows from the normalization
condition ηκλuκuλ = −1 and the fact that u is future-directed.

9.6.3. Comparison of the Energies with the Sobolev Norm. The coerciveness
properties of the wave equation energy Ewave[ϕ](t) constructed in Sect. 9.6.1
are tied to the metric g; see (9.51). In order to obtain our results, we need
Ewave[ϕ](t) to be uniformly comparable to a corresponding Sobolev norm along
Σt. More precisely, we need to ensure the existence of a constant C > 1 such
that on the slab [0, T ] × T

3 of existence guaranteed by Theorem 9.10, the
following estimates hold:

C−1
{

‖ϕ‖2
HN (Σt)

+ ‖∂tϕ‖2
HN−1(Σt)

}
≤

∑

0≤| �I|≤N−1

Ewave[∂ �Iϕ](t)

≤ C
{

‖ϕ‖2
HN (Σt)

+ ‖∂tϕ‖2
HN−1(Σt)

}
.

(9.59)

To see that such a constant C exists, we first use Young’s inequality, (2.20),
and Cauchy–Schwarz to bound the first product in braces on the last line of
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RHS (9.56) as follows:

c2(∂tϕ)ua∂aϕ

≥ −1
2
c2

⎛

⎝

√√√
√

3∑

i=1

(ui)2

⎞

⎠ (∂tϕ)2 − 1
2
c2

⎛

⎝

√√√
√

3∑

i=1

(ui)2

⎞

⎠ δab(∂aϕ)∂bϕ

= −1
2
c2
(√

(u0)2 − 1
)

(∂tϕ)2 − 1
2
c2
(√

(u0)2 − 1
)

δab(∂aϕ)∂bϕ. (9.60)

Next, we recall that Theorem 9.10 guarantees that on [0, T ] ×T
3, the solution

never escapes the compact subset K featured in the statement of the theorem.
In view of (9.60), we see that this ensures that on [0, T ] × T

3, the product
c2(∂tϕ)ua∂aϕ on the last line of RHS (9.56) can be absorbed into the sum
1
2c2u0(∂tϕ)2 + 1

2c2u0δab(∂aϕ)∂bϕ from the first line of RHS (9.56), with room
to spare. This implies that for solutions contained in K, the integrands on
RHS (9.56) are in total uniformly comparable to

∑3
α=0(∂αϕ)2 + ϕ2. This also

ensures that on [0, T ] × T
3, the volume form

dμg
√|(g−1)00| on Σt is uniformly

comparable38 to dx := dx1dx2dx3. From these observations, it readily follows
that a C > 1 exists such that (9.59) holds.

9.6.4. Proof of Proposition 9.22. Recall that the assumptions of the propo-
sition guarantee that we have a smooth solution to the system (2.17)–(2.19)
+ (2.20). Consider the scalar component functions

h, uα, Sα,�α, Cα,D, (9.61)

introduced in Sect. 2. According to Theorem 3.1, they satisfy the system of
evolution equations given by Eqs. (3.1), (3.3), (3.7), (3.8), (3.9a), and (3.11b).
Next, we recall that the hyperbolic quantities H and the elliptic quantities
E were defined in Definition 9.15. To prove the proposition, we claim that it
suffices to show that the following inequality holds for t ∈ [0, T ]:

‖H‖2
HN−1(Σt)

≤ C‖H‖2
HN−1(Σ0)

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.62)

where in (9.62) and in the rest of this proof, C is as in the statement of Propo-
sition 9.22. For once we have shown (9.62), we can use Gronwall’s inequality
to deduce (recalling that C is allowed to depend on the initial data and can
vary from line to line) that the following estimate holds for t ∈ [0, T ]:

‖H‖2
HN−1(Σt)

≤ C‖H‖2
HN−1(Σ0)

exp(Ct) ≤ C exp(Ct) ≤ C exp(CT ). (9.63)

Then from (9.39) and (9.63) we conclude, in view of Definition 9.15, the desired
bound (9.44), except for the estimates for u0, S0, and �0. To obtain the
desired estimate for these quantities, we first express u0 − 1, S0, �0, ∂au0,
∂aS0, and ∂a�0 as f(H,E), with f smooth and satisfying f(0) = 0 [this is

38To see this, it is helpful to note the following identity, which holds relative to the standard

coordinates:
dμg√

|(g−1)00| = c−3 dx1dx2dx3. This identity follows from (2.14a) and the linear

algebraic identity detg = (g−1)00detg.
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possible in view of definition (9.32e) and (9.33c)]. We then use Lemma 9.4 to
deduce that ‖f(H,E)‖HN−1(Σt) ≤ C‖H‖HN−1(Σt) +C‖E‖HN−1(Σt). Finally, we
use the elliptic estimate (9.39) and (9.63) to conclude that C‖H‖HN−1(Σt) +
C‖E‖HN−1(Σt) ≤ RHS (9.44), which yields the desired estimates.

It remains for us to prove (9.62). We start by noting that the results
described in Sects. 9.6.1–9.6.3 can be used to derive the following estimates,
where we recall that V denotes the spatial components of V (i.e., the
η-orthogonal projection of V onto constant-time hypersurfaces, as in
Sect. 9.1.1):

‖h‖2
HN (Σt)

+ ‖∂th‖2
HN−1(Σt)

≤ C
{

‖h‖2
HN (Σ0)

+ ‖∂th‖2
HN−1(Σ0)

}

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.64)

‖u‖2
HN (Σt)

+ ‖∂tu‖2
HN (Σt)

≤ C
{

‖u‖2
HN (Σ0)

+ ‖∂tu‖2
HN (Σt)

}

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.65)

‖S‖2
HN−1(Σt)

≤ C‖S‖2
HN−1(Σ0)

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.66)

‖�‖2
HN−1(Σt)

≤ C‖�‖2
HN−1(Σ0)

+ C

∫ t

0

‖H‖2
HN−1(Στ ) dτ, (9.67)

‖D‖2
HN−1(Σt)

≤ C‖D‖2
HN−1(Σ0)

+ C

∫ t

0

{
‖H‖2

HN−1(Στ ) + ‖E‖2
HN−1(Στ )

}
dτ,

(9.68)

‖C‖2
HN−1(Σt)

≤ C‖C‖2
HN−1(Σ0)

+ C

∫ t

0

{
‖H‖2

HN−1(Στ ) + ‖E‖2
HN−1(Στ )

}
dτ.

(9.69)

The estimates (9.64)–(9.69) are standard and can be derived by commuting
the evolution equations of Theorem 3.1 (more precisely, only the evolution
equations for the spatial components of u, �, S, and C) with spatial de-
rivative operators ∂ �I and using the energy identities (9.52) and (9.58) (and
their analogs for the ∂ �I -differentiated solution variables), the coerciveness es-
timate (9.59), Lemma 9.17, and the Sobolev–Moser-type estimate (9.11). We
stress that RHS (9.11) is linear in the order r derivatives of the solution; this is
the reason the integrands on RHS (9.64)–(9.69) are quadratic in ‖H‖HN−1(Στ )

and ‖E‖HN−1(Στ ) [the sup-norm factors on RHS (9.11) can be bounded by
≤ C since those factors are among the quantities that constants C are allowed
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to depend on]. The non-standard aspect of the remaining part of the proof
is the appearance of the term ‖E‖2

HN−1(Στ ) on RHSs (9.68)–(9.69); we clarify
that these terms are generated by the terms ∂aSb and ∂a�b on RHSs (3.9a)
and (3.11b) [see definition (9.32b)]. Next, adding (9.64)–(9.69) and appealing
to Definition 9.15, we deduce that

‖H‖2
HN−1(Σt)

≤ C‖H‖2
HN−1(Σ0)

+ C

∫ t

0

{
‖H‖2

HN−1(Στ ) + ‖E‖2
HN−1(Στ )

}
dτ. (9.70)

Finally, from (9.70) and the elliptic estimate (9.39), we conclude the desired
bound (9.62). �

9.7. Proof of Theorem 9.12

We now prove Theorem 9.12, which is the main result of Sect. 9. By The-
orem 9.10, we need only to show that (i) under the regularity assumptions
on the initial data stated in Theorem 9.12, the standard local well-posedness
results (9.28a)–(9.28b) can be upgraded to (9.30a)–(9.30b) and (ii) that the
solution depends continuously on the initial data, where continuity is measured
in the norms corresponding to the function spaces featured in (9.30a)–(9.30b).
Throughout this proof, K denotes the set featured in the statement of Theo-
rem 9.10. To proceed, we let (̊h(m), s̊(m), ů

i
(m)) ⊂ (C∞(T3)

)5 be a sequence of
smooth initial data such that as m → ∞, we have

∥∥∥̊h(m) − h̊
∥∥∥

HN (Σ0)
→ 0,

∥∥∥ůi
(m) − ůi

∥∥∥
HN (Σ0)

→ 0, (9.71)

∥∥̊s(m) − s̊
∥∥

HN+1(Σ0)
→ 0,

∥∥∥�̊i
(m) − �̊i

∥∥∥
HN (Σ0)

→ 0, (9.72)

where �̊i
(m) denotes the initial vorticity of the mth element of the sequence

and �̊i is as in the statement of the theorem. Let (h(m), s(m), u
α
(m), S

α
(m),�

α
(m))

denote the corresponding sequence of solution variables. Theorem 9.10 yields
(see, for example, [31], for additional details) that for m sufficiently large,
the element (h(m), s(m), u

α
(m)) is a C∞ classical solution to Eqs. (2.17)–(2.19)

+ (2.20) on the fixed slab [0, T ] × T
3 with

(h(m)(p), s(m)(p), u1
(m)(p), u2

(m)(p), u3
(m)(p)) ∈ intK

for p ∈ [0, T ] × T
3, and that on the same slab, (h(m), s(m), u

α
(m), S

α
(m),�

α
(m))

is a C∞ solution to the equations of Theorem 3.1 [which are consequences
of (2.17)–(2.19) + (2.20)]. Moreover, Theorem 9.10 also implies that the se-
quence converges to the solution in the following norms as m → ∞:

∥∥h(m) − h
∥∥

C
(
[0,T ],HN (T3)

) → 0, (9.73)
∥
∥∥uα

(m) − uα
∥
∥∥

C
(
[0,T ],HN (T3)

) → 0, (9.74)
∥∥s(m) − s

∥∥
C
(
[0,T ],HN (T3)

) → 0, (9.75)
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∥
∥∥Sα

(m) − Sα
∥
∥∥

C
(
[0,T ],HN−1(T3)

) → 0, (9.76)
∥∥∥�α

(m) − �α
∥∥∥

C
(
[0,T ],HN−1(T3)

) → 0. (9.77)

Next, we use the convergence results (9.73)–(9.77), Theorem 9.10, and
the a priori estimates provided by Proposition 9.22 to deduce that exist a
constant C > 0, depending on T and on the four types of quantities listed just
above (9.44), and a positive integer m0 such that

sup
m≥m0

sup
τ∈[0,T ]

‖s(m)‖HN+1(Στ ) ≤ C, (9.78)

sup
m≥m0

sup
τ∈[0,T ]

‖Sα
(m)‖HN (Στ ) ≤ C, (9.79)

sup
m≥m0

sup
τ∈[0,T ]

‖�α
(m)‖HN (Στ ) ≤ C. (9.80)

Since Hr(T3) is a Hilbert space for r ∈ R, it follows from the norm-boundedness
results (9.78)–(9.80) that for each τ ∈ [0, T ], there exist subsequences s(mn),
Sα

(mn), and �α
(mn) that weakly converge in HN+1(Στ ), HN (Στ ), and HN (Στ )

respectively as n → ∞. Moreover, since the norm is weakly lower semicontin-
uous in a Hilbert space, it follows that the limits are bounded, respectively, in
the norms ‖ · ‖HN+1(Στ ), ‖ · ‖HN (Στ ), and ‖ · ‖HN (Στ ), by ≤ C, where C is the
same constant found on RHSs (9.78)–(9.80). From (9.76) to (9.77), it follows
that the limits must be s, Sα, and �α respectively. We have therefore shown
that

sup
τ∈[0,T ]

‖s‖HN+1(Στ ) ≤ C, (9.81)

sup
τ∈[0,T ]

‖Sα‖HN (Στ ) ≤ C, (9.82)

sup
τ∈[0,T ]

‖�α‖HN (Στ ) ≤ C. (9.83)

To complete the proof of (9.30b), we must show that for each spatial
multi-index �I with | �I| = N , the map t → ∂ �IS

α(t, ·) is a continuous map from
[0, T ] into L2(T3), and similarly for �α (the desired time-continuity results
for s then follow from the relation ∂is = Si). To keep the presentation short,
we illustrate only the right-continuity of these maps at t = 0; the general
statement can be proved by making minor modifications to the argument that
we give. That is, we will show that

lim
t↓0

‖∂ �IS
α(t, ·) − ∂ �I S̊

α(·)‖L2(T3) = 0, | �I| = N, (9.84a)

lim
t↓0

‖∂ �I�
α(t, ·) − ∂ �I�̊

α(·)‖L2(T3) = 0, | �I| = N, (9.84b)

where S̊α(·) := Sα(0, ·). The rest of our proof is based on Lemmas 9.6 and 9.20,
but to apply the lemmas, we first have to derive some preliminary results. We
will use the estimates provided by Lemma 9.4 without giving complete details
each time we use them; we will refer to these estimates as the “standard
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Sobolev calculus.” In the rest of the proof, we will refer to the variable sets H,
E, AH, AH,E, and A from Definition 9.15.

As a first step in proving (9.84a)–(9.84b), we will show that

H, AH ∈ C
(
[0, T ],HN−1(T3)

)
, (9.85)

where H and AH are defined in (9.32a) and (9.32c). Note that by (9.33a) and
the standard Sobolev calculus, the desired result AH ∈ C

(
[0, T ],HN−1(T3)

)

would follow from H ∈ C
(
[0, T ],HN−1(T3)

)
. The latter statement is equiv-

alent to showing that ∂ �IH ∈ C
(
[0, T ], L2(T3)

)
for | �I| ≤ N − 1. All of these

results, except in the case of the top-order (i.e., order N − 1) derivatives of
Ci and D, follow from the standard local well-posedness time-continuity re-
sults (9.28a)–(9.28b), and the standard Sobolev calculus. Thus, to complete
the proof of (9.85), we need only to show that for i = 1, 2, 3, we have

∂ �ICi, ∂ �ID ∈ C
(
[0, T ], L2(T3)

)
, | �I| = N − 1. (9.86)

The desired result (9.86) follows from using Eqs. (3.9a) and (3.11b) [more pre-
cisely, we need only to consider the spatial components of (3.11b)], the bound-
edness results (9.81)–(9.83), the standard local well-posedness time-continuity
results (9.28a)–(9.28b), and the standard Sobolev calculus to deduce that ∂ �ICi

and ∂ �ID solve transport equations that satisfy the hypotheses of Lemma 9.6;
put succinctly, we can apply Lemma 9.6 with f := ∂ �ICi and f := ∂ �ID. We have
therefore proved (9.85). In particular, it follows from (9.85) and the definition
of AH that for i = 1, 2, 3, we have

(3)curli(�), (3)curli(S) ∈ C
(
[0, T ],HN−1(T3)

)
. (9.87)

Next, we note that in view of Definition 9.15, Lemma 9.17 (in particular
the relation (9.33b) for ∂aS0 and ∂a�0), (9.85), and the standard Sobolev
calculus, the desired results (9.84a)–(9.84b) would follow as a consequence of
the following convergence result:

lim
t↓0

‖∂ �IE(t, ·) − ∂ �IE(0, ·)‖L2(T3) = 0, | �I| = N − 1. (9.88)

To establish (9.88), we first use (9.85), (9.34), and the standard Sobolev
calculus to deduce the following facts, where (G−1)ij is defined in Defini-
tion 9.13:

(G−1)ab∂a∂ �ISb, (G−1)ab∂a∂ �I�b ∈ C
(
[0, T ], L2(T3)

)
, | �I| = N − 1. (9.89)

In the rest of the proof, α∗ > 0 is as in the statement of Lemma 9.20 in
the case (M−1)ij(t, x) := (G−1)ij(t, x). Next, setting

(G̊−1)ij(·) := (G−1)ij(0, ·), (9.90)

applying Lemma 9.20 with (M−1)ij := (G̊−1)ij , and appealing to defini-
tion (9.32b), we see that in order to prove (9.88), it suffices to show the
following convergence result:

lim
t↓0

EN ;G̊−1;α∗ [(�,S) − (�̊, S̊)](t) = 0, (9.91)

where (�̊, S̊) := (�,S)|Σ0 .
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To initiate the proof of (9.91), we let ϕ ∈ H−N (T3) be any element of
the dual space of HN (T3). From the below-top-order continuity result (9.28b),
the top-order boundedness results (9.82)–(9.83), and the density of C∞ func-
tions in H−N (T3), it is straightforward to deduce that the following “weak
continuity” result holds for i = 1, 2, 3:

lim
t↓0

∫

T3
Si(t, x)ϕ dx =

∫

T3
S̊iϕ dx. (9.92)

Since ϕ was arbitrary, we conclude that Si(t, ·) weakly converges to S̊i in
HN (T3) as t ↓ 0. Similarly, �i(t, ·) weakly converges to �̊i in HN (T3) as t ↓ 0.
We now let 〈·, ·〉G̊−1;α∗ denote the inner product (9.35) on the Hilbert space
(
HN (Σt)

)3 × (HN (Σt)
)3, and we let 〈·, ·〉 denote the standard inner product

on the same Hilbert space (obtained by keeping only the two sums on the last
line of RHS (9.35) and replacing N − 1 with N in the summation bounds).
By Lemma 9.20, the two corresponding norms [i.e., the norms on the left- and
right-hand sides of (9.37a)–(9.37b)] are equivalent. It is a basic result of func-
tional analysis that given these two inner products with equivalent norms, a
sequence weakly convergences relative to 〈·, ·〉G̊−1;α∗ if and only if it weakly
converges relative to 〈·, ·〉. In particular, in view of the weak convergence re-
sults for Si(t, ·) and �i(t, ·) proved above, we infer that (�(t, ·), S(t, ·)) weakly
converges to (�̊(·), S̊(·)) relative to the inner product 〈·, ·〉G̊−1;α∗ as t ↓ 0. More-
over, it is another basic result of functional analysis that based on this weak
convergence and Lemma 9.20, in order to prove the result (9.91), it suffices to
show that

lim sup
t↓0

EN ;G̊−1;α∗ [(�,S)](t) ≤ EN ;G̊−1;α∗ [(�̊, S̊)]. (9.93)

Moreover, since the standard local well-posedness time-continuity results (9.28a)
and (9.9) imply that limt↓0

∥∥∥(G−1)ij(t, ·) − (G̊−1)ij
∥∥∥

C(T3)
= 0, it follows from

definitions (9.35) and (9.36) and the top-order boundedness results (9.81)–
(9.83) that in order to prove (9.93), it suffices to show that

lim sup
t↓0

EN ;G−1;α∗ [(�,S)](t) ≤ EN ;G̊−1;α∗ [(�̊, S̊)], (9.94)

where we stress that the inverse metric G−1 on LHS (9.94) depends on t
[which is different compared to (9.93)]. In fact, our arguments will yield a
stronger statement than (9.94). More precisely, we will show the following
time-continuity result:

lim
t↓0

EN ;G−1;α∗ [(�,S)](t) = EN ;G̊−1;α∗ [(�̊, S̊)], (9.95)

To proceed, we use definitions (9.35) and (9.36) and the standard local well-
posedness time-continuity results (9.28a)–(9.28b) to deduce that all terms in
the definition of EN ;G−1;α∗ [(�,S)](t) have been shown to have the desired
continuous time dependence at except for the ones depending on the order
N derivatives of � or S [i.e., the ones corresponding to the terms on the
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first four lines of RHS (9.35)]. The continuous time dependence of these re-
maining four terms follows from (9.87), (9.89), and the fact that (G−1)ij ∈
C
(
[0, T ], C(T3)

)
[which follows from the standard local well-posedness time-

continuity results (9.28a) and (9.9)]. We have therefore proved (9.95), which
finishes the proof of the desired result (9.30b).

To complete our proof of Theorem 9.12, we need to show continuous
dependence on the initial data. To proceed, we let (̊h(m), ů

i
(m), s̊(m)) be a se-

quence of initial data (not necessarily C∞ now) such that as m → ∞, the con-
vergence results (9.71)–(9.72) hold. We again let (h(m), s(m), u

α
(m), S

α
(m),�

α
(m))

denote the corresponding sequence of solution variables (which are not neces-
sarily C∞ now). We aim to show that the sequence converges to the limiting
solution (h, uα, s, Sα,�α) in the norm ‖ · ‖

C
(
[0,T ],HNT3)

) as m → ∞. To pro-

ceed, we first note that Theorem 9.10 yields that for m sufficiently large, the
element (h(m), s(m), u

α
(m), S

α
(m),�

α
(m)) is a classical solution (not necessarily

C∞ now) to Eqs. (2.17)–(2.19) + (2.20) on the fixed slab [0, T ] × T
3 with

(h(m)(p), s(m)(p), u1
(m)(p), u2

(m)(p), u3
(m)(p)) ∈ intK for p ∈ [0, T ] × T

3, that it
also is a strong solution39 to the equations of Theorem 3.1, that there exists
an integer m0 such that

sup
m≥m0

‖s(m)‖C
(
[0,T ],HN+1(T3)

) ≤ C, (9.96)

sup
m≥m0

‖Sα
(m)‖C

(
[0,T ],HN (T3)

) ≤ C, (9.97)

sup
m≥m0

‖�α
(m)‖C

(
[0,T ],HN (T3)

) ≤ C, (9.98)

and that the following convergence results (which are below top-order for S
and �) hold as m → ∞:

∥∥h − h(m)

∥∥
C
(
[0,T ],HN (T3)

) → 0, (9.99)
∥
∥∥uα − uα

(m)

∥
∥∥

C
(
[0,T ],HN (T3)

) → 0, (9.100)
∥∥s − s(m)

∥∥
C
(
[0,T ],HN (T3)

) → 0, (9.101)
∥∥
∥Sα − Sα

(m)

∥∥
∥

C
(
[0,T ],HN−1(T3)

) → 0, (9.102)
∥
∥∥�α − �α

(m)

∥
∥∥

C
(
[0,T ],HN−1(T3)

) → 0. (9.103)

In view of (9.99)–(9.103), we see that to complete our proof of Theorem 9.12,
we need only to show continuity in the top-order norms. That is, we must show
that if | �I| = N , then as m → ∞, we have

∥∥∥∂ �IS
α − ∂ �IS

α
(m)

∥∥∥
C
(
[0,T ],L2(T3)

) → 0, (9.104)

39By “strong solution,” we mean in particular that at each fixed t ∈ [0, T ], the equations of
Theorem 3.1 are satisfied for almost every x ∈ T

3.
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∥
∥∥∂ �I�

α − ∂ �I�
α
(m)

∥
∥∥

C
(
[0,T ],L2(T3)

) → 0. (9.105)

To proceed, we first review an approach to proving the standard esti-
mates (9.99)–(9.103). These estimates can be proved by applying Kato’s ab-
stract framework [17–19], which is designed to handle first-order hyperbolic
systems in a rather general Banach space setting. In particular, one can apply
Kato’s framework to the first-order system (2.17)–(2.19) + (2.20); this is de-
scribed in detail, for example, in [31]. To prove (9.104)–(9.105), we will modify
Kato’s framework so that it applies to the hyperbolic variables H and the
elliptic variables E from Definition 9.15.

To employ Kato’s framework, one relies on the propagators U(t, τ) :=
U(t, τ ;H) for the linear homogeneous hyperbolic system corresponding to the
(nonlinear) first-order hyperbolic system that H satisfies. To shorten the pre-
sentation, we will not explicitly state the form of this linear first-order hyper-
bolic system; see Remark 9.16 for further discussion of its nature. By definition,
U(t, τ ;H) maps initial data given at time τ to the solution of the linear homo-
geneous hyperbolic system (whose principal coefficients depend on H) at time
t. Similarly, one relies on the operators U(m)(t, τ) := U(t, τ ;H(m)) correspond-
ing to the homogeneous linear system whose principal coefficients depend on
H(m). By Duhamel’s principle, we have

H(t) = U(t, 0)H̊ +
∫ t

τ=0

U(t, τ)f (H(τ),E(τ)) dτ, (9.106)

H(m)(t) = U(m)(t, 0)H̊(m) +
∫ t

τ=0

U(m)(t, τ)f
(
H(m)(τ),E(m)(τ)

)
dτ, (9.107)

where H̊ and H̊(m) respectively denote the initial data of H and H(m), and
on RHSs (9.106)–(9.107), f denotes the inhomogeneous term in the first-order
hyperbolic system satisfied by the elements of H and H(m). We have not
explicitly stated the form of f since its precise structure is not important for
our arguments here; what matters is only the following basic facts (that can
easily be checked): f is a smooth function of its arguments satisfying f(0) = 0,
and the same f appears on RHSs (9.106)–(9.107).

The strategy behind Kato’s framework is to control the difference H(t, ·)−
H(m)(t, ·) in the norm ‖ · ‖HN−1(T3) by subtracting (9.106)–(9.107), splitting
the right-hand side of the resulting equation into various pieces, and bounding
each piece by exploiting some standard properties of the propagators U(t, τ)
and U(m)(t, τ). This is explained in detail in [31, Section 7.4], and most of
the arguments given there for controlling ‖H(t, ·) − H(m)(t, ·)‖HN−1(T3) go
through without any substantial changes. The one part of the argument that
does require substantial changes is: in order to obtain a closed inequality for
‖H(t, ·) − H(m)(t, ·)‖HN−1(T3), one needs to show that the difference of the
inhomogeneous terms on RHSs (9.106)–(9.107) satisfies the following estimate
for t ∈ [0, T ]:

∥∥f(H,E) − f(H(m),E(m))
∥∥

HN−1(Σt)
≤ C‖H − H(m)‖HN−1(Σt), (9.108)
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where the key point is that the quantity ‖E − E(m)‖HN−1(Σt) does not appear
on RHS (9.108).

The estimate (9.108) can be obtained with the help of elliptic estimates,
as we now explain. First, we note that the top-order norm-boundedness re-
sults (9.96)–(9.98) and the convergence results (9.99)–(9.103) imply that

lim
m→∞

{∥∥H − H(m)

∥∥
C
(
[0,T ],L2(T3)

) +
∥∥E − E(m)

∥∥
C
(
[0,T ],L2(T3)

)
}

= 0,

(9.109)

and that there exists an integer m0 and a constant C > 0 such that

‖H‖
C
(
[0,T ],HN−1(T3)

) + ‖E‖
C
(
[0,T ],HN−1(T3)

) ≤ C, (9.110)

sup
m≥m0

{∥∥H(m)

∥∥
C
(
[0,T ],HN−1(T3)

) +
∥∥E(m)

∥∥
C
(
[0,T ],HN−1(T3)

)
}

≤ C. (9.111)

From (9.109), (9.110)–(9.111), and the Sobolev interpolation result (9.14), we
deduce that if N ′ < N − 1, then

lim
m→∞

{∥
∥H − H(m)

∥
∥

C
(
[0,T ],HN′ (T3)

) +
∥
∥E − E(m)

∥
∥

C
(
[0,T ],HN′ (T3)

)
}

= 0.

(9.112)

Fixing a real number N ′ satisfying 3/2 < N ′ < 2 and using (9.112) and the
Sobolev embedding result (9.9), we deduce that

lim
m→∞

{∥∥H − H(m)

∥∥
C([0,T ]×T3)

+
∥∥E − E(m)

∥∥
C([0,T ]×T3)

}
= 0. (9.113)

Next, we use (9.110), (9.111), (9.113), (9.9), and (9.12) to deduce that there
is a constant C > 0 such that if m is sufficiently large, then for t ∈ [0, T ], the
following estimate holds for the function f appearing on RHSs (9.106)–(9.107):
∥∥f(H,E) − f(H(m),E(m))

∥∥
HN−1(Σt)

≤ C‖H − H(m)‖HN−1(Σt)

+ C‖E − E(m)‖HN−1(Σt). (9.114)

Next, we use (9.110), (9.111), (9.113), and (9.40) to deduce that if m is suf-
ficiently large, then for t ∈ [0, T ], the last term on RHS (9.114) obeys the
following bound:

‖E − E(m)‖HN−1(Σt) ≤ C‖H − H(m)‖HN−1(Σt). (9.115)

The desired bound (9.108) follows from (9.114) and (9.115). Kato’s framework
(see [31, Section 7.4]) then allows one to conclude that

lim
m→∞

∥∥H − H(m)

∥∥
C
(
[0,T ],HN−1(T3)

) = 0. (9.116)

Moreover, (9.115) and (9.116) imply that

lim
m→∞

∥∥E − E(m)

∥∥
C
(
[0,T ],HN−1(T3)

) = 0. (9.117)

Finally, in view of Definition 9.15 and the relation (9.33c), we note that the
desired convergence results (9.104)–(9.105) follow from (9.116) to (9.117) and
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the standard Sobolev calculus [which is needed to handle the components α = 0
in (9.104)–(9.105)]. �
Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.
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(2007)

[5] Christodoulou, D.: The Shock Development Problem. ArXiv e-prints (May
2017). Available at arXiv:1705.00828 (2017)

[6] Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the
Minkowski Space. Princeton Mathematical Series, vol. 41. Princeton University
Press, Princeton (1993)

[7] Christodoulou, D., Lisibach, A.: Shock development in spherical symmetry. Ann.
PDE 2(1), 1–246 (2016)

[8] Christodoulou, D., Miao, S.: Compressible Flow and Euler’s Equations. Surveys
of Modern Mathematics, vol. 9. International Press, Somerville (2014)

[9] Coutand, D., Lindblad, H., Shkoller, S.: A priori estimates for the free boundary
3D compressible Euler equations in physical vacuum. Commun. Math. Phys.
296(2), 559–587 (2010)

[10] Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for moving-
boundary 1-D compressible Euler equations in physical vacuum. Commun. Pure
Appl. Math. 64(3), 328–366 (2011)

[11] Coutand, D., Shkoller, S.: Well-posedness in smooth function spaces for the
moving-boundary three dimensional compressible Euler equations in physical
vacuum. Arch. Ration. Mech. Anal. 206(2), 515–616 (2012)

[12] Disconzi, M.M., Ebin, D.G.: Motion of slightly compressible fluids in a bounded
domain, II. Commun. Contemp. Math. 19(4), 1650054, 57 (2017)
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Abstract
We prove a series of intimately related results tied to the regularity and geometry
of solutions to the 3D compressible Euler equations. The results concern “gen-
eral” solutions, which can have nontrivial vorticity and entropy. Our geo-analytic
framework exploits and reveals additional virtues of a recent new formulation of the
equations, which decomposed the flow into a geometric “(sound) wave-part” cou-
pled to a “transport-div-curl-part” (transport-part for short), with both parts exhibiting
remarkable properties. Our main result is that the time of existence can be controlled
in terms of the H2+

(R3)-norm of the wave-part of the initial data and various Sobolev
and Hölder norms of the transport-part of the initial data, the latter comprising the
initial vorticity and entropy. The wave-part regularity assumptions are optimal in the
scale of Sobolev spaces: Lindblad (Math Res Lett 5(5):605–622, 1998) showed that
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shock singularities can instantly form if one only assumes a bound for the H2(R3)-
norm of the wave-part of the initial data. Our proof relies on the assumption that the
transport-part of the initial data is more regular than the wave-part, and we show that
the additional regularity is propagated by the flow, even though the transport-part of
the flow is deeply coupled to the rougher wave-part. To implement our approach,
we derive several results of independent interest: (i) sharp estimates for the acoustic
geometry, which in particular capture how the vorticity and entropy affect the Ricci
curvature of the acoustical metric and therefore, via Raychaudhuri’s equation, influ-
ence the evolution of the geometry of acoustic null hypersurfaces, i.e., sound cones; (ii)
Strichartz estimates for quasilinear sound waves coupled to vorticity and entropy; and
(iii) Schauder estimates for the transport-div-curl-part. Compared to previous works
on low regularity, the main new features of the paper are that the quasilinear PDE
systems under study exhibit multiple speeds of propagation and that elliptic estimates
for various components of the fluid are needed, both to avoid loss of regularity and to
gain space-time integrability.

Keywords Eikonal equation · Eikonal function · Low regularity · Null geometry ·
Raychaudhuri’s equation · shocks · Schauder estimate · Strichartz estimate ·
Vectorfield method

Mathematics Subject Classification Primary 35Q31; Secondary 35Q35 · 35L10 ·
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1 Introduction and overview of themain results

In this paper, we study the compressible Euler equations in three spatial dimensions:

B� = −� divv, (1a)

Bvi = −�−1δia∂a p, (i = 1, 2, 3), (1b)

Bs = 0, (1c)

where � : R
1+3 → [0,∞), v : R

1+3 → R
3, and s : R

1+3 → R are the fluid’s
density, velocity, and entropy, respectively; p is the fluid’s pressure, which is a given
smooth function of � and s known as the equation of state—whose choice reflects
one’s assumptions about the properties of the fluid—;

B := ∂t + va∂a (2)

is the material derivative vectorfield; X f := Xα∂α f denotes the derivative of the
scalar function f in the direction of the vectorfield X; δab is the standard Kronecker
delta; and divv := ∂av

a is the standard (three-dimensional) Euclidean divergence of
v. Equations (1) are expressed relative to Cartesian coordinates {xα}α=0,1,2,3 onR1+3,
where here and throughout, {∂α}α=0,1,2,3 denotes the corresponding partial derivative
vectorfields, x0 := t denotes time, ∂0 := ∂t , {xa}a=1,2,3 are the spatial coordinates, and
repeated indices are summed over their relevant ranges, with lowercase Greek indices
ranging from 0 to 3 and lowercase Latin indices from from 1 to 3. We assume that
inf t=0 � > 0, which allows us to avoid the well-known difficulty that the hyperbolicity
of the equations can degenerate along fluid-vacuum boundaries.

Our main goal in this paper is to prove a series of intimately related results tied to
the regularity and geometry of solutions. We study “general1 solutions,” which can
have non-vanishing vorticity (i.e., curlv �= 0) and non-constant entropy. We allow

for any2 equation of state3 p = p(�, s) with positive sound speed c :=
√

∂ p(�,s)
∂�

.
The central theme of the paper is that under low regularity assumptions on the initial
data, it is possible to avoid, at least for short times, the formation of shocks, which
are singularities caused by sound wave compression. These issues are fundamental
for the Cauchy problem: for sufficiently rough initial data, ill-posedness occurs [16,
25] due to instantaneous shock formation, which is precipitated by the degeneration
of the acoustic geometry, including the intersection of the acoustic characteristics.
Shocks are of particular interest because they are the only singularities that have
been shown, through constructive methods [3–5,8,26,28], to develop for open sets4 of
regular initial data. This motivates our main result: controlling the time of existence

1 As we mentioned above, the solutions that we study have strictly positive density, i.e., we avoid studying
fluid-vacuum boundaries.
2 We assume that the equation of state is sufficiently smooth.
3 In practice, instead of the density �, we work with the logarithmic density, defined in Sect. 1.1.
4 We also mention here the spectacular work [30] on the existence of implosion singularities in spherical
symmetry under an adiabatic equation of state p = �γ with γ > 1. These are singularities in which the
density and velocity blow up at the center of symmetry in finite time. The methods of [30] suggest that the
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under optimal Sobolev regularity assumptions on the data of “the part of the flow that
blows up” in [5,8,26,28]. See Theorem 1.1 for a heuristic statement of the main result
and Theorem 1.2 for the precise version. The proof relies on a deep analysis of the
geometry of solutions that exploits hidden structures in the equations. We remark that,
in the language of the present paper, the formation of a shock would correspond to the
vanishing of the null lapse b defined in (178), more precisely to the following singular
behavior: ‖b−1‖L1

t L∞
x

= ∞. To avoid this singular scenario for short times, we prove
the estimates stated in (289).

Theorem 1.1 (Control of the time of classical existence (heuristic version)) The time
of classical existence of a solution to the 3D compressible Euler equations can be
controlled in terms of the H2+

(�0)-norm of the “wave-part” of the data (which is
tied to sound waves, i.e., the part of the solution that is prone to shock formation) and
additional Sobolev and Hölder norms of the “transport-part” of the data (which is
tied to the transporting of vorticity and entropy), where �0 := {0} × R

3 is the initial
Cauchy hypersurface.

We now highlight three features of our work:

• Our results are optimal in that H2+
(�0) cannot be replaced with H2(�0). More

precisely, even in the irrotational and isentropic case (i.e., curlv ≡ 0 and s ≡ const,
and thus the transport-part of the solution is trivial), the works [16,25] imply that
ill-posedness occurs5 if one assumes only an H2(�0)-bound on v and �, due to
the instantaneous formation of shocks.

• Our results appear to be the first of their kind for a quasilinear system featuring
multiple characteristic speeds, i.e., sound waves coupled to the transporting of
vorticity and entropy.

• In the irrotational and isentropic case, where the Euler equations reduce to a
quasilinear wave equation for a potential, Theorem 1.1 recovers the low regu-
larity well-posedness results for quasilinear wave equations proved in [41,54].
However, much like in the works [26,28] on shocks, the following theme per-
meates our paper: (especially) at low regularity levels, general compressible
Euler solutions are not “perturbations of waves;” the presence of even the tiniest
amount of vorticity or non-trivial entropy is a “game changer” requiring substantial
new insights, particularly for controlling the acoustic geometry. This is because
the vorticity and entropy are deeply and subtly coupled to the sound waves.

In proving Theorem 1.1, we derive several companion results of independent inter-
est, including:

• Control of the acoustic geometry in the presence of vorticity and entropy. By
“acoustic geometry,” we mean an acoustical eikonal function u, that is, a solution

Footnote 4 continous
implosion singularities might enjoy co-dimension stability without symmetry assumptions, though perhaps
not full stability for an open set of data.
5 The Cartesian coordinate partial derivatives of the solution blow up, but in principle, it could remain
smooth in different coordinates; e.g., Einstein’s equations are well-posed in H2 [24], even though they are
H2-ill-posed in wave coordinates [13].
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to the acoustical eikonal equation (g−1)αβ∂αu∂βu = 0, where the acoustical
metric6 g = g(�, v, s) is a Lorentzian metric (see Definition1.5) depending on the
fluid solution. Acoustical eikonal functions are adapted to the characteristics of
the “(sound) wave-part” of the solution and are fundamentally connected to shock
waves. The regularity properties of u are highly (and tensorially) tied to those of
the fluid, and the intersection of the level sets of u would signify the formation of
a shock.

• Strichartz estimates for (quasilinear) soundwaves coupled to vorticity and entropy.
• Schauder estimates for the vorticity and entropy, which solve transport-div-curl
equations.

All aspects of our paper are fundamentally based on a new formulation of the
compressible Euler equations as a system of wave and transport-div-curl equations,
derived in [44] and stated in condensed form in Proposition1.1. This new formulation
exhibits remarkable geo-analytic properties that are crucial for our results. See also
[27] for the case of a barotropic equation of state and [12] for a similar formulation of
the relativistic Euler equations.

Standard proofs of local well-posedness for the compressible Euler flow are based
on applying only energy estimates and Sobolev embedding to a first-order formulation
of the equations, such as (1). Such proofs require (�− �̄, v, s) ∈ H (5/2)

+
(�0), where

�̄ > 0 is a fixed constant background density. Compared to such standard proofs,
Theorem 1.1 reduces the required Sobolev regularity of the wave-part of the data (i.e.,
the data of � and divv) by7 half of a derivative, but requires additional smoothness on
the transport-part of the data (i.e., of curlv and s); see Theorem 1.2. It is important to
point out that one should not think that this additional smoothness of the transport-part
of the data leads to an oversimplification of the problem. This is because, to the best of
our knowledge, one cannot propagate the extra smoothness using solely equations (1)
(or other equivalent first-order formulation), i.e., without appealing to a non-standard
formulation of the equations such as the one given in Proposition1.1 and employed
here (see also [10] for another type of propagation of extra smoothness for the Euler
equations that also involves reformulating the equations). Moreover, such propagation
of extra regularity does not hold for general first-order symmetric hyperbolic systems,
which is one of the standard frameworks used in the study of the compressible Euler
equations. Furthermore, even when employing the formulation of Proposition1.1, the
propagation of extra smoothness for the transport part of the system is very delicate in
that the transport- and wave-parts are coupled in a highly non-trivial way (in particular
through the acoustic geometry). In this regard, a remarkable aspect of our work is:

We propagate the regularity of the “smoother” transport-part of the compressible
Euler flow, even though it is deeply coupled to the rougher wave-part.

To propagate the extra smoothness, we exploit the full nonlinear structure of the
aforementioned new formulation of the equations and carry out a delicate analysis of

6 In practice, when constructing u, we work with a rescaled version of the acoustical metric; see Sect. 9.4.
7 Here, when discussing the regularity of v, divv, and curlv, we are implicitly referring to the Hodge
estimate (55).
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the interaction of the wave- and transport- parts of the system as well as the acoustic
geometry.8

1.1 New formulation of the Euler equations

In Sect. 1.1.3, we provide the new formulation of the equations that we use in our
analysis. We first introduce some notation and define some additional quantities that
play a role in the new formulation.

Recall that we assume that the pressure p is a given smooth function of � and s,

and that the speed of sound c is defined by c :=
√

∂ p

∂�
| s , where

∂ p

∂�
| s is the partial

derivative of p with respect to � at fixed s. From now on, we view p and c as smooth
functions of the logarithmic density

ρ := ln

(

�

�̄

)

: R1+3 → R, (3)

(as opposed to the standard density) and s, wherewe recall that �̄ > 0 is a fixed constant
background density. That is, we view p = p(ρ, s) and c = c(ρ, s). If f = f (ρ, s) is
a scalar function, then we use the following notation to denote partial differentiation

with respect to ρ and s: f;ρ := ∂ f

∂ρ
and f;s := ∂ f

∂s
.

1.1.1 Additional fluid variables

We first recall that the fluid vorticity is the �t -tangent vectorfield ω : R1+3 → R
3,

where �t := {(τ, x1, x2, x3) ∈ R
1+3 | τ = t}, with the following Cartesian spatial

components:

ωi := (curlv)i := εiab∂avb, (4)

where throughout, εiab denotes the fully antisymmetric symbol normalized by ε123 =
1.

We will derive estimates for the specific vorticity and entropy gradient, which are
vectorfields featured in the next definition. These variables solve equations with a
favorable structure and thus play a key role in our analysis.

Definition 1.1 (Specific vorticity and entropy gradient) Wedefine the specific vorticity

 : R

1+3 → R
3 and the entropy gradient S : R

1+3 → R
3 to be the �t -tangent

vectorfields with the following Cartesian components:


i := ωi

(�/�̄)
= (curlv)i

exp ρ
, Si := δia∂as. (5)

8 Readers less familiar with Strichartz and acoustic geometry estimates can consult the arXiv version of
this paper [11], wherein we provide a longer introduction with further background.
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The “modified” fluid variables featured in the next definition solve equations with
remarkable structures. In total, such structures allow us to prove that these variables
exhibit a gain in regularity compared to standard estimates. We stress that this gain
of regularity is crucial for showing that the different solution variables have enough
regularity to be compatible with our approach.

Definition 1.2 (Modified fluid variables) We define the Cartesian components of the
�t -tangent vectorfield C and the scalar function D as follows:

Ci := exp(−ρ)(curl
)i + exp(−3ρ)c−2 p;s
�̄

Sa∂av
i − exp(−3ρ)c−2 p;s

�̄
(∂av

a)Si ,

(6a)

D := exp(−2ρ)divS − exp(−2ρ)Sa∂aρ. (6b)

The following definitions are primarily for notational convenience.

Definition 1.3 (The wave variables). We define the wave variables �ι, (ι =
0, 1, 2, 3, 4), and the array 	� of wave variables, as follows:

�0 := ρ, �i := vi , (i = 1, 2, 3), �4 := s, (7a)

	� := (�0, �1, �2, �3, �4). (7b)

Definition 1.4 (Arrays of Cartesian component functions). We define the following
arrays:

	v := (v1, v2, v3), 	
 := (
1,
2,
3), 	S := (S1, S2, S3), 	C := (C1, C2, C3).
(8)

Throughout,we use the following notation forCartesian partial derivative operators:

• ∂ denotes a spatial derivative with respect to the Cartesian coordinates.
• ∂∂∂ = (∂t , ∂) denotes a spacetime derivative with respect to the Cartesian coordi-
nates.

Moreover, ∂∂∂ 	� denotes the array of scalar functions ∂∂∂ 	� := (∂α�ι)α=0,1,2,3,ι=0,1,2,3,4
(recall that ∂0 = ∂t ), and ∂ 	� denotes the array of scalar functions ∂ 	� :=
(∂a�ι)a=1,2,3,ι=0,1,2,3,4. Arrays such as ∂∂∂ 	v, ∂ 	v, ∂∂∂ 	
, ∂ 	
, ∂∂∂2 	�, etc., are defined analo-
gously. Moreover, ∂≤1 	� denotes the array whose entries are those of 	� together with
those of ∂ 	�, and arrays such as ∂≤1 	
, ∂≤1 	S, etc., are defined analogously.

1.1.2 Acoustical metric and wave operators

Our analysis of the wave-part of the system is fundamentally tied to the acoustical
metric g and related geometric tensors.
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Definition 1.5 (The acoustical metric and first fundamental form). We define the
acoustical metric g = g(ρ, v, s) relative to the Cartesian coordinates as follows:

g := −dt ⊗ dt + c−2
3
∑

a=1

(dxa − vadt)⊗ (dxa − vadt). (9)

We define9 the first fundamental form g = g(ρ, v, s) of �t and the corresponding
inverse first fundamental form g−1 = g−1(ρ, v, s) relative to theCartesian coordinates
as follows:

g := c−2
3
∑

a=1

dxa ⊗ dxa, g−1 := c2
3
∑

a=1

∂a ⊗ ∂a . (10)

It is straightforward to check that relative to the Cartesian coordinates, we have

g−1 = −B ⊗ B + c2
3
∑

a=1

∂a ⊗ ∂a, detg = −c−6. (11)

It is also straightforward to verify the following facts, which we will use throughout:
B is g-orthogonal to �t and normalized by

g(B,B) = −1. (12)

Remark 1.1 Note that gαβ = gαβ( 	�) and Bα = Bα( 	�). Note also that (g−1)00 = −1.
We will sometimes silently use this basic fact.

The following wave operators arise in our analysis of solutions.

Definition 1.6 (Covariant and reduced wave operators) �g denotes the covariantwave
operator of g, which acts on scalar functions ϕ by the coordinate invariant formula
�gϕ := 1√|detg|∂α

(√|detg|(g−1)αβ∂βϕ
)

. �̂g denotes the reduced wave operator of
g, and it acts on scalar functions ϕ by the following formula (relative to Cartesian
coordinates): �̂gϕ := (g−1)αβ∂α∂βϕ.

1.1.3 Statement of the geometric wave-transport formulation of the compressible
Euler equations

We now provide the geometric formulation of the compressible Euler equations that
we use to study the regularity of solutions. Detailed versions of the equations were

9 As we describe in Sect. 9.6.2, g can be extended to a �t -tangent spacetime tensor. By definition, the
extended version of g agrees with the original version when acting on�t -tangent vectors and vanishes upon
any contraction with B. The extended g satisfies the identity g = c−2∑3

a=1(dxa −vadt)⊗ (dxa −vadt).
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derived in [44, Theorem 1], but for our purposes here, it suffices to work with the
schematic version stated in Proposition1.1.

Wewill use the following schematic notation,which captures the essential structures
that are relevant for our analysis. Later in the article, we will introduce additional
schematic notation.

• L (A)[B] denotes any scalar-valued function that is linear in B with coefficients
that are a (possibly nonlinear) function of A, i.e., a term of the form f(A) · B,
where f denotes a generic smooth function that is free to vary from line to line.

• Q(A)[B,C] denotes any scalar-valued function that is quadratic in B and C with
coefficients that are a (possibly nonlinear) function of A, i.e., a term of the form
f(A) · B · C .

Proposition 1.1 [44, The geometric wave-transport formulation of the compress-
ible Euler equations] Smooth solutions to the compressible Euler equations (1a)–(1c)
also verify the following system of equations, where all terms on the RHSs are dis-
played schematically:10

Wave equations: For � ∈ {ρ, v1, v2, v3, s}, we have

�̂g( 	�)� = F(�) := L ( 	�)[	C,D] + Q( 	�)[∂∂∂ 	�,∂∂∂ 	�]. (13)

Moreover, replacing �̂g( 	�) on LHS (13) with the covariant wave operator �g( 	�) leads
to a wave equation whose RHS has the same schematic form as RHS (13).
Transport equations: The Cartesian component functions {
i }i=1,2,3 and {Si }i=1,2,3
verify the following equations:

B
i = L ( 	�, 	
, 	S)[∂∂∂ 	�], BSi = L ( 	�, 	S)[∂∂∂ 	�]. (14)

Transport div-curl system for the specific vorticity: The scalar function div
 and the

Cartesian component functions {Ci }i=1,2,3 verify the following equations:

div
 = F(div
) := L ( 	
)[∂∂∂ 	�], (15a)

BCi = F(Ci ) := Q( 	�)[∂∂∂ 	�, ∂ 	
] + Q( 	�)[∂∂∂ 	�, ∂ 	S] + Q( 	�, 	S)[∂∂∂ 	�,∂∂∂ 	�]
+ L ( 	�, 	
, 	S)[∂∂∂ 	�]. (15b)

Transport div-curl system for the entropy gradient: The scalar function D and the

Cartesian component functions {Si }i=1,2,3 verify the following equations:

BD = F(D) := Q( 	�)[∂∂∂ 	�, ∂ 	S] + Q( 	�, 	S)[∂∂∂ 	�,∂∂∂ 	�] + L ( 	�, 	S)[∂ 	
], (16a)

(curlS)i = 0. (16b)

10 The precise form of the schematic terms in Eq. (13) depends on �, but the details are not important for
our analysis. Similar remarks apply to the remaining equations.



41 Page 12 of 153 M. M. Disconzi et al.

Remark 1.2 We emphasize that for our main results, it is crucial that generic first
derivatives of
 and S do not appear onRHS (13); rather, only the special combinations
	C and D appear.

Remark 1.3 In obtaining the form of the equations of Proposition1.1 as a consequence
of the equations presented in [44], we have used the simple relations
i = L ( 	�)[∂ 	�]
and Si = δic∂cs = L [∂ 	�].
Remark 1.4 In the equations of [44], all derivative-quadratic inhomogeneous terms
are null forms. However, using Remark 1.3, we have rewritten, for example, terms of
type S · S, as Q[∂∂∂ 	�,∂∂∂ 	�], where Q[∂∂∂ 	�,∂∂∂ 	�] is not necessarily a null form. That is,
the quadratic termsQ(·)[·, ·] in Proposition1.1 are not necessarily null forms. While
the presence of null form structures is crucial for the study of the formation of shocks,
such null form structures are not important for the results of this article.

Proposition 1.1 justifies our use of the terminology “wave-parts” and “transport-
parts” to refer to different parts of the system. In particular, it shows that the Cartesian
velocity components vi andρ satisfy covariantwave equations of the form�g(v

i , ρ) =
· · · , and we therefore refer to � and vi as the “wave-part” of the compressible Euler
flow. In contrast, s, ∂s, and the specific vorticity
 satisfy transport equations along the
integral curves of the material derivative vectorfield B := ∂t + va∂a , and we therefore
refer to these as the “transport-part” of the compressible Euler flow. Moreover, the
variablesC andD satisfy transport-div-curl subsystems and, therefore,we also consider
these to be part of the “transport-part” of the flow.

1.2 Statement of themain result concerning control of the time of classical
existence

We now precisely state the theorem on the time of classical existence. We recall that
�̄ > 0 is a fixed constant background density.

Theorem 1.2 (Control of the time of classical existence under low regularity assump-
tions on the wave-part of the data) Consider a smooth11 solution to the compressible
Euler equations in 3D whose initial data obey the following three assumptions12 for
some real numbers13 2 < N ≤ 5/2, 0 < α < 1, 0 ≤ DN ;α < ∞, 0 < c1 < c2, and
0 < c3:

1. ‖(� − �̄, v, curlv)‖H N (�0)
+ ‖s‖H N+1(�0)

≤ DN ;α, where �̄ > 0 is a constant
background density.

11 For convenience, in this paper, we will assume that the solutions are as many times differentiable as
necessary. Thus, “smooth”means “as smooth as necessary for the qualitative arguments (such as integration
by parts) to go through.” However, all of our quantitative estimates depend only on the Sobolev and Hölder
norms mentioned in Theorem 1.2.
12 We note that since assumption 3 implies that �|�0 is strictly positive, we have ‖� − �̄‖H N (�0)

≈
‖ρ‖H N (�0)

, where ρ is the logarithmic density defined in (3); this standard estimate can be proved using
the product estimates of Lemma 5.3.
13 Similar results can be proved for N > 5/2 using only energy estimates and Sobolev embedding.
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2. The modified fluid variables C and D from Definition1.2 (which vanish for irrota-
tional and isentropic solutions), verify the Hölder-norm bound ‖(C,D)‖C0,α(�0)

≤
DN ;α.

3. Along �0, the data functions are contained in the interior of a compact subset K
of state-space in which � ≥ c3 and the speed of sound is bounded from below by
c1 and above by c2.

Then the solution’s time of classical existence T depends only on DN ;α and K, i.e.,
T = T (DN ;α,K) > 0. Moreover, the Sobolev regularity of the data is propagated by
the solution for t ∈ [0, T ], as is Hölder regularity.14

Remark 1.5 (Regularity needed for Strichartz estimates and differences from the irro-
tational and isentropic case) In Theorem 1.2, we have assumed additional Sobolev
regularity on the transport-part of the flow (specifically curlv and s) compared to the
classical local well-posedness regime (�−�̄, v, s) ∈ H (5/2)

+
(�0). This is because our

approach to controlling
∫ T
0 ‖∂∂∂(�, v, s)‖L∞(�τ) dτ (which, as we mention below (17),

is crucial for the proof of Theorem 1.2) relies on deriving Strichartz estimates for the
nonlinear wave equations of Proposition1.1, which in turn requires the transport-part
of the system to be more regular than the wave part. That is, at the classical local well-
posedness regularity level (which is such that the transport-part does not generically
enjoy any relative gain in regularity), the approach of treating the compressible Euler
equations as a coupled wave-div-curl-transport system fails,15 except in the irrota-
tional and isentropic case [41,54] (where the compressible Euler equations reduce to a
quasilinear wave equation for a potential function). The failure comes from the wave
equation source terms16 	C and D on RHS (13), which are the modified fluid variables
from Definition1.2. For general solutions (i.e., solutions with vorticity and non-trivial
entropy), from the point of view of regularity, 	C and D scale, in a naive sense, like
∂2v and ∂2s. Therefore, at the classical local well-posedness threshold, 	C and D are
elements of H (1/2)

+
(�t ). This level of source-term regularity is insufficient for using

a Duhamel argument to justify the desired Strichartz estimate for the nonlinear wave
equation (13); see the proof of Theorem 7.1 for details on how the source terms
enter into the proof of Strichartz estimates. This is one key reason why, throughout
the paper, we assume the transport-part data regularity ‖curlv‖H N (�0)

≤ DN ;α and
‖s‖H N+1(�0)

≤ DN ;α (these inequalities are automatically satisfied in the irrotational
and isentropic17 case).

14 Proposition5.1 allows us to propagate all of the Sobolev regularity of the initial data, while (120) allows
us to propagate some Hölder regularity for (	C,D); the Hölder norm that we can control has an exponent
that is controllable in terms of N − 2, but the exponent is possibly smaller than α. Moreover, the norms
that we can control are uniformly bounded by functions of (DN ;α,K) for t ∈ [0, T ].
15 At the classical local well-posedness level, one can treat the compressible Euler equations as a first-
order symmetric hyperbolic system and obtain control over

∫ T
0 ‖∂∂∂(�, v, s)‖L∞(�τ) dτ as a consequence

of Sobolev embedding and symmetric hyperbolic energy estimates. However, symmetric hyperbolic for-
mulations of the equations do not exhibit the intricate structures that we exploit in proving Theorem 1.2.
16 See Definition1.4 regarding the notation “	C.”
17 Technically, s could be a non-zero constant in the isentropic case, leading to ‖s‖L2(�0)

= ∞. However,
this infinite norm would be irrelevant in that s would be constant throughout the evolution and thus trivial
to control.
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Given the estimates we derive in Sects. 2–8, it is known that Theorem 1.2 essentially
follows from the following a priori estimate, where ∂∂∂ f := (∂t f , ∂1 f , ∂2 f , ∂3 f ), �τ

is the standard flat hypersurface of constant time, and T is as in the statement of the
theorem:

∫ T

0
‖∂∂∂(�, v, s)‖L∞(�τ) dτ � 1. (17)

That is, we will not provide the details on how Theorem 1.2 follows from (17) via a
continuity argument and persistence of regularity (see, e.g., [29, Section 2.2, Corol-
lary 2] or [35, Lemma 9.14] for the main ideas behind the proof), but will instead focus
our efforts on justifying the a priori estimate18 (17) for T > 0 sufficiently small (where
the required smallness depends only the norms of the data and the set K mentioned
in Theorem 1.2). More precisely, our approach requires us to prove a stronger result,
namely Theorem 7.1, whose proof in turn is coupled to all of the other ingredients
mentioned above. We also remark that, as we explain in Sects. 7–11, most of the argu-
ments needed for the proof of Theorem 7.1, including a series of technical-but-known
reductions, are supplied by other papers cited in Sects. 7–11. In this paper, our main
focus will be showing how to control the vorticity and entropy in norms that allow to
use the machinery from these other papers. Our proof relies on norms of the vorticity
and entropy on constant-time hypersurfaces and sound cones, and the main novel-
ties of our work are: (i) we can propagate substantial smoothness for the vorticity,
entropy, and modified fluid variables C and D from Definition1.2, even though these
variables are intimately coupled to the rougher wave part of the solution; (ii) we can
obtain suitable estimates for the acoustic geometry by exploiting the precise struc-
ture of the new formulation of compressible Euler flow provided by Proposition1.1,
which allows us to show that the main top-order vorticity/entropy-dependent terms
driving the evolution of the acoustic geometry are19 C and D—as opposed to generic
first-order derivatives of 
 and S.

Remark 1.6 (Remarks on local well-posedness). Theorem1.2 provides themain ingre-
dient, namely a priori estimates for smooth solutions, needed for a full proof of local
well-posedness, including existence in the regularity spaces featured in the theorem
and uniqueness in related spaces.

We anticipate that the remaining aspects of a full proof of local well-posedness
could be shown by deriving, using the ideas that we use to prove Theorem 1.2, uniform
estimates for sequences of smooth solutions and their differences. For ideas on how
to proceed, readers can consult [41], in which existence and uniqueness were proved
at low regularity levels for quasilinear wave equations.

We now further describe some ingredients of independent interest that we use in
the proof of Theorem 1.2.

18 Actually, under our framework, the bound
∫ T
0 ‖∂∂∂s‖L∞(�τ) dτ � 1 will be trivial to justify since we

will prove the stronger result s ∈ L∞ (

[0, T ], H N+1(R3)
)

.

19 See, for example, the first terms on RHSs (228a) and (228b).
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(I)Control of the acoustic geometry. For quasilinear wave systems with a single
wave operator, there has been remarkable progress on obtaining control of the
acoustic geometry and applications to low regularity local well-posedness, see
[18–24,41,54]. A fundamental new aspect of the present work is that the vorticity
and entropy appear as source terms in the acoustic geometry estimates, signifying
a coupling between the geometry of sound cones and transport phenomena. The
coupling enters in particular through the Ricci curvature of the acoustical met-
ric g (see Definition1.5), which, by virtue of the compressible Euler equations,
can be expressed in terms of quantities involving the vorticity and entropy; see
Lemma 9.6. We also exploit some remarkable consequences of the compressible
Euler formulation provided by Proposition1.1, namely, through careful geometric
decompositions we show that high order derivatives of vorticity and entropy occur
only the special combinations C and D; see Proposition9.7. The point is that the
modified fluid variables C and D—as opposed to generic first-order derivatives of

 and S—enjoy good estimates up to top-order along sound cones, and such esti-
mates turn out to be crucial for obtaining control of the acoustic geometry. This
unexpected-but-critical structure should not be taken for granted since generic
high order derivatives of the vorticity and entropy can be controlled only along
constant-time hypersurfaces.

(II)Strichartz estimates for the wave-part of solutions. As in the works cited in
I, our derivation of Strichartz estimates is fundamentally based on having suitable
quantitative control of the acoustic geometry; see Sect. 11. Therefore, in view of
the discussion in I, we see that the Strichartz estimates are tied to the delicate
regularity properties of the vorticity and entropy along sound cones.

(III)New Schauder estimates for the transport-div-curl equations appearing
in the compressible Euler formulation; see Sect. 8. These provide us with mixed
spacetime estimates for the transport-part that complement the Strichartz esti-
mates, allowing us to control the new (compared to the previously treated case of
irrotational and isentropic solutions) kinds of derivative-quadratic terms that we
encounter in the energy and elliptic estimates.

1.3 Some general remarks and connections with prior work

Much of the remarkable progress that has been obtained for quasilinear hyperbolic
PDEs over the last two decades stems from studying specific systems of geometric
or physical interest (as opposed to “general systems”), where very delicate structural
features of the equations can be exploited in combination with a precise understand-
ing of the regularity of the system’s characteristics. Moreover, a common theme in
these developments is that the special structural and/or regularity features of the sys-
tem become visible only after one rewrites the equations in some novel way, which
might involve a coordinate system adapted to the problem in question and/or a new
formulation of the equations of motion in the spirit of the equations of Proposition1.1.

A primary example is Einstein’s equations, where the following notable results
were obtained in recent years: the formation of trapped surfaces [6], the stability of
the Kerr Cauchy horizon [9], stable curvature blowup [36,37,43], instability of anti de
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Sitter space [31,32], and the proof [24] of the bounded L2 curvature conjecture. For
the compressible Euler equations, we can cite Christodoulou’s breakthrough works
[5,8] on the formation of shocks in the irrotational and isentropic case, and, more
recently, the works [3,4,26,28] on the formation of shocks for solutions with vorticity
and entropy.

Regarding the problem of low regularity, in the case of an irrotational and isentropic
flow, where the compressible Euler equations can be written as a system of quasilinear
wave equations with a single wave speed, our result follows directly from the optimal
low regularity local well-posedness by Smith and Tataru [41] or also from the more
recent physical-space approach to the problem by Wang [54]. This highlights, once
more, that the main novelty of our work is to obtain control of the fluid flow under
optimal regularity assumptions on the wave-part of the system in the presence of
vorticity and entropy.

In order to highlight the difference between our result and what can be obtained
using solely techniques from quasilinear wave equations, we now discuss an approach
that one could take for controlling the wave-part of the system at sub-H (5/2)

+
(�0)

regularity levels,20 one that is simpler than the approach that we use here, but less
powerful in that it would not allow one to reach the H2+

(�0) regularity threshold
for the wave-part. Specifically, one could control the wave-part of the system at a
regularity level below H (5/2)

+
(�0) by invoking the technology of Strichartz estimates

for linear wave equationswith rough coefficients, based on Fourier integral parametrix
representations, developed in a series of works by Tataru [45–47], which improved
the foundational work [1] of Bahouri–Chemin; see also the related work [39]. By
“linear,” we mean in particular that the proofs do not exploit any information about
the principal coefficients of the wave operator besides their pre-specified regularity. In
particular, when combined with the bootstrap-type arguments given in Sects. 3–8, the
methods of [45,47] (see in particular [45, Theorem 6] and [47, Theorem 5.1]) would
allow one to prove local well-posedness assuming that (�− �̄, v) ∈ H (13/6)

+
(�0) and

that the transport-part of the data enjoys the same relative gain in regularity that we
assume for our results (e.g., s ∈ H (19/6)

+
(�0) and ∂2s ∈ C0,0+

(�0)); see Sect. 2.1.3
for further discussion. The work [40] shows that without further information about
the principal coefficients of the wave equation, Tataru’s linear Strichartz estimates
are optimal. Thus, since our results further lower the Sobolev regularity threshold by
1/6, our analysis necessarily exploits the specific nonlinear structure of the equations
of Proposition1.1. We also refer to the works (some of which we mentioned earlier)
[18,21,24,41,54] for further low regularity results in which the nonlinear structure of
the PDE plays a fundamental role.

1.4 Paper outline

The remainder of the paper is organized as follows:

20 Recall that H (5/2)
+
(�0) is what is required for standard local well-posedness based on energy estimates

and Sobolev embedding.
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• In Sect. 2, we outline the main ideas of our analysis through the study of a model
problem.

• In Sect. 3, we recall some standard constructions from Littlewood–Paley theory,
define the norms that we use until Sect. 9, define the parameters that play a role in
our analysis, state our assumptions on the data, and formulate bootstrap assump-
tions. The two key bootstrap assumptions are Strichartz estimates for thewave-part
of the solution and complementary mixed spacetime estimates for the transport-
part.

• In Sect. 4, we use the bootstrap assumptions to derive preliminary below-top-order
energy and elliptic estimates, which are useful for controlling simple error terms.

• In Sect. 5, we use the bootstrap assumptions and the results of Sect. 4 to derive
top-order energy and elliptic estimates along constant-time hypersurfaces.

• In Sect. 6, we derive energy estimates along acoustic null hypersurfaces, which
complement the estimates from Sect. 5. We need these estimates along null hyper-
surfaces in Sect. 10, when we control the acoustic geometry. Compared to prior
works, the main contribution of Sect. 6 is the estimate (102), which shows that
the modified fluid variables (	C,D) can be controlled in L2 up to top-order along
acoustic null hypersurfaces, i.e., sound cones; as we described in Sect. 1.2, such
control along sound cones is not available for generic top-order derivatives of the
vorticity and entropy.

• In Sect. 7, we prove Theorem 7.1, which yields Strichartz estimates for the wave-
part of the solution, thereby improving the first key bootstrap assumption and
justifying the estimate (17). The proof of Theorem 7.1 is conditional on Theo-
rem 7.2, whose proof in turn relies on the estimates for the acoustic geometry that
we derive in Sect. 10.

• In Sect. 8, we use Schauder estimates to derive mixed spacetime estimates for
the transport-part of the solution, thereby improving the second key bootstrap
assumption.At this point in the paper, to close the bootstrap argument and complete
the proof of Theorem 1.2, it only remains for us to prove Theorem 7.2.

• In Sect. 9, in service of proving Theorem 7.2, we construct the acoustic geometry
on spacetime slabs corresponding to a partition of the bootstrap time interval; see
Sect. 7.2 for the construction of the partition. The acoustic geometry is centered
around an acoustical eikonal function. We also define corresponding geometric
norms.

• In Sect. 10, we derive estimates for the acoustic geometry. The main result is
Proposition10.1.

• In Sect. 11, we review some results derived in [54], which in total show that the
results of Sect. 10 imply Theorem 7.2. This closes the bootstrap argument, justifies
the estimate (17), and completes the proof of Theorem 1.2.

Note added. After the completion of this manuscript, the work [55] became available,
in which the author considers the compressible Euler equations under a barotropic
equation of state p = p(�) (and thus the variable s is absent from the analysis). In
this case, the author was able to lower the regularity of curlv|�0 compared to Theorem
1.2 by eliminating the Hölder-norm bound assumption and showing that it suffices to

assume curlv ∈ H N ′
(�0), where 2 < N ′ <

( N−2
5

)2
. Moreover, in the wake of [55],
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there also appeared [56], where a 2D local well-posedness result is established in the
barotropic case such that the density, velocity, and specific vorticity are in H2, and
[57], which provides an alternative proof of the results of [55].

2 Amodel problem

In this section, we discuss a model problem that serves as a blueprint for the rest of the
paper. The purpose of this section is to provide insight into the analysis and is entirely
independent of the rest of the paper. Readers not interested in a schematic guide to the
main ideas of the paper can skip this section.

2.1 Overview of the analysis via amodel problem

In this subsection, we exhibit some of themain ideas behind our analysis by discussing
a model problem.

2.1.1 Statement of the model system

We will study the following schematically depicted model system in the scalar
unknown � and the �t -tangent unknown vectorfield W on R1+3:

�̂g(�)� = curlW + ∂∂∂� · ∂∂∂�, (18a)

divW = ∂�, (18b)

{∂t +�∂1} curlW = ∂� · ∂W . (18c)

We intend for the system (18a)–(18c) to be a caricature of the equations of Proposi-
tion1.1. Above, gαβ(�) are given Cartesian component functions (assumed to depend
smoothly on �) of the Lorentzian metric g, and �̂g(�) := (g−1)αβ∂α∂β . � may be
thought of as a model for the wave-part of the compressible Euler equations, while
W may be thought of as a model for the transport-part (e.g., the vorticity and entropy
gradient), with ∂t +�∂1 amodel quasilinear transport operator (the fact that it involves
only ∂t and ∂1 is not important). That is, from the point of view of regularity, we can
think that � ∼ (ρ, v) and W ∼ (curlv, ∂s). We intend for the reader to interpret the
inhomogeneous terms schematically (especially, since, for example, LHS (18a) is a
scalar while the first term on RHS (18a) appears to be a vector).

We will outline how to control the time of existence for solutions to the model
system (18a)–(18c) assuming the data-bound

‖(�, ∂t�)‖H N (�0)×H N−1(�0)
+ ‖∂W‖H N−1(�0)

<∞,

where 2 < N ≤ 5/2 is a fixed real number. In Sect. 2.1.4, we will find that we need
to make the further Hölder regularity assumption ‖curlW‖C0,α(�0)

< ∞ for some
α > 0, much like we did in Theorem 1.2. In the rest of Sect. 2.1, “data” schematically
denotes any quantity depending on ‖(�, ∂t�)‖H N (�0)×H N−1(�0)

+ ‖∂W‖H N−1(�0)
.
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2.1.2 A priori energy and elliptic estimates along 6t for the model system

The most fundamental step in controlling the time of existence is to derive a pri-
ori energy and elliptic estimates along �t . In the context of the compressible Euler
equations, we provide the analog of this step in Proposition5.1 below. To obtain the
desired a priori estimate for the model system, we first note that equation (18b) and
the standard elliptic Hodge estimate

‖∂W‖H N−1(�t )
� ‖divW‖H N−1(�t )

+ ‖curlW‖H N−1(�t )
(19)

together imply the following bound:

‖∂W‖H N−1(�t )
� ‖∂�‖H N−1(�t )

+ ‖curlW‖H N−1(�t )
. (20)

Next, by combining standard estimates for the wave equation (18a), based on energy
estimates and the Littlewood–Paley calculus, we deduce (where we ignore all numer-
ical constants “C”) that

‖(�, ∂t�)‖2H N (�t )×H N−1(�t )

≤ data +
∫ t

0

{

1 + ‖∂∂∂�‖L∞
x (�τ)

}

{

‖(�, ∂t�)‖2H N (�τ)×H N−1(�τ)
+ ‖curlW‖2H N−1(�τ)

}

dτ.

(21)

Similarly, with the help of the Littlewood–Paley calculus, we can derive energy esti-
mates for the transport equation (18c) and use (20) to control the top-order derivatives
of the factor ∂W on RHS (18c), thereby obtaining the following bound:

‖curlW‖2H N−1(�t )

≤ data +
∫ t

0

{

1 + ‖∂∂∂�‖L∞(�τ) + ‖∂W‖L∞(�τ)

}

×
{

‖(�, ∂t�)‖2H N (�τ)×H N−1(�τ)
+ ‖curlW‖2H N−1(�τ)

}

dτ. (22)

Adding (21) and (22), applying Grönwall’s inequality, and finally again using (20),
we obtain (again ignoring all numerical constants “C”) the following estimate:

‖(�, ∂t�)‖H N (�t )×H N−1(�t )
+ ‖∂W‖H N−1(�t )

≤ data × exp
(

1 + ‖∂∂∂�‖L1([0,t])L∞
x

+ ‖∂W‖L1([0,t])L∞
x

)

. (23)

Thus, (23) would immediately imply the desired a priori estimate if we were able to
simultaneously show that for T > 0 sufficiently small, we have the following key
bounds for some δ > 0 and δ1 > 0 with 0 < δ1 ≤ α:

‖∂∂∂�‖L2([0,T ])L∞
x
, ‖∂W‖L2([0,T ])L∞

x
� T δdata + T δ‖curlW‖C0,δ1 (�0)

. (24)

The rest of the discussion in Sect. 2.1 concerns the proof of (24).
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2.1.3 Strichartz estimates and acoustic geometry for the model system

We now discuss how to establish (24) for the term ‖∂∂∂�‖L2([0,T ])L∞
x
using Strichartz

estimates. In practice, this can be accomplished by first making a bootstrap assumption
that is weaker than (24), then combining it with (23) to deduce the energy bound

‖(�, ∂t�)‖H N (�t )×H N−1(�t )
+ ‖∂W‖H N−1(�t )

≤ data,

and then finally proving Strichartz estimates that imply the “improved” estimate

‖∂∂∂�‖L2([0,T ])L∞
x

+ ‖∂W‖L2([0,T ])L∞
x

� T δdata + T δ‖curlW‖C0,δ1 (�0)
.

Thus, to illustrate the main ideas, we will assume the energy bound and sketch how to
prove ‖∂∂∂�‖L2([0,T ])L∞

x
� 1, where, for convenience, we will ignore the small power

of T δ (which in reality is important for gaining smallness in various estimates) and
also ignore term “data” by considering it to be � 1. At this point in our discussion
of the model system, we will also ignore the following important technical point: to
close some estimates, one must achieve control of not only ‖∂∂∂�‖L2([0,T ])L∞

x
, but also

∑

ν≥2 ν2δ1‖Pν∂∂∂ 	�‖2
L2([0,T ])L∞

x
and ‖∂∂∂ 	�‖

L2([0,T ])C0,δ1
x

, where Pν are standard dyadic

Littlewood–Paley projections and δ1 > 0 is a small Hölder exponent; see Theorem 7.1
and Corollary7.1 for the details. We will elaborate on the importance of controlling
‖∂∂∂ 	�‖

L2([0,T ])C0,δ1
x

in Sect. 2.1.4, when we explain how to control ‖∂W‖L2([0,T ])L∞
x
.

As we describe starting two paragraphs below, our approach to deriving the Strichartz
estimates is fundamentally connected to the geometry of g-null hypersurfaces, i.e.,
hypersurfaces whose normals V verify g(V , V ) = 0, and in order to control the
geometry of null hypersurfaces, we use arguments that rely on having a bound for
∑

ν≥2 ν2δ1‖Pν∂∂∂ 	�‖2
L2([0,T ])L∞

x
.

The basic idea behind obtaining the desired bound for ‖∂∂∂�‖L2([0,T ])L∞
x
is to estab-

lish an appropriate Strichartz estimate for thewave equation (18a). The analog estimate
in the context of the standard flat linear wave equation −∂2t ϕ + �ϕ = 0 on R

1+3 is
the well-known Strichartz estimate ‖∂∂∂ϕ‖L2

t ([0,1])L∞
x

� ‖∂∂∂ϕ‖H1+ε(�0)
, valid for any

ε > 0. As we mentioned in Sect. 1.3, the important work of Tataru [45,47] (see in
particular [45, Theorem 6] and [47, Theorem 5.1]), which provided Strichartz esti-
mates for linear wave equations with rough coefficients, would in fact yield the desired
bound ‖∂∂∂�‖L2([0,T ])L∞

x
� 1 under the stronger assumption N > 13/6, provided one

can simultaneously bound RHS (18a) in ‖ · ‖L∞([0,T ])H N−1
x

, i.e, provided one can
control ‖curlW + ∂∂∂� · ∂∂∂�‖L∞([0,T ])H N−1

x
. For the model system, there is no diffi-

culty in extending the estimate (23) to the case N > 13/6. Thus, assuming that one
can also control the term ‖∂W‖L2([0,t])L∞

x
on RHS (23), we obtain (using Tataru’s

framework) the desired bound ‖∂∂∂�‖L2([0,T ])L∞
x

� 1 under this stronger assumption
N > 13/6. We stress that in the case of the compressible Euler equations, controlling
the analog of the term ‖curlW‖L∞([0,T ])H N−1

x
is possible (see Proposition5.1), but

only by exploiting the special structures of the equations of Proposition1.1. More-
over, it is not possible to achieve such control at the classical local well-posedness
level (� − �̄, v, s) ∈ H (5/2)

+
(�0); see Remark 1.5.
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It is known [40] that without further information about the principal coefficients
(g−1)αβ of thewave operator �̂g, Tataru’s linear Strichartz estimates are optimal. Thus,
to achieve the goal of lowering the Sobolev regularity threshold to N > 2, we must
exploit the specific structure of the system (18a)–(18c). Over the last two decades, a
robust framework for achieving this goal for quasilinear wave systems with a single
wave speed21 has emerged, starting with [18], progressing through the results [19–
23,41,54], and, in the case of the Einstein-vacuum equations, culminating in the proof
[24] of the bounded L2 curvature conjecture. As we will further explain below, the
most significant difference between the case of single-speed quasilinear wave systems
and the model system (18a)–(18c) is the presence of the terms on RHSs (18a)–(18c)
that depend on one derivative of W . Despite the presence of these terms, our approach
here allows us to initiate the derivation of Strichartz estimates for the model system
starting from the same crucial ingredient found in the works cited above on single-
speed quasilinear wave systems: an outgoing acoustical eikonal function u, which is
a solution to the following eikonal equation (Footnote 6 also applies here, i.e., as we
describe in Sect. 9.4, when constructing u, we work with a rescaled version of the
acoustical metric):

(g−1)αβ∂αu∂βu = 0 (25)

such that ∂t u > 0.
Aglaring point is that the regularity properties of u are tied to those of the solution of

(18a)–(18c) through the dependence of the coefficients (g−1)αβ of the eikonal equation
(25) on �. Thus, if one studies solutions of (18a)–(18c) using arguments that rely on
estimates for u and its derivatives, one must carefully confirm that the regularity of u
needed for the arguments is compatible with that of �. This serious technical issue,
which we further discuss below, was first handled by Christodoulou–Klainerman [7]
in their proof of the stability of Minkowski spacetime as a solution to the Einstein–
vacuum equations. In our study of compressible Euler flow, we dedicate the entirety
of Sect. 9 towards the construction of an appropriate u (where the role of g is played
by the acoustical metric of Definition1.5) and related geometric quantities, while in
Sect. 10, we derive the difficult, tensorial regularity properties of these quantities.

The level sets of u, denoted byCu , are g-null hypersurfaces, and in this paper,wewill
construct u so that the Cu are outgoing sound cones; see Fig. 2. Through a long series of
reductions, originating in [46,47] and with further insights provided by [17,18,41,54],
it is known that the desired Strichartz estimate ‖∂∂∂�‖L2([0,T ])L∞

x
� 1 for solutions to

equation (18a) can be proved for N > 2, thanks in part to the availability of the bound
(23), provided one can derive complementary, highly tensorial, Sobolev estimates for
the derivatives of u up to top-order, both along �t and along null hypersurfaces Cu .
We refer to this task as “controlling the acoustic geometry,” and our above remarks
make clear that the regularity of the acoustic geometry depends on that of � and W ;
see the discussion surrounding equation (26) for further clarification of this point.
In Sect. 11, we review the main ideas behind deriving the Strichartz estimate as a

21 By this, we mean wave equation systems featuring only one Lorentzian metric.
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Fig. 1 The null frame

consequence of control of the acoustic geometry. The basic chain of logic22 is: control
over the acoustic geometry �⇒ an estimate for an L2-type (weighted) conformal
energy for solutions to �gϕ = 0 �⇒ dispersive decay estimates for ϕ �⇒ (via a
TT∗ argument) linear Strichartz estimates �⇒ (by Duhamel’s principle, the energy
estimates, and the Schauder estimates for the transport-part of the system discussed
in Sect. 2.1.4) Strichartz estimates for the quasilinear wave equation (13).

The task of controlling the acoustic geometry is quite involved and occupies the
second half of the paper; see Proposition10.1 for a lengthy list of estimates that we
use to control the acoustic geometry. In the case of quasilinear wave equations, many
of the ideas for how to control u originated in [7,18–23,54]. For the model system,
the main new difficulty is the presence of the term curlW on the right-hand side of the
wave equation (18a), whose regularity properties strongly influence those of u; below
we will elaborate on this issue. In this subsubsection, we cannot hope to discuss all
of the technical difficulties that arise when controlling u, so we will mainly highlight
a few key points that are new compared to earlier works. Readers can consult the
introduction to [54] for an overview of many of the technical difficulties that arise in
the case of quasilinear wave equations and for how they can be overcome. At the end
of this subsubsection, we will mention some of these difficulties since they occur in
the present work as well.

As is standard in the theory of wave equations, our analysis relies on a g-null
frame {L, L, e1, e2} adapted to u, where the vectorfield L is rescaled version of the
gradient vectorfield of u, normalized by Lt = 1; see (184). Thus, by (25), L is null
(i.e., g(L, L) = 0), tangent to Cu , and orthogonal to the spheres St,u := Cu ∩ �t .
Moreover, L is null, transversal to Cu , orthogonal to St,u , and normalized by Lt = 1,
and {eA}A=1,2 are a g-orthonormal frame tangent to St,u ; see Fig. 1, and see Sect. 9
for details on the construction of the objects depicted in the figure.

Controlling the acoustic geometry means, essentially, deriving estimates for vari-
ous connection coefficients23 of the null frame and their derivatives. There are many

22 In our detailed proof, we partition [0, T ] into appropriate subintervals and derive estimates on each
subinterval; see Sect. 7.2. This strategy is part of the series of reductions mentioned above. Here we are
ignoring this technical aspect of the proof.
23 These are, roughly, first g-covariant derivatives of the frame in the directions of the frame.
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quantities that we need to estimate, but for brevity, in our discussion of the model
problem, we will discuss only one of them. Specifically, of primary importance for
applications to Strichartz estimates is the null mean curvature of the level sets of u
(i.e., of sound cones in the context of compressible Euler flow), denoted by trg/χ and
defined by trg/χ = ∑2

A=1 g(DeA L, eA), with D the Levi-Civita connection of g. Ana-
lytically, trg/χ corresponds to a special combination of up-to-second-order derivatives
of u with coefficients that depend, relative to Cartesian coordinates, on the up-to-
first-order derivatives of g. To bound trg/χ, one exploits that it verifies Raychaudhuri’s
equation (see (212c) and (228a)), which is an evolution equation with source terms
depending on the Ricci curvature of g. A careful decomposition of the Ricci curvature
(see Lemma 9.6) allows one to express Raychaudhuri’s equation in the form24

L(trg/χ +���L) = 1

2
LαLβ�̂g(gαβ(�))+ · · · , (26)

where���L := Lα���α , and���α ∼ (g−1)2 ·∂∂∂g is a contractedCartesianChristoffel symbol
of g. Here we emphasize that the regularity properties of trg/χ +���L are tied to those
of the source terms in the wave equation (18a), since the first term on RHS (26) can
be expressed via (18a) and the chain rule. It turns out that in order to obtain enough
control of the acoustic geometry to prove the Strichartz estimates, one needs to control,
among other terms, the Cu-tangential derivatives, namely L and ∇/ , of trg/χ in various
norms along Cu , where ∇/ is the Levi-Civita connection of the Riemannian metric g/
induced on the spheres St,u by g; see, for example, the estimate (288d). This suggests,
in view of Eq. (18a) and the presence of the product 12 LαLβ�̂g(gαβ(�)) on RHS (26),
that we in particular have to control ‖∇/ curlW‖L2(Cu)

. In fact, one needs control of a
slightly higher Lebesgue exponent than 2 in the angular variables to close the proof,
though we will downplay this technical issue in our simplified discussion here. For
the compressible Euler equations, see Proposition6.1 for the precise estimates that we
need for the fluid variables along null hypersurfaces. We emphasize that in reality, the
needed control of ∇/ curlW is at the top-order level (i.e., it relies on the assumption
‖∂W‖H N−1(�0)

< ∞). To achieve the desired control, we use two crucial structural
features of the equations.

1. curlW satisfies the transport equation (18c). Therefore, using standard energy
estimates for transport equations and the energy estimate (23) along�t (which can
be used to obtain spacetime control of the source terms in the transport equation),
one can control, roughly,25 curlW in ‖·‖H N−1(H) along any hypersurface H that is
transversal to the transport operator ∂t +�∂1 on LHS (18c). Note that the needed
estimate along H would not be available if, instead of curlW on RHS (18a), we
had a generic spatial derivative ∂W ; we can control generic top-order spatial
derivatives of W in L2 only along the hypersurfaces �t , since elliptic Hodge
estimates of type (19) hold only along such hypersurfaces. In the compressible

24 Some of the terms denoted by “· · · ” on RHS (26) are important from the point of view of their L∞-size;
we are ignoring those terms in the present discussion because we are focusing on issues tied to regularity.
25 The precise norm that we need to control along null hypersurfaces is the one on LHS (102), which
involves Littlewood–Paley projections adapted to �t .
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Euler equations, this miraculous structural feature is manifested by the fact that
the principal transport terms on RHS (13) are precisely 	C and D, which satisfy
the transport equations (15b) and (16a). We again refer to Proposition6.1 for the
precise estimates that we derive for 	C and D along null hypersurfaces.

2. To control the acoustic geometry, one must consider the case H := Cu , and thus
one needs to know that ∂t +�∂1 is transversal to the sound cones Cu . For themodel
system, the transversality could be guaranteed only by making assumptions on the
structure of the component functions (g−1)αβ(�). However, for the compressible
Euler equations, the needed transversality is guaranteed by a crucial geometric
fact: the relevant transport vectorfield operator is B, and it enjoys the timelike
property g(B,B) = −1 (see (12)), thus ensuring that B is transversal to any g-null
hypersurface.

We close this subsubsection by highlighting a few key technical issues that were
also present in [54] and related works.

• To close our bootstrap argument, we find it convenient to partition the bootstrap
interval and to work with a rescaled version of the solution adapted to the partition.
We define the partitioning in Sect. 7.2 and the rescaling in Sect. 9.1. Moreover,
for each partition and corresponding rescaled solution, we construct an eikonal
function adapted to that specific partition; we will ignore this technical issue for
the rest of this subsubsection.

• It turns out that the connection coefficients of the null frame do not satisfy PDEs
that allow us to derive the desired estimates. Thus, one must instead work with
a collection of “modified” connection coefficients that satisfy better PDEs, for
which we can derive the desired estimates. This is already apparent from equation
(26), which suggests that trg/χ + ���L is the “correct” quantity to study from the
point of view of PDE analysis. We define these modified quantities in Sect. 9.7.

• To close the proof, we need to control ‖trg/χ+���L‖L∞
t L∞

x
via the transport equation

(26); see, for example, the estimate26 (288a). However, given the low regularity,
it is not automatic that we have quantitative control of the “data-term” ‖trg/χ +
���L‖L∞(�0), as such control depends on the initial condition for u (which we are
free to choose). In Proposition9.8, we recall a result of [54], which shows that
there exists a foliation of �0 that can be used to define an initial condition for u
with many good properties, leading in particular to the desired quantitative control
of ‖trg/χ +���L‖L∞(�0).

• In the proof of the conformal energy estimate from [54] (the results of which
we quote in our proof of the Strichartz estimate), there is a technical part of the
argument in which one needs to work with a conformally rescaled metric e2σg,
constructed such that its null second fundamental form has a trace equal to the
quantity trg/χ + ���L highlighted above; we refer readers to [54, Section 1.4.1]
for further discussion on this issue. In Sect. 9.7.1, we construct the conformally
rescaled metric. To close the conformal energy estimate, we must derive estimates
for various geometric derivatives of σ up to second order; see Proposition10.1.

26 The actual estimates that we need involve r̃ weights, where r̃ is defined in (176). We also note that in
the bulk of the article, we denote trg/χ +���L by trg̃/χ̃; see (204b).
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2.1.4 Mixed spacetime estimates for the transport variable

We now discuss how to establish (24) for the term ‖∂W‖L2([0,T ])L∞
x
on the left-hand

side. As in Sect. 2.1.3, we will assume the energy bound

‖(�, ∂t�)‖H N (�t )×H N−1(�t )
+ ‖∂W‖H N−1(�t )

� 1,

we will ignore the small power of T δ, and, imagining that we are carrying out a boot-
strap argument, we will assume the results of that subsubsection, i.e., we assume the
bound ‖∂∂∂�‖L2([0,T ])L∞

x
� 1. The main idea of controlling ‖∂W‖L2([0,T ])L∞

x
is to in

fact control, for some small constant δ1 > 0, the stronger norm27 ‖∂W‖
L2([0,T ])C0,δ1

x
by combining estimates for the transport-div-curl system (18b)–(18c) with the follow-
ing standard elliptic Schauder-type estimate (see Lemma 8.2):

‖∂W‖C0,δ1 (R3) � ‖divW‖C0,δ1 (R3) + ‖curlW‖C0,δ1 (R3) + ‖∂W‖L2(R3). (27)

It is well-known that (27) is false when the space C0,δ1(R3) is replaced (on both
sides) with L∞(R3); this explains our reliance on Hölder norms. To control RHS (27),
we will use the following important fact, mentioned already in the first paragraph of
Sect. 2.1.3: the Strichartz estimate ‖∂∂∂�‖L2([0,T ])L∞

x
� 1 can be slightly strengthened,

under the scope of our approach, to ‖∂∂∂�‖
L2([0,T ])C0,δ1

x
� 1; see Corollary7.1. To

proceed, we take the norm ‖ · ‖C0,δ1 (�t )
of the transport equation (18c) and integrate

in time, use (27) to bound the source term factor ∂W on RHS (18c), use (18b) to
substitute for the first term on RHS (27), and use the strengthened Strichartz estimate
‖∂∂∂�‖

L2([0,T ])C0,δ1
x

� 1 (which in particular, as the arguments of Lemma 8.3 show,

yields control of the integral curves of the transport operator ∂t +�∂1 on LHS (18c))
to obtain the following estimate (see Sect. 8.5 for the details):

‖curlW‖C0,δ1 (�t )
� ‖curlW‖C0,δ1 (�0)

+ data +
∫ t

0
‖∂∂∂�‖C0,δ1 (�τ)

‖curlW‖C0,δ1 (�τ)
dτ.

(28)

To control the first term on RHS (28), we need to assume that ‖∂W‖C0,α(�0)
< ∞,

for some α > 0 (and then δ1 > 0 is chosen to be ≤ α). There seems to be no way to
avoid this assumption by the method we are using since transport equation solutions
do not gain regularity or satisfy Strichartz estimates (which are tied to dispersion).
From (28), Grönwall’s inequality, and the bound ‖∂∂∂�‖

L2([0,T ])C0,δ1
x

� 1, we find that

‖curlW‖C0,δ1 (�t )
� ‖curlW‖C0,δ1 (�0)

+ data.

27 Onemight be tempted to avoid using theHölder-based norms ‖·‖
L2([0,T ])C0,δ1

x
and to instead use elliptic

theory to obtain control of ‖∂W‖L2([0,T ])B M Ox
. The difficulty is that control of ‖∂W‖L2([0,T ])B M Ox

is
insufficient for controlling the nonlinear term ∂� · ∂W on RHS (18c) in the norm ‖ · ‖L2

t ([0,T ])H N
x
, which

in turn would obstruct closure of the energy estimates.
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From this bound, (27), Eq. (18b) (which we again use to substitute for the first term
on RHS (27)), and the assumed energy bound, we find that

‖∂W‖C0,δ1 (�t )
� ‖curlW‖C0,δ1 (�0)

+ data + ‖∂∂∂�‖C0,δ1 (�t )
.

Finally, squaring this estimate, integrating in time, and again using the bound
‖∂∂∂�‖

L2([0,T ])C0,δ1
x

� 1, we obtain the desired bound ‖∂W‖
L2([0,T ])C0,δ1

x
�

‖curlW‖C0,δ1 (�0)
+ data.

We have therefore sketched how to establish (24) which, in view of (23), justi-
fies (for t sufficiently small) the fundamental estimate ‖(�, ∂t�)‖H N (�t )×H N−1(�t )

+
‖∂W‖H N−1(�t )

≤ data.

3 Littlewood–Paley projections, standard norms, parameters,
assumptions on the initial data, bootstrap assumptions, and
notation regarding constants

In this section, we define the standard Littlewood–Paley projections, define various
norms and parameters that we use in our analysis, state our assumption on the initial
data, formulate the bootstrap assumptions that we use in proving Theorem 1.2, and
state our conventions for constants C .

3.1 Littlewood–Paley projections

We fix a smooth function η : R3 → [0, 1] supported on the frequency-space annulus
{ξ ∈ R

3 | 1/2 ≤ |ξ | ≤ 2} such that for ξ �= 0, we have
∑

k∈Z η(2kξ) = 1. For dyadic
frequencies λ = 2k with k ∈ Z, we define the standard Littlewood–Paley projection
Pλ, which acts on scalar functions F : R3 → C, as follows:

PλF(x) := 1

(2π)3

∫

R
3

eix ·ξη(λ−1ξ)F̂(ξ) dξ, (29)

where F̂(ξ) := ∫

R
3 e−i x ·ξ F(x) dx (with dx := dx1dx2dx3) is the Fourier transform

of F . If F is an array-valued function, then PλF denotes the array of projections of its
components. If I ⊂ 2Z is an interval of dyadic frequencies, then PI F := ∑

ν∈I PνF ,
and P≤λF := P(−∞,λ]F .

If F is a function on �t , then PλF(t, x) := PλG(x), where G(x) := F(t, x), and
similarly for PI F(t, x) and P≤λF(t, x).

3.2 Norms and seminorms

In this subsection, we define some standard norms and seminorms that we will use
in the first part of the paper, before we control the acoustic geometry. To control the
acoustic geometry, we will use additional norms, defined in Sect. 9.10.
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For scalar- or array-valued functions F and 1 ≤ q < ∞, ‖F‖Lq (�t ) :=
{

∫

�t
|F(t, x)|q dx

}1/q
and‖F‖L∞(�t ) := ess supx∈R3 |F(t, x)| are standardLebesgue

norms of F , where we recall that �t is the standard constant-time slice. Lebesgue
norms on subsets D ⊂ �t are defined in an analogous fashion, e.g., if D = {t} × D′,
then ‖F‖Lq (D) := {∫

D′ |F(t, x)|q dx
}1/q . Similarly, if {Aλ}λ∈2N is a dyadic-indexed

sequence of real numbers and 1 ≤ q <∞, then ‖Aν‖�q
ν

:= {∑

ν≥1 Aq
ν

}1/q
.

We will rely on the following family of seminorms, parameterized by real numbers
M (where we will have M > 0 in our applications below):

‖�M F‖L2(�t )
:=

√

∑

ν≥2

ν2M‖PνF‖2
L2(�t )

, (30)

where on RHS (30) and throughout, sums involving Littlewood–Paley projections are
understood to be dyadic sums.

For real numbers M ≥ 0, we define the following standard Sobolev norm for
functions F on �t :

‖F‖H M (�t )
:=

{

‖P≤1F‖2L2(�t )
+ ‖�M F‖2L2(�t )

}1/2
. (31)

Throughout, we will rely on the standard fact that when M is an integer, the norm
defined in (31) is equivalent to

∑

| 	I |≤M ‖∂ 	I F‖L2(�t )
, where 	I are spatial derivative

multi-indices.
If F is a function defined on a subset D ⊂ R

3 andβ ≥ 0, then we define the Hölder
norm ‖ · ‖C0,β(D) of F as follows:

‖F‖C0,β(D) := ‖F‖L∞(D) + sup
x,y∈D,0<|x−y|

|F(x)− F(y)|
|x − y|β . (32)

Similarly, if F is a function defined on a subset D ⊂ �t of the form D = {t} × D′,
then ‖F‖C0,β(D) := ‖G‖C0,β(D′), where G(x) := F(t, x).

Wewill also use the followingmixed norms for functions F defined onR1+3, where
1 ≤ q1 <∞, 1 ≤ q2 ≤ ∞, and I is an interval of time:

‖F‖Lq1 (I )L
q2
x

:=
{∫

I
‖F‖q1

Lq2 (�τ)
dτ

}1/q1
, ‖F‖L∞(I )Lq2

x
:= ess supτ∈I ‖F‖Lq2 (�τ),

(33a)

‖F‖
Lq1 (I )C0,β

x
:=

{∫

I
‖F‖q1

C0,β(�τ)
dτ

}1/q1
, ‖F‖

L∞(I )C0,β
x

:= ess supτ∈I ‖F‖C0,β(�τ)
.

(33b)
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Similarly, if {Fλ}λ∈2N is a dyadic-indexed sequence of functions Fλ on �t , then

‖Fν‖�2νL2(�t )
:=

⎧

⎨

⎩

∑

ν≥1

‖Fν‖2L2(�t )

⎫

⎬

⎭

1/2

. (34)

3.3 Choice of parameters

In this subsection, we introduce the parameters that will play a role in our analysis. We
recall that 2 < N ≤ 5/2 and 0 < α < 1 denote given real numbers corresponding,
respectively, to the assumed Sobolev regularity of the data and the assumed Hölder
regularity of the transport part of the data; see (38a)–(38b). We then choose positive
numbers q, ε0, δ0, δ, and δ1 that satisfy the following conditions:

2 < q <∞, (35a)

0 < ε0 := N − 2

10
<

1

10
, (35b)

δ0 := min
{

ε20,
α

10

}

, (35c)

0 < δ := 1

2
− 1

q
< ε0, (35d)

δ1 := min {N − 2 − 4ε0 − δ(1 − 8ε0),α} > 8δ0 > 0. (35e)

More precisely, we consider N , α, ε0, and δ0 to be fixed throughout the paper, while
in some of our arguments below, we will treat q, δ, and δ1 as parameters, where q > 2
will need to be chosen to be sufficiently close to 2 (i.e., δ > 0 will need to be chosen
to be sufficiently small).

3.4 Assumptions on the initial data

The following definition captures the subset of solution space in which the compress-
ible Euler equations are hyperbolic in a non-degenerate sense.

Definition 3.1 (Regime of hyperbolicity). We defineK as follows, where c(ρ, s) is the
speed of sound:

K :=
{

(ρ, s, 	v, 	
, 	S) ∈ R × R × R
3 × R

3 × R
3 | 0 < c(ρ, s) <∞

}

. (36)

We set

(ρ̊, s̊, 	̊v, 	̊
, 	̊S, 	̊C, D̊) := (ρ, s, 	v, 	
, 	S, 	C,D)|�0 . (37)
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With N and α as in Sect. 3.3, we assume that

‖ρ̊‖H N (�0)
+ ‖	̊v‖H N (�0)

<∞, (38a)

‖ 	̊
‖H N (�0)
+ ‖s̊‖H N+1(�0)

+ ‖	̊C‖C0,α(�0)
+ ‖D̊‖C0,α(�0)

<∞. (38b)

(38a) corresponds to “rough” regularity assumptions on the wave-part of the data,
while (38b) corresponds to regularity assumptions on the transport-part of the data.

Let intU denote the interior of the set U . We assume that there are compact subsets
K̊ and K of intK such that

(ρ̊, s̊, 	̊v, 	̊
, 	̊S)(R3) ⊂ intK̊ ⊂ K̊ ⊂ intK ⊂ K ⊂ intK. (39)

3.5 Bootstrap assumptions

For the rest of the article, 0 < T∗ � 1 denotes a “bootstrap time” that we will choose
to be sufficiently small in a manner that depends only on the quantities introduced in
Sect. 3.4. We assume that (ρ, s, 	v, 	
, 	S) is a smooth (see Footnote 11) solution to the
equations of Proposition1.1 on the “bootstrap slab” [0, T∗] × R

3.

3.5.1 Bootstrap assumptions tied toK.

Let K be the subset from Sect. 3.4. We assume that

(ρ, s, 	v, 	
, 	S)([0, T∗] × R
3) ⊂ K. (40)

In Corollary8.1, we derive a strict improvement of (40).

Remark 3.1 (Uniform L∞(�t ) bounds). Note that the bootstrap assumption (40)
implies, in particular, uniform L∞(�t ) bounds, depending on K, for ρ, s, 	v, 	
, and
	S ∼ ∂s. Throughout the article,wewill often use these simple L∞(�t ) boundswithout
explicitly mentioning that we are doing so.

3.5.2 Mixed spacetime norm bootstrap assumptions

We assume that the following estimates hold:

‖∂∂∂ 	�‖2
L2

t ([0,T∗])L∞
x

+
∑

ν≥2

ν2δ0‖Pν∂∂∂ 	�‖2
L2

t ([0,T∗])L∞
x

≤ 1, (41a)

‖∂( 	
, 	S)‖2
L2

t ([0,T∗])L∞
x

+
∑

ν≥2

ν2δ0‖Pν∂( 	
, 	S)‖2L2
t ([0,T∗])L∞

x
≤ 1. (41b)

In Theorem 7.1, we derive a strict improvement of (41a). In Theorem 8.1, we derive
a strict improvement of (41b).
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Remark 3.2 When deriving the energy estimates, we will only use the bounds for
‖∂∂∂ 	�‖L2

t ([0,T∗])L∞
x
and ‖∂( 	
, 	S)‖L2

t ([0,T∗])L∞
x
. We use the bounds for the two sums in

(41a)–(41b) to obtain control over the acoustic geometry, that is, for proving Propo-
sition10.1. In turn, such control over the acoustic geometry will allow us to prove
a frequency-localized Strichartz estimate (Theorem 7.2), and then to improve the
Strichartz-type assumption for the wave variables (i.e., to prove Theorem 7.1). For
more details about this strategy, we refer to Sect. 2.1.3.

3.6 Notation regarding constants

In the rest of the paper, C > 0 denotes a constant that is free to vary from line to line.
C is allowed to depend on N , α, the parameters from Sect. 3.3, the norms of the data
from Sect. 3.4, and the set K from Sect. 3.4. We often bound explicit functions of t by
≤ C since t ≤ T∗ � 1. For given quantities A, B ≥ 0, write A � B to mean that
there exists a C > 0 such that A ≤ C B. We write A ≈ B to mean that A � B and
B � A.

4 Preliminary energy and elliptic estimates

Our main goal in this section is to prove preliminary energy and elliptic esti-
mates that yield H2(�t )-control of the velocity, density, and specific vorticity, and
H3(�t )-control of the entropy. The main result is provided by Proposition4.1. These
preliminary below-top-order estimates are useful, in the context of controlling the
solution’s top-order derivatives, for handling all but the most difficult error terms. The
proof of Proposition4.1 is located in Sect. 4.4. Before proving the proposition, we first
provide two standard ingredients: the geometric energy method for wave equations
and transport equations, and estimates in L2(�t )-based spaces for div-curl systems.

Proposition 4.1 (Preliminary energy and elliptic estimates) There exists a continuous
strictly increasing function F : [0,∞)→ [0,∞) such that under the initial data and
bootstrap assumptions of Sect.3, smooth solutions to the compressible Euler equations
satisfy the following estimates for t ∈ [0, T∗]:

2
∑

k=0

‖∂k
t (ρ, 	v, 	
)‖H2−k (�t )

+
2
∑

k=0

‖∂k
t s‖H3−k (�t )

+
1
∑

k=0

‖∂k
t (

	C,D)‖H1−k (�t )

≤ F
(

‖(ρ, 	v, 	
)‖H2(�0)
+ ‖s‖H3(�0)

)

. (42)

Moreover, for any a and b with 0 ≤ a ≤ b ≤ T∗, solutions ϕ to the inhomogeneous
wave equation

�g( 	�)ϕ = F (43)
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satisfy the following estimate:

‖∂∂∂ϕ‖L2(�b)
� ‖∂∂∂ϕ‖L2(�a)

+ ‖F‖L1([a,b])L2
x
. (44)

4.1 The geometric energymethod for wave equations

To derive energy estimates for solutions to the wave equations in (13), we will use the
well-known vectorfield multiplier method. In this subsection, we set up this geometric
energy method. Throughout this subsection, we lower and raise Greek indices with the
acoustical metric g = g( 	�) from Definition1.5 and its inverse. Moreover, we recall
that D denotes the Levi-Civita connection of g and �g := (g−1)αβDαDβ denotes the
corresponding covariant wave operator.

4.1.1 Energy-momentum tensor, energy current, and deformation tensor

We define the energy-momentum tensor associated to a scalar function ϕ to be the
following symmetric type

(0
2

)

tensorfield:

Qαβ [ϕ] := ∂αϕ∂βϕ − 1

2
gαβ(g−1)κλ∂κϕ∂λϕ. (45)

Givenϕ and any “multiplier” vectorfieldX, we define the corresponding energy current
(X)Jα[ϕ] vectorfield:

(X)Jα[ϕ] := Qαβ [ϕ]Xβ. (46)

We define the deformation tensor of X to be the following symmetric type
(0
2

)

tensor-
field:

(X)πππαβ := DαXβ + DβXα. (47)

A straightforward computation yields the following identity, which will form the
starting point for our energy estimates for the wave equations:

Dκ (X)Jκ [ϕ] = (�gϕ)Xϕ + 1

2
Qκλ(X)πππκλ. (48)

4.1.2 The basic energy along 6t

To derive energy estimates for solutions ϕ to wave equations �gϕ = F, we will rely
on the following energy E[ϕ](t), where B = ∂t + va∂a is the material derivative
vectorfield:

E[ϕ](t) :=
∫

�t

{

(B)Jκ [ϕ]Bκ + ϕ2
}

d�g =
∫

�t

{

Q00[ϕ] + ϕ2
}

d�g. (49)
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In (49) and throughout, d�g is the volume form induced on�t by the first fundamen-
tal form g of g. A straightforward computation yields that relative to the Cartesian
coordinates, we have

d�g = √

detgdx1dx2dx3 = c−3dx1dx2dx3. (50)

Also, (12) implies that B is timelike with respect to g. This leads to the coercivity of
E[ϕ](t), as we show in the next lemma.

Lemma 4.2 (Coerciveness of E[ϕ](t)). Under the bootstrap assumptions of Sect.3,
the following estimate holds for t ∈ [0, T∗]:

E[ϕ](t) ≈ ‖(ϕ, ∂tϕ)‖2H1(�t )×L2(�t )
. (51)

Proof Since the bootstrap assumption (40) guarantees that the solution is contained
in K, we have c ≈ 1 and thus, by (50), d�g = c−3dx1dx2dx3 ≈ dx1dx2dx3.
Next, using (11), (12), (45), and (46), we compute that (B)Jκ [ϕ]Bκ = 1

2 (Bϕ)
2 +

1
2c2δab∂aϕ∂bϕ. Using that Bϕ = ∂tϕ + va∂aϕ, that |	v| is uniformly bounded for
solutions contained in K, and that c ≈ 1, and applying Young’s inequality to the cross
term 2(∂tϕ)(v

a∂aϕ) in (Bϕ)2, we deduce (B)Jκ [ϕ]Bκ ≈ |∂∂∂ϕ|2. From these estimates
and definition (49), the desired estimate (51) easily follows. ��

In the next lemma, we provide the basic energy inequality that we will use when
deriving energy estimates for solutions to the wave equations.

Lemma 4.3 (Basic energy inequality for the wave equations). Let ϕ be smooth on
[0, T∗] × R

3. Under the bootstrap assumptions of Sect.3, the following inequality
holds for t ∈ [0, T∗]:

‖(ϕ, ∂tϕ)‖2H1(�t )×L2(�t )
� ‖(ϕ, ∂tϕ)‖2H1(�0)×L2(�0)

+
∫ t

0
‖∂∂∂ 	�‖L∞(�τ)‖(ϕ, ∂tϕ)‖2H1(�τ)×L2(�τ)

dτ

+
∫ t

0
‖�̂gϕ‖L2(�τ)

‖∂∂∂ϕ‖L2(�τ)
dτ. (52)

Proof Let (B)̃Jα[ϕ] := (B)Jα[ϕ] − ϕ2Bα , where (B)Jα[ϕ] is defined by (46). Note
that (12) implies (B)̃Jκ [ϕ]Bκ = (B)Jκ [ϕ]Bκ + ϕ2 and thus (B)̃Jκ [ϕ]Bκ is equal to the
integrand in the middle term in (49). Next, taking into account definition (47), we
compute that Dκ (B)̃Jκ [ϕ] = Dκ (B)Jκ [ϕ] − 2ϕBϕ − 1

2ϕ
2(g−1)κλ(B)πππκλ. Applying the

divergence theorem on the spacetime region [0, t] × R
3 relative to the volume form

d�g = √|detg|dx1dx2dx3dτ = d�gdτ (where the last equality follows from (10)–
(11) and (50)), recalling that B is the future-directed g-unit normal to �t , appealing
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to definition (49), and using Eq.Q(48) with X := B, we deduce

E[ϕ](t) = E[ϕ](0)−
∫ t

0

∫

�τ

(�gϕ)Bϕ d�g dτ + 2
∫ t

0

∫

�τ

ϕBϕ d�g dτ

+ 1

2

∫ t

0

∫

�τ

(g−1)κλ(B)πππκλϕ
2 d�g dτ − 1

2

∫ t

0

∫

�τ

Qκλ[ϕ](B)πππκλ d�g dτ.

(53)

Next,we note that since the bootstrap assumption (40) guarantees that the compressible
Euler solution is contained in K, we have the following estimates for α, β = 0, 1, 2, 3:
|Bα| � 1, |gαβ | � 1, |(g−1)αβ | � 1, and |∂∂∂gαβ | � |∂∂∂ 	�|. It follows that �gϕ =
�̂gϕ + O(|∂∂∂ 	�|)|∂∂∂ϕ|, |Bϕ| � |∂∂∂ϕ|, Q[ϕ] � |∂∂∂ϕ|2, and |(B)πππκλ| � |∂∂∂ 	�|. From these
estimates, the identity (53), the coercivity estimate (51), and the Cauchy–Schwarz
inequality along �τ, we conclude (52). ��

4.2 The energymethod for transport equations

In this subsection, we provide a simple lemma that yields a basic energy inequality
for solutions to transport equations.

Lemma 4.4 (Energy estimates for transport equations). Let ϕ be smooth on [0, T∗] ×
R
3. Under the bootstrap assumptions of Sect.3, the following inequality holds for

t ∈ [0, T∗]:

‖ϕ‖2L2(�t )
� ‖ϕ‖2L2(�0)

+
∫ t

0
‖∂∂∂ 	�‖L∞(�τ)‖ϕ‖2L2(�τ)

dτ +
∫ t

0
‖ϕ‖L2(�τ)

‖Bϕ‖L2(�τ)
dτ.

(54)

Proof Let Jα := ϕ2Bα . Then ∂αJα = 2ϕBϕ + (∂av
a)ϕ2. Thus, we have |∂αJα| �

|ϕ||Bϕ|+|∂∂∂ 	�|ϕ2. From this estimate, a routine application of the divergence theorem
on the spacetime region [0, t] × R

3 relative to the Cartesian coordinates that exploits
the positivity of J0 = ϕ2, and the Cauchy–Schwarz inequality along�τ, we conclude
the desired estimate (54). ��

4.3 The standard elliptic div-curl identity in L2 spaces

To control the top-order spatial derivatives of the specific vorticity and entropy, we
will rely on the following standard elliptic identity.

Lemma 4.5 (Elliptic div-curl identity in L2 spaces). For vectorfields V ∈ H1(R3;R3),
the following identity holds:

3
∑

a,b=1

‖∂a V b‖2
L2(R3)

= ‖divV ‖2
L2(R3)

+ ‖curlV ‖2
L2(R3)

. (55)
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Proof It suffices to prove the desired identity for smooth, compactly supported vec-
torfields, since these are dense in H1(R3;R3). For smooth, compactly supported
vectorfields, the desired identity follows from integrating the divergence identity
∑3

a,b=1(∂a Vb)
2 = (divV )2 + |curlV |2 + ∂a

{

V b∂bV a
} − ∂a {V adivV } over R3 with

respect to volume form of the standard Euclidean metric on R3. ��

4.4 Proof of Proposition 4.1

We first note that the estimates for the terms

‖∂2t (ρ, 	v)‖L2(�t )
,

2
∑

k=1

‖∂k
t

	
‖H2−k (�t )
,

2
∑

k=1

‖∂k
t s‖H3−k (�t )

, and ‖∂t (	C,D)‖L2(�t )

on LHS (42) follow once we have obtained the desired estimates for the remaining
terms on LHS (42). The reason is that these time-derivative-involving terms can be
bounded by � the sum of products of the other terms on LHS (42) by using the
equations of Proposition1.1 to solve for the relevant time derivatives in terms of
spatial derivatives and then using standard product estimates as well as our bootstrap
assumption that the compressible Euler solution is contained in K (i.e., (40)); we omit
these straightforward details. Thus, it suffices for us to bound the remaining terms on
LHS (42).

To proceed, we commute the equations of Proposition1.1 with up to one spa-
tial derivative, appeal to Definition1.2, consider Remark 1.3, and use the bootstrap
assumption (40), thereby deducing that for� ∈ {ρ, v1, v2, v3, s}, we have the follow-
ing pointwise estimates:

|�̂g∂
≤1�| � |∂(	C,D)| +

{

|∂∂∂ 	�| + 1
}

|∂∂∂∂ 	�| +
3
∑

P=1

|∂∂∂ 	�|P , (56)

|B∂≤1( 	
, 	S)| � |∂∂∂∂ 	�| +
{

|(∂∂∂ 	�, ∂ 	
, ∂ 	S)| + 1
}

|∂∂∂ 	�|, (57)

|∂(div
, curlS)| � |∂∂∂∂ 	�| + |∂ 	
||∂∂∂ 	�|, (58)

|∂(curl
, divS)| � |∂(	C,D)| + |(∂∂∂ 	�, ∂ 	
, ∂ 	S)| +
{

|(∂∂∂ 	�, ∂ 	
, ∂ 	S)| + 1
}

|∂∂∂ 	�|,
(59)

|B∂(	C,D)| �
{

|∂∂∂ 	�| + 1
}

|∂2( 	
, 	S)| +
{

|(∂∂∂ 	�, ∂ 	
, ∂ 	S)| + 1
}

|∂∂∂∂ 	�|

+ |∂∂∂ 	�|2|(∂ 	
, ∂ 	S)| +
3
∑

P=1

|∂∂∂ 	�|P . (60)

We clarify that in deriving (59), we used Definition1.2 to algebraically solve for curl

and divS.
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Using the estimates (56)–(60), we will derive estimates for the “controlling quan-
tity” Q2(t) defined by

Q2(t) := ‖( 	�,∂∂∂ 	�)‖2H2(�t )×H1(�t )
+ ‖∂(	C,D)‖2L2(�t )

+ ‖( 	
, 	S)‖2H1(�t )
. (61)

We will prove the following two estimates:

Q2(t) � Q2(0)

+
∫ t

0

{

‖∂∂∂ 	�‖2L∞(�τ)
+ ‖∂( 	
, 	S)‖L∞(�τ) + 1

}

Q2(τ) dτ, (62)

‖∂2( 	
, 	S)‖2L2(�t )
� Q2(t)+ Q3

2(t). (63)

Then from the bootstrap assumptions (41a)–(41b), (62), and Grönwall’s inequality,
we deduce that for t ∈ [0, T∗], we have Q2(t) � Q2(0). From this estimate, (63), and
the remarks made at the beginning the proof, we arrive at the desired estimate (42).

It remains for us to prove (62) and (63). We start with the elliptic estimates needed
to control ∂2 	
 and ∂2 	S in ‖ · ‖L2(�t )

. From (55) with ∂
 and ∂S in the role of V , (58),
and (59), we find that

‖∂2( 	
, 	S)‖2L2(�t )
� ‖∂(	C,D)‖2L2(�t )

+ ‖∂∂∂∂ 	�‖2L2(�t )

+
{

‖∂∂∂ 	�‖2L∞(�t )
+ 1

} {

‖∂( 	
, 	S)‖2L2(�t )
+ ‖∂∂∂ 	�‖2L2(�t )

}

, (64)

which, in view of definition (61), implies that

‖∂2( 	
, 	S)‖2L2(�t )
�
{

‖∂∂∂ 	�‖2L∞(�t )
+ 1

}

Q2(t). (65)

Moreover, through an argument similar to the onewe used to derive (65), based on (55),
(58), and (59), but modified in that we now use the interpolation-product estimate28

‖G1 · G2‖L2(�t )
� ‖G1‖1/2L2(�t )

‖G1‖1/2H1(�t )
‖G2‖H1(�t )

,

to derive the bound

‖|(∂∂∂ 	�, ∂ 	
, ∂ 	S)||∂∂∂ 	�|‖2L2(�t )
� ‖∂( 	
, 	S)‖L2(�t )

‖∂( 	
, 	S)‖H1(�t )
‖∂∂∂ 	�‖2H1(�t )

+ ‖∂∂∂ 	�‖4H1(�t )
,

we deduce that

‖∂2( 	
, 	S)‖2L2(�t )
� ‖∂2( 	
, 	S)‖L2(�t )

Q3/2
2 (t)+ Q2(t)+ Q2

2(t)

≤ 1

2
‖∂2( 	
, 	S)‖2L2(�t )

+ C Q2(t)+ C Q3
2(t),

28 This standard estimate can be obtained by using Hölder’s inequality, Sobolev embedding, and interpo-
lation estimates. For a more detailed proof, we refer to the proof of (79b).
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from which the desired bound (63) readily follows.
We now derive energy estimates for the evolution equations. From (52) with ∂≤1 	�

in the role of ϕ, (56), the Cauchy–Schwarz inequality along �τ, Young’s inequality,
and definition (61), we deduce (occasionally using the non-optimal bound |∂∂∂ 	�| �
|∂∂∂ 	�|2 + 1) that

‖( 	�,∂∂∂ 	�)‖2H2(�t )×H1(�t )
� Q2(0)+

∫ t

0

{

‖∂∂∂ 	�‖2L∞(�τ)
+ 1

}

Q2(τ) dτ. (66)

Using a similar argument based on (54) with ∂≤1 	
 and ∂≤1 	S in the role of ϕ and
Eq. (57), we deduce

‖( 	
, 	S)‖2H1(�t )
� Q2(0)+

∫ t

0

{

‖∂∂∂ 	�‖2L∞(�τ)
+ 1

}

Q2(τ) dτ. (67)

Using a similar argument based on (54) with ∂	C and ∂D in the role of ϕ and Eq. (60),
and using the elliptic estimate (65) to control the norm ‖ · ‖L2(�t )

of the (linear) factor

of ∂2( 	
, 	S) on RHS (60), we deduce

‖∂(	C,D)‖2L2(�t )
� Q2(0)+

∫ t

0

{

‖∂∂∂ 	�‖2L∞(�τ)
+ ‖∂( 	
, 	S)‖L∞(�τ) + 1

}

Q2(τ) dτ.

(68)

Adding (66), (67), and (68), we conclude, in view of definition (61), the desired bound
(62). ��

5 Energy and elliptic estimates along constant-time hypersurfaces up
to top-order

Our main goal in this section is to use the bootstrap assumptions to prove energy and
elliptic estimates along �t up to top-order. The main result is Proposition 5.1, which
we prove in Sect. 5.3 after providing some preliminary technical estimates.

Proposition 5.1 (Energy and elliptic estimates up to top-order). There exists a contin-
uous strictly increasing function F : [0,∞)→ [0,∞) such that under the initial data
and bootstrap assumptions of Sect.3, the following estimate holds for t ∈ [0, T∗]:

2
∑

k=0

‖∂k
t (ρ, 	v, 	
)‖H N−k (�t )

+
2
∑

k=0

‖∂k
t s‖H N+1−k (�t )

+
1
∑

k=0

‖∂k
t (

	C,D)‖H N−1−k (�t )

≤ F
(

‖(ρ, 	v, 	
)‖H N (�0)
+ ‖s‖H N+1(�0)

)

. (69)
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5.1 Equations satisfied by the frequency-projected solution variables

In proving Proposition5.1, we will derive energy and elliptic estimates for projections
of the solution variables onto dyadic frequencies ν ∈ 2N. In the next lemma, as a
preliminary step in deriving these estimates, we derive the equations satisfied by the
frequency-projected solution variables.

Lemma 5.2 (Equations satisfied by the frequency-projected solution variables). Let
ν ∈ 2N. For solutions to the equations of Proposition1.1, the following equations
hold, where g = g( 	�), � ∈ {ρ, v1, v2, v3, s}, and the terms F(�), · · · ,F(D) on
RHSs (73a)–(75) are defined in Proposition1.1:

�̂gPν� = R̂(�);ν, (70a)

�gPν� = R(�);ν, (70b)

divPν
 = R(div
);ν, (71a)

BPνCi = R(Ci );ν, (71b)

BPνD = R(D);ν, (72a)

(curlPνS)i = 0, (72b)

where the inhomogeneous terms take the following form:

R̂(�);ν = PνF(�) +
∑

(α,β) �=(0,0)

{

(g−1)αβ − P≤ν(g−1)αβ
}

Pν∂α∂β�

+
∑

(α,β) �=(0,0)

{(

P≤ν(g−1)αβ
)

Pν∂α∂β� − Pν

[

(g−1)αβ∂α∂β�
]}

, (73a)

R(�);ν = R̂(�);ν −���αPν∂α�, (73b)

���α = (g−1)αβ(g−1)γ δ∂γ gβδ − 1
2 (g

−1)αβ(g−1)γ δ∂βgγ δ = L ( 	�)[∂∂∂ 	�] are the con-

tracted Cartesian Christoffel symbols of g( 	�), and

R(div
);ν = PνF(div
), (74a)

R
(Ci );ν = PνF(Ci )

+ {

va − P≤νv
a} Pν∂aCi +

{

(P≤νv
a)Pν∂aCi − Pν[va∂aCi ]

}

,

(74b)

R(D);ν = PνF(D) +
{

va − P≤νv
a} Pν∂aD + {

(P≤νv
a)Pν∂aD − Pν[va∂aD]} .

(75)
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Moreover,

�gPν∂∂∂� = R(∂∂∂�);ν, (76a)

BPν∂∂∂Ci = R(∂∂∂Ci );ν, (76b)

BPν∂∂∂D = R(∂∂∂D);ν, (76c)

where

R(∂∂∂�);ν = Pν∂∂∂F(�) −
∑

(α,β) �=(0,0)
Pν

{(

∂∂∂(g−1)αβ
)

∂α∂β�
}

−���αPν∂α∂∂∂�

+
∑

(α,β) �=(0,0)

{

(g−1)αβ − P≤ν(g−1)αβ
}

Pν∂α∂β∂∂∂�

+
∑

(α,β) �=(0,0)

{(

P≤ν(g−1)αβ
)

Pν∂α∂β∂∂∂� − Pν

[

(g−1)αβ∂α∂β∂∂∂�
]}

,

(77a)

R(∂∂∂Ci );ν = Pν∂∂∂F(Ci ) − Pν[(∂∂∂va)∂aCi ]
+ {

va − P≤νv
a} Pν∂a∂∂∂Ci +

{

(P≤νv
a)Pν∂a∂∂∂Ci − Pν[va∂a∂∂∂Ci ]

}

,

(77b)

R(∂∂∂D);ν = Pν∂∂∂F(D) − Pν[(∂∂∂va)∂aD]
+ {

va − P≤νv
a} Pν∂a∂∂∂D + {

(P≤νv
a)Pν∂a∂∂∂D − Pν[va∂a∂∂∂D]} . (77c)

Proof The lemma follows from straightforward computations and the fact that�gϕ =
�̂gϕ −���α∂αϕ for scalar functions ϕ. We therefore omit the details. ��

5.2 Product and commutator estimates

In this subsection, we derive estimates for various norms of the inhomogeneous terms
R̂(�);ν, · · · ,R(∂∂∂D);ν on RHSs (73a)–(75). We provide the main result in Lemma 5.4.

5.2.1 Preliminary product and commutator estimates

In the next lemma, we provide some standard product and commutator estimates that
are based on the Littlewood–Paley calculus.

Lemma 5.3 (Preliminary product and commutator estimates). The following estimates
hold, where we assume that F, Gi , and ϕ are (possibly array-valued) functions on
�t , that f is a smooth function of its arguments, and that f ′ denotes the derivative of
f with respect to its arguments.
Product estimates: For any ε such that 0 < ε < 1 (in our forthcoming applications,
we will set ε := N − 2), the following product estimates hold, where the implicit
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constants are allowed to depend on ε, ‖f ◦ ϕ‖L∞(�t ), and ‖f ′ ◦ ϕ‖L∞(�t ), and the
projection operators Pν on the RHSs of the estimates are allowed to correspond to a
slightly different projection operator, localized at the same frequency, than the ones
on the LHSs:

‖�1+εF‖L2(�t )
≈ ‖�ε∂F‖L2(�t )

, (78)

‖G1 · G2‖L2(�t )
� ‖G1‖H1(�t )

‖G2‖H1(�t )
, (79a)

‖G1 · G2‖L2(�t )
� ‖G1‖1/2L2(�t )

‖G1‖1/2H1(�t )
‖G2‖H1(�t )

, (79b)

‖G1 · G2 · G3‖L2(�t )
� ‖G1‖H1(�t )

‖G2‖H1(�t )
‖G3‖H1(�t )

. (79c)

In addition, for dyadic frequencies ν ≥ 1, we have:

‖Pν(f ◦ ϕ · G)‖L∞(�t ) � ν−1/2‖∂ϕ‖L∞(�t )‖G‖H1(�t )
+ ‖PνG‖L∞(�t ). (80)

Moreover,

‖�ε(f ◦ ϕ · G)‖L2(�t )
� ‖�εG‖L2(�t )

+ ‖∂ϕ‖H1(�t )
‖G‖H ε(�t ), (81a)

‖�ε(F · G)‖L2(�t )
� ‖F‖H1/2+ε(�t )

‖G‖H1(�t )
+ ‖G‖H1/2+ε(�t )

‖F‖H1(�t )
,

(81b)

‖�ε(F · ∂G)‖L2(�t )
� ‖F‖L∞(�t )‖∂G‖H ε(�t ) + ‖G‖L∞(�t )‖∂F‖H ε(�t ),

(81c)

‖�ε(G1 · G2 · G3)‖L2(�t )
�

3
∑

j=1

‖G j‖H1+ε(�t )

∏

k �= j

‖Gk‖H1(�t )
. (81d)

Commutator estimates: The following commutator estimates hold for dyadic frequen-
cies ν ≥ 1:

‖[f ◦ ϕ − P≤ν(f ◦ ϕ)] · PνG‖L2(�t )
� ν−1‖∂ϕ‖L∞(�t )‖PνG‖L2(�t )

,

(82a)

‖Pν[f ◦ ϕ · ∂G] − P≤ν(f ◦ ϕ) · Pν∂G‖L2(�t )
� ‖∂ϕ‖L∞(�t )‖PνG‖L2(�t )

+ ‖G‖L∞(�t )‖Pν[f ′ ◦ ϕ · ∂ϕ]‖L2(�t )

+
∑

λ>ν

λ−1‖∂ϕ‖L∞(�t )‖Pλ∂G‖L2(�t )
.

(82b)
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Convolution-type estimate for dyadic-indexed sums: If {Aλ}λ∈2N is a dyadic-indexed
sequence of real numbers, then

∥

∥

∥

∥

∥

ν1+ε ∑

λ>ν

λ−1Aλ

∥

∥

∥

∥

∥

�2ν

�
∥

∥νεAν

∥

∥

�2ν
. (83)

Proof (78) is a basic result in harmonic analysis; see, e.g., [2, Chapter 2]. (81b)
is proved in [53, Lemma 17]. (81c) follows from the proof of [53, Lemma 19],
which yielded a similar estimate, differing only in the following minor fashion: the
terms ‖∂G‖H ε(�t ) and ‖∂F‖H ε(�t ) on the right-hand side were replaced, respec-
tively, with ‖G‖H1+ε(�t )

and ‖F‖H1+ε(�t )
. (81d) is proved as [53, Lemma 18]. (80)

follows from the proof of [54, Equation (8.2)] and the standard Sobolev embed-
ding estimate ‖G‖L6(�t )

� ‖G‖H1(�t )
. (79c) follows from the Hölder estimate

‖G1 · G2 · G3‖L2(�t )
≤ ‖G1‖L6(�t )

‖G2‖L6(�t )
‖G3‖L6(�t )

and the Sobolev embed-
ding estimate ‖Gi‖L6(�t )

� ‖Gi‖H1(�t )
, while (79a) follows from the Hölder

estimate ‖G1 · G2‖L2(�t )
≤ ‖G1‖L4(�t )

‖G2‖L4(�t )
and the Sobolev embedding

estimate ‖Gi‖L4(�t )
� ‖Gi‖H1(�t )

. Similarly (79b), follows from the Hölder esti-
mate ‖G1 · G2‖L2(�t )

≤ ‖G1‖L3(�t )
‖G2‖L6(�t )

, the Sobolev embedding estimate
‖G2‖L6(�t )

� ‖G2‖H1(�t )
, and the Sobolev interpolation estimate ‖G1‖L3(�t )

�
‖G1‖1/2L2(�t )

‖G1‖1/2H1(�t )
. With the help of the Sobolev embedding result ‖∂ϕ‖L6(�t )

�
‖∂ϕ‖H1(�t )

, the estimate (81a) follows from a straightforward adaptation of the proof
of [54, Equation (8.1)], which provided a similar estimate in the case 0 < ε < 1/2. The
estimates (82a) and (82b) follow from the proof of [54, Lemma 2.4]. To obtain (83),

we first observe that ν1+ε∑
λ>ν λ−1Aλ = ∑

λ>ν

(

λ
ν

)−(1+ε)
λεAλ = (˜A ∗ B)ν,

where ˜A denotes the dyadic sequence ˜Aλ := λεAλ, B denotes the dyadic sequence
Bλ := 1[1,∞)(λ)λ−(1+ε), 1[1,∞)(λ) denotes the characteristic function of the dyadic
interval [1,∞), and (˜A ∗ B)ν denotes the convolution of ˜A and B, viewed as a func-
tion of ν. Thus, from Young’s L2 ∗ L1 → L2 convolution inequality and the bound
‖Bλ‖�1λ � 1, we deduce that ‖˜A ∗ B‖�2ν � ‖˜Aν‖�2ν , which is the desired bound. ��

5.2.2 Product and commutator estimates estimates for the compressible Euler
equations

In the next lemma, we derive bounds that are sufficient for controlling the error terms
in the top-order energy-elliptic estimates of Proposition5.1 and the top-order energy
estimates along null hypersurfaces of Proposition6.1.

Lemma 5.4 (Product and commutator estimates estimates for the compressible Euler
equations) Under the bootstrap assumptions of Sect.3 and the H2(�t ) energy
estimates of Proposition4.1, for solutions to the equations of Proposition1.1, the
inhomogeneous terms from the equations of Lemma 5.2 verify the following estimates
for t ∈ [0, T∗], where the implicit constants are allowed to depend in a continuous
increasing fashion on the data norms ‖(ρ, 	v, 	
)‖H N (�0)

+ ‖s‖H N+1(�0)
.
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Frequency-summed control of the inhomogeneous terms: The following estimates

hold, where in ‖ · ‖�2νL2(�t )
, the �2ν-seminorm is taken over dyadic frequencies ν ≥ 1:

‖νN−1R̂(�);ν‖�2νL2(�t )
, ‖νN−1R(�);ν‖�2νL2(�t )

,

‖νN−2∂R̂(�);ν‖�2νL2(�t )
, ‖νN−2∂R(�);ν‖�2νL2(�t )

, ‖νN−2R(∂∂∂�);ν‖�2νL2(�t )

� ‖∂(	C,D)‖H N−2(�t )
+
{

‖∂∂∂ 	�‖L∞(�t ) + 1
}

‖∂∂∂ 	�‖H N−1(�t )
+ ‖∂∂∂ 	�‖L∞(�t ) + 1,

(84)‖νN−1R(Ci );ν‖�2νL2(�t )
, ‖νN−1R(D);ν‖�2νL2(�t )

,

‖νN−2∂R(Ci );ν‖�2νL2(�t )
, ‖νN−2∂R(D);ν‖�2νL2(�t )

,

‖νN−2R(∂∂∂Ci );ν‖�2νL2(�t )
, ‖νN−2R(∂∂∂D);ν‖�2νL2(�t )

�
{

‖∂∂∂ 	�‖L∞(�t ) + 1
}

‖∂( 	
, 	S)‖H N−1(�t )

+
{

‖∂∂∂ 	�‖L∞(�t ) + ‖∂( 	
, 	S)‖L∞(�t ) + 1
}

‖∂∂∂ 	�‖H N−1(�t )

+ ‖∂∂∂ 	�‖L∞(�t ) + 1, (85)

‖νN−1R(div
);ν‖�2νL2(�t )
, ‖νN−2∂R(div
);ν‖�2νL2(�t )

� ‖∂∂∂ 	�‖H N−1(�t )
+ 1.

(86)

Control of curl
 and divS in terms of the modified fluid variables: The following
estimates hold, where the modified fluid variables C and D are as in Definition1.2:

‖�N−1curl
‖L2(�t )
� ‖∂	C‖H N−2(�t )

+ ‖∂ 	�‖H N−1(�t )
+ 1, (87a)

‖�N−1divS‖L2(�t )
� ‖∂D‖H N−2(�t )

+ ‖∂ 	�‖H N−1(�t )
+ 1. (87b)

Proof All of these estimates are standard consequences of Lemma5.3 andwe therefore
prove only one representative estimate; we refer to [54, Lemmas 2.2, 2.3, 2.4, and 2.7]
for the proof of very similar estimates. Specifically, wewill prove (84). Throughout the
proof, we use the convention for implicit constants stated in the lemma.Wewill silently
use our bootstrap assumption that the compressible Euler solution is contained in K
(i.e., (40)). We will also silently use the estimate (78), the estimates of Proposition4.1,
and simple estimates of the type ‖ 	�‖H N (�t )

� ‖ 	�‖H2(�t )
+ ‖∂ 	�‖H N−1(�t )

� 1 +
‖∂ 	�‖H N−1(�t )

, the point being that by Proposition4.1, we have already shown that

‖ 	�‖H2(�t )
� 1 (and similarly for the variables 	
 and 	S).

In proving (84), we will show only how to obtain the desired bound for the term
‖νN−1R(�);ν‖�2νL2(�t )

; the remaining terms on LHS (84) can be bounded using
nearly identical arguments. To proceed, we start by bounding the first term PνF(�)
on RHS (73a). That is, we must bound ‖νN−1PνRHS (13)‖�2νL2(�t )

. We begin by

bounding the first product on RHS (13), which is of the form f( 	�)(	C,D). Repeatedly
using the product estimates of Lemma 5.3 and appealing to Definition1.2, we deduce
(where throughout, we allow f to vary from line to line, in particular denoting the
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derivatives of f also by f), with P a polynomial with bounded coefficients that is
allowed to vary from line to line, that

‖�N−1[f( 	�)(	C,D)]‖L2(�t )

� ‖�N−2∂[f( 	�)(	C,D)]‖L2(�t )

� ‖�N−2[f( 	�)∂(	C,D)]‖L2(�t )
+ ‖�N−2[f( 	�)∂ 	� · (	C,D)]‖L2(�t )

�
{

‖∂(	C,D)‖H N−2(�t )
+ 1

}

P
(

‖∂ 	�‖H1(�t )
, ‖(	C,D)‖H1(�t )

)

� ‖∂(	C,D)‖H N−2(�t )
+ 1 (88)

as desired. The second product on RHS (13) is of the form f( 	�) ·∂∂∂ 	� ·∂∂∂ 	�. Thus, using
the product estimates of Lemma 5.3 and the bound ‖ 	�‖H2(�t )

� 1, we deduce that

‖�N−1[f( 	�) · ∂∂∂ 	� · ∂∂∂ 	�]‖L2(�t )

� ‖�N−2∂[f( 	�) · ∂∂∂ 	� · ∂∂∂ 	�]‖L2(�t )

� ‖�N−2[f( 	�)∂∂∂ 	� · ∂∂∂∂ 	�]‖L2(�t )
+ ‖�N−2[f( 	�)∂ 	� · ∂∂∂ 	� · ∂∂∂ 	�]‖L2(�t )

� ‖f( 	�)∂∂∂ 	�‖L∞(�t )‖∂∂∂ 	�‖H N−1(�t )
+ ‖∂∂∂ 	�‖L∞(�t )‖∂[f( 	�)∂∂∂ 	�]‖H N−2(�t )

+ ‖f( 	�)∂ 	�‖H N−1(�t )
‖∂∂∂ 	�‖2H1(�t )

+ ‖∂∂∂ 	�‖H N−1(�t )
‖f( 	�)∂ 	�‖H1(�t )

‖∂∂∂ 	�‖H1(�t )

� ‖∂∂∂ 	�‖H N−1(�t )

{

‖∂∂∂ 	�‖L∞(�t ) + P
(

‖∂∂∂ 	�‖H1(�t )

)}

+
{

‖∂∂∂ 	�‖L∞(�t ) + 1
}

P
(

‖∂∂∂ 	�‖H1(�t )

)

� ‖∂∂∂ 	�‖H N−1(�t )

{

‖∂∂∂ 	�‖L∞(�t ) + 1
}

+ ‖∂∂∂ 	�‖L∞(�t ) + 1 (89)

as desired. It remains for us to bound the two sums on RHS (73a) in the norm ‖νN−1 ·
‖�2νL2(�t )

. To handle the first sum, we use (82a) with 	� in the role of ϕ and ∂∂∂∂ 	� in
the role of G to deduce

∑

(α,β) �=(0,0)
‖νN−1

{

(g−1)αβ − P≤ν(g−1)αβ
}

Pν∂α∂β�‖�2νL2(�t )

� ‖∂ 	�‖L∞(�t )‖�N−2∂∂∂∂ 	�‖L2(�t )

� ‖∂ 	�‖L∞(�t )‖∂∂∂ 	�‖H N−1(�t )
(90)

as desired. To bound the last sum on RHS (73a) in the norm ‖νN−1 · ‖�2νL2(�t )
,

we use (82b) with 	� in the role of ϕ and ∂∂∂ 	� in the role of G, the bound
‖�N−1[f( 	�) · ∂∂∂ 	�]‖L2(�t )

� ‖∂∂∂ 	�‖H N−1(�t )
+ 1 (which follows from the product

estimates of Lemma 5.3 and the bound ‖ 	�‖H2(�t )
� 1), and the convolution estimate

(83) with ‖Pλ∂∂∂∂ 	�‖L2(�t )
in the role of Aλ to deduce



Rough sound waves in 3D compressible Euler flow with vorticity Page 43 of 153 41

∑

(α,β) �=(0,0)
‖νN−1

{(

P≤ν(g−1)αβ
)

Pν∂α∂β� − Pν

[

(g−1)αβ∂α∂β�
]}

‖�2νL2(�t )

� ‖∂∂∂ 	�‖L∞(�t )‖�N−1[f( 	�) · ∂∂∂ 	�]‖L2(�t )

+ ‖∂ 	�‖L∞(�t )

∥

∥

∥νN−1
∑

λ>ν
λ−1‖Pλ∂∂∂∂ 	�‖L2(�t )

∥

∥

∥

�2ν

� ‖∂∂∂ 	�‖L∞(�t )‖∂∂∂ 	�‖H N−1(�t )
+ ‖∂∂∂ 	�‖L∞(�t ) (91)

as desired.
The remaining estimates in the lemma can be proved using similar arguments, and

weomit the details.Weclarify that i) to derive someof the estimates in their stated form,
one must use Definition 1.2 to express 	C andD in terms of the other solution variables
and ii) in order to bound the term ‖νN−2R(∂∂∂�);ν‖�2νL2(�t )

on LHS (84) and the terms

‖νN−2R(∂∂∂Ci );ν‖�2νL2(�t )
and ‖νN−2R(∂∂∂D);ν‖�2νL2(�t )

on LHS (85) using arguments
of the type given above, one must derive Sobolev estimates for products featuring the
time-derivative-involving terms ∂2t 	�, ∂t 	C, ∂tD, ∂t 	
, and ∂t 	S. These time-derivative-
involving terms can be handled by first using the equations of Proposition1.1 to solve
for the relevant time derivatives in terms of spatial derivatives and then using the
estimates of Lemma 5.3, as we did above. ��

5.3 Proof of Proposition 5.1

Throughout the proof, we rely on the remarks made in the first paragraph of the
proof of Lemma 5.4. In particular, we silently use the already proven below-top-order
estimates (42).Moreover, we use the convention that our implicit constants are allowed
to depend on functions F of the norms of the data of the type stated on RHS (69); in
particular, we consider such functions of the norms of the data to be bounded by � 1.
Finally, whenever convenient, we consider factors of t to be bounded by � 1.

We first note that, for the same reasons stated at the beginning of the proof of Propo-
sition4.1, the estimates for the terms ‖∂2t (ρ, 	v)‖H N−2(�t )

,
∑2

k=1 ‖∂k
t

	
‖H N−k (�t )
,

∑2
k=1 ‖∂k

t s‖H N+1−k (�t )
, and ‖∂t (	C,D)‖H N−2(�t )

on LHS (69) follow from straight-
forward arguments once we have obtained the desired estimates for the remaining
terms on LHS (69); we therefore omit the details for bounding these terms.

To prove the desired estimates for the remaining terms on LHS (69), we will derive
energy and elliptic estimates for the solution variables at fixed frequency, which satisfy
the equations of Lemma 5.2. After summing over dyadic frequencies, this will allow
us to obtain estimates for the “controlling quantity” QN (t) defined by

QN (t) := ‖∂∂∂ 	�‖2H N−1(�t )
+ ‖∂(	C,D)‖2H N−2(�t )

. (92)

Our assumptions on the initial data imply that QN (0) � 1, and we will use this fact
throughout the proof.
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Themain steps in deriving a bound for QN (t) are proving the following two bounds:

QN (t) � 1

+
∫ t

0

{

‖∂∂∂ 	�‖L∞(�τ) + ‖∂( 	
, 	S)‖L∞(�τ) + 1
}

QN (τ) dτ,

(93)

‖∂( 	
, 	S)‖2H N−1(�t )
� QN (t)+ 1. (94)

Then from the bootstrap assumptions (41a)–(41b), (93), and Grönwall’s inequality,
we deduce that for t ∈ [0, T∗], we have QN (t) � 1. From this estimate, (94), and
the below-top-order energy estimates (42), we conclude, in view of the remarks made
above, the desired bound (69).

It remains for us to prove (93) and (94). To prove (94), we first use the elliptic
identity (55) with Pν 	
 and Pν 	S in the role of V and equations (71a) and (72b) to
deduce, after multiplying by ν2(N−1) and summing over ν ≥ 1, that

‖�N−1∂( 	
, 	S)‖2L2(�t )
= ‖νN−1R(div
);ν‖2

�2νL2(�t )
+ ‖�N−1(curl
, divS)‖2L2(�t )

.

(95)

Using (86), (87a), and (87b), and appealing to definition (92), we find that RHS (95)
� RHS (94). Also using Proposition4.1 to deduce that ‖P≤1∂( 	
, 	S)‖2L2(�t )

� 1, we
conclude the desired estimate (94).

We now derive energy estimates for the evolution equations. To proceed, we first
use equation (70a) and (52) with Pν 	� in the role of ϕ to deduce that

‖(Pν 	�, Pν∂t 	�)‖2H1(�t )×L2(�t )
� ‖(Pν 	�, Pν∂t 	�)‖2H1(�0)×L2(�0)

+
∫ t

0
‖∂∂∂ 	�‖L∞(�τ)‖(Pν 	�, Pν∂t 	�)‖2H1(�τ)×L2(�τ)

dτ

+
4
∑

ι=0

∫ t

0
‖R̂(�ι);ν‖L2(�τ)

‖∂∂∂Pν 	�‖L2(�τ)
dτ. (96)

Multiplying (96) by ν2(N−1), summing over dyadic frequencies ν ≥ 1, using the
Cauchy–Schwarz inequality for �2ν, using (84), and using Young’s inequality, we
deduce, in view of definition (92), that

‖∂∂∂ 	�‖2H N−1(�t )
� 1 +

∫ t

0
‖∂∂∂ 	�‖L∞(�τ) dτ +

∫ t

0

{

‖∂∂∂ 	�‖L∞(�τ) + 1
}

QN (τ) dτ.

(97)
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Similarly, using Eqs. (71b), (72a), and (54) with Pν	C and PνD in the role of ϕ, we
deduce that

‖(Pν	C, PνD)‖2L2(�t )
� ‖(Pν	C, PνD)‖2L2(�0)

+
∫ t

0
‖∂∂∂ 	�‖L∞(�τ)‖(Pν	C, PνD)‖2L2(�τ)

dτ

+
3
∑

i=1

∫ t

0
‖PνCi‖L2(�τ)

‖R(Ci );ν‖L2(�τ)
dτ

+
∫ t

0
‖PνD‖L2(�τ)

‖R(D);ν‖L2(�τ)
dτ. (98)

Multiplying (98) by ν2(N−1), summing over dyadic frequencies ν ≥ 1, using
the Cauchy–Schwarz inequality for �2ν, using (85), using (94) to bound the factor
‖∂( 	
, 	S)‖H N−1(�t )

on RHS (85), and using Young’s inequality, we deduce, in view
of definition (92), that

‖∂(	C,D)‖2H N−2(�t )
� 1 +

∫ t

0
‖∂∂∂ 	�‖L∞(�τ) dτ

+
∫ t

0

{

‖∂∂∂ 	�‖L∞(�τ) + ‖∂( 	
, 	S)‖L∞(�τ) + 1
}

QN (τ) dτ.

(99)

Finally, adding (97) and (99), and controlling the second term on RHS (99) by using
the bootstrap assumption (41a) to infer that

∫ t
0 ‖∂∂∂ 	�‖L∞(�τ) dτ � 1, we conclude

(93). We have therefore proved the proposition. ��

6 Energy estimates along acoustic null hypersurfaces

Our main goal in this section is to derive energy estimates for the fluid variables along
acoustic null hypersurfaces (which we sometimes refer to as “g-null hypersurfaces”
to clarify their tie to the acoustical metric, or simply “null hypersurfaces” for short).
We will use these estimates in Sect. 10, when we derive quantitative control of the
acoustic geometry (for example, in the proof of Proposition10.4). Compared to prior
works, the main contribution of the present section is the estimate (102), which shows
that the modified fluid variables (	C,D) can be controlled in L2 up to top-order along
acoustic null hypersurfaces; as we described in point I of Sect. 1.2, such control along
acoustic null hypersurfaces is not available for generic top-order derivatives of the
vorticity and entropy.
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6.1 Geometric ingredients

We assume that in some subset of [0, T∗]×R
3 equal to the closure of an open set,U is

an acoustical eikonal function. More precisely, we assume that U is a solution to the
eikonal equation (g−1)αβ∂αU∂βU = 0 such that ∂tU > 0 and such that U is smooth
and non-degenerate (i.e. |∂∂∂U | �= 0) away from the integral curve of B emanating from
a point z ∈ �T for some T ∈ [0, T∗]; see Sects. 9.4 and 9.4.1 for discussion of our
choice of z and the integral curve.

In Sect. 9, we will construct a related eikonal function, one that is equivalent to
the eikonal functions considered here, differing only in that we work with rescaled
solution variables starting in Sect. 9 (see Sect. 9.1 for their definition). We let l :=

−1
(g−1)αβ∂αU∂β t

> 0 denote the null lapse,29 and we define V α := −l(g−1)αβ∂βU .

Thus, g(V , V ) = 0 and V t = 1. We assume that the hypersurface N is equal to
some portion of a level set of U . Note that V is normal to N and thus N is a g-null
hypersurface. We define the two-dimensional spacelike surfaces St := �t ∩N. We let
g/ denote the Riemannianmetric induced by g onSt , we let∇/ denote the corresponding
Levi-Civita connection, and we let d�g/ denote the volume form on St induced by g/.

We now define acoustic null fluxes along N.

Definition 6.1 (Acoustic null fluxes). For scalar functionsϕ definedonN,wedefine the
acoustic null fluxes F(Wave)[ϕ;N] and F(T ransport)[ϕ;N] as follows, where relative
to arbitrary coordinates on St , |∇/ ϕ|2g/ := (g/−1)AB∇/Aϕ∇/Bϕ:

F(Wave)[ϕ;N] :=
∫

N

{

(Vϕ)2 + |∇/ ϕ|2g/
}

d�g/dt, F(T ransport)[ϕ;N] :=
∫

N
ϕ2 d�g/dt .

(100)

6.2 Energy estimates along acoustic null hypersurfaces

In this subsection, we establish the main energy estimate for the fluid solution vari-
ables along null hypersurfaces. As we mentioned at the start of Sect. 6, the main new
ingredient of interest is (102), whose proof relies on the special structure of the equa-
tions of Proposition1.1. In Sect. 10, we will apply Proposition6.1 along a family of
null hypersurfaces that are equal to the level sets of an acoustical eikonal function that
we construct in Sect. 9.4 (we denote the acoustical eikonal function by “u” starting in
Sect. 9).

Proposition 6.1 (Energy estimates along acoustic null hypersurfaces). Let N be any
of the null hypersurface portions from Sect.6.1. Assume that for some pair of times
0 ≤ tI < tF ≤ T∗,N and some subsets of�tI and�tF collectively form the boundary a
compact subset of [0, T∗]×R

3. Then under the initial data and bootstrap assumptions
of Sect.3 and the conclusions of Proposition5.1, the following estimates hold for

29 We use the symbol “b” to denote the null lapse of the eikonal function constructed in Sect. 9. Moreover,
starting in Sect. 9, we use the symbol “L” to denote the analog of the vectorfield denoted by “V ” in the
present subsection.
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� ∈ {ρ, v1, v2, v3, s}:

F(Wave)[∂∂∂�;N] +
∑

ν>1

ν2(N−2)
F(Wave)[Pν∂∂∂�;N] � 1. (101)

Moreover,

F(T ransport)[∂∂∂(	C,D);N] +
∑

ν>1

ν2(N−2)
F(T ransport)[Pν∂∂∂(	C,D);N] � 1. (102)

Proof We first prove (102) for ∂∂∂Ci . We set Jα := |∂∂∂Ci |2Bα and compute, relative to
the Cartesian coordinates, thatDαJα = 2(∂∂∂Ci ) ·B∂∂∂Ci + (∂av

a)|∂∂∂Ci |2+��� αα βBβ |∂∂∂Ci |2,
where ��� γα β = 1

2 (g
−1)γ σ

{

∂αgσβ + ∂βgασ − ∂σgαβ
}

are the Cartesian Christoffel
symbols of g. From the constructions carried out Sect. 6.1, we find that g(B, V ) =
−V t = −1 and thus g(J, V ) = −|∂∂∂Ci |2. Note also that since g(B,B) = −1, we have
g(J,B) = −|∂∂∂Ci |2. We now apply the divergence theorem (where the Riemannian
volume forms are induced by g) using the vectorfield Jα on the compact spacetime
region bounded by �tI , �tF , and N. Considering also the fact that ��� αα β = f( 	�)∂∂∂ 	�,

we arrive at the following inequality for ∂∂∂Ci :

∫

N
|∂∂∂Ci |2 d�g/dt = −

∫

N
g(J, V ) d�g/dt

�
∫

�tI

|g(J,B)| d�g +
∫

�tF

|g(J,B)| d�g

+
∫ tF

tI

∫

�τ

|∂∂∂Ci ||B∂∂∂Ci | d�g dτ +
∫ tF

tI

∫

�τ

‖∂∂∂ 	�‖L∞(�τ)|∂∂∂Ci |2 d�g dτ,

(103)

where d�g is the volume form induced on constant-time hypersurfaces by their
first fundamental form g. Here we clarify that the normalization condition V t = 1
has the following virtue: it guarantees that the volume element on N appearing in
the divergence theorem is precisely d�g/dt . From the energy estimates of Proposi-
tion5.1, we deduce that the two integrals

∫

�tI
· · · and

∫

�tF
· · · on RHS (103) are

� 1. Next, commuting the evolution equation (15b) with ∂∂∂ , using the resulting expres-
sion to substitute for the factor B∂∂∂Ci on RHS (103), using the bootstrap assumptions
and the energy estimates of Proposition5.1, and using the Cauchy–Schwarz and
Young’s inequalities, we deduce that the two integrals

∫

�τ
· · · on RHS (103) are

� 1+‖∂∂∂ 	�‖2L∞(�τ)
+‖∂( 	
, 	S)‖2L∞(�τ)

. Also using the bootstrap assumptions (41a)–
(41b), we see that RHS (103)� 1, which, in view of definition (100), yields the desired
bound F(T ransport)[∂∂∂	C;N] � 1.

To obtain the desired bound for the sum on LHS (102) involving the terms Pν∂∂∂C,
we repeat the above argument with Pν∂∂∂Ci in the role of ∂∂∂Ci . Considering also the
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evolution equation (76b), we obtain the following bound:

F(T ransport)[Pν∂∂∂Ci ;N]
�
∫

�tI

|Pν∂∂∂Ci |2 d�g +
∫

�tF

|Pν∂∂∂Ci |2 d�g

+
∫ tF

tI

∫

�τ

|Pν∂∂∂Ci ||R(∂∂∂Ci );ν| d�g dτ +
∫ tF

tI

∫

�τ

‖∂∂∂ 	�‖L∞(�τ)|Pν∂∂∂Ci |2 d�g dτ.

(104)

Multiplying (104) by ν2(N−2), summing over ν > 1, using the estimate (85) and
the Cauchy–Schwarz inequality for L2(�τ) and �2ν, and using the energy esti-
mates of Proposition5.1 and the bootstrap assumptions (41a)–(41b), we conclude
that RHS (104) � 1 as desired.

The estimate (102) for the terms involving D can be obtained in a similar fashion
with the help of the evolution equations (16a) and (76c), and we omit the details.

The estimate (101) can be obtained using similar arguments, with a few minor
adjustments that we now describe. To bound the first term on LHS (101), we apply
the divergence theorem with the vectorfield (B)Jα[∂∂∂�] defined by (46). The integrand
appearing on the analog of LHS (103) is g((B)J, V ), which through standard argu-
ments (for example, using a null frame as in Sect. 9.6.2) can be shown to be equal

to 1
2

{

|V∂∂∂�|2 + |∇/∂∂∂�|2g/
}

, that is, equal to the integrand in the definition (100) of

F(Wave)[∂∂∂�;N] (aside from the factor of 1/2). The spacetime error integrals appear-
ing on the analog of RHS (103) have integrands equal to RHS (48) (with B in the
role of X), where one commutes the wave equation (13) with ∂∂∂ to obtain algebraic
expressions for �g∂∂∂�. One can then argue as we did above to show that the error
integrals are � 1 as desired. To bound the sum on LHS (101), we can use a similar
argument based on the wave equation (76a) and the estimate (84). ��

7 Strichartz estimates for the wave equation and control of Hölder
norms of the wave variables

The main results of this section are Theorem 7.1, which yields a strict improvement
of the Strichartz-type bootstrap assumption (41a) for the wave variables, and Corol-
lary 7.1. Our proof of Theorem 7.1 relies on a frequency-localized Strichartz estimate
provided by Theorem 7.2. We outline the proof of Theorem 7.2 in Sect. 11; given
the estimates for the acoustic geometry that we derive in Sect. 10, the proof of The-
orem 7.2 is essentially the same as the proof of an analogous frequency-localized
Strichartz estimate featured in [54].

Remark 7.1 (Reminder concerning the various parameters). Our analysis in this sec-
tion extensively refers to the collection of parameters from Sect. 3.3.
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7.1 Statement of Theorem 7.1 and proof of Corollary 7.1

We now provide the main results of Sect. 7, starting with Theorem 7.1. The proof of
the theorem is located in Sect. 7.4.

Theorem 7.1 (Improvement of the Strichartz-type bootstrap assumption for the wave
variables). If δ > 0 is sufficiently small, then under the initial data and boot-
strap assumptions of Sect.3, the following estimate for the wave variables 	� =
(ρ, v1, v2, v3, s) holds, where δ1 is defined by (35e):

‖∂∂∂ 	�‖2L2([0,T∗])L∞
x

+
∑

ν≥2

ν2δ1‖Pν∂∂∂ 	�‖2L2([0,T∗])L∞
x

� T 2δ∗ . (105)

The second main result of this section is the following corollary, which is a simple
consequence of Theorem 7.1. It plays a fundamental role in Sect. 8, when we derive
Schauder estimates for 
 and S.

Corollary 7.1 (Strichartz-type estimate with a Hölder spatial norm for the wave vari-
ables). Under the assumptions and conclusions of Theorem 7.1, the following estimate
holds for the wave variable array 	� = (ρ, v1, v2, v3, s):

‖∂∂∂ 	�‖2
L2([0,T∗])C0,δ1

x
+
∑

ν≥2

‖Pν∂∂∂ 	�‖2
L2([0,T∗])C0,δ1

x
� T 2δ∗ . (106)

Proof (Discussion of proof) Given Theorem 7.1, Corollary7.1 follows from standard
results in harmonic analysis; see, for example, [48, Equation (A.1.5)] and the discus-
sion surrounding it. ��

7.2 Partitioning of the bootstrap time interval

In proving Theorem 7.1, we will follow the strategy of [54] by constructing an appro-
priate partition of the bootstrap time interval [0, T∗]. The partition refers to a parameter
�0, where in the rest of the paper, �0 � 1 denotes a dyadic frequency that is chosen
to be sufficiently large (we adjust the largeness of�0 as needed throughout the course
of the analysis). In view of the bootstrap assumptions (41a)–(41b), it is straightfor-
ward to see that for λ ≥ �0, we can partition [0, T∗] into intervals [tk, tk+1] of length
|tk+1 − tk | ≤ λ−8ε0T∗ such that the total number of intervals is ≈ λ8ε0 and such that

‖∂∂∂ 	�‖2L2([tk ,tk+1])L∞
x

+
∑

ν≥2

ν2δ0‖Pν∂∂∂ 	�‖2L2([tk ,tk+1])L∞
x

≤ λ−8ε0 ,

(107a)

‖(∂ 	
, ∂ 	S)‖2L2([tk ,tk+1])L∞
x

+
∑

ν≥2

ν2δ0‖(Pν∂ 	
, Pν∂ 	S)‖2L2([tk ,tk+1])L∞
x

≤ λ−8ε0 .

(107b)
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We refer readers to [18, Remark 1.3] for more details on the construction of a partition
of [0, T∗] such that (107a)–(107b) hold.

7.3 Frequency-localized Strichartz estimate

The main step in the proof of Theorem 7.1 is proving a frequency-localized version,
specifically Theorem 7.2; see Sect. 11 for an outline of its proof, which relies on
estimates for the acoustic geometry that we derive in Sect. 10.

Theorem 7.2 (Frequency-localized Strichartz estimate). Fix λ ≥ �0, and let ϕ be a
solution to the following covariant linear wave equation on the slab [tk, tk+1] × R

3,
where {[tk, tk+1]}k=1,··· denotes the finite collection of time intervals constructed in
Sect.7.2:

�g( 	�)ϕ = 0. (108)

Under the initial data and bootstrap assumptions of Sect.3, if�0 is sufficiently large,
then for any q > 2 sufficiently close to 2 and any τ ∈ [tk, tk+1], we have the following
estimate:

‖Pλ∂∂∂ϕ‖Lq ([τ,tk+1])L∞
x

� λ
3
2− 1

q ‖∂∂∂ϕ‖L2(�τ)
. (109)

7.4 Proof of Theorem 7.1 given Theorem 7.2

In this proof, we often suppress the x-dependence of functions, andwe use the remarks
made in the first paragraph of Sect. 5.3. Let W (t, τ)[ f , f0] be the solution at time t
to the covariant linear wave equation �g( 	�) (W (t, τ)[ f , f0]) = 0 whose data at time
τ are W (τ, τ)[ f , f0] := f and ∂t W (τ, τ)[ f , f0] := f0. We assume that λ ≥ �0, as
in Theorem 7.2. Let ˜Pλ := ∑

1/2≤ μ
λ ≤2 Pμ, so that in particular, Pλ = ˜Pλ Pλ. Then

from Eq. (70b) and Duhamel’s principle, for � ∈ {ρ, v1, v2, v3, s} and t ∈ [tk, tk+1],
we have

Pλ�(t) = W (t, tk)[Pλ�(tk), Pλ∂t�(tk)] +
∫ t

tk
W (t, τ)[0,R(�);λ(τ)] dτ. (110)

Differentiating (110) with ∂∂∂ and applying ˜Pλ, and letting 1[tk ,t](·) denote the charac-
teristic function of the interval [tk, t], we find that

Pλ∂∂∂�(t) = ˜Pλ {∂∂∂W (t, tk)[Pλ�(tk), Pλ∂t�(tk)]}
+
∫ tk+1

tk
1[tk ,t](τ)˜Pλ∂∂∂W (t, τ)[0,R(�);λ(τ)] dτ

:= Iλ(t)+ I Iλ(t). (111)

We now recall that δ = 1
2− 1

q > 0 (see (35d)), where q > 2 is any number for which

Theorem 7.2 holds. Then from (109) with ˜Pλ in the role of Pλ, Hölder’s inequality,
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the covariant wave equation (70b) satisfied by Pλ�, and the energy estimate (44), we
find that

‖Iλ‖L2([tk ,tk+1])L∞
x

� |tk+1 − tk |δ‖Iλ‖Lq ([tk ,tk+1])L∞
x

� |tk+1 − tk |δλ
3
2− 1

q ‖∂∂∂Pλ�‖L2(�tk )

� |tk+1 − tk |δλ1+δ
{

‖∂∂∂Pλ�‖L2(�0)
+ ‖R(�);λ‖L1([0,T∗])L2

x

}

.

(112)

Similarly, using (109) (again with ˜Pλ in the role of Pλ) andMinkowski’s inequality
for integrals, we find that

‖I Iλ‖L2([tk ,tk+1])L∞
x

�
∫ tk+1

tk
‖1[tk ,t](τ)Pλ∂∂∂W (t, τ)[0,R(�);λ(τ)]‖L2

t ([τ,tk+1])L∞
x

dτ

�
∫ tk+1

tk
|tk+1 − τ|δ‖Pλ∂∂∂W (t, τ)[0,R(�);λ(τ)]‖Lq

t ([τ,tk+1])L∞
x

dτ

� |tk+1 − tk |δλ1+δ‖R(�);λ‖L1([tk ,tk+1])L2
x
. (113)

Using (111), (112), and (113), and recalling that |tk+1 − tk | � λ−8ε0T∗, we find that

‖Pλ∂∂∂�‖L2([tk ,tk+1])L∞
x

� λ1+δ(1−8ε0)T δ∗
{

‖∂∂∂Pλ�‖L2(�0)
+ ‖R(�);λ‖L1([0,T∗])L2

x

}

.

(114)

Next, we square (114), sum over all intervals [tk, tk+1], recall that there are � λ8ε0

such intervals, and multiply the resulting inequality by λ2δ1 (where δ1 > 0 is defined
in (35e)), thereby obtaining:

λ2δ1‖Pλ∂∂∂�‖2L2([0,T∗])L∞
x

� λ2δ1λ8ε0λ2+2δ(1−8ε0)T 2δ∗
{

‖∂∂∂Pλ�‖2L2(�0)
+ ‖R(�);λ‖2L1([0,T∗])L2

x

}

� T 2δ∗
{

‖λN−1∂∂∂Pλ�‖2L2(�0)
+ ‖λN−1R(�);λ‖2L1([0,T∗])L2

x

}

. (115)

We now sum (115) over dyadic frequencies λ ≥ �0 and use the Hölder-in-time
estimate

‖λN−1R(�);λ‖2L1([0,T∗])L2
x

� T∗‖λN−1R(�);λ‖2L2([0,T∗])L2
x

to deduce that

∑

ν≥�0

ν2δ1‖Pν∂∂∂�‖2L2([0,T∗])L∞
x

� T 2δ∗
{

‖(�, ∂t�)‖2H N (�0)×H N−1(�0)
+ T∗‖νN−1R(�);ν‖2L2([0,T∗])�2νL2

x

}

. (116)
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Using the estimate (84), the Strichartz-type bootstrap assumption (41a), and the top-
order energy estimate (69), we deduce that ‖νN−1R(�);ν‖2

L2([0,T∗])�2νL2
x

� 1. Inserting

this estimate and the trivial bound ‖(�, ∂t�)‖2H N (�0)×H N−1(�0)
� 1 into RHS (116),

we find that

∑

ν≥�0

ν2δ1‖Pν∂∂∂�‖2L2([0,T∗])L∞
x

� T 2δ∗ . (117)

Next, we note that Sobolev embedding and the energy estimate (69) yield that
‖P≤�0∂∂∂�‖L∞

x (�t ) � ‖P≤�0∂∂∂�‖H2(�t )
� ‖∂∂∂�‖L2(�t )

� 1 (where the implicit con-
stants are allowed to depend on �0) and thus

‖P≤�0∂∂∂�‖2L2([0,T∗])L∞
x

� T∗ � T 2δ∗ . (118)

We are now ready to bound the term ‖∂∂∂ 	�‖2
L2([0,T∗])L∞

x
on LHS (105). To pro-

ceed, we use the triangle inequality, the Cauchy–Schwarz inequality, and the fact that
∑

ν≥�0
ν−2δ1 <∞ to deduce that

‖∂∂∂�‖L∞(�t ) � ‖P≤�0∂∂∂�‖L∞(�t ) +
∑

ν≥�0

ν−δ1‖νδ1 Pν∂∂∂�‖L∞(�t )

� ‖P≤�0∂∂∂�‖L∞(�t ) +
√

∑

ν≥�0

ν2δ1‖Pν∂∂∂�‖2L∞(�t )
. (119)

Squaring (119), integrating the resulting inequality over the interval [0, T∗], and using
(117) and (118), we conclude the desired bound for the term ‖∂∂∂ 	�‖2

L2([0,T∗])L∞
x

on

LHS (105). From this bound, (117), and the basic inequality ‖Pν∂∂∂�‖L∞(�t ) �
‖∂∂∂�‖L∞(�t ), the desired bound for the sum on LHS (105) readily follows. This com-
pletes the proof of Theorem 7.1. ��

8 Schauder-transport estimates in Hölder spaces for the first
derivatives of the specific vorticity and the second derivatives of
the entropy

Our main goal in this section is to derive improvements of the mixed spacetime norm
bootstrap assumptions (41b) for ∂ 	
 and ∂ 	S. The main result is Theorem 8.1. We
also derive a strict improvement of the bootstrap assumption (40). Before proving the
theorem, we first derive two fundamentally important precursor results: (i) Schauder
estimates for div-curl systems; (ii) Estimates that yield control of the characteristics of
the transport operator B (i.e., over the integral curves of B); and (ii)’ With the help of
(ii), we derive a priori estimates in Hölder spaces for solutions ϕ to transport equations
Bϕ = F with F ∈ L1

t C0,δ1
x (see Lemma 8.4). Thanks to these three preliminary

ingredients, Theorem 8.1 will follow from a Grönwall inequality estimate.
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8.1 Statement of Theorem 8.1 and proof of an improvement of the basic L∞-type
bootstrap assumption

We now state the main theorem of this section. Its proof is located in Sect. 8.5.

Theorem 8.1 (Lebesgue-Hölder norm estimates for the specific vorticity and entropy
gradient and improvements of the bootstrap assumptions). Under the initial data and
bootstrap assumptions of Sect.3, the following estimates hold:

‖(	C,D)‖
L∞([0,T∗])C0,δ1

x
� 1, (120)

‖∂( 	
, 	S)‖2
L2([0,T∗])C0,δ1

x
� T 2δ∗ . (121)

Moreover,
∑

ν≥1

νδ1‖Pν∂( 	
, 	S)‖2L2([0,T∗])L∞
x

� T 2δ∗ . (122)

Before initiating the proof of Theorem 8.1, we first use it as an ingredient in deriving
a strict improvement of the bootstrap assumption (40).

Corollary 8.1 (Improvement of the basic L∞-type bootstrap assumption). Let K be
the compact set appearing in the bootstrap assumption (40). Under the initial data
and bootstrap assumptions of Sect.3, the following containment holds whenever T∗ is
sufficiently small:

(ρ, s, 	v, 	
, 	S)([0, T∗] × R
3) ⊂ intK. (123)

Proof Let 	ϕ denote the following array of scalar functions: 	ϕ := (ρ, s, 	v, 	
, 	S). Using
(14) and the bootstrap assumption (40), we deduce that |∂t 	ϕ| � |∂∂∂ 	�|+|∂ 	
|+|∂ 	S|+1.
Hence, from the fundamental theorem of calculus, the estimates (105) and (121), and
theCauchy–Schwarz inequalitywith respect to t ,wededuce that the following estimate
holds for t ∈ [0, T∗]: | 	ϕ(t, x) − 	ϕ(0, x)| � ‖∂∂∂ 	�‖L1([0,t])L∞

x
+ ‖∂ 	
‖L1([0,t])L∞

x
+

‖∂ 	S‖L1([0,t])L∞
x

+t � T 1/2+δ∗ . It follows thatwe canguarantee that 	ϕ(t, x) is arbitrarily
close to 	ϕ(0, x) by choosing T∗ to be sufficiently small. From this fact and (39), we
conclude (123). ��

8.2 Schauder estimates for div-curl systems

In the next lemma, we provide a standard Schauder estimate for div-curl systems on
Euclidean space R3.

Lemma 8.2 (Schauder estimates for div-curl systems). Let V be a vectorfield on R
3

such that V ∈ C2(R3) ∩ H2(R3), and let δ1 > 0 be the parameter from (35e). Then
the following estimate holds:30

30 Our proof of the estimate (124) goes through for δ1 ∈ (0, 1/2), but in practice, we need the estimate
only for the value of δ1 specified in (35e).
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‖∂V ‖C0,δ1 (R3) � ‖divV ‖C0,δ1 (R3) + ‖curlV ‖C0,δ1 (R3) + ‖V ‖H2(R3). (124)

Proof Let z ∈ R
3 and let B2(z) be the ball of Euclidean radius 2 centered at z. As a

first step, we will show that if W ∈ C2(R3) ∩ H2(R3) is a vectorfield on R
3 that is

supported in B2(z), then we have (with implicit constants that are independent of z):

‖∂W‖C0,δ1 (B2(z))
� ‖divW‖C0,δ1 (B2(z))

+ ‖curlW‖C0,δ1 (B2(z))
. (125)

To prove (125), we let�(x) := −1
4π |x | denote the fundamental solution of the Euclidean

Laplacian onR3. The standardHelmholtz decomposition yields the following identity,
where εi jk is the fully antisymmetric symbol normalized by ε123 = 1:

W j = divW ∗ δ jc∂c�− ε jcdδca(curlW )
a ∗ ∂d�. (126)

The desired estimate (125) now follows from standard estimates for the first derivatives
of the convolutions on RHS (126); see, for example, the proofs of [14, Lemma 4.2]
and [14, Lemma 4.4].

To prove (124), let B1(z) ⊂ R
3 be the Euclidean ball with radius 1 centered at z. Let

χ ≥ 0 be aC∞ spherically symmetric cut-off function onR3 withχ(x) = 1 for |x | ≤ 1
and χ(x) = 0 for |x | ≥ 2, and let χz(x) := χ(x − z). It follows that χz(x) = 1 for
x ∈ B1(z) and thus ‖∂V ‖C0,δ1 (B1(z))

= ‖∂(χz V )‖C0,δ1 (B1(z))
≤ ‖∂(χz V )‖C0,δ1 (B2(z))

.
From this estimate, (125) with χz V in the role of W (this estimate is valid since
χz V is compactly supported in B2(z)), the standard estimate ‖F · G‖C0,δ1 (B2(z))

≤
2‖F‖C0,δ1 (B2(z))

‖G‖C0,δ1 (B2(z))
, and the simple estimates (which are uniform in z)

‖χz‖C0,δ1 (B1(z))
≤ ‖χ‖C0,δ1 (R3) � 1 and ‖∂χz‖C0,δ1 (B1(z))

≤ ‖∂χ‖C0,δ1 (R3) � 1, we
obtain

‖∂V ‖C0,δ1 (B1(z))
� ‖div(χz V )‖C0,δ1 (B2(z))

+ ‖curl(χz V )‖C0,δ1 (B2(z))

� ‖divV ‖C0,δ1 (B2(z))
+ ‖curlV ‖C0,δ1 (B2(z))

+ ‖V ‖C0,δ1 (B2(z))
.

(127)

From (127) and the Sobolev embedding result H2(R3) ↪→ C0,δ1(R3) (which is
valid since δ1 < 1/2), we deduce that

sup
x,y∈B1(z),0<|x−y|

|∂V (x)− ∂V (y)|
|x − y|δ1

� ‖divV ‖C0,δ1 (R3)
+ ‖curlV ‖C0,δ1 (R3)

+ ‖V ‖H2(R3)
.

(128)

Moreover, since ‖∂V ‖L2(B1(z)) ≤ ‖V ‖H1(R3) and since B1(z) has Euclidean volume
greater than 1, there must be a point p ∈ B1(z) such that |∂V (p)| ≤ ‖V ‖H1(R3). From
this simple fact and (128), we conclude that

sup
x∈B1(z)

|∂V (x)| � ‖divV ‖C0,δ1 (R3) + ‖curlV ‖C0,δ1 (R3) + ‖V ‖H2(R3). (129)
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Since z is arbitrary in (129), we conclude that

‖∂V ‖L∞(R3) � ‖divV ‖C0,δ1 (R3) + ‖curlV ‖C0,δ1 (R3) + ‖V ‖H2(R3). (130)

From (130), it easily follows that

sup
|x−y|≥1

|∂V (x)− ∂V (y)|
|x − y|δ1

≤ 2‖∂V ‖L∞(R3)

� ‖divV ‖C0,δ1 (R3) + ‖curlV ‖C0,δ1 (R3) + ‖V ‖H2(R3).

(131)

Next, if 0 < |x − y| ≤ 1, then y ∈ B1(x), which, in view of (127) with x in the role
of z and the Sobolev embedding result H2(R3) ↪→ C0,δ1(R3), implies that

sup
0<|x−y|≤1

|∂V (x)− ∂V (y)|
|x − y|δ1

� ‖divV ‖C0,δ1 (R3) + ‖curlV ‖C0,δ1 (R3) + ‖V ‖H2(R3).

(132)

Finally, in view of definition (32), we see that the desired estimate (124) follows from
(130), (131), and (132). ��

8.3 Estimates for the flowmap of thematerial derivative vectorfield

Our proof of Theorem 8.1 is through a Grönwall inequality estimate that relies on
having sufficient control of the flow map of the material derivative vectorfield B. In
the next lemma, we derive the estimates for the flow map.

Lemma 8.3 (Estimates for the flow map of the material derivative vectorfield). Let
γ : [0, T∗] × R

3 → [0, T∗] × R
3 be the flow map of B, that is, the solution to

the following transport initial value problem for the Cartesian component functions
γα(t; x):

d

dt
γα(t; x) = Bα ◦ γ(t; x), (133a)

γ0(0; x) = 0,γi (0; x) = xi . (133b)

Then under the bootstrap assumptions, for every fixed x ∈ R
3, there exists a unique

solution t → γ(t; x) to the system (133a)–(133b). Moreover, γ is a smooth function
of t and x. In addition, there exists a constant C > 0 such that for t ∈ [0, T∗] and all
x, y ∈ R

3, we have
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γ0(t; x) = t, (134a)

|γi (t; x)− xi | ≤ C, (134b)
3
∑

i=1

|γi (t; x)− γi (t; y)| ≈ |x − y|. (134c)

In particular, for each fixed t ∈ [0, T∗], the map x → (

γ1(t, x),γ2(t, x),γ3(t, x)
)

is
a smooth global diffeomorphism from R

3 to R
3.

Proof The identity (134a) follows easily from considering the 0 component of (133a)–
(133b).

Since the components Bα are smooth on [0, T∗] × R
3 and satisfy31 supt∈[0,T∗]

‖∂≤1Bα‖L∞(�t ) < ∞, the existence and uniqueness of solutions γ(t; x) to (133a)–
(133b) that depend smoothly on t and x is a standard result from ODE theory, as is the
fact that themap x → (

γ1(t, x),γ2(t, x),γ3(t, x)
)

is a smooth global diffeomorphism
from R

3 to R3 for each fixed t ∈ [0, T∗].
Next, we use the fundamental theorem of calculus and the fact that Bi = vi (see

(2)) to deduce

γi (t; x)− γi (t; y) = xi − yi +
∫ t

0

{

vi ◦ γ(τ; x)− vi ◦ γ(τ; y)
}

dτ. (135)

Let γ(t, x) := (

γ1(t, x),γ2(t, x),γ3(t, x)
)

. Since ∂v and γ are smooth, we deduce
from (135) and the mean value theorem that

|
(

γ(t; x)− γ(t; y)
)

− (x − y)| ≤ C
∫ t

0
‖∂ 	v‖L∞(�τ)|γ(τ; x)− γ(τ; y)| dτ.

(136)

From (136) and Grönwall’s inequality (more precisely, a straightforward extension of
the standard Grönwall inequality to yield upper and lower bounds), we deduce that

exp

(

−C
∫ t

0
‖∂ 	v‖L∞(�τ) dτ

)

≤ |γ(t; x)− γ(t; y)|
|x − y| ≤ exp

(

C
∫ t

0
‖∂ 	v‖L∞(�τ) dτ

)

.

(137)

From (137) and the bootstrap assumption (41a), we conclude the desired bounds
(134c).

The estimate (134b) follows from a similar argument based on the simple bound
‖	v‖L1([0,T∗])L∞

x
� 1; we omit the details. ��

31 Here, we are only using the qualitative finiteness property supt∈[0,T∗] ‖∂Bα‖L∞(�t ) <∞ to guarantee
the existence and uniqueness of the solution to (133a)–(133b). In contrast, the constants in (134a)–(134c)
are controlled by the bootstrap assumptions, such as (41a).
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8.4 Estimates for transport equations in Hölder spaces

With the help of Lemma 8.3, we now derive estimates for transport equations with
Hölder-class initial data and source terms.

Lemma 8.4 (Estimates for transport equations in Hölder spaces). Let F be a smooth
function on [0, T∗] × R

3 and let ϕ̊ be a smooth function on R
3. Let ϕ be a smooth

solution to the following inhomogeneous transport equation initial value problem:

Bα∂αϕ = F, (138a)

ϕ|�0 = ϕ̊. (138b)

Then the following estimate holds for t ∈ [0, T∗], where δ1 > 0 is the parameter from
(35e):

‖ϕ‖C0,δ1 (�t )
� ‖ϕ̊‖C0,δ1 (�0)

+
∫ t

0
‖F‖C0,δ1 (�τ)

dτ. (139)

Proof Let γ(t; x) be the flow map of B, as in Lemma 8.3. Then equation (138a) can
be rewritten as d

dt (ϕ ◦ γ(t; x)) = F. Integrating in time and using (133b), we find that

ϕ ◦ γ(t; x)− ϕ ◦ γ(t; y) = ϕ̊(x)− ϕ̊(y)+
∫ t

0
{F(τ, x)− F(τ, y)} dτ, (140)

from which it easily follows that

|ϕ ◦ γ(t; x)− ϕ ◦ γ(t; y)| ≤ ‖ϕ̊‖
C
0,δ1
x

|x − y|δ1 + |x − y|δ1

∫ t

0
‖F‖C0,δ1 (�τ)

dτ.

(141)

From (134c) and (141), we deduce that

|ϕ ◦ γ(t; x)− ϕ ◦ γ(t; y)| � ‖ϕ̊‖
C
0,δ1
x

|γ(t; x)− γ(t; y)|δ1

+ |γ(t; x)− γ(t; y)|δ1

∫ t

0
‖F‖C0,δ1 (�τ)

dτ. (142)

Since Lemma 8.3 guarantees that the map x → (

γ1(t, x),γ2(t, x),γ3(t, x)
)

is a
smooth global diffeomorphism from R

3 to R3 for each fixed t ∈ [0, T∗], we conclude
from (142) that

sup
0<|x−y|

|ϕ(t, x)− ϕ(t, y)|
|x − y|δ1

≤ ‖ϕ̊‖
C
0,δ1
x

+ ‖F‖
L1([0,t])C0,δ1

x
. (143)
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Using a similar but simpler argument, based on the fundamental theorem of calculus,
we find that

‖ϕ‖L∞(�t ) � ‖ϕ̊‖L∞(�0) + ‖F‖L1([0,t])L∞
x

which, in view of definition (32) and (143), yields (139). ��

8.5 Proof of Theorem 8.1

From Eqs. (15a)–(16b), the bootstrap assumption (40), the energy-elliptic estimate
(69), the standard estimates

‖F · G‖C0,δ1 (�t )
� ‖F‖C0,δ1 (�t )

‖G‖C0,δ1 (�t )
and

‖[f ◦ 	ϕ] · G‖C0,δ1 (�t )
� ‖	ϕ‖C0,δ1 (�t )

‖G‖C0,δ1 (�t )

(where the latter estimate is valid for any fluid variable array 	ϕ comprised of elements
of {ρ, s, 	v, 	
, 	S} and any function f that is smooth on the domain of 	ϕ values corre-
sponding to the setK from (40)), the standard embedding result H2(�t ) ↪→ C0,δ1(�t )
(which is valid since δ1 < 1/2), and Young’s inequality, we deduce that

‖B	C‖C0,δ1 (�t )
+ ‖BD‖C0,δ1 (�t )

� ‖∂∂∂ 	�‖2
C0,δ1 (�t )

+ ‖∂∂∂ 	�‖C0,δ1 (�t )
‖∂( 	
, 	S)‖C0,δ1 (�t )

+ ‖∂ 	
‖C0,δ1 (�t )
+ 1, (144)

‖div
‖C0,δ1 (�t )
+ ‖curlS‖C0,δ1 (�t )

� ‖∂∂∂ 	�‖C0,δ1 (�t )
. (145)

Using Definition1.2 to algebraically solve for curl
 and divS and using a similar
argument, we deduce that

‖curl
‖C0,δ1 (�t )
+ ‖divS‖C0,δ1 (�t )

� ‖(	C,D)‖C0,δ1 (�t )
+ ‖∂∂∂ 	�‖C0,δ1 (�t )

. (146)

Next, from (139) with (	C,D) in the role of ϕ, the Hölder bounds (144)–(145), and the
data-bound

‖(	C,D)‖C0,δ1 (�0)
� 1,

(which follows from (35e) and (38b)), we deduce

‖(	C,D)‖C0,δ1 (�t )
� 1 +

∫ t

0
‖∂∂∂ 	�‖2

C0,δ1 (�t )
dτ

+
∫ t

0

{

‖∂∂∂ 	�‖C0,δ1 (�t )
+ 1

}

‖∂( 	
, 	S)‖C0,δ1 (�t )
dτ. (147)
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Next, using the elliptic estimate (124) with
 and S in the role of V , (145)–(146), and
the energy estimate (69), we find that the following estimate holds for t ∈ [0, T∗]:

‖∂( 	
, 	S)‖C0,δ1 (�t )
� ‖(	C,D)‖C0,δ1 (�t )

+ ‖∂∂∂ 	�‖C0,δ1 (�t )
+ 1. (148)

Using (148) to bound the factor‖∂( 	
, 	S)‖C0,δ1 (�τ)
onRHS (147), applyingGrönwall’s

inequality in the term ‖(	C,D)‖C0,δ1 (�t )
, and using (106), we find that

‖(	C,D)‖C0,δ1 (�t )
� 1. (149)

We have therefore proved (120). Then, using (149) to bound the first term on
RHS (148), squaring the resulting inequality and integrating it in time, and using
(106), we arrive at the desired estimate (121).

(122) then follows from (121), the followingwell-known estimate (see, for example,
[48]*Equation (A.1.2) and the discussion surrounding it), valid for scalar func-
tions f : supν≥1 νδ1‖Pν f ‖L∞(�t ) � ‖ f ‖C0,δ1 (�t )

, and the fact that the dyadic sum
∑

ν≥1 ν−δ1 is finite. This completes the proof of Theorem 8.1. ��

9 The setup of the proof of Theorem 7.2: the rescaled solution and
construction of the eikonal function

To complete our bootstrap argument and finish the proof of Theorem 1.2, we have
one remaining arduous task: proving Theorem 7.2. We accomplish this in Sects. 9–11.
In this section, we set up the geometric and analytic framework that we use in the
rest of the paper. As in the works [18,21,54], the main ingredients are an appropriate
rescaling of the solution,32 an eikonal function u with suitable initial conditions, and a
collection of geometric tensorfields constructed out of u. Compared to previous works,
the main new contribution of the present section is located in Sect. 9.9.3, where we
derive various PDEs satisfied by the geometric tensorfields; there, one explicitly sees
how the source terms in these geometric PDEs depend on the vorticity and entropy,
and some of the precise structures in these PDEs are crucial for our analysis.

9.1 The rescaled quantities and the radius R

9.1.1 The rescaled quantities

Let {[tk, tk+1]}k=1,2,··· be the (finite collection of) time intervals introduced in Sect. 7.2,
and let�0 > 0 be the large parameter introduced there. For any fixed dyadic frequency
λ ≥ �0, let

T∗;(λ) := λ(tk+1 − tk). (150)

32 In [54], instead of rescaling the solution, the author worked with rescaled coordinates. These two
approaches are equivalent.
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Note that since (by construction) |tk+1 − tk | ≤ λ−8ε0T∗, it follows that

0 ≤ T∗;(λ) ≤ λ1−8ε0T∗. (151)

We now define the “rescaled” solution variables that we will analyze in the rest of
the paper.

Definition 9.1 (Rescaled quantities) We define the array of scalar functions

	�(λ) = (ρ(λ), v1(λ), v2(λ), v3(λ), s(λ))

and the Cartesian components of the�t -tangent vectorfields
(λ) and S(λ) as follows,
(i = 1, 2, 3):

	�(λ)(t, x) := 	�(tk + λ−1t, λ−1x), 
i
(λ)(t, x) := 
i (tk + λ−1t, λ−1x),

Si
(λ)(t, x) := Si (tk + λ−1t, λ−1x). (152)

Similarly, we define the Cartesian components of the �t -tangent vectorfield C(λ)
and the scalar function D(λ) as follows:

Ci
(λ) := exp(−ρ(λ))(curl
(λ))

i + exp(−3ρ(λ))c
−2( 	�(λ)) p;s( 	�(λ))

�̄
Sa
(λ)∂av

i
(λ)

− exp(−3ρ(λ))c
−2( 	�(λ)) p;s( 	�(λ))

�̄
(∂av

a
(λ))S

i
(λ), (153a)

D(λ) := exp(−2ρ(λ))divS(λ) − exp(−2ρ(λ))S
a
(λ)∂aρ(λ). (153b)

Finally, we let g(λ), g(λ), and B(λ) be the “rescaled” tensorfields whose Cartesian
components are as follows, (α, β = 0, 1, 2, 3 and i, j = 1, 2, 3):

(g(λ))αβ(t, x) := gαβ
( 	�(tk + λ−1t, λ−1x)

)

, (g(λ))i j (t, x) := gi j

( 	�(tk + λ−1t, λ−1x)
)

,

(154a)

Bα(λ)(t, x) := Bα
( 	�(tk + λ−1t, λ−1x)

)

. (154b)

Remark 9.1 (Remarks on the rescaling). Note that the slab [0, T∗;(λ)] × R
3 for

	�(λ)(t, x) corresponds to the slab [tk, tk+1]×R
3 for 	�(t, x). The same remark applies

for the other rescaled quantities.
Note also that when we are controlling the rescaled quantities such as 	�(λ), the

hypersurface that we denote by “�t” in Sects. 9–11 corresponds to the hypersurface
�tk+λ−1t for the non-rescaled quantities, which appear throughout Sects. 3–8.

Remark 9.2 Note that Si
(λ) �= ∂i s(λ), but rather Si

(λ) = λ∂i s(λ). This is merely a
reflection of our choice of how to keep track of powers of λ in the equations and

estimates. Similarly, we have 
i
(λ) = λ

(curlv(λ))i

exp ρ(λ)
. We clarify that although we use
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the relationships Si
(λ) = λ∂i s(λ) and 


i
(λ) = λ

(curlv(λ))i

exp ρ(λ)
to derive the equations of

Proposition9.1, when we derive PDE estimates for solutions to these equations, we
generally do not need these relationships; that is, for estimates, we generally treat S(λ),
s(λ), 
(λ), v(λ), and ρ(λ) as if they were independent quantities.

9.1.2 The radius R

For any t ∈ [0, T∗;(λ)], p ∈ �t , and r > 0, let Br (p) denote the Euclidean ball
of radius r in �t centered at p and let Br;g(λ)(t,·)(p) denote the metric ball, with
respect to the rescaled Riemannian metric g(λ)(t, ·), of radius r in �t centered at p.
The statement of Theorem 11.3 refers to a Euclidean radius R, which we now define.
Specifically, in the rest of the article, R denotes a fixed number chosen such that

0 < R < 1, (155a)

BR(p) ⊂ B1/2;g(λ)(t,·)(p), ∀t ∈ [0, T∗;(λ)] and ∀p ∈ �t . (155b)

The existence of such an R (one that is independent of λ) is guaranteed by the formula
(10) (which in particular shows that g(λ)(t, ·) is equal to c−2 times the Euclidean
metric on �t , with c the speed of sound) and the fact that, by virtue of the bootstrap
assumption (40), c is uniformly bounded from above and below by positive constants.

9.2 The rescaled compressible Euler equations

In the next proposition, we provide the equations verified by the rescaled quantities.
We omit the simple proof, which follows from scaling considerations.

Proposition 9.1 (The rescaled geometric wave-transport formulation of the compress-
ible Euler equations). For solutions to Proposition1.1, the rescaled quantities defined
in Sect.9.1 verify the following equations.

Wave equations: For rescaled wave variables�(λ) ∈ {ρ(λ), v1(λ), v2(λ), v3(λ), s(λ)}, we
have:

�̂g(λ)�(λ) = λ−1L ( 	�(λ))[	C(λ),D(λ)] + Q( 	�(λ))[∂∂∂ 	�(λ), ∂∂∂ 	�(λ)]. (156)

Transport equations:

B(λ)
i
(λ) = L ( 	�(λ), 	
(λ), 	S(λ))[∂∂∂ 	�(λ)], B(λ)Si

(λ) = L ( 	�(λ), 	S(λ))[∂∂∂ 	�(λ)].
(157)
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Transport div-curl system for the specific vorticity:

div
(λ) = L ( 	
(λ))[∂∂∂ 	�(λ)], (158a)

B(λ)Ci
(λ) = λQ( 	�(λ))[∂∂∂ 	�(λ), ∂ 	
(λ)] + λQ( 	�(λ))[∂∂∂ 	�(λ), ∂ 	S(λ)]

quad + λQ( 	�(λ), 	S(λ))[∂∂∂ 	�(λ), ∂∂∂ 	�(λ)] + L ( 	�(λ), 	
(λ), 	S(λ))[∂∂∂ 	�(λ)].
(158b)

Transport div-curl system for the entropy gradient:

B(λ)D(λ) = λQ( 	�(λ))[∂∂∂ 	�(λ), ∂ 	S(λ)] + λQ( 	�(λ), 	S(λ))[∂∂∂ 	�(λ), ∂∂∂ 	�(λ)]
+ L ( 	�(λ), 	S(λ))[∂ 	
(λ)], (159a)

(curlS(λ))
i = 0. (159b)

9.3 Key notational remark and themixed spacetime norm bootstrap assumptions
for the rescaled quantities

For notational convenience, in the remainder of the article, we drop the sub- and
super-scripts “(λ)” introduced in Sect. 9.1, except for the rescaled time T∗,(λ).
That is, we write 	� in place of 	�(λ), g in place of g(λ), gαβ(t, x) in place of

gαβ
( 	�(tk + λ−1t, λ−1x)

)

, etc. Nonetheless, our analysis will properly take into

account the explicit factors of λ on the RHSs of the equations of Proposition9.1.

9.4 M, the point z, the eikonal function, and construction of the geometric
coordinates

Let M := [0, T∗;(λ)] × R
3 ⊂ R

1+3 denote the slab on which the rescaled quantities
of Sect. 9.1.1 are defined. In the rest of the paper, we will construct various geometric
quantities and derive estimates on various subsets of M.

The proof of Theorem 11.3 fundamentally relies on the acoustic geometry, that is,
a solution u to the eikonal equation (where under the conventions of Sect. 9.3, “g”
denotes the rescaled metric):

(g−1)αβ∂αu∂βu = 0. (160)

Following the setup used in [54], we will construct u by patching an “interior solution”
with an “exterior solution.” More precisely, the results of Sects. 9.4.1–9.4.2 will yield
an eikonal function u defined in subsets˜M ⊂ M, which wewill define to be the union
of an interior region and an exterior region: ˜M := ˜M(I nt) ∪ ˜M(Ext)

. Moreover, an
exercise in Taylor expansions, omitted here, yields that the solution u is smooth in ˜M
away from the cone-tip axis (which is a curve in ˜M(I nt)

that we define in Sect. 9.4.1).
Throughout Sects. 9 and 10, z denotes a fixed (but arbitrary) point in �0 (where

here, “�0” corresponds to the hypersurface that we denoted by “�tk ” in Sects. 3–9)
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Fig. 2 The interior and exterior regions and related geometric constructions in the case z := 0

that forms the bottom tip of ˜M(I nt)
. The point z will vary when one carries out the

partition of unity argument that allows for a reduction of the proof of the desired
Strichartz estimate (more precisely, the frequency localized estimates provided by
Theorem 7.2) to that of Proposition11.1. More precisely, the proof of Theorem 7.2
relies on partitioning the full slab M into various “localized” subsets of type ˜M and
proving dispersive decay estimates on subsets of the ˜M for solutions ϕ to the linear
wave equation�g( 	�)ϕ = 0. The spatially localized dispersive decay estimates (which

correspond to a fixed ˜M and thus a fixed z) are provided by Proposition11.1. We
refer readers to Sect. 11.3 for further discussion on the various standard reductions of
the proof of the Strichartz estimates to spatially localized dispersive estimates (and
ultimately to the proof of control over the growth rate of a conformal energy, provided
by Theorem 11.3). We also remark that the varying of z during the partition of unity
argument is a minor issue in the sense that estimates that we derive in Sects. 9 and 10
are independent of z, and all of the constants and parameters in our analysis can be
chosen to be independent of z.

We provide a figure, Fig. 2, that exhibits many of the geometric objects that we will
construct in Sect. 9.4. In the figure, for convenience, we have set z to be equal to the
origin in �0.

9.4.1 The interior solution emanating from the cone-tip axis and the region ˜M(Int)

We let γz = γz(t) denote the future-directed integral curve of the vectorfield33 B
emanating from the point z, i.e., γz(0) = z ∈ �0. We refer to {γz(t)}t∈[0,T∗;(λ)]
as the cone-tip axis. Let q = q(t) := γz(t) be a point on the cone-tip axis. Let
� ∈ TqM be a null vector normalized by g|q(�,B|q) = −1. We denote the set of

33 We again stress that by the conventions of Sect. 9.3, in the rest of the paper, we use the notation Bα(t, x)

to denote Bα
( 	�(tk + λ−1t, λ−1x)

)

and gαβ(t, x) to denote gαβ
( 	�(tk + λ−1t, λ−1x)

)

.
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all of these normalized null vectors � ∈ TqM by Nq . We now consider the case
q = z ∈ �0. It is straightforward to see that Nz is diffeomorphic to S

2; we therefore
fix a diffeomorphism from S

2 onto Nz. For each ω ∈ S
2, we let �ω ∈ Nz denote

the corresponding (via the diffeomorphism) null vector. We will use parallel transport
to construct a diffeomorphism fromNz ontoNγz(t). Ultimately, this diffeomorphism
will allow us, upon pre-composing it with the fixed diffeomorphism ω → �ω from
S
2 onto Nz and post-composing it with a null geodesic flow,34 to construct angular

coordinates ω that are defined35 in ˜M(I nt)
; see just below Eq. (162b).

To initiate the construction of the diffeomorphism from Nz onto Nγz(t), for each
ω ∈ S

2, we define the vector Nω ∈ TzM as follows: Nω := �ω −B|z. Considering
the relations g|z(�ω,B|z) = −1 and g|z(B|z,B|z) = −1, we find that g|z(B|z, Nω) =
0. Considering also that g|z(�ω, �ω) = 0, we find that g|z(Nω, Nω) = 1. Thus,
Nω ∈ U Tz�0, where U Tz�0 denotes the g-unit tangent bundle of �0 at z, and g is
the rescaled first fundamental form of �0. It is straightforward to see that the map
�ω → �ω − B|z defines a diffeomorphism from Nz onto U Tz�0. To propagate
Nω along the cone-tip axis, we solve the parallel transport equation36 DBNω = 0,
whereD is the Levi-Civita connection of the rescaled spacetime metric g. In Cartesian
coordinates, for each Nαω|z ∈ Nz, the parallel transport equation takes the form of the
following transport equation system,which is linear in the scalar Cartesian component
functions Nαω:

d

dt
Nαω +��� ακ λBκNλω = 0, (161)

where the initial conditions for (161) are Nαω|z, ��� να β = 1
2 (g

−1)σν
{

∂αgσβ + ∂βgασ − ∂σgαβ
}

are the Cartesian Christoffel symbols of the rescaled
metric g, and it is understood that all quantities are evaluated along γz(t), e.g.,
Nαω = Nαω◦γz(t) andBκ = Bκ ◦ 	�◦γz(t), with 	� the rescaled solution. It is straight-
forward to show, based on the normalization condition g|γz(t)(B|γz(t),B|γz(t)) = −1,
(161), and the initial conditions g|z(B|z, Nω|z) = 0 and g|z(Nω|z, Nω|z) = 1, that
for t ∈ [0, T∗;(λ)], the solution Nω|γz(t) to equation (161) is an element ofU Tγz(t)�t ,
whereU Tγz(t)�t denotes the g-unit tangent bundle of�t atγz(t), and g is the rescaled
first fundamental form of �t . That is, we have g|γz(t)(B|γz(t), Nω|γz(t)) = 0 and
g|γz(t)(Nω|γz(t), Nω|γz(t)) = 1. In particular, Nω|γz(t) is tangent to �t at γz(t).
From these relations and arguments similar to the ones given above, we find that
�ω|γz(t) := B|γz(t) + Nω|γz(t) ∈ Nγz(t). Similar arguments that take into account
standard ODE existence and uniqueness theory37 for the equation (161) yield that the

34 The null curves, whose Cartesian components are solutions to the ODE system (162a), are not affine-
parameterized.
35 More precisely, the angular coordinate functions (ω1,ω2) are uniquely defined away from the cone-tip
axis, while each point on the cone-tip axis is associated with an entire S2 manifold worth of angles (i.e.,
the same degeneracy that occurs at the origin in R

3 under the standard Euclidean spherical coordinates).
36 This is in fact parallel transport along geodesics since DBB = 0; this latter identity is straightforward to
derive using that g(B,B) = −1 and the fact that [B, Z ] is �t -tangent (hence g-orthogonal to B) whenever
Z is �t -tangent.
37 Here we are using our qualitative assumption that the fluid solution is smooth.
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map Nω|z → Nω|γz(t) is a diffeomorphism from U Tz�0 onto U Tγz(t)�t . Consid-
ering also that for each for t ∈ [0, T∗;(λ)], the map Nω|γz(t) → B|γz(t) + Nω|γz(t)

(where Nω|γz(t) is the solution to (161)) defines a diffeomorphism from U Tγz(t)�t

onto Nγz(t), we conclude that the map �ω|z → B|γz(t) + Nω|γz(t) is the desired
diffeomorphism from Nz onto Nγz(t).

Next, for u ∈ [0, T∗;(λ)], we let q = q(u) := γz(u) be the unique point38 on the
cone-tip axis with Cartesian component q0 = u. Letω ∈ S

2, and let �ω := B|γz(u)+
Nω|γz(u) ∈ Nγz(u) denote the corresponding null vector that we constructed in the
previous paragraph.Wenow letϒu;ω = ϒu;ω(t)be the null geodesic curve emanating
from q(u) with initial velocity �ω, parameterized by t (see Footnote 34), that is,
ϒ0

u;ω(t) = t . Introducing the notation ϒ̇αu;ω := d
dtϒ

α
u;ω and ϔαu;ω := d2

dt2
ϒαu;ω, we

note that standard arguments39 yield that the four scalar functions {ϒαu;ω(t)}α=0,1,2,3

are the solution to the following ODE system initial value problem (Footnote 37
also applies here) with data given at t = u, where on RHS (162a), LB denotes Lie
differentiation with respect to B:

ϔαu;ω(t) = −��� ακ λ|ϒu;ω(t)ϒ̇
κ
u;ω(t)ϒ̇λu;ω(t)

+ 1

2
[LBg]κλ|ϒu;ω(t)

(

ϒ̇κu;ω(t)− Bκ |ϒu;ω(t)
) (

ϒ̇λu;ω(t)− Bλ|ϒu;ω(t)
)

ϒ̇αu;ω(t),
(162a)

ϒαu;ω(u) = qα(u) = γαz (u), ϒ̇αu;ω(u) = �αω. (162b)

We are now able to extend the angular coordinates by declaring that ω is constant
along the null geodesic curve t → ϒu;ω(t). Next, given any fixed t ∈ [u, T∗;(λ)], we
define the truncated cone

Ct
u :=

⋃

τ∈[u,t],ω∈S2
ϒu;ω(τ). (163)

We then define a function u by the requirement that its level sets are precisely the

cones (163), that is, along CT∗;(λ)
u′ , the function u takes the value u′.

We then set

˜M(I nt) :=
⋃

u∈[0,T∗;(λ)]
CT∗;(λ)

u . (164)

At times, we will use the alternate notation

Cu := CT∗;(λ)
u . (165)

38 It is unique since Bt = 1.
39 (162a) is equivalent to equation (199b) for DL Lα , where ϒ̇αu;ω can be identified with Lα , ϒ̇αu;ω −Bα

can be identifiedwith Nα , and 1
2 [LBg]κλ(ϒ̇κu;ω−Bκ )(ϒ̇λu;ω−Bλ)ϒ̇αu;ω can be identifiedwith−kN N Lα .
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As is described, for example, in [7], this construction provides a solution of (160) in

the region ˜M(I nt)
depicted in Fig. 2. Note that by construction, we have

u(γz(t)) = t, B[u(γz(t))] = 1. (166)

In total, we have constructed geometric coordinates (t, u,ω) in ˜M(I nt)
. More

precisely, standard ODE theory yields that the map (t, u,ω)→
(

ϒ0
u;ω(t), ϒ

1
u;ω(t),

ϒ2
u;ω(t), ϒ

3
u;ω(t)

)

is smooth on {(t, u,ω) | u ∈ [0, T∗;(λ)], t ∈ [u, T∗;(λ)],ω ∈ S
2}

and locally injective away from points with t = u (which correspond to the cone-tip
axis); note that here we are identifying ϒαu;ω(t) with the Cartesian coordinate xα .
Moreover, the continuity argument mentioned in Sect. 9.5 guarantees that in fact, this
map is a global diffeomorphism from {(t, u,ω) | u ∈ [0, T∗;(λ)], t ∈ [u, T∗;(λ)],ω ∈
S
2}\{(u, u,ω) | u ∈ [0, T∗;(λ)],ω ∈ S

2} onto its image, i.e., onto ˜M(I nt)
minus the

cone-tip axis {γz(t)}t∈[0,T∗;(λ)]; see also Proposition10.7 for a quantitative proof that
the null curves t → ϒu;ω(t) corresponding to distinct values of u and ω remain
separated.40

9.4.2 The exterior solution and the region ˜M(Ext)

Let z be the point in �0 from Sect. 9.4.1, i.e., the point γz(0), at which t = u = 0.
The same arguments leading to [54, Proposition 4.3] guarantee that for T∗ sufficiently
small, there is a neighborhood O in�0 contained in the metric ball BT∗;(λ) (z, g) (with
respect to the rescaled first fundamental form g of �0) of radius T∗;(λ) centered at
z such that O can be foliated with the level sets of a function w on �0, defined for
0 ≤ w ≤ w∗;(λ) := 4

5T∗;(λ), where, away from z, w is smooth and has level sets Sw
diffeomorphic to S

2, while S0 = {z}. To obtain suitable control of the geometry, we
require w to have a variety of crucial properties, especially (280); see Proposition9.8
for the existence of a function w with the desired properties.

Let ω ∈ S
2 be as in Sect. 9.4.1, let �ω ∈ TzM be the corresponding null vector,

and let Nω = �ω − B|z be the corresponding element of U Tz�0. Let ∇ denote the
Levi-Civita connection of g and let a := |∇w|−1

g denote the lapse, where |∇w|g =
√

(g−1)cd∂cw∂dw. In our forthcoming analysis, we will have a(z) = 1 and a ≈ 1;
see Proposition9.8. Let N be the outward g-unit normal to Sw in �0, i.e., N i :=
a(g−1)ic∂cw, N 0 = 0, and gcd N c N d = 1. Each fixed integral curve of N can be
extended41 to a smooth curve emanating from z. More precisely, for each vector
Nω ∈ U Tz�0, there is a unique integral curve �ω : [0, w∗;(λ)] → �0 of aN
parameterizedbyw (i.e., �̇i

ω(w) = [aN i ]◦�ω(w),witha the lapse,where �̇i
ω(w) =

∂
∂w
�i

ω(w)) that emanates from z with �ω(0) = z and �̇ω(0) = Nω (here we
have used that a(z) = 1). This yields a diffeomorphism from S

2 to each Sw for

40 By “separated,” in ˜M(I nt), we mean, of course, away from the cone-tip axis.
41 In particular, in the proof of Lemma 10.6, we show that along�0, for i = 1, 2, 3, ‖ ∂

∂u Ni ‖L2
u L∞

ω
<∞,

where this norm is defined in Sect. 9.10; this implies the extendibility of each integral curve of N to z, where
z is the point at which u = 0.



Rough sound waves in 3D compressible Euler flow with vorticity Page 67 of 153 41

0 < w ≤ w∗;(λ), defined such thatω is constant along the integral curvew → �ω(w).
In particular, if {ωA}A=1,2 are local angular coordinates on S2, then for each fixed w
with 0 < w ≤ w∗;(λ), the map ω → �ω(w) yields angular coordinates {ωA}A=1,2
on Sw. It is straightforward to see that on ∪0<w≤w∗;(λ) Sw, we have the vectorfield

identity (where ∂
∂w

denotes partial differentiation at fixed ω)

∂

∂w
= aN , (167)

and that the rescaled first fundamental form of �0, denoted by g, can be expressed
relative to the coordinates (w,ω) as follows:

g = a2dw ⊗ dw + g/

(

∂

∂ωA
,
∂

∂ωB

)

dωA ⊗ dωB, (168)

where g/ is the Riemannian metric induced on Sw by g.
In view of the constructions provided above, to each point q ∈ ∪0<w≤w∗;(λ) Sw ⊂

�0, we can associate the geometric coordinates (0, w,ω) (where “0” is the time
coordinate). In particular, these points q = q(w,ω) are parameterized by the
coordinates (w,ω) ∈ [0, w∗;(λ)] × S

2. We then define the vector �q(w,ω) :=
B|q(w,ω) + N |q(w,ω) ∈ Tq(w,ω)M. Since g|q(w,ω)(B|q(w,ω),B|q(w,ω)) = −1,
g|q(w,ω)(B|q(w,ω), N |q(w,ω)) = 0, and g|q(w,ω)(N |q(w,ω), N |q(w,ω)) = 1, it fol-
lows that g|q(w,ω)(�q(w,ω), �q(w,ω)) = 0, i.e., �q(w,ω) is null. Next, we construct the
null geodesicϒq(w,ω) = ϒq(w,ω)(t)by solving theODE(162a)with initial conditions
ϒαq(w,ω)(0) = qα(w,ω) and ϒ̇αq(w,ω)(0) = �αq(w,ω). For each fixed w ∈ [0, w∗;(λ)],
the set {ϒq(w,ω)(t) | (t,ω) ∈ [0, T∗;(λ)] × S

2} is a portion of a g-null cone. We
define the function u by declaring that along this null cone portion, it takes on the
value −w. Thus, with Ct

u denoting the level set portion contained in [0, t] × R
3, we

have Ct
u = {ϒq(−u,ω)(τ) | (τ,ω) ∈ [0, t] × S

2}. As we do in the interior region, we

sometimes use the alternate notation Cu := CT∗;(λ)
u . We then set

˜M(Ext) :=
⋃

u∈[−w∗;(λ),0]
CT∗;(λ)

u . (169)

This procedure yields a function u defined in the region ˜M(Ext)
depicted in Fig. 2.

It is a standard result that u is a solution to the eikonal equation (160) in ˜M(Ext)
.

Finally, we extend the angular coordinates to ˜M(Ext)
by declaring that ω is constant

along the null geodesic curve t → ϒq(w,ω)(t). In total, we have constructed geometric

coordinates (t, u,ω) in ˜M(Ext)
.

9.4.3 Acoustical metric and first fundamental forms

Werefer to Sect. 1.1.2 for discussion of the acousticalmetric g and the first fundamental
form g of�t . We now define g/ to be the first fundamental form of St,u := Cu ∩�t , that
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Fig. 3 Depiction of various subsets of spacetime in the case z := 0

is, the Riemannian metric induced on St,u by g. We again clarify that we are working
under the conventions of Sect. 9.3.

9.5 Geometric subsets of spacetime and the containment BR(γz(1)) ⊂ Int˜61

In the rest of the paper, we denote ˜M := ˜M(I nt) ∪ ˜M(Ext)
. From the constructions

in Sects. 9.4.1–9.4.2, it follows that

˜M =
⋃

u∈[−w∗;(λ),T∗;(λ)]
CT∗;(λ)

u , (170)

wherew∗;(λ) = 4
5T∗;(λ).We also define a truncated version of˜M(I nt)

, namely˜M(I nt)
1 ,

as follows:

˜M(I nt)
1 := ˜M(I nt) ∩

(

[1, T∗;(λ)] × R
3
)

. (171)

We also define

˜�t := �t ∩ ˜M, ˜�
(I nt)
t := �t ∩ ˜M(I nt)

, ˜Cu := Cu ∩ ˜M. (172)

See Fig. 3 for a depiction of these sets.
For the same reasons given in [54, Section 4], if T∗ is small42 (where the required

smallness is controlled by our bootstrap assumptions and our assumptions on the data),
then the results of Sects. 9.4.1–9.4.2 yield a complete system of geometric coordinates
(t, u,ω), which are defined on ˜M and non-degenerate away from the cone-tip axis;

42 Note that, as is explained on [54, pg. 24], it is only T∗, and not T∗;(λ), that is required to be small; once
we have fixed T∗, we have T∗;(λ) → ∞ as λ → ∞.
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the proof is based on a continuity argument involving the bootstrap assumptions and
the bounds (288a)–(297b) proved below; see also the proof of [50, Theorem 1.2]
and [19,23] for additional details. In particular, for u ∈ [−w∗;(λ), T∗;(λ)] and t ∈
[[u]+, T∗;(λ)] such that43 t �= u (where [u]+ := max{0, u}), the sets

St,u := Cu ∩�t (173)

are embedded submanifolds that are diffeomorphic to S
2, equipped with the (local)

angular coordinates (ω1,ω2). We also note that

˜M =
⋃

u∈[−w∗;(λ),T∗;(λ)],t∈[[u]+,T∗;(λ)]
St,u, (174a)

˜M(I nt) =
⋃

u∈[0,T∗;(λ)],t∈[u,T∗;(λ)]
St,u, ˜M(Ext) =

⋃

u∈[−w∗;(λ),0],t∈[0,T∗;(λ)]
St,u,

(174b)

˜�
(I nt)
t =

⋃

u∈[0,T∗;(λ)]
St,u . (174c)

For future use, we also note that for the same reasons given on [54, page 25], based
on (155b) and the estimate (297b) proved below, we have the following containments,
where BR(γz(1)) denotes the Euclidean ball of radius R centered at γz(1) in ˜�1 (with
R is as in Sect. 9.1), and B1/2;g(1,·)(γz(1)) is the metric ball of radius 1/2 centered at
γz(1) in ˜�1 corresponding to the rescaled first fundamental form g(1, ·):

BR(γz(1)) ⊂ B1/2;g(γz(1)) ⊂
⋃

1
3≤u≤1

S1,u ⊂ ˜�
(I nt)
1 . (175)

9.6 Geometric quantities constructed out of the eikonal function

We now define a collection of geometric quantities constructed out of u.

9.6.1 Geometric radial variable, null lapse, and the unit outward normal

We define the geometric radial variable r̃ as follows:

r̃ = r̃(t, u) := t − u. (176)

Since in ˜M we have that t ∈ [0, T∗;(λ)] and u ∈ [−w∗;(λ), t], and since w∗;(λ) :=
4
5T∗;(λ), it follows from (151) that

0 ≤ r̃ < 2T∗;(λ) = 2λ1−8ε0T∗, −4

5
λ1−8ε0T∗ ≤ u ≤ λ1−8ε0T∗. (177)

43 Note that for t ∈ [0, T∗;(λ)], St,t is a single point on the cone tip axis.
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Throughout the article, we will often silently use the inequalities in (177).
We define the null lapse b to be the following scalar function, where |∇u|g =

√

(g−1)ab∂au∂bu:

b := 1

|∇u|g . (178)

From (178), (168), and the fact that u = −w along �0, it follows that b = a along
�0. Moreover, using (178), (10), (11), and (160), we see that

b = 1

Bu
. (179)

Considering also (166), we see that for t ∈ [0, T∗;(λ)], we have

b|γz(t) = 1, (180)

where the curve t → γz(t) is the cone-tip axis introduced in Sect. 9.4.1.
Let N denote the outward unit normal to St,u in �t , i.e., N is �t -tangent, g-

orthogonal to St,u , outward pointing, and normalized by g(N , N ) = 1. From (178),
it follows that

N i = −b(g−1)ia∂au, Nu = −1

b
. (181)

9.6.2 Null frame and basic geometric constructions

We now define the following vectorfields:

L := B + N , L := B − N . (182)

Since B0 = 1 and N 0 = 0, it follows that

Lt = Lt = 1. (183)

Moreover, from (10), (11), (178), (179), (181), and (182), we see that

Lα = −b(g−1)αβ∂βu. (184)

Since g(B,B) = −1, g(N , N ) = 1, and g(B, N ) = 0, it follows that

g(L, L) = g(L, L) = 0, g(L, L) = −2. (185)

In particular, (183) and (185) imply that L and L are future-directed andg-null. Let now
{eA}A=1,2 be a (locally-defined) g-orthonormal frame on St,u , i.e., g/(eA, eB) = δAB ,
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where δAB is the Kronecker delta. We note that since B and N are g-orthogonal to
St,u , it follows from (182) that g(L, eA) = g(L, eB) = 0. We refer to

{L, L, e1, e2} (186)

as a null frame; see Fig. 1.
If ξξξ is a one-form, then ξξξL := ξξξαLα , ξξξL := ξξξαLα , and ξξξA := ξξξαeαA denote

contractions against the null frame elements. Similarly, if X is a vectorfield, then
XL := XαLα , XL := XαLα , and XA := XαeαA. We use analogous notation to denote
the components of higher order tensorfields as well as contractions against N , e.g.,
ξξξAN := ξξξαβeαA Nβ .

It is straightforward to deduce from the above considerations that

(g−1)αβ = −1

2
LαLβ − 1

2
LαLβ + (g/−1)αβ, (g/−1)αβ =

∑

A=1,2

eαAeβA. (187)

Next, we define the g-orthogonal projection  / onto St,u and the g-orthogonal
projection  onto �t to be, respectively, the following type

(1
1

)

tensorfields, where
δαβ is the Kronecker delta:

 / αβ := δαβ + 1

2
LαLβ + 1

2
LαLβ,  αβ := δαβ + BαBβ. (188)

It is straightforward to check that  / 0α =  0
α = 0 for α = 0, 1, 2, 3; we will silently

use this simple fact throughout the article.
If ξξξ is a spacetime tensor, then  /ξξξ denotes its g-orthogonal projection onto St,u ,

obtained by projecting every component of ξξξ onto St,u via  / . For example, if X is a
vectorfield, then ( /X)α =  / αβXβ , and if ξξξ is a type

(0
2

)

tensorfield, then ( /ξξξ)αβ =
 /
γ
α /

δ
βξξξγ δ . We say that a tensor ξξξ is St,u-tangent if  /ξξξ = ξξξ. We often denote St,u-

tangent tensorfields in non-bold font, i.e., as X or ξ. We use the notation |ξ|g/ to
denote the norm of the St,u-tangent tensorfield ξ with respect to the rescaled first
fundamental form g/. For example, if ξ is a type

(0
2

)

St,u-tangent tensorfield, then

|ξ|g/ =
√

(g/−1)αγ (g/−1)βδξαβξγ δ = √
ξABξAB , where the last relation holds relative

to the St,u-frame {eA}A=1,2. If ξ is a symmetric type
(0
2

)

St,u-tangent tensorfield, then
wedefine its g/-trace to be the scalar trg/ξ := (g/−1)αβξαβ = ξAA, where the last relation
holds relative to the St,u-frame {eA}A=1,2. We then define ξ̂ := ξ − 1

2 (trg/ξ)g/ to be
the trace-free part of ξ. Given a tensor whose components with respect to {eA}A=1,2
are known, we can extend ξ to an St,u-tangent spacetime tensor ξ (i.e., one verifying
 / ξ = ξ) by declaring that all contractions of ξ against elements of {L, L} vanish;
throughout the paper, we will often implicitly assume such an extension. Similarly,
 ξξξ denotes the g-orthogonal projection of ξξξ onto �t , we say that ξξξ is �t -tangent if
 ξξξ = ξξξ, and we can extend tensors ξwhose�t components are given to a�t -tangent
spacetime tensor by declaring that all contractions of ξ against B vanish. We also note
that  / L =  / L = 0, and  B = 0.
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Remark 9.3 We remark that we do not attribute a tensorial structure to 	� or ∂∂∂ 	�.
Therefore, whenever 	� or ∂∂∂ 	� appears under the | · |g/ norm, it should be interpreted
as the standard Euclidean norm of the array 	� or ∂∂∂ 	�. The only reason why we
occasionally have 	� or ∂∂∂ 	� under | · |g/ is because, in our schematic notation, we
sometimes group it with St,u-tangent tensorfields for which pointwise norms are taken
with respect to | · |g/, such as, for example, in (337a).

Throughout, if V is a spacetime vectorfield and ξξξ is a spacetime tensorfield, then
we define L/Vξξξ :=  /LVξξξ and LVξξξ :=  LVξξξ, where LV denotes Lie differentiation
with respect to V.

We use the following notation to denote the arrays of the Cartesian components of
L , L , N :

	L := (1, L1, L2, L3), 	L := (1, L1, L2, L3), 	N := (0, N 1, N 2, N 3). (189)

From (182) and the fact that Bα is a smooth function of 	�, it follows that there exist
smooth functions, denoted schematically by f, such that both 	L and 	N are of the
form 	L − f( 	�). In the rest of the paper, we will often use this fact without explicitly
mentioning it.

9.6.3 The metrics and volume forms relative to geometric coordinates, and the ratio
�

From the above considerations, it is straightforward to deduce that there exists an
St,u-tangent vectorfield Y such that g and g can be expressed as follows relative to the
geometric coordinates (see [42]*Lemma 3.45 for further details):

g = −bdt ⊗ du − bdu ⊗ dt + b2du ⊗ du

+ g/

(

∂

∂ωA
,
∂

∂ωB

)

(dωA + Y Adu)⊗ (dωB + Y Bdu), (190a)

g = b2du ⊗ du + g/

(

∂

∂ωA
,
∂

∂ωB

)

(dωA + Y Adu)⊗ (dωB + Y Bdu). (190b)

The volume form d�g/ induced on St,u by g/ can be expressed as follows relative to
the geometric coordinates:

d�g/(t,u,ω) = √

detg/ dω1dω2. (191)

In addition, the volume form d�g induced on�t by g, which in Cartesian coordinates
takes the form d�g = c−3dx1dx2dx3 (see (10)), can be expressed as follows relative
to the geometric coordinates:

d�g(t,u,ω) = b(t, u,ω) dud�g/(t,u,ω). (192)
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Let e/ = e/(ω) be the standard round metric on the Euclidean unit sphere S2, and
let d�e/(ω) denote the corresponding volume form. The following ratio44 of volume
forms will play a role in the ensuing discussion:

υ(t, u,ω) := d�g/(t,u,ω)

d�e/(ω)
=

√
detg/(t, u,ω)√

dete/(ω)
. (193)

9.6.4 Levi-Civita connections, angular divergence and curl operators, and curvatures

We let D denote the Levi-Civita connection of the rescaled spacetime metric g and
∇/ denote the Levi-Civita connection of g/. Our Christoffel symbol conventions for
g are that DβXα = ∂βXα + ��� αβ γXγ , where ��� αβ γ := (g−1)αδ���βδγ and ���βδγ :=
1
2

{

∂βgδγ + ∂γ gβδ − ∂δgβγ
}

.
If VVV is a vectorfield and ξξξ is a spacetime tensorfield, then DVVVξξξ := VVV αDαξξξ and

D/ VVVξξξ :=  /DVVVξξξ; note that D/ V ξ := ∇/V ξ when both V and ξ are St,u-tangent.
If ξ is an St,u-tangent one-form, then relative to an arbitrary g/-orthonormal frame

{e(1), e(2)}, div/ξ := ∇/AξA and curl/ξ := εAB∇/AξB , where repeated capital Latin
indices are summed from 1 to 2 and εAB is fully antisymmetric and normalized
by ε12 = 1. If f is a scalar function defined on St,u , then �/ f := ∇/ 2AA f denotes
its covariant angular Laplacian. We clarify that above and in all of our subsequent
formulas, frame contractions are taken after covariant differentiation. For example,
relative to arbitrary local coordinates {y1, y2}on St,u ,we have∇/AξA := ea

Aeb
A∇/aξb and

∇/ 2AA f := ea
Aeb

A∇/a∇/b f . Similarly, if ξ is a symmetric type
(0
2

)

St,u-tangent tensorfield,
then div/ξA := ∇/BξAB and curl/ξA := εBC∇/BξC A = 1

2ε
BC

{∇/BξC A − ∇/CξB A
}

.
We letRiemαβγ δ denote theRiemanncurvature ofg andRicαβ := (g−1)γ δRiemαγβδ

denote its Ricci curvature. We adopt the curvature sign convention g(D2
XYW −

D2
YXW,Z) := −Riem(X,Y,W,Z), where X, Y, W, and Z are arbitrary spacetime

vectors, and D2
XYW := XαYβDαDβW.

9.6.5 Connection coefficients

Definition 9.2 (Connection coefficients). We define the second fundamental form k
of �t to be the type

(0
2

)

�t -tangent tensorfield such that the following relation holds
for all �t -tangent vectorfields X and Y :

k(X ,Y ) := −g(DXB,Y ). (194)

44 Note that RHS (193) is invariant under arbitrary diffeomorphisms on S
2, i.e., diffeomorphisms cor-

responding to the geometric angular coordinates. This ratio is determined by the diffeomorphism from
S
2 to St,u that we constructed in Sect. 9.4 (which in particular determine the component functions

g/(t, u,ω)
(

∂

∂ωA ,
∂

∂ωB

)

). That is, the ratio is determined by our construction of the geometric coordinates.
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We define the second fundamental form θ of St,u , the null second fundamental form
χ of St,u , and χ to be the following type

(0
2

)

St,u-tangent tensorfields:

θAB := g(DA N , eB), (195a)

χAB := g(DA L, eB),χAB
:= g(DA L, eB). (195b)

We define the torsion ζ and ζ to be the following St,u-tangent one-forms:

ζA := 1

2
g(DL L, eA), ζA := 1

2
g(DL L, eA). (196)

In the next lemma, we provide some standard decompositions and identities. We
omit the simple proof and instead refer readers to [18] for details.

Lemma 9.2 (Connection coefficients and relationships between various tensors). k,
θ, χ, and χ are symmetric tensorfields. Moreover, the following relations hold:

k = −1

2
LBg = −1

2
LBg, (197a)

χ = 1

2
L/L g/ = 1

2
L/Lg, χ = 1

2
L/L g/ = 1

2
L/Lg, (197b)

D/ N N = −∇/ ln b, D/ A NB = θAB, (198)

DA L = χABeB − kAN L, DA L = χ
AB

eB + kAN L, (199a)

DL L = −kN N L, DL L = 2ζAeA + kN N L, (199b)

DL L = 2ζAeA + kN N L, DLeA = D/ LeA + ζA L, (199c)

DBeA = ∇/BeA + 1

2
χAB L + 1

2
χ

AB
L, DL L = −2(∇/ A ln b)eA − kN N L, (199d)

χAB = θAB − kAB, χ
AB

= −θAB − kAB, ζA = −kAN , ζA = ∇/ A ln b + kAN .

(200)

9.7 Modified acoustical quantities

As we explained at the end of Sect. 2.1.3, to obtain suitable control of the acoustic
geometry, we must work with modified quantities and a metric equal to a conformal
rescaling of g. In this subsection, we define the relevant quantities.
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9.7.1 The conformal metric in ˜M(Int)

Definition 9.3 (The conformal factor and conformal metric in the interior region
˜M(I nt)

). Wedefineσ to be the solution to the following transport initial value problem
(with data given on the cone-tip axis defined in Sect. 9.4.1):

Lσ(t, u,ω) = 1

2
[���L ](t, u,ω), u ∈ [0, T∗;(λ)], t ∈ [u, T∗;(λ)], ω ∈ S

2, (201a)

σ(u, u,ω) = 0, u ∈ [0, T∗;(λ)], ω ∈ S
2, (201b)

where ���L := ���αLα and ���α := (g−1)κλ���καλ is a contracted (and lowered) Cartesian
Christoffel symbol of g.

We define

g̃ := e2σg, g̃/ := e2σg/ (202)

to be, respectively, the conformal spacetime metric and the Riemannian metric that it
induces on St,u .

Definition 9.4 (Null second fundamental forms of the conformal metric). Wedefine the
null second fundamental forms of the conformal metric to be the following symmetric
St,u-tangent tensorfields:

χ̃ := 1

2
L/L g̃/, χ̃ := 1

2
L/L g̃/. (203)

From straightforward computations, taking into consideration definition (203) and
the PDE (201a), we deduce the following relations:

χ̃ = e2σ {χ + (Lσ)g/)} , χ̃ = e2σ
{

χ + (Lσ)g/)
}

, (204a)

trg̃/χ̃ = trg/χ + 2Lσ = trg/χ +���L , trg̃/χ̃ = trg/χ + 2Lσ, (204b)

χ = 1

2

{

trg̃/χ̃ −���L
}

g/+ χ̂, χ = 1

2

{

trg̃/χ̃ − 2Lσ
}

g/+ χ̂. (204c)

Moreover, above and throughout, if ξ is a symmetric type
(0
2

)

St,u-tangent tensorfield,
then trg̃/ξ := (g̃/−1)αβξαβ = e−2σ(g/−1)αβξαβ = e−2σtrg/ξ denotes its trace with
respect to g̃/.
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9.7.2 Average values on St,u

Some of our forthcoming constructions refer to the average values of scalar functions
f on St,u . Specifically, we define the average value of f , denoted by f , as follows:

f = f (t, u) := 1

|St,u |g/
∫

St,u

f d�g/, |St,u |g/ :=
∫

St,u

1 d�g/. (205)

In the next lemma, we connect the evolution equation for f along integral curves
of L to that of f . We omit the standard proof, which is based on the identity (212a)
below.

Lemma 9.3 (Evolution equation for the average value on St,u). For scalar functions
f , we have

L f + trg/χ f = {

trg/χ − trg/χ
}

f + L f + trg/χ f . (206)

9.7.3 Definitions of the modified acoustical quantities

Definition 9.5 (Modified acoustical quantities). In the interior region ˜M(I nt)
, we

define trg̃/χ̃(Small) to be45 − 2
r̃ plus the trace of the St,u-tangent tensorfield χ̃ defined

in (203) with respect to the conformal metric g̃/ defined in (202). That is, in view of

(204b), in ˜M(I nt)
, we have:

trg̃/χ̃
(Small) = trg/χ +���L − 2

r̃
= trg̃/χ̃ − 2

r̃
, (207)

where���L := ���αLα , and���α := (g−1)κλ���καλ is a contracted (and lowered) Cartesian
Christoffel symbol of g. We then extend the definition of trg̃/χ̃(Small) to all of ˜M by
declaring that the first equality in (207) holds in all of ˜M.

In ˜M, we define the mass aspect function μ to be the following scalar function:

μ := Ltrg/χ + 1

2
trg/χtrg/χ. (208)

In ˜M(I nt)
, we define the modified mass aspect function46 μ̌ to be the following

scalar function:

μ̌ := 2�/σ + Ltrg/χ + 1

2
trg/χtrg/χ − trg/χkN N + 1

2
trg/χ���L , (209)

where ���L := ���αLα .

45 In [54], trg̃/χ̃(Small) was denoted by “z” and trg̃/χ̃ was denoted by “tr̃χ.”
46 The idea of working with quantities in the spirit of the mass aspect function and the modified mass
aspect function originates in [7]. As in [7,54], we use these quantities to avoid the loss of a derivative when
controlling the L derivative of trg/χ.
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In˜M(I nt)
, we defineμ/ to be47 the St,u-tangent one-form that satisfies the following

Hodge system on St,u :

div/μ/ = 1

2
(μ̌ − μ̌), curl/μ/ = 0. (210)

In ˜M(I nt)
, we define the modified torsion˜ζ to be the following St,u-tangent one-

form:

˜ζ := ζ + ∇/σ. (211)

9.8 PDEs verified by geometric quantities - a preliminary version

To control the acoustic geometry, we will derive estimates for the PDEs that various
geometric quantities solve. In the next lemma,we provide a first version of these PDEs.
The results are standard and are independent of the compressible Euler equations. In
Proposition9.7, we use the compressible Euler equations to re-express various terms
in the PDEs, which will lead to the form of the equations that we use in our analysis.

Lemma 9.4 [18, PDEs verified by the St,u volume element ratio, null lapse, and con-
nection coefficients, without regard for the compressible Euler equations] The
following evolution equations hold48 relative to a null frame:

Lυ = υtrg/χ, (212a)

Lb = −bkN N , (212b)

Ltrg/χ + 1

2
(trg/χ)

2 = −|χ̂|2g/ − kN N trg/χ − RicL L , (212c)

D/ L χ̂AB + (trg/χ)χ̂AB = −kN N χ̂AB −
{

RiemL AL B − 1

2
RicL LδAB

}

, (212d)

47 Existence and uniqueness for the system (210) is standard, given the smoothness of the source terms.
48 In [54]*Equation (5.28), the terms in braces on the last line of RHS (212g) were omitted. However,
equation (212g) is needed only to derive the evolution equation (237) for μ̌, and the omitted terms have the
same schematic structure as other error terms that were bounded in [54]; i.e., the omitted terms are harmless.
Moreover, in [54], the second term on LHS (212d) was listed as 1

2 (trg/χ)χ̂AB . Fortunately, correcting the

coefficient from 1
2 to 1 does not lead to any changes in the estimates, as we further explain in the discussion

surrounding equation (374). In our statement of Lemma 9.4, we also corrected index-placement/sign errors
in some curvature terms, specifically the term 1

2RiemAL L L on RHS (212e), the term RiemAL L B on

RHS (212g), and the term 1
2εABRiemAL L B on RHS (213c). These corrections are harmless in the sense

that in practice, when deriving estimates, we only need to know the schematic structure of the first and
third of these curvature terms, which is provided by (221a) and (222a) and which is insensitive to signs. In
particular, these corrections do not affect the schematic form of the equations of Proposition9.7, which is
what we use when deriving estimates for the acoustic geometry.
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D/ LζA + 1

2
(trg/χ)ζA = −{kB N + ζB} χ̂AB − 1

2
trg/χkAN + 1

2
RiemAL L L , (212e)

Ltrg/χ + 1

2
(trg/χ)trg/χ = 2div/ζ + kN N trg/χ − χ̂AB χ̂

AB
+ 2|ζ|2g/ + RiemAL L A,

(212f)

D/ L χ̂AB + 1

2
(trg/χ)χ̂AB = −1

2
(trg/χ)χ̂AB

+ 2∇/AζB − div/ζδAB + kN N χ̂AB

+
{

2ζAζB − |ζ|2g/δAB

}

−
{

χ̂
AC

χ̂C B − 1

2
χ̂

C D
χ̂C DδAB

}

+ RiemAL L B − 1

2
RiemC L LCδAB, (212g)

div/ χ̂A + χ̂ABkB N = 1

2

{∇/Atrg/χ + kAN trg/χ
} + RiemBL B A, (213a)

div/ζ = 1

2

{

μ − kN N trg/χ − 2|ζ|2g/ − |χ̂|2g/ − 2kAB χ̂AB

}

− 1

2
RiemAL L A, (213b)

curl/ζ = 1

2
εAB χ̂

AC
χ̂BC + 1

2
εABRiemAL L B . (213c)

9.9 Main version of the PDEs verified by the acoustical quantities, including the
modified ones

The main result of this subsection is Proposition9.7, in which we derive, with the
help of the compressible Euler equations, the main PDEs that we use to control the
acoustic geometry. The proposition in particular shows how the source terms in the
compressible Euler equations influence the evolution of the acoustic geometry. Before
proving the proposition, we first introduce some additional schematic notation and, in
Lemma9.6, provide somedecompositions of various null components of the acoustical
curvature, that is, the curvature of g.

Remark 9.4 Compared to previous works, what is new are the terms in Lemma 9.6
and Proposition9.7 that are multiplied by λ−1; these terms capture, in particular, how
the top-order derivatives of the vorticity and entropy affect the acoustical curvature.

9.9.1 Additional schematic notation and a simple lemma

Let U and ξ be scalar functions or St,u-tangent tensorfields. In the rest of the paper,
we will use the schematic notation

U = f
( 	L) · ξ (214)

to mean that the Cartesian components of U can be expressed as linear combinations
of products of the Cartesian components of ξ and scalar functions of type “f

( 	L),” which
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by definition are linear combinations of products of i) smooth functions of 	� and ii) the
Cartesian components of vectorfields whose Cartesian components are polynomials
in the components of 	L with coefficients that are smooth functions of 	�. Expressions
such as f

( 	L) · ξ(1) · ξ(2) have the obvious analogous meaning. If ξ = (ξ(1), · · · ,ξ(m))
is an array of scalar functions St,u-tangent tensorfields, then f

( 	L) · ξ means sums of
terms of type f

( 	L) · ξ(i), 1 ≤ i ≤ m. As examples, we note (in view of the discussion

below (189)) that NaCa = f
( 	L) · 	C, while f( 	L) ·∂∂∂ 	� ·∂∂∂ 	� denotes a scalar function or an

St,u-tangent tensorfield whose Cartesian components are products of f
( 	L) and a term

that is quadratic in elements the array ∂∂∂ 	�. As another example, we note that (188)
and the discussion below (189) imply that the St,u-tangent tensorfield / has Cartesian
components of the form f

( 	L), which we indicate by writing / = f
( 	L). Finally, we note

that since (by (197a)) the Cartesian components of the second fundamental form k of
�t verify ki j = f( 	�) ·∂∂∂ 	�, it follows that the St,u-tangent tensorfield with components
kAN := k(eA, N ), (A = 1, 2), is of the form kAN = f

( 	L) · ∂∂∂ 	�.
We will use the following simple lemma in our proof of Proposition9.7.

Lemma 9.5 (Identities for the derivatives of some scalar functions). With d f denoting
the spacetime gradient of the scalar function f (and thus / · d f = ∇/ f ), we have the
following identities (where in (215b) and (216b), the terms “f

( 	L)” on the LHSs are
not the same as the terms “f

( 	L)” on the RHSs):

 / · d( 	L, 	L, 	N ) = f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1), (215a)

 / · df
( 	L) = f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1). (215b)

Moreover,

d( 	L, 	L, 	N ) = f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, ζ, r̃−1), (216a)

df
( 	L) = f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, ζ, r̃−1). (216b)

Proof To prove (215a), we first note the schematic relation DLα = d Lα + ��� · L =
d Lα + f

( 	L) · ∂∂∂ 	�, where ��� denotes a Cartesian Christoffel symbol of the rescaled
metric g. Viewing Lα as a scalar function, we can interpret this relation as an identity
in which the term on the left and the two terms on the right are one-forms. Projecting
these one-forms onto St,u with the tensorfield / , and using the first identity in (199a),
the fact that ki j = f( 	�) ·∂∂∂ 	�, and the fact that 	L = f

( 	L) and 	N = f
( 	L), we deduce that

for α = 0, 1, 2, 3, we have the following schematic identity for the scalar function
Lα: / d Lα = f

( 	L) · (∂∂∂ 	�,χ). Considering also that χ = f
( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1)

(as can be seen by decomposing χ = χ̂ + 1
2 (trg/χ)g/ and using (207)), we conclude

(215a) for 	L . In addition, taking into account that 	L = f
( 	L) and 	N = f

( 	L), and using

the chain and product rules, we also deduce the identity (215a) for 	L and 	N . (215b)
follows from similar arguments, and we omit the details.
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The identities (216a)–(216b) from from a similar argument, but we also take into
account (199b) and (199c). Note that the right-hand side of the identity (199c) for
DL L leads to the presence of ζ on RHSs (216a)–(216b). ��

9.9.2 Curvature component decompositions

In the next lemma, we provide some expressions for various components of the cur-
vatures of the acoustical metric g. These expressions will be important for controlling
the acoustic geometry, since curvature components appear as source terms in the PDEs
that they satisfy; see Lemma 9.4. Moreover, some of the curvature components can be
expressed with the help of the equations of Proposition9.1, thus tying the evolution
of the acoustic geometry to the fluid evolution; see Remark 9.6 and Proposition9.7.

Lemma 9.6 (Curvature component decompositions). Relative to the Cartesian coor-
dinates, the following identity holds, where on RHS (217), the component gαβ( 	�) is

treated as a scalar function under covariant differentiation and���α := (g−1)κλgαβ���
β
κ λ

is treated as a one-form under covariant differentiation:

Ricαβ = −1

2
�g( 	�)gαβ( 	�)+

1

2

{

Dα���β + Dβ���α
} + Q( 	�)[∂∂∂ 	�,∂∂∂ 	�]. (217)

Moreover,

RicL L = L(���L)+ kN N���L + λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�. (218)

Finally, there exist scalar functions on St,u, St,u-tangent one-forms, and symmetric
type

(0
2

)

St,u-tangent tensorfields, all schematically denoted by ξ and verifying ξ =
f
( 	L) · ∂∂∂ 	� (in the sense of Sect.9.9.1), such that

RicL L − L(���L) = λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�, (219)

RicL L − 1

2

{

L(���L)+ L(���L)
} = λ−1f

( 	L) · (	C,D)+ f
( 	L) · (∂∂∂ 	�, ζ) · ∂∂∂ 	�, (220)

RicL A, RiemAL L L = (∇/ ,D/ L)ξ + λ−1f
( 	L) · (	C,D)

+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	�, (221a)

RiemAL L A = div/ξ + λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · ∂∂∂ 	�,

(221b)

εABRiemAL L B = curl/ξ + f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	�, (222a)

RiemL AL B = (∇/ ,D/ L)ξ + f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	�, (222b)
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RiemABL B = div/ξA + f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	�, (222c)

RiemC AL B = ∇/ ξ + f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	�, (222d)

RiemAB AB = div/ξ + f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	�. (222e)

Remark 9.5 The curvature identities of Lemma 9.6 are crucial for the proof of Propo-
sition9.7 below. In turn, the structure of the equations of Proposition9.7 is crucial for
our derivation of estimates for the acoustic geometry.

Remark 9.6 The proofs of the identities (218)–(221b) rely on the compressible Euler
equations, while the proofs of the remaining identities in Lemma 9.6 do not. This
explains why the former identities feature λ−1-dependent source terms (which arise
from RHS (156)).

Proof (Discussion of the proofs) The identities (217) and (222a)–(222e) are the same
as in [54, Lemma 5.12], whose proofs can be found in [20]. The identities (218)–
(221b) also mirror those given in [54, Lemma 5.12], except here there are new terms
of type λ−1f

( 	L) · (	C,D), which arise when one uses equation (156) to substitute for

the terms �g( 	�)� that are generated by the term − 1
2�g( 	�)gαβ( 	�) on RHS (217). ��

9.9.3 Main version of the PDEs verified by the acoustical quantities

We now provide the main result of Sect. 9.9.

Proposition 9.7 (PDEs verified by the modified acoustical quantities, assuming a
compressible Euler solution). Assume that the Cartesian component functions
( 	�, 	
, 	S, 	C,D) are solutions to the rescaled compressible Euler equations of Propo-
sition9.1 (under the conventions of Sect.9.3). There exist St,u-tangent one-forms and
symmetric type

(0
2

)

St,u-tangent tensorfields, all schematically denoted by ξ and verify-

ing ξ = f
( 	L)·∂∂∂ 	� (see Sect.9.9.1 regarding the notation “f

( 	L)·”), such that the following
schematic identities hold, where all terms on the left-hand sides are displayed exactly
and terms on the right-hand sides are displayed schematically (in particular, we have
ignored numerical constants and minus signs on the right-hand sides).

Transport equations involving the Cartesian components Li and N i : The following
evolution equations hold in ˜M:

L Li = f
( 	L) · ∂∂∂ 	�, L N i = f

( 	L) · ∂∂∂ 	�. (223)

Moreover, along �0 (where w = r̃ = −u and a = b), we have

∂

∂w
Li = a · f

( 	L) · ∂∂∂ 	� + ∇/ a,
∂

∂w
N i = a · f

( 	L) · ∂∂∂ 	� + ∇/ a. (224)
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Transport equations involving theCartesian components!i
(A): For A = 1, 2 and i =

1, 2, 3, let
(

∂
∂ωA

)i
denote a Cartesian component of ∂

∂ωA (i.e.,
(

∂
∂ωA

)i = ∂
∂ωA xi ),

and let !(A) be the �t -tangent vectorfield with Cartesian components defined by

!i
(A) := 1

r̃

(

∂

∂ωA

)i

. (225)

Then the following evolution equation holds in ˜M:

L!i
(A) = f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂) · 	!(A). (226)

Moreover, along�0 (wherew = r̃ = −u and a = b), the following evolution equation
holds for (w,ω) ∈ (0, w∗;(λ)] × S

2:

∂

∂w
!i
(A) = a · f

( 	L) · (∂∂∂ 	�, χ̂) · 	!(A) + f
( 	L) · ∇/ a · 	!(A), (227)

where 	!(A) := (!1
(A),!

2
(A),!

3
(A)).

Transport equations connected to the trace of χ:

Ltrg̃/χ̃
(Small) + 2

r̃
trg̃/χ̃

(Small) = λ−1f
( 	L) · (	C,D)

+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), r̃−1) · ∂∂∂ 	� + |χ̂|2g/ + trg̃/χ̃
(Small) · trg̃/χ̃

(Small), (228a)

D/ L∇/ trg̃/χ̃
(Small) + 3

r̃
∇/ trg/χ̃

(Small) = λ−1f
( 	L) · ∇/ (	C,D)

+ λ−1f
( 	L) · (	S · ∂∂∂ 	�,∂∂∂ 	�, ∂ 	
, ∂ 	S) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1)

+ f
( 	L) · ∇/∂∂∂ 	� · (∂∂∂ 	�, trg̃/χ̃

(Small), r̃−1)

+ f
( 	L) · ∇/ χ̂ · χ̂ + f

( 	L) · ∇/ trg̃/χ̃
(Small) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂)

+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · (∂∂∂ 	�, trg̃/χ̃
(Small), r̃−1) · ∂∂∂ 	�. (228b)

Above and throughout, we use 	S ·∂∂∂ 	� to schematically denote terms of the form Sa∂α�ι,
where a = 1, 2, 3, α = 0, 1, 2, 3 and ι = 0, 1, 2, 3, 4.

Moreover,

L

{

1

2
trg̃/χ̃υ

}

− 1

4

(

trg/χ
)2
υ + 1

2
{L ln b} trg̃/χ̃υ − |∇/σ|2g/υ

= λ−1f
( 	L) · (	C,D) · υ + f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), r̃−1) · ∂∂∂ 	� · υ + |χ̂|2g/ · υ + |∇/σ|2g/ · υ.

(229)

PDEs involving χ̂:

div/ χ̂ = ∇/ trg̃/χ̃
(Small) + div/ξ + f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · ∂∂∂ 	�, (230)
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D/ L χ̂ + (trg/χ)χ̂ = (∇/ ,D/ L )ξ + λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · ∂∂∂ 	�.

(231)

The transport equation for ζ:

D/ Lζ + 1

2
(trg/χ)ζ = (∇/ ,D/ L)ξ + λ−1f

( 	L) · (	C,D)+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1)

· ∂∂∂ 	� + f
( 	L) · ζ · χ̂. (232)

The transport equation for b:

Lb = b · f
( 	L) · ∂∂∂ 	�. (233)

Transport equation for g/: Along the integral curves of L, parameterized by t, we
have, with e/ the standard round metric on the Euclidean unit sphere S2, the following
identity:

d

dt

{

r̃−2g/

(

∂

∂ωA
,
∂

∂ωB

)

− e/

(

∂

∂ωA
,
∂

∂ωB

)}

=
{

trg̃/χ̃
(Small) −���L

}

{

r̃−2g/

(

∂

∂ωA
,
∂

∂ωB

)

− e/

(

∂

∂ωA
,
∂

∂ωB

)}

+
{

trg̃/χ̃
(Small) −���L

}

e/

(

∂

∂ωA
,
∂

∂ωB

)

+ 2

r̃2
χ̂

(

∂

∂ωA
,
∂

∂ωB

)

. (234)

Transport equations for υ and ∇/ υ:

L ln
(

r̃−2υ
)

= trg/χ − 2

r̃
= trg̃/χ̃

(Small) −���L , (235a)

L∇/ ln
(

r̃−2υ
)

+ 1

2
(trg/χ)∇/ ln

(

r̃−2υ
)

= f
( 	L) · χ̂ · ∇/ ln

(

r̃−2υ
)

+ ∇/ trg̃/χ̃
(Small) − ∇/ (���L ).

(235b)

An algebraic identity for μ: The mass aspect function μ defined in (208) verifies the
following identity:

μ = λ−1f
( 	L) · (	C,D)+ div/ξ + f

( 	L) · χ̂ · χ̂ + f
( 	L) · ∇/ ln

(

r̃−2υ
)

· (∂∂∂ 	�, ζ)
+ f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · ∂∂∂ 	�. (236)

The transport equation for μ̌: The modified mass aspect function μ̌ defined by (209)
verifies the following transport equation:

Lμ̌ + (trg/χ)μ̌ = I(1) + I(2), (237)

I(1) = r̃−1div/ξ + r̃−2ξ, (238a)
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I(2) = λ−1f
( 	L) · ∂∂∂(	C,D)+ λ−1f

( 	L) · (	S · ∂∂∂ 	�,∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, ζ, r̃−1)

+ f
( 	L) · ∇/˜ζ · χ̂ + f

( 	L) · ∇/σ · (∇/∂∂∂ 	�,∇/ trg̃/χ̃
(Small))

+ f
( 	L) · ∇/σ · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	� + f
( 	L) · ∇/ trg̃/χ̃

(Small) · (∂∂∂ 	�, ζ)
+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, ζ, r̃−1) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, ζ) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂)

+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, ζ) · ∂∂∂2 	�. (238b)

The Hodge system for ζ: The torsion ζ defined in (196) satisfies the following Hodge
system on St,u:

div/ζ = λ−1f
( 	L) · (	C,D)+ div/ξ + f

( 	L) · ζ · ζ + f
( 	L) · χ̂ · χ̂

+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	� + f
( 	L) · ∇/ ln

(

r̃−2υ
)

· (∂∂∂ 	�, ζ),
(239a)

curl/ζ = curl/ξ + f
( 	L) · χ̂ · χ̂ + f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · ∂∂∂ 	�. (239b)

TheHodge system for˜ζ: The modified torsion˜ζ defined by (211) satisfies the following
Hodge system on St,u:

div/˜ζ − 1

2
μ̌ = div/ξ + λ−1f

( 	L) · (	C,D)+ f
( 	L) · ζ · ζ + f

( 	L) · χ̂ · χ̂

+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	�, (240a)

curl/˜ζ = curl/ξ + f
( 	L) · χ̂ · χ̂ + f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · ∂∂∂ 	�. (240b)

The Hodge system for˜ζ−μ/ : The difference˜ζ−μ/ (where˜ζ is defined by (211) and μ/

is defined by (210)) verifies the following Hodge system on St,u (see definition (205)
regarding “overline” notation):

div/ (˜ζ − μ/ ) = div/ξ +
{

λ−1f
( 	L) · (	C,D)− λ−1f

( 	L) · (	C,D)
}

+
{

f
( 	L) · ζ · ζ − f

( 	L) · ζ · ζ
}

+
{

f
( 	L) · χ̂ · χ̂ − f

( 	L) · χ̂ · χ̂
}

+
{

f
( 	L) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂, r̃−1) · ∂∂∂ 	� − f
( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · ∂∂∂ 	�

}

,

(241a)

curl/ (˜ζ − μ/ ) = curl/ξ + f
( 	L) · χ̂ · χ̂ + f

( 	L) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · ∂∂∂ 	�. (241b)

A decomposition of μ/ and a Hodge-transport system for the constituent parts: Let

I(1) and I(2) be the inhomogeneous terms from (238a)–(238b). Then in ˜M(I nt)
(see
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(174b)), we can decompose the solution μ/ to (210) as follows:

μ/ = μ/ (1) + μ/ (2), (242)

where μ/ (1) and μ/ (2) verify the following Hodge-transport PDE systems:

div/

{

D/ Lμ/ (1) +
1

2
(trg/χ)μ/ (1)

}

= I(1) − I(1), (243a)

curl/

{

D/ Lμ/ (1) +
1

2
(trg/χ)μ/ (1)

}

= 0, (243b)

div/

{

D/ Lμ/ (2) +
1

2
(trg/χ)μ/ (2)

}

= I(2) − I(2) + χ̂ · ∇/μ/ + (∇/∂∂∂ 	�,∇/ trg̃/χ̃
(Small)) · μ/

+ (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂) · μ/

+ (trg/χ − trg/χ)μ̌, (244a)

curl/

{

D/ Lμ/ (2) +
1

2
(trg/χ)μ/ (2)

}

= χ̂ · ∇/μ/ + (∇/∂∂∂ 	�,∇/ trg̃/χ̃
(Small)) · μ/

+ (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, r̃−1) · (∂∂∂ 	�, trg̃/χ̃

(Small), χ̂) · μ/ ,

(244b)

subject to the following initial conditions along the cone-tip axis for u ∈ [0, T∗;(λ)]:

|μ/ (1) − μ/ |g/(t, u,ω)→ 0 as t ↓ u, |μ/ (2)|g/(t, u,ω)→ 0 as t ↓ u. (245)

Proof (Proof sketch) Throughout, we will silently use the identities provided by
Lemma 9.5.

The equations in (223) are a straightforward consequence of the first equation in
(199b) and the relation Li = N i + f( 	�).

To prove (224), we first note that along �0, we have the vectorfield identity ∂
∂w

=
aN (see (167)). Also using the identity Li = Bi + N i and the fact that Bi = f( 	�),
we deduce that ∂

∂w
Li = a · f

( 	L) · ∂∂∂ 	� + ∂
∂w

N i . Thus, to conclude both equations in

(224), it suffices to derive the equation for ∂
∂w

N i stated in (224). The desired result is
a straightforward consequence of the identity ∂

∂w
= aN and the identity (198).

(228a) is essentially proved as [54, Equation (5.75)]. The only difference is that in
the present work, we have the λ−1-multiplied terms on RHS (228a), which arise when
one uses equation (219) to algebraically substitute for the termRicL L on RHS (212c).
Similarly, (228b) was essentially proved as [54, Equation (5.76)], the only difference
being that we take into account Lemma 9.5 and the expressions (153a) and (153b)
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for the rescaled Ci and D when computing ∇/ applied to the λ−1-multiplied terms on
RHS (228a).

The identity (229) follows from the same arguments used to prove (228a), based
on (218), (212a), (212b), and (212c); see the proof of [54, Proposition 7.22] for the
analogous identity in the context of scalar wave equations.

Based on (222c) and (213a) (and the standard properties of Riemαβγ δ under
exchanges of indices), the identity (230) was proved as [54, Equation (5.77)].

The identity (231) is essentially proved as [54, Equation (5.68)] based onLemma9.6
and equation (212d). The only difference (modulo Footnote 48) is that in the present
work, we have the λ−1-multiplied terms on RHS (231), which arise when one uses
equation (219) to algebraically substitute for the term RicL L on RHS (212d). Similar
remarks apply to equation (232), which follows from (212e) and (221a).

(233) follows from (212b).
(234) was proved just below [54, Equation (5.68)].
(235a) and (235b) were derived in the proof of [54] Lemma 5.15, where ln

(

r̃−2υ
)

was denoted by “ϕ.”
(236) is essentially proved as [54, Equation (5.92)], where r̃−2υ was denoted by

“ϕ.” The only difference is that in the present work, we have the λ−1-multiplied terms
on RHS (236), which arise when one uses equation (221b) to algebraically substitute
for the term RiemAL L A on RHS (212f). We remark that equation (212f) is relevant
for the proof since the argument relies on deriving an expression for Ltrg/χ − Ltrg/χ.

To prove (239a)–(239b), we use (221b)–(222a) to substitute for the curvature terms
on RHSs (213b)–(213c), and we use (236) to substitute for the term μ on RHS (213b).
Similarly, (240a)–(240b) follow from (213b)–(213c), the definitions of˜ζ and μ̌, and
the curvature identities (221b)–(222a). (241a)–(241b) then follow easily from (210),
(240a)–(240b), and the fact that div/ of an St,u-tangent one-form must have vanishing
average value on St,u (in the sense of (205)).

To prove (242)–(244b), one commutes equation (210) with L and uses the same
arguments used in the proof of [54, Equation (6.34)], which in particular rely on
Lemma 9.3 as well as equation (237), derived independently below. We clarify the
following new feature of the present work: in [54, Equation (6.34)], the author derived
equations of the form div/

{

D/ Lμ/ + 1
2 (trg/χ)μ/

} = · · · , curl/ {D/ Lμ/ + 1
2 (trg/χ)μ/

} = · · · ,
whereas for mathematical convenience, we have split these equations into similar
equations for μ/ (1) and μ/ (2), the point being that later, we will use distinct arguments
to control the μ/ (i). The splitting is possible since equation (210) is linear in μ/ .

To prove (245), we first clarify that the μ/ (i) are solved for by first solving their
Hodge systems (243a)–(244b) to obtain D/ Lμ/ (i) + 1

2 (trg/χ)μ/ (i) and then integrating
the corresponding inhomogeneous transport equations to obtain μ/ (i). However, there
is freedom in how we relate the “initial conditions” of μ/ along the cone-tip axis to
those of μ/ (1) and μ/ (2), where the only constraint is that (242) must hold. Thus, (245)
merely represents a choice of vanishing initial conditions for μ/ (2).

To prove (227), we first note that since ∂
∂w

|�0 = [aN ]|�0 and since ∂
∂w

commutes
with ∂

∂ωA , we have the following evolution equation for the Cartesian components
(

∂
∂ωA

)i
: ∂
∂w

(

∂
∂ωA

)i = a ∂
∂ωA N i + N i ∂a

∂ωA . From this evolution equation and the



Rough sound waves in 3D compressible Euler flow with vorticity Page 87 of 153 41

second equation in (198), we find, after splitting θ into its trace and trace-free parts,
that the evolution equation can be expressed in the following schematic form:

∂

∂u

(

∂

∂ωA

)i
= a · D/ ∂

∂ωA
Ni + a · f

( 	L) · ∂ 	� ·
{

(

∂

∂ωA

) j
}

j=1,2,3

+ f
( 	L) · ∂a

∂ωA

= 1

2
atrg/θ

(

∂

∂ωA

)i
+ a · f

( 	L) · (∂∂∂ 	�, θ̂) ·
{

(

∂

∂ωA

) j
}

j=1,2,3

+ f
( 	L) · ∂a

∂ωA
,

(246)

where the first product onRHS (246) is precisely depicted and the last two are schemat-
ically depicted. Using (280) to substitute for the term trg/θ and using (200), we find
that (246) can be expressed as

∂

∂w

(

∂

∂ωA

)i
= 1

w

(

∂

∂ωA

)i
+ a · f

( 	L) · (∂∂∂ 	�, χ̂) ·
{

(

∂

∂ωA

) j
}

j=1,2,3

+ f
( 	L) · ∂a

∂ωA
,

(247)

where the first product onRHS (247) is precisely depicted and the last two are schemat-
ically depicted. From (247) and the fact that ∂

∂w
r̃ = 1 (because r̃ |�0 = w), we easily

conclude the desired equation (227).
To prove (226), we first note that since ∂

∂t = L relative to the geometric coordinates,
and since ∂

∂t commutes with ∂
∂ωA , we have the following evolution equation for the

Cartesian components
(

∂
∂ωA

)i
: ∂
∂t

(

∂
∂ωA

)i = ∂
∂ωA Li . From this evolution equation

and the first equation in (199a), we find, after splitting χ into its trace and trace-free
parts, that the evolution equation can be expressed in the following schematic form:

∂

∂t

(

∂

∂ωA

)i

= D/ ∂

∂ωA
Li + f

( 	L) · ∂ 	� ·
{

(

∂

∂ωA

) j
}

j=1,2,3

= 1

2
trg/χ

(

∂

∂ωA

)i

+ f
( 	L) · (∂∂∂ 	�, χ̂) ·

{

(

∂

∂ωA

) j
}

j=1,2,3

, (248)

where the first product on RHS (248) is precisely depicted and the second one is
schematically depicted. Using (207) to substitute for the term trg/χ, we find that (248)
can be expressed as

∂

∂t

(

∂

∂ωA

)i

= 1

r̃

(

∂

∂ωA

)i

+ f
( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂) ·

{

(

∂

∂ωA

) j
}

j=1,2,3

,

(249)

where the first product on RHS (249) is precisely depicted and the last one is schemat-
ically depicted. From (249) and the fact that ∂

∂t r̃ = 1, we easily conclude the desired
equation (226).
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Finally, we provide the lengthy derivation of (237). Throughout the analysis, we
will silently use the following identities, valid for scalar functions ϕ:

L Lϕ − L Lϕ = 2(ζA − ζA)∇/Aϕ + kN N Lϕ − kN N Lϕ, (250)

L�/ϕ −�/ Lϕ = −trg/χ�/ϕ − 2χ̂AB∇/ 2ABϕ − (div/χA)∇/Aϕ

+ {

trg/χζB − χABζA − RiemBC LC
}∇/Bϕ, (251)

�g( 	�)ϕ = −L Lϕ +�/ϕ − 1

2
trg/χLϕ − 1

2
trg/χLϕ + 2ζA∇/Aϕ + kN N Lϕ. (252)

The identities (250)–(252) follow from Lemma 9.2, (187), and straightforward calcu-
lations. We will also often silently use the identity (see (200)) χ

AB
= −χAB − 2kAB

to eliminate χ
AB

from various equations.
We now apply L to the definition (208) and use the evolution equations (212c),

(212f), and (212g), and Lemma 9.2 to deduce:

Lμ + trg/χμ

= −L(RicL L)− 1

2
RicL L trg/χ − (LkN N )trg/χ − (Ltrg/χ)kN N + 2(ζA − ζA)∇/Atrg/χ

+ trg/χ(div/ζ + |ζ|2g/ + 1

2
RiemAL L A)+ 1

2

(

trg/χχ̂AB χ̂
AB

+ trg/χ|χ̂|2g/
)

− 2χ̂AB

(

2∇/AζB + kN N χ̂AB + 2ζAζB − χ̂
AC

χ̂C B + RiemAL L B

)

. (253)

We will now re-express the factor L(kN N ) that appears on RHS (253). To this end,
we set X = Y := N in (194), apply DB to both sides (so that the LHS of the
resulting identity is the scalar function B(kN N )), commute DB with DN on the RHS
of the resulting identity using the definition of curvature, use the relation B = 1

2 (L +
L) (see (182)), use the relation DBB = 0 (which is straightforward to derive using
that g(B,B) = −1 and the fact that [B, Z ] is �t -tangent—hence g-orthogonal to
B—whenever Z is �t -tangent), and use Lemma 9.2 to derive the following “second
variation” identity:

L(kN N ) = −L(kN N )+ 2kAN kAN − 2(kN N )
2 + 4kAN ζA + 1

2
RiemL L L L . (254)

Since

RicL L = LαLβ(g−1)μνRiemαμβν,

RiemAL AL = LαLβ(g/−1)μνRiemαμβν,
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we have, in view of (187),

RicL L − RiemAL AL = LαLβ
[

(g−1)μν − (g/−1)μν
]

Riemαμβν

= −1

2
LαLβLμLνRiemαμβν − 1

2
LαLβLμLνRiemαμβν

= −1

2
(RiemL L L L + RiemL L L L) = 1

2
RiemL L L L .

From this identity, the symmetries of the Riemann curvature tensor, and (221b), we
find that

1

2
RiemL L L L = RicL L − δABRiemAL BL

= RicL L + div/ξ + λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · ∂∂∂ 	�.

Combining the above calculations, we can rewrite (253) as follows:

Lμ + trg/χμ = −L(RicL L)− 1

2
RicL L trg/χ

+ trg/χ
{

L(kN N )− RicL L − div/ξ − 2kAN kAN + 2(kN N )
2 − 4kAN ζA

}

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · ∂∂∂ 	�
}

− (Ltrg/χ)kN N + 2(ζA − ζA)∇/Atrg/χ

+ trg/χ

(

div/ζ + |ζ|2g/ + 1

2
RiemAL L A

)

+ 1

2

(

trg/χχ̂AB χ̂
AB

+ trg/χ|χ̂|2g/
)

− 2χ̂AB

(

2∇/AζB + kN N χ̂AB + 2ζAζB − χ̂
AC

χ̂C B + RiemAL L B

)

.

With the help of (200), we can rearrange the RHS to rewrite this identity as follows:

Lμ + trg/χμ = −L(RicL L )− 1

2
RicL L trg/χ − trg/χRicL L

− (Ltrg/χ)kN N + 2(ζA − ζA)∇/Atrg/χ + 1

2

(

trg/χχ̂AB χ̂AB + trg/χ|χ̂|2g/
)

+ trg/χ

{

div/ζ − div/ξ + 1

2
RiemAL L A + L(kN N )− |ζ|2g/ + 2(kN N )

2 + 4ζAζA

}

− 2χ̂AB

(

2∇/AζB + kN N χ̂AB + 2ζAζB − χ̂AC χ̂C B + RiemAL L B

)

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · ∂∂∂ 	�
}

. (255)

We will now uncover the structure of the terms on RHS (255). To help the reader
navigate the calculations in the remainder of the proof of (237), we also recall that
we treat ���α := (g−1)κλgαβ���

β
κ λ as a one-form under covariant differentiation (as in

Lemma 9.6), that���L := Lα���α , and that���A := eαA���α . First, invoking (218) and (220),
we find that
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− L(RicL L )− 1

2
RicL L trg/χ − trg/χRicL L

= −L L(���L )− 1

2
trg/χL(���L )− 1

2
trg/χL(���L )− 1

2
trg/χL(���L )

− (L(kN N ))���L − kN N L(���L )− 1

2
trg/χkN N���L − L

{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�
}

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�
}

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, ζ) · ∂∂∂ 	�
}

.

(256)

A key observation is that the first, second, and fourth terms on RHS (256) produce
�g( 	�)(���L) (up to lower-order terms)when added to49�/ (���L); this can be seen from the
expression (252). Next, we apply the operator 2�/ to (201a) and use (251) to commute
it through the operator L . Also using the identity div/χA = −χ̂ABkB N + ∇/Atrg/χ +
1
2kAN trg/χ + RiemBL B A (see (213a)) and (200), we obtain the following identity:

2L�/σ + 2trg/χ�/σ = �/ (���L)− 4χ̂AB∇/ 2ABσ − 2(∇/Atrg/χ)∇/Aσ

− 4RiemABL B∇/Aσ + trg/χζA∇/Aσ − 4χ̂ABζA∇/Bσ. (257)

Adding (255) and (257), using (256) and (252), and rearranging the terms, we deduce
that

L(μ + 2�/σ)+ trg/χ(μ + 2�/σ)

= �g( 	�)(���L)− 2ζA∇/A(���L)− 2kN N L(���L)− (L(kN N ))���L

− 4χ̂AB∇/ 2ABσ − 4χ̂AB∇/AζB

− 2(∇/Atrg/χ)∇/Aσ + 2(ζA − ζA)∇/Atrg/χ

− 4RiemABL B∇/Aσ

− (kAN trg/χ − 2χ̂ABkB N )∇/Aσ − 2χABζA∇/Bσ

− (Ltrg/χ)kN N

+ trg/χ
{

div/ζ − div/ξ
} + 1

2
trg/χRiemAL L A

+ trg/χL(kN N )− 1

2
trg/χL(���L)

+ trg/χ
{

−|ζ|2g/ + 2(kN N )
2 + 4ζAζA

}

+ 1

2
trg/χχ̂AB χ̂

AB
+ trg/χ|χ̂|2g/ − 1

2
trg/χkN N���L

− 2χ̂ABRiemAL L B − 2χ̂AB
{

kN N χ̂AB + 2ζAζB
}

− trg/χf( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · ∂∂∂ 	�
− L

{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�
}

49 We recall that �/ f := ∇/ 2AA f ; see the discussion in Sect. 9.6.4.



Rough sound waves in 3D compressible Euler flow with vorticity Page 91 of 153 41

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�
}

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, ζ) · ∂∂∂ 	�
}

. (258)

We next manipulate (258) as follows: we move the terms trg/χL(kN N )− 1
2 trg/χL(���L)

from the RHS to the LHS; subtract (Ltrg/χ)kN N from both sides; add 1
2 (Ltrg/χ)���L to

both sides; and finally, add 1
2 (trg/χ)

2���L − (trg/χ)2kN N to both sides. After these steps,
in view of definition (209), we see that the LHS becomes

Lμ̌ + trg/χμ̌.

With the help of definition (211), we now rearrange some other terms on RHS (258)
as follows:

−4χ̂AB∇/ 2ABσ − 4χ̂AB∇/AζB = −4χ̂AB∇/A
˜ζB,

−2(∇/Atrg/χ)∇/Aσ + 2(ζA − ζA)∇/Atrg/χ = 2(ζA −˜ζA)∇/Atrg/χ.

Combining the above calculations,wehave thus far obtained the following equation:

Lμ̌ + trg/χμ̌

= �g( 	�)(���L)− 2ζA∇/A(���L)− 2kN N L(���L)− (L(kN N ))���L

+ 1

2
(trg/χ)

2���L − (trg/χ)2kN N

− 4χ̂AB∇/A
˜ζB + 2(ζA −˜ζA)∇/Atrg/χ

− 4RiemABL B∇/Aσ

− (kAN trg/χ − 2χ̂ABkB N )∇/Aσ − 2χABζA∇/Bσ

− (2Ltrg/χ)kN N + 1

2
(Ltrg/χ)���L

+ trg/χ
{

div/ζ − div/ξ
} + 1

2
trg/χRiemAL L A

+ trg/χ
{

−|ζ|2g/ + 2(kN N )
2 + 4ζAζA

}

+ 1

2
trg/χχ̂AB χ̂

AB
+ trg/χ|χ̂|2g/ − 1

2
trg/χkN N���L

− 2χ̂ABRiemAL L B − 2χ̂AB
{

kN N χ̂AB + 2ζAζB
}

− trg/χf( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · ∂∂∂ 	�
− L

{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�
}

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�
}

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, ζ) · ∂∂∂ 	�
}

. (259)
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We proceed to expand the term �g( 	�)(���L) on RHS (259), where we recall from

Definition9.3 that ���L := Lα���α . We therefore compute that50

�g( 	�)(���L) = ���α�g( 	�)L
α + Lα�g( 	�)���α + 2(DμLα)Dμ���α. (260)

We first handle the term �g( 	�)Lα in (260). Using the decomposition of g−1 relative
to a null frame (i.e., (187)) and Lemma 9.2, we compute that

�g( 	�)L
α = −DL(DL Lα)+ DeA(DeA Lα)+ DDL L Lα − DDeA eA Lα − 1

2
RiemαL L L

= div/χAeαA + (div/ζ)Lα + (L(kN N ))L
α + 1

2
|χ|2g/Lα + 1

2
χABχ

AB
Lα

− trg/χζAeαA − 1

2
trg/χkN N Lα + 1

2
trg/χkN N Lα + 2ζAχABeαB + 2kN N ζAeαA

+ ζAχABeαB + |ζ|2g/Lα − 1

2
RiemαL L L . (261)

Contracting (261) against ���α , we find that

���α�g( 	�)L
α = (div/χA)���A + (div/ζ)���L + (L(kN N ))���L + 1

2
|χ|2g/���L + 1

2
χABχ

AB
���L

− trg/χζA���A − 1

2
trg/χkN N���L + 1

2
trg/χkN N���L + 2ζAχAB���B

+ ζAχAB���B + |ζ|2g/���L − 1

2
���αRiemαL L L . (262)

Next, we again use (187) and Lemma 9.2 to compute the last product in (260):

2(DμLα)Dμ���α = kN N LαDL���α − 2ζAeαADL���α − kN N LαDL���α

− 2kAN LαDA���α + 2χABeαBDA���α. (263)

Next we use the decomposition χAB = χ̂AB + 1
2 trg/χg/AB , (207), and (213a) to

rewrite the first product on RHS (262) as follows:

(div/χA)���A = (∇/Atrg̃/χ̃
(Small))���A − (∇/A(���L))���A − χ̂ABkB N���A

+ 1

2
trg/χkAN���A + RiemAL AB���B . (264)

Moreover, we use the decomposition χAB = χ̂AB + 1
2 trg/χg/AB and (207) to rewrite

the last product on RHS (263) as follows, where ξ denotes the g-orthogonal projection
onto St,u of the one-form with Cartesian components 2���α:

50 Since �g( 	�)(���L ) = �g( 	�)(Lα���α) = (g−1)αβDαDβ(Lα���α), to obtain (260), we have expanded this

expression using the Leibniz rule, where we treat Lα as a vectorfield under covariant differentiation and
we treat ���α as a one-form under covariant differentiation.
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2χABeαBDA���α = 2χ̂ABeαBD/ A���α + trg/χeαAD/ A���α

= 2

r̃
eαAD/ A���α + trg̃/χ̃

(Small)eαAD/ A���α −���LeαAD/ A���α + 2χ̂ABeαBD/ A���α

= 1

r̃
div/ξ + trg̃/χ̃

(Small)eαAD/ A���α −���LeαAD/ A���α + 2χ̂ABeαBD/ A���α.

(265)

Moreover, using (212c), we derive the following identity for the two Ltrg/χ-
involving products on RHS (259):

−2(Ltrg/χ)kN N = (trg/χ)2kN N + 2|χ̂|2g/kN N + 2trg/χ(kN N )
2 + 2RicL LkN N , (266)

1

2
(Ltrg/χ)���L = −1

4
(trg/χ)

2���L − 1

2
|χ̂|2g/���L − 1

2
trg/χkN N���L − 1

2
RicL L���L . (267)

We now use (266)–(267) to substitute for the relevant products on RHS (259), we
use (260) to substitute for the first term�g( 	�)(���L) on RHS (259), we use (262)–(263)
to substitute for the first and third products on RHS (260) (specifically, ���α�g( 	�)Lα
and 2(DμLα)Dμ���α), and we use (264)–(265) to substitute for the relevant products on
RHSs (262)–(263). Also using (200), in total, we compute that the following equation
holds:

Lμ̌ + trg/χμ̌ = Lα�g( 	�)���α − 4RiemABL B∇/Aσ − 2χ̂ABRiemAL L B + RiemAL AB���B

− 1

2
���αRiemαL L L + 1

2
trg/χRiemAL L A + 2RicL L kN N − 1

2
RicL L���L + Ěrr,

(268)

where

Ěrr = 1

r̃
div/ξ + trg/χ

{

div/ζ − div/ξ
} + 1

r̃2
ξ + 1

4
(trg/χ)

2���L + 1

2
|χ|2g/���L + 1

2
χABχAB�

��L

+ (∇/Atrg̃/χ̃
(Small))���A + (div/ζ)���L + kN N LαDL���α − 2ζAeαADL���α − kN N LαDL���α

− 2kN N L(���L )− (∇/A(���L ))���A − 2kAN LαDA���α + trg̃/χ̃
(Small)eαAD/ A���α

−���L eαAD/ A���α + 2χ̂ABeαBD/ A���α − 2ζA∇/A(���L )− 4χ̂AB∇/A
˜ζB + 2(ζA −˜ζA)∇/Atrg/χ

− (kAN trg/χ − 2χ̂ABkB N )∇/Aσ − 2χABζA∇/Bσ + 2χABζA���B + χABζA���B

+ trg/χ

{

−|ζ|2g/ + 4(kN N )
2 + 4ζAζA − 1

2
kN N���L + 1

2
kAN���A − ζA���A − 1

2
kN N���L

}

+ 1

2
trg/χχ̂AB χ̂AB + trg/χ|χ̂|2g/ + χ̂AB

{−4ζAζB + ζA���B
} − 1

2
|χ̂|2g/���L

+ 2kN N ζA���A + |ζ|2g/���L − trg/χf( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · ∂∂∂ 	�
− L

{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�
}

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · ∂∂∂ 	� · ∂∂∂ 	�
}

− trg/χ
{

λ−1f
( 	L) · (	C,D)+ f

( 	L) · (∂∂∂ 	�, ζ) · ∂∂∂ 	�
}

. (269)
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With the help of the decomposition χAB = χ̂AB + 1
2 trg/χg/AB , definition (207) (which

implies that schematically, we have trg/χ = f
( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), r̃−1)), definition

(211), the identity χAB + χ
AB

= −2kAB (see (200)), and Lemma 9.5, we verify by
direct inspection that all terms on RHS (269) can be accommodated into RHS (238b),
aside from the terms on the first line of RHS (269), which split into terms of type
RHS (238a) and of type RHS (238b).

To finish the proof of (237), it remains only for us to verify that the remaining
terms on RHS (268) have the form of terms on either RHS (238a) or RHS (238b).
First, using (222c), we see that the term −4RiemABL B∇/Aσ can be accommodated
into the terms on RHS (238b) featuring a factor of ∇/σ. Next, to handle the term
−2χ̂ABRiemAL L B , we first note that since the Cartesian components gαβ are of the
schematic form gαβ = f( 	�), the standard expression for the components of Riem in
terms of the Christoffel symbols of g and their first derivatives yields that relative to
the Cartesian coordinates, we haveRiemαβγ δ = f( 	�) ·∂∂∂2 	�+ f( 	�) ·(∂∂∂ 	�)2. It follows
that, schematically, we have−2χ̂ABRiemAL L B = f

( 	L) ·χ̂·∂∂∂2 	�+f
( 	L) ·χ̂·(∂∂∂ 	�)2, which

is of the form of the next-to-last and last products on RHS (238b). Using the schematic
relations ���α = f( 	�) · ∂∂∂ 	�, ���L = f

( 	L) · ∂∂∂ 	�, and kN N = f
( 	L) · ∂∂∂ 	�, we can handle the

termsRiemAL AB���B ,− 1
2���αRiem

α
L L L , 2RicL L kN N , and− 1

2RicL L���L using a similar
argument, which allows us to incorporate these error terms into the next-to-last and
last products on RHS (238b). To handle 1

2 trg/χRiemAL L A, we use (221b) to substitute
for RiemAL L A and (207); this leads to terms of the form RHSs (238a)–(238b). To
treat the remaining term Lα�g���α on RHS (268), we first recall that���α = f( 	�) ·∂∂∂ 	�.
Thus, we can commute equation (156) with f( 	�) · ∂∂∂ (recall that we have dropped the
“λ” subscripts featured in (156)) to conclude that Lα�g���α can be accommodated into
the terms on RHS (238b) as desired. We clarify that when one commutes equation
(156) with f( 	�) · ∂∂∂ , a source term appears from the RHS (156) that is of the form
λ−1f( 	�) · ∂∂∂ 	� · (	C,D). One then uses equations (153a) and (153b) to express 	C =
f( 	�) · ∂∂∂ 	
+ f( 	�) · 	S · ∂∂∂ 	� and D = f( 	�)∂∂∂ 	S + f( 	�) · 	S · ∂∂∂ 	�. In particular, this leads
to the presence of the terms of type λ−1f( 	�) · ∂∂∂ 	� · 	S · ∂∂∂ 	�. This finishes the proof of
(237) and completes our proof sketch of the proposition. ��

9.10 Norms

In this subsection,wedefine the norms thatwewill use to control the acoustic geometry.
These norms are stated in terms of the volume forms defined in Sect. 9.6.3.

Definition 9.6 (Norms). For St,u-tangent tensorfields ξ and q ∈ [1,∞), we define

‖ξ‖Lq
g/(St,u)

:=
{∫

ω∈S2
|ξ(t, u,ω)|qg/ d�g/(t,u,ω)

}1/q

, (270a)

‖ξ‖Lq
ω(St,u )

:=
{∫

ω∈S2
|ξ(t, u,ω)|qg/ d�e/(ω)

}1/q

, ‖ξ‖L∞
ω(St,u ) := ess supω∈S2 |ξ(t, u,ω)|g/.

(270b)
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Moreover, if q1 ∈ [1,∞) and q2 ∈ [1,∞], then with [u]+ := max{0, u} denoting
the minimum value of t along˜Cu , we define

‖ξ‖L
q1
t L

q2
ω (˜Cu)

:=
{∫ T∗;(λ)

[u]+
‖ξ‖q1

L
q2
ω (Sτ,u)

dτ

}1/q1

,

‖ξ‖L∞
t L

q2
ω (˜Cu)

:= ess supτ∈[[u]+,T∗;(λ)]‖ξ‖L
q2
ω (St,u)

. (271)

Moreover, if q1 ∈ [1,∞) and q2 ∈ [1,∞], then noting that − 4
5T∗;(λ) ≤ u ≤ t along

˜�t , we define

‖ξ‖L
q1
u L

q2
ω (˜�t )

:=
{

∫ t

− 4
5 T∗;(λ)

‖ξ‖q1
L

q2
ω (St,u)

du

}1/q1

,

‖ξ‖L∞
u L

q2
ω (˜�t )

:= ess supu∈[− 4
5 T∗;(λ),t]‖ξ‖L

q2
ω (Sτ,u)

. (272)

Similarly, if q1, q2 ∈ [1,∞), then

‖ξ‖L
q1
u L

q2
g/ (

˜�t )
:=

{

∫ t

− 4
5 T∗;(λ)

‖ξ‖q1
L

q2
g/ (St,u)

du

}1/q1

,

‖ξ‖L∞
u L

q2
g/ (

˜�t )
:= ess supu∈[− 4

5 T∗;(λ),t]‖ξ‖q1
L

q2
g/ (St,u)

. (273)

Similarly, if q1, q2, q3 ∈ [1,∞), then we define

‖ξ‖L
q1
t L

q2
u L

q3
ω (˜M)

:=
{∫ T∗;(λ)

0
‖ξ‖q1

L
q2
u L

q3
ω (˜�τ)

dτ

}1/q1

, (274a)

‖ξ‖L
q1
u L

q2
t L

q3
ω (˜M)

:=
{

∫ T∗;(λ)

− 4
5 T∗;(λ)

‖ξ‖q1
L

q2
t L

q3
ω (˜Cu)

du

}1/q1

, (274b)

‖ξ‖Lq
t L∞

x (
˜M) :=

{∫ T∗;(λ)

0
‖ξ‖q

L∞(˜�τ)
dτ

}1/q

, (274c)

‖ξ‖L∞(˜M) := ess supt∈[0,T∗;(λ)], u∈[− 4
5 T∗;(λ),t],ω∈S2 |ξ(t, u,ω)|g/. (274d)

We also extend the definitions (274a)–(274b) to allow q1, q2, q3 ∈ [1,∞] by
making the obvious modifications. We also define, by making the obvious modifica-

tions in (274a)–(274d), norms in which the set ˜M is replaced with the set ˜M(I nt)

(see (174b)). For example, if q1, q2, q3 ∈ [1,∞), then ‖ξ‖
L

q1
t L

q2
u L

q3
ω (˜M

(I nt)
)

:=
{

∫ T∗;(λ)
0

{

∫ τ
0

{

∫

ω∈S2 |ξ(t, u,ω)|q3g/ d�e/(ω)

}q2/q3
du

}q1/q2
dτ

}1/q1

.
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Next, for q ∈ [1,∞), we define the following norms, where (275a) and (275c)
involve υ (see definition (193)), such that an L∞ norm in t or u acts first:

‖ξ‖Lq
g/L∞

t (
˜Cu)

:=
{∫

S
2
ess supt∈[[u]+,T∗;(λ)]

(

υ(t, u,ω)|ξ(t, u,ω)|qg/
)

d�e/(ω)

}1/q

,

(275a)

‖ξ‖Lq
ωL∞

t (
˜Cu)

:=
{∫

S
2
ess supt∈[[u]+,T∗;(λ)]|ξ(t, u,ω)|qg/ d�e/(ω)

}1/q

, (275b)

‖ξ‖q
Lq

g/L∞
u (

˜�t )
:=

{∫

ω∈S2
ess supu∈[− 4

5 T∗;(λ),t]
(

υ(t, u,ω)|ξ(t, u,ω)|qg/
)

d�e/(ω)

}1/q

.

(275c)

9.11 The fixed number p

In the rest of the article, p > 2 denotes a fixed number with

0 < δ0 < 1 − 2

p
< N − 2, (276)

where δ0 is the parameter that we fixed in (35c). p will appear in many of our ensuing
estimates.

9.12 Hölder norms in the geometric angular variables

Some of our elliptic estimates for χ̂ involve Hölder norms in the geometric angular
variables, which we define in this subsection. We remind the reader that e/ denotes the
standard round metric on the Euclidean unit sphere S

2. In the rest of the paper, for
points ω(1),ω(2) ∈ S

2, we denote their distance with respect to e/ by de/(ω(1),ω(2))

In particular, de/(ω(1),ω(2)) ≤ π .
To proceed, for each pair of points ω(1),ω(2) ∈ S

2 with de/(ω(1),ω(2)) < π and
for each pair m, n of non-negative integers, let �m

n (ω(1);ω(2)) : (T m
n )ω(1) (S

2) →
(T m

n )ω(2) (S
2), ξ → �m

n (ω(1);ω(2))[ξ], denote the parallel transport operator with
respect to e/, where (T m

n )ω(S
2) denotes the vector space of type

(m
n

)

tensors atω ∈ S
2.

Note that �m
n (ω(1);ω(2)) provides a linear isomorphism between type

(m
n

)

tensors ξ

at ω(1) and type
(m

n

)

tensors at ω(2) by parallel transport along the unique e/-geodesic
connecting ω(1) and ω(2). From the basic properties of parallel transport, it follows
that�m

n respects tensor products and contractions. That is, if ξ(1) · ξ(2) schematically
denotes the tensor product of ξ(1) and ξ(2) possibly followed by some contractions,
then �m

n (ω(1);ω(2))[ξ(1) · ξ(2)] = �m
n (ω(1);ω(2))[ξ(1)] · �m

n (ω(1);ω(2))[ξ(2)].
If ξ = ξ(ω) is a type

(m
n

)

tensorfield on S
2 and de/(ω(1);ω(2)) < π , then we
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define51 ξ‖(ω(1);ω(2)) := �m
n (ω(1);ω(2))[ξ(ω(1))] ∈ (T m

n )ω(2) (S
2). Note that

(ξ(1) · ξ(2))
‖(ω(1);ω(2)) = ξ‖

(1)(ω(1);ω(2)) · ξ‖
(2)(ω(1);ω(2)).

Definition 9.7 (Hölder norms in the geometric angular variables) For constants β ∈
(0, 1), we define

‖ξ‖
Ċ0,β

ω (St,u)
:= sup

0<de/(ω(2),ω(1))<
π
2

r̃ (m−n)
∣

∣ξ(t, u,ω(1))− ξ‖(t, u,ω(2);ω(1))
∣

∣

e/(ω(1))

dβ
e/ (ω(1);ω(2))

,

(277a)

‖ξ‖
C0,β

ω (St,u)
:= ‖ξ‖L∞

ω(St,u) + ‖ξ‖
Ċ0,β

ω (St,u)
. (277b)

Note that our bootstrap assumption (308a) below implies that if ξ is type
(m

n

)

, then
the denominator on RHS (277a) satisfies

r̃ (m−n)
∣

∣

∣ξ(t, u,ω(1))− ξ‖(t, u,ω(2);ω(1))
∣

∣

∣

e/(ω(1))

≈
∣

∣

∣ξ(t, u,ω(1))− ξ‖(t, u,ω(2);ω(1))
∣

∣

∣

g/(t,u,ω(1))
. (278)

In Sect. 10, we will also use mixed norms that are defined by replacing the L∞
ω

norm from Sect. 9.10 with the C0,δ0
ω norm. For example, for q ∈ [1,∞), we define

‖ξ‖
Lq

t L∞
u C

0,δ0
ω (˜M(I nt)

)
:=

{∫ T∗;(λ)

0
ess supu∈[0,τ]‖ξ‖q

C
0,δ0
ω (Sτ,u)

dτ

}1/q

, (279)

andwe extend definition (279) to the case q = ∞ bymaking the obviousmodification.

9.13 The initial foliation on 60

In this subsection, we state Proposition 9.8, which yields the existence of an initial
condition for the eikonal function u (see Sect. 9.4) featuring a variety of properties
that we exploit in our analysis. More precisely, as we mentioned in Sect. 9.4.2, we
set u|�0 := −w, where w is the function yielded by the proposition. The proof of
the proposition is the same as in [54] and we therefore omit it. In particular, the key
equation (280) stated below is exactly the same as in [54]. The proof of Proposition 9.8
relies on the regularity of the Ricci curvature of the spatial metric induced on�0, and
the regularity is exactly the same as in [54]. More precisely, since the spatial metric g
satisfies gi j = gi j ( 	�), the regularity of the spatial Ricci curvature on�0 is controlled

51 For example, if ξ = ξ(ω) is a scalar function, then ξ‖(ω(1); ω(2)) = ξ(ω(1)). As a second exam-
ple, if ξ = ξ(ω) is a one-form, then in a local angular coordinate chart containing the point ω(2), we

have, forω(1) close toω(2): ξ
‖(ω(1); ω(2))(

∂

∂ωA |ω(2) ) = M B
A (ω(1);ω(2))ξ(ω(1))(

∂

∂ωB |ω(1) ), where

the M B
A (ω(1); ω(2)) are smooth functions of ω(1) and ω(2) such that for A, B,C = 1, 2, we have

M B
A (ω(C),ω(C)) = δB

A , where δB
A is the Kronecker delta. That is, for C = 1, 2, ξ‖(ω(C); ω(C)) =

ξ(ω(C)).
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by the energy estimates52 we already derived in Propositions4.1 and 5.1, and we
stress that our energy estimates for 	� are the same as the energy estimates derived in
[54]. Proposition 9.8 provides, in particular, initial conditions for various tensorfields

constructed out of the eikonal function that are relevant for the study of ˜M(Ext)
. We

emphasize how important the proposition is for the viability of our approach. For
example, if we had instead chosen the “simpler” initial condition u|�0 := −r , where r
is the standard Euclidean radial variable, then given the limited regularity of the fluid
solution, the null mean curvature of the spheres {r = const} with respect to the metric
induced on them by the acoustical metric g( 	�) would not generally have enjoyed
any useful quantitative pointwise boundedness properties. This could have led to the
instantaneous formation of null focal points53 and the breakdown of our geometric
coordinate system. In contrast, (281) and the estimates of the proposition imply, for
example, that ‖r̃1/2trg̃/χ̃(Small)‖L∞(�0) � λ−1/2. Initial condition bounds of this type
play a crucial role in the proof of Proposition10.1, which provides the main estimates
for the acoustic geometry.

Proposition 9.8 (Existence and properties of the initial foliation). On the hypersur-
face54 �0, there exists a function w = w(x) on the domain implicitly defined by
0 ≤ w ≤ w∗;(λ) := 4

5T∗;(λ), such that w(z) = 0 (where z is the point in �0 men-
tioned in Sect.9.4), such that w is smooth away from z, such that its levels sets Sw are
diffeomorphic to S

2 for 0 < w ≤ w∗;(λ), such that O := ∪0≤w<w∗;(λ) Sw is a neigh-
borhood of z contained in the metric ball BT∗;(λ) (z, g) (with respect to the rescaled
first fundamental form g of�0) of radius T∗;(λ) centered at z, and such that the follow-

ing relations hold, where a = 1
√

(g−1)cd∂cw∂dw
is the lapse, trgk := (g−1)cdkcd ,

and ���L := ���αLα is a contracted (and lowered) Cartesian Christoffel symbol of the
rescaled spacetime metric g:

trg/θ + kN N = 2

aw
+ trgk −���L , a(z) = 1. (280)

52 As we highlighted in Remark 9.1, the hypersurface that we denote by “�0” here corresponds to the
hypersurface that we denoted by “�tk ” in Sects. 3–8. Hence, to control the appropriate Sobolev norms of
	� along these hypersurfaces, we need the energy estimates. We also point out that Propositions4.1 and
5.1 yield energy estimates for the non-rescaled solution variables, while in the expression “gi j ( 	�)” in the

present section, 	� denotes the rescaled solution (see Sect. 9.3). Hence, one needs to account for the rescaling
when controlling the size of the L2 norms of the derivatives of gi j ( 	�) (such bounds are needed to prove
Proposition 9.8 using the arguments given in [51, Appendix C]).
53 More precisely, this would have led to the possibility that ‖trg̃/χ̃(Small)‖L1([0,T ])L∞

x
is infinite no matter

how small T is; see, for example, the proofs of (351b) and (355) for clarification on the connection between
having quantitative control of time integrals of ‖trg̃/χ̃(Small)‖L∞

x (�t )
and obtaining control over the local

separation of the integral curves of L .
54 Aswehighlighted inRemark9.1, the hypersurface thatwedenote by “�0” in this proposition corresponds
to the hypersurface that we denoted by “�tk ” in Sects. 3–8.
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Note that by (200), (207), and the relation r̃(0,−u) = w (for −w∗;(λ) ≤ u ≤ 0), the
first equation in (280) is equivalent to

trg̃/χ̃
(Small)|�0 = 2(1 − a)

aw
, for 0 ≤ w ≤ w∗;(λ). (281)

Let q∗ satisfy 0 < 1− 2
q∗ < N − 2 and let e/ = e/(ω) be the standard round metric

on the Euclidean unit sphere S
2, where the angular coordinates {ωA}A=1,2 are as

in Sect.9.4.2. Then if q∗ is sufficiently close to 2, the following estimates hold55 on
�
w∗;(λ)
0 := ∪0≤w≤w∗;(λ) Sw, where ε0 is as in Sect.3.3, where the role of q is played by

q∗:

|a − 1| � λ−4ε0 ≤ 1

4
, ‖w−1/2(a − 1)‖

L∞
w C

0,1− 2
q∗

ω (�
w∗;(λ)
0 )

� λ−1/2, υ(w,ω) :=
√

detg/(w,ω)√
dete/(ω)

≈ w2,

(282a)

‖w 1
2− 2

q∗ (θ̂,∇/ ln a)‖
L∞
w Lq∗

g/ (�
w∗;(λ)
0 )

� λ−1/2,

‖∇/ ln a‖
L2
wL∞

ω(�
w∗;(λ)
0 )

, ‖χ̂‖
L2
wL∞

ω(�
w∗;(λ)
0 )

� λ−1/2, (282b)

max
A,B=1,2

∥

∥

∥

∥

w−2g/

(

∂

∂ωA
,
∂

∂ωB

)

− e/

(

∂

∂ωA
,
∂

∂ωB

)∥

∥

∥

∥

L∞(�
w∗;(λ)
0 )

� λ−4ε0 , (282c)

max
A,B,C=1,2

∥

∥

∥

∥

∂

∂ωA

{

w−2g/

(

∂

∂ωB
,
∂

∂ωC

)

− e/

(

∂

∂ωB
,
∂

∂ωC

)}∥

∥

∥

∥

L∞
w Lq∗

ω (�
w∗;(λ)
0 )

� λ−4ε0 ,

(282d)

‖w 1
2− 2

q∗ ∇/ ln
(

r̃−2υ
)

‖
L∞
w Lq∗

g/ (�
w∗;(λ)
0 )

� λ−1/2. (282e)

Finally, �
w∗;(λ)
0 is contained in the Euclidean ball of radius T∗;(λ) in �0 centered

at z.

Proof (Discussion of the proof) Based on the energy estimates we derived in Proposi-
tions4.1 and 5.1 (which are estimates for the non-rescaled solution variables), the proof
is the same as the proof of [54, Proposition 4.3], which is given in [51, Appendix C].

��
55 In [54, Proposition 4.3], the author stated the weaker estimate ‖w−1/2(a − 1)‖

L∞(�w∗;(λ)
0 )

� λ−1/2

in place of the stronger estimate ‖w−1/2(a − 1)‖
L∞
w C

0,1− 2
q∗

ω (�
w∗;(λ)
0 )

� λ−1/2 appearing in (282a).

However, the desired stronger estimate follows from the Morrey-type estimate (318) and the analysis given
just above [51, Equation (10.113)].
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9.14 Initial conditions on the cone-tip axis tied to the eikonal function

The next lemma complements Proposition9.8 by providing the initial conditions on the
cone-tip axis for various tensorfields tied to the eikonal function, i.e., initial conditions

relevant for the study of ˜M(I nt)
.

Lemma 9.9 (Initial conditions on the cone-tip axis tied to the eikonal function) The
following estimates hold on any acoustic null cone Cu emanating from a point on the
cone-tip axis with 0 ≤ u = t ≤ T∗;(λ), where “ξ = O(r̃)as t ↓ u” means that56

|ξ|g/ � (t − u) as t ↓ u:

trg/χ − 2

r̃
, r̃ trg̃/χ̃

(Small), |χ̂|g/, |r̃ / a
j∂a Li − / i

j |, b − 1, |ζ|g/, σ, (283a)

r̃ |∇/ trg/χ|g/, r̃2|∇/ trg̃/χ̃
(Small)|g/, r̃ |∇/ χ̂|g/, r̃ |∇/ b|g/, r̃ |∇/ ζ|g/, r̃ |∇/σ|g/,

r̃2�/ b, r̃2�/σ, r̃2μ, r̃2μ̌

= O(r̃)as t ↓ u,

lim
t↓u

‖(ζ, k)‖L∞
ω(St,u) <∞. (283b)

Moreover, with e/ denoting the standard round metric on the Euclidean unit sphere
S
2, we have

lim
t↓u

{

r̃−2(t, u)g/(t, u,ω)

(

∂

∂ωB
,
∂

∂ωC

)}

= e/(ω)

(

∂

∂ωB
,
∂

∂ωC

)

, (284a)

lim
t↓u

{

r̃−2(t, u)
∂

∂ωC
g/(t, u,ω)

(

∂

∂ωB
,
∂

∂ωC

)}

= ∂

∂ωC

{

e/(ω)

(

∂

∂ωB
,
∂

∂ωC

)}

.

(284b)

Moreover, with w∗;(λ) := 4
5T∗;(λ) (as in Proposition9.8), on �

w∗;(λ)
0 :=

∪w∈(0,w∗;(λ)]Sw, we have (recalling that w = −u|�0 ≥ 0):

‖wtrg̃/χ̃
(Small)‖

L∞(�
w∗;(λ)
0 )

� λ−4ε0 ,

‖w3/2∇/ trg̃/χ̃
(Small)‖

L∞
w L p

ω(�
w∗;(λ)
0 )

, ‖w1/2trg̃/χ̃
(Small)‖

L∞
w C

0,1− 2
p

ω (�
w∗;(λ)
0 )

� λ−1/2.

(285)

Finally, with N denoting the unit outward normal to Sw in �0 and / denoting the
g-orthogonal projection tensorfield onto Sw (where g is the rescaled metric on �0),

56 OnRHS (283a), the implicit constants are allowed to depend on the L∞ norm of the higher derivatives of
the fluid solution. However, these constants never enter into our estimates since, in our subsequent analysis,
(283a) will be used only to conclude that LHS (283a) is 0 along the cone-tip axis.
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we have

∑

i, j=1,2,3

|w / c
j∂c N i − / i

j | = O(w)as w ↓ 0. (286)

Proof (Discussion of the proof) The lemma follows from the same arguments, based on
Taylor expansions, that are found in [34,49], andwe therefore omit the details.We refer
to [54, Lemma 5.1] and [51, Appendix C] for the analogous results in the context of
quasilinear wave equations. We also remark that there are simpler, alternative proofs
available in [15, Appendix B] and [38, Sect. 3]. We further clarify that in [34,49],
the expansions along null cones were derived not in terms of r̃ , but rather in terms
of the affine parameter A = A(t, u,ω) of the geodesic null vectorfield b−1L (i.e.,
L A = b, where b is defined in (178)), normalized by A(u, u,ω) = 0. However,
the same asymptotic expansions hold with r̃ in place of A, thanks in part to the
asymptotic relation limt↓u

A(t,u,ω)
r̃(t,u) = 1, which follows from the identities L A = b

and Lr̃ = Lt = 1, and the following fact, which can be independently established
with the help of (180): limt↓u {b(t, u,ω)− 1} = 0. We also clarify that the estimate
‖w1/2trg̃/χ̃(Small)‖

L∞
w C

0,1− 2
p

ω (�
w∗;(λ)
0 )

� λ−1/2 in (285) is stronger than the analogous

estimate ‖w1/2trg̃/χ̃(Small)‖
L∞(�

w∗;(λ)
0 )

� λ−1/2 stated [54, Lemma 5.1]; the desired

stronger estimate is a simple consequence of (281) and the first and second estimates
in (282a). ��

10 Estimates for quantities constructed out of the eikonal function

Our main goal in this section is to prove Proposition10.1, which provides estimates
for the acoustic geometry. As we explain in Sect. 11, these estimates are the last new
ingredient needed to prove the frequency-localized Strichartz estimate of Theorem7.2.
The proof of Proposition10.1 is based on a bootstrap argument and is located in
Sect. 10.9. Before proving the proposition,wefirst introduce the bootstrap assumptions
(see Sect. 10.2) and provide a series of preliminary inequalities and estimates. Many
of these preliminary results have been derived in prior works, and we typically do not
repeat the proofs. In Lemma 10.5, we isolate the new estimates that are not found in
earlier works; the results of Lemma 10.5 in particular quantify the effect of the high
order derivatives of the vorticity and entropy on the evolution of the acoustic geometry;
this will become clear during the proof of Proposition10.1.

Remark 10.1 We remind the reader that in Sect. 10, we are operating under the con-
ventions of Sect. 9.3.
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10.1 Themain estimates for the eikonal function quantities

Recall that p > 2 denotes the fixed number satisfying (276), where δ0 is the parameter
that we fixed in (35c). We now state the main result of Sect. 10; see Sect. 10.9 for the
proof.

Proposition 10.1 (The main estimates for the eikonal function quantities). Let p be as
in (276), assume that q > 2 is sufficiently close to 2, and recall that we fixed several
small parameters, including ε0, in Sect.3.3. There exists a large constant �0 > 0
such that under the bootstrap assumptions of Sect.10.2, if λ ≥ �0, then the following
estimates hold on ˜M ⊂ [0, T∗;(λ)]×R

3, where the norms referred to below are defined
in Sect.9.10, and the corresponding spacetime regions such as˜Cu ⊂ ˜M are defined
in Sect.9.5.

Estimates for connection coefficients: The connection coefficients from Sects.9.6.5,
9.7.1, and 9.7.3 verify the following estimates:

‖(trg̃/χ̃
(Small), χ̂, ζ)‖L2

t L p
ω(˜Cu)

, ‖r̃D/ L(trg̃/χ̃
(Small), χ̂, ζ)‖L2

t L p
ω(˜Cu)

� λ−1/2, (287a)

‖r̃1/2(trg̃/χ̃
(Small), χ̂, ζ)‖L∞

t L p
ω(˜Cu)

� λ−1/2, (287b)

‖r̃(trg̃/χ̃
(Small), χ̂, ζ)‖L∞

t L p
ω(˜Cu)

� λ−4ε0 , (287c)

r̃ trg̃/χ̃ ≈ 1, (288a)

‖r̃1/2trg̃/χ̃
(Small)‖L∞(˜M) � λ−1/2, (288b)

‖r̃3/2∇/ trg̃/χ̃
(Small)‖L∞

t L∞
u L p

ω(˜M) � λ−1/2, (288c)

‖r̃(∇/ trg̃/χ̃
(Small),∇/ χ̂)‖L2

t L p
ω(˜Cu)

� λ−1/2, (288d)

‖(trg̃/χ̃
(Small), χ̂, ζ)‖

L2
t C

0,δ0
ω (˜Cu)

� λ−1/2. (288e)
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In addition, the null lapse b defined in (178) verifies the following estimates:

∥

∥

∥

∥

b−1 − 1

r̃

∥

∥

∥

∥

L2
t L∞

x (
˜M)

,

∥

∥

∥

∥

b−1 − 1

r̃1/2

∥

∥

∥

∥

L∞
t L∞

u L2p
ω (˜M)

,

∥

∥

∥

∥

r̃(D/ L ,∇/ )
(

b−1 − 1

r̃

)∥

∥

∥

∥

L2
t L p

ω(˜Cu)

� λ−1/2. (289)

Furthermore, for any u ∈ [− 4
5T∗;(λ), T∗;(λ)], t ∈ [[u]+, T∗;(λ)], and ω ∈ S

2, the
Cartesian spatial components Li verify the following estimate:

|Li (t, u,ω)− Li (0, 0,ω)| � λ−4ε0 . (290)

Moreover, for any smooth scalar-valued function of the type described in Sect.9.9.1,
we have:

‖f
( 	L)‖L∞

t L∞
u C

0,δ0
ω (˜M)

� 1. (291)

Furthermore,

∥

∥

∥

∥

(

trg̃/χ̃
(Small), χ̂, trg/χ − 2

r̃

)∥

∥

∥

∥

L
q
2
t L∞

u C
0,δ0
ω (˜M)

� λ
2
q −1−4ε0(

4
q −1)

, ‖ζ‖
L

q
2
t L∞

x (
˜M)

� λ
2
q −1−4ε0(

4
q −1)

. (292)

Improved estimates in the interior region: We have the following improved57 esti-

mates58 in the interior region:

∥

∥

∥

∥

b−1 − 1

r̃

∥

∥

∥

∥

L2
t L∞

x (
˜M(I nt)

)

� λ−1/2−4ε0 , (293)

57 Themost important improvement afforded by (295) is that on the LHSs of the estimates, the L2
t norms are

taken after a spatial norm along constant-time hypersurfaces. This is crucial for the proof of Theorem 11.3

and contrasts with, for example, the estimate (288e), in which only the angular C
0,δ0
ω norm is taken before

the L2
t norm.

58 Our estimate (295) involves Hölder norms in the angular variables, while the analogous estimates
in [54] involved weaker L∞-norms. The reason for the discrepancy is that L∞

ω(St,u) bound for χ̂

proved just below [54, Equation (5.87)] relies on the invalid Calderon–Zygmund estimate ‖ξ‖L∞
ω(St,u )

�
∑

i=1,2 ‖F(i)‖L∞
ω(St,u )

ln

(

2 + ‖r̃3/2∇/F(i)‖L Q
ω(St,u )

)

+ ‖r̃G‖
L Q

ω(St,u )
for solutions to the elliptic PDE

(363). Unfortunately, this estimate cannot be correct because the power of r̃3/2 on the RHS is not compati-
ble with the natural scaling of (363) on Euclidean round spheres of radius r̃ ; the natural scaling coefficient
would be r̃ , not r̃3/2, and the distinction is especially crucial near r̃ = 0. In particular, since the correct
power is r̃ , one cannot combine the correct Calderon–Zygmund estimate with the r̃3/2-involving bound
(288c) to obtain the estimate for χ̂ stated in [54, Equation (5.11)]. For this reason, we use an alternate
approach in deriving some of the estimates for χ̂, one that involves Hölder norms in the angular variables
and the corresponding Calderon–Zygmund estimate (365).
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‖r̃1/2(trg̃/χ̃
(Small), χ̂, ζ)‖

L2p
ω L∞

t (
˜Cu)

� λ−1/2, if˜Cu ∈ ˜M(I nt)
, (294)

‖(trg̃/χ̃
(Small), trg/χ − 2

r̃
, χ̂)‖

L2
t L∞

u C
0,δ0
ω (˜M(I nt)

)
� λ−1/2−3ε0 , ‖ζ‖

L2
t L∞

x (
˜M(I nt)

)
� λ−1/2−3ε0 .

(295)

Estimates for the geometric angular coordinate components of g/: With e/ denoting
the standard round metric on the Euclidean unit sphere S

2, we have

max
A,B=1,2

∥

∥

∥

∥

{

r̃−2g/

(

∂

∂ωA
,
∂

∂ωB

)

− e/

(

∂

∂ωA
,
∂

∂ωB

)}∥

∥

∥

∥

L∞(˜M)

� λ−4ε0 , (296a)

max
A,B,C=1,2

∥

∥

∥

∥

∂

∂ωA

{

r̃−2g/

(

∂

∂ωB
,
∂

∂ωC

)

− e/

(

∂

∂ωB
,
∂

∂ωC

)}∥

∥

∥

∥

L p
ωL∞

t (
˜Cu)

� λ−4ε0 .

(296b)

Estimates for υ and b: The following estimates hold59 for the volume form ratio υ
defined in (193) and the null lapse b defined in (178):

υ :=
√

detg/√
dete/

≈ r̃2, (297a)

‖b − 1‖L∞(˜M) � λ−4ε0 <
1

4
. (297b)

Furthermore,

‖r̃
1
2 ∇/ ln (r̃−2υ

)‖L∞
t L∞

u L p
ω(˜M), ‖∇/ ln (r̃−2υ

)‖L2
t L p

ω(˜Cu )
, ‖r̃ L∇/ ln (r̃−2υ

)‖L2
t L p

ω(˜Cu )
� λ−1/2.

(298)

Estimates for μ and ∇/ ζ: The torsion defined in (196) and the mass aspect function μ

defined in (208) verify the following estimates:

‖(r̃μ, r̃∇/ ζ)‖L2
t L p

ω(˜Cu)
� λ−1/2. (299)

Interior region estimates for σ: The conformal factor σ from Definition9.3 verifies
the following estimates in the interior region:

‖r̃
1
2 Lσ‖

L∞
t L2p

ω (˜Cu)
, ‖r̃

1
2− 2

p ∇/σ‖L p
g/ L∞

t (
˜Cu)
, ‖r̃

1
2 ∇/σ‖L p

ωL∞
t (

˜Cu)
,

‖∇/σ‖L2
t L p

ω(˜Cu)
� λ−1/2, if˜Cu ⊂ ˜M(I nt)

, (300a)

59 We point out that we prove (297a)–(297b) independently in the proof of Proposition10.2, which in turn
plays a role in the proofs of the remaining estimates of Proposition10.1. It is only for convenience that we
have restated (297a)–(297b) in Proposition10.1.
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‖σ‖
L∞(˜M(I nt)

)
� λ−8ε0 , (300b)

‖r̃−1/2σ‖
L∞(˜M(I nt)

)
� λ− 1

2−4ε0 . (300c)

Interior region estimates for σ, μ̌,˜ζ, and μ/ : The conformal factor σ from Defini-
tion9.3, the modified mass aspect function μ̌ defined in (209), and the modified torsion
˜ζ defined in (211) verify the following estimates in the interior region:

‖∇/σ‖
L2

u L2
t C

0,δ0
ω (˜M(I nt)

)
, ‖(r̃ μ̌, r̃∇/˜ζ)‖

L2
u L2

t L p
ω(˜M

(I nt)
)
� λ−4ε0 , (301a)

‖r̃
3
2 μ̌‖

L2
u L∞

t L p
ω(˜M

(I nt)
)
� λ−4ε0 . (301b)

In addition, the one-form μ/ , which satisfies the Hodge system (210), verifies the
following estimates:

‖(r̃∇/μ/ ,μ/ )‖
L2

t L2
u L p

ω(˜M
(I nt)

)
, ‖μ/ ‖

L2
t L2

u L∞
ω(

˜M(I nt)
)
� λ−4ε0 . (302)

Delicate decomposition of ∇/σ and corresponding estimates in the interior region:

Finally, in ˜M(I nt)
, we can decompose ∇/σ into St,u-tangent one-forms as follows:

∇/σ = −ζ + (˜ζ − μ/ )+ μ/ (1) + μ/ (2). (303)

In (303), ζ is the torsion from (196),˜ζ and μ/ are as in Definition9.5, and μ/ (1) and μ/ (2)
are as in (242) and are respectively solutions to the Hodge-transport systems (243a)–
(243b) and (244a)–(244b) on St,u that satisfy the following asymptotic conditions near
the cone-tip axis:

r̃μ/ (1)(t, u,ω), r̃μ/ (2)(t, u,ω) = O(r̃)as t ↓ u. (304)

Moreover, the following bounds hold:

‖˜ζ − μ/ ‖
L2

t L∞
x (

˜M(I nt)
)
, ‖μ/ (1)‖L2

t L∞
x (

˜M(I nt)
)
� λ− 1

2−3ε0 , (305a)

‖μ/ (2)‖L2
u L∞

t L∞
ω(

˜M(I nt)
)
� λ− 1

2−4ε0 . (305b)

10.2 Assumptions, including bootstrap assumptions for the eikonal function
quantities

In this subsection, we recall some important results proved in previous sections and
state some bootstrap assumptions that will play a role in our proof of Proposition10.1.
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10.2.1 Restatement of assumptions and results from prior sections

From scaling considerations, it is straightforward to see that (107a)–(107b) imply that
the rescaled solution variables (as defined in Sect. 9.1 and under the conventions of
Sect. 9.3) verify the following bootstrap assumptions (where δ0, ε0, and the other
parameters in our analysis are defined in Sect. 3.3):

‖∂∂∂ 	�‖L2
t L∞

x (
˜M) + λδ0

√

∑

ν≥2

ν2δ0‖Pν∂∂∂ 	�‖2
L2

t L∞
x (

˜M)
≤ λ−1/2−4ε0 ,

(306a)

‖∂( 	
, 	S)‖L2
t L∞

x (
˜M) + λδ0

√

∑

ν≥2

ν2δ0‖Pν∂( 	
, 	S)‖2L2
t L∞

x (
˜M)

≤ λ−1/2−4ε0 .

(306b)

We will use (306a)–(306b) throughout the rest of Sect. 10. We will also use the boot-
strap assumption (40). We clarify that, although the bootstrap assumption (40) refers
to the non-rescaled solution, it also implies that the rescaled solution is contained in
K on the spacetime domain ˜M. Moreover, we recall that we will assume that λ is
sufficiently large; that is, there exists a (non-explicit) �0 > 0 such that all of our
estimates hold whenever λ ≥ �0. Moreover, throughout Sect. 10, we will use the top-
order energy estimates of Proposition5.1 along constant-time hypersurfaces and the
energy estimates of Proposition6.1 along acoustic null hypersurfaces (both of which
concern estimates for the non-rescaled solution variables, from which estimates for
the rescaled variables immediately follow via scaling considerations).

Next, for use throughout the rest of the article, we use (306a)–(306b), the product
estimate (80), the energy estimates of Proposition5.1, and the harmonic analysis results
mentioned in the proof discussion of Corollary7.1 to deduce the following estimates
for the rescaled solution, valid for any smooth function f:

‖∂∂∂g( 	�)‖L2
t L∞

x (
˜M) � λ−1/2−4ε0 , (307a)

‖(∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S, 	C,D)‖L2
t L∞

x (
˜M)

+ λδ0

√

√

√

√

∑

ν≥2

ν2δ0

∥

∥

∥Pν

{

f( 	�, 	
, 	S)(∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S, 	C,D)
}∥

∥

∥

2

L2
t L∞

x (
˜M)

� λ−1/2−4ε0 ,

(307b)

∥

∥

∥f( 	�, 	
, 	S)(∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S, 	C,D)
∥

∥

∥

L2
t C

0,δ0
x (˜M)

� λ−1/2−4ε0 . (307c)

We clarify that to obtain the bounds in (307b) involving ∂t ( 	
, 	S), we use (157) to
algebraically solve for ∂t ( 	
, 	S). Moreover, to obtain the bounds in (307b) involving
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	C and D, we use (153a)–(153b) to express (	C,D) = f( 	�, 	
, 	S) · ∂( 	�, 	
, 	S), where f
is a schematically depicted smooth function.

10.2.2 Bootstrap assumptions for the eikonal function quantities

Recall that p denotes the number we fixed in (276). We assume that

max
A,B=1,2

∥

∥

∥

∥

{

r̃−2g/

(

∂

∂ωA
,
∂

∂ωB

)

− e/

(

∂

∂ωA
,
∂

∂ωB

)}∥

∥

∥

∥

L∞(˜M)

≤ λ−ε0 , (308a)

max
A,B,C=1,2

∥

∥

∥

∥

∂

∂ωA

{

r̃−2g/

(

∂

∂ωB
,
∂

∂ωC

)

− e/

(

∂

∂ωB
,
∂

∂ωC

)}∥

∥

∥

∥

L∞
t L p

ω(˜Cu)

≤ λ−ε0 .

(308b)

We also assume that for any˜Cu ⊂ ˜M, we have

‖(trg̃/χ̃(Small), χ̂, ζ)‖
L2

t C
0,δ0
ω (˜Cu)

≤ λ−1/2+2ε0 . (309)

Moreover, we assume that for any St,u ⊂ ˜M, we have

‖r̃(χ̂, trg̃/χ̃
(Small), ζ)‖L p

ω(St,u)
≤ 1, (310a)

‖b − 1‖L∞
ω(St,u) ≤ 1

2
. (310b)

In addition, we assume that for every u ∈ [− 4
5T∗;(λ), T∗;(λ)], t ∈ [[u]+, T∗;(λ)],

and ω ∈ S
2, we have

|Li (t, u,ω)− Li (0, 0,ω)| ≤ 1. (311)

Finally, we assume that the following estimates hold in the interior region:

‖(χ̂, trg̃/χ̃(Small))‖
L2

t L∞
u C

0,δ0
ω (˜M(I nt)

)
≤ λ−1/2, ‖ζ‖

L2
t L∞

x (
˜M(I nt)

)
≤ λ−1/2. (312)

Remark 10.2 Our bootstrap assumptions are similar to the ones in [54, Section 5],
except that for convenience, we have strengthened a few and included a few additional
ones. We also note that we derive a strict improvement of (308a) in (296a), of (308b)
in (296b), of (309) in (288e), of (310a) in (287c), of (310b) in (297b), of (311) in
(290), and of (312) in (295).
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10.3 Analytic tools

In this subsection, we record some inequalities that will play a role in the forthcoming
analysis. All of the results are the same as or simple consequences of results from [54,
Section 5].

10.3.1 Norm comparisons, trace inequalities, and Sobolev inequalities

Proposition 10.2 (Norm comparisons, trace inequalities, and Sobolev inequalities).
Under the assumptions of Sect.10.2, the following estimates hold (see Sect.9.10 for
the definitions of the norms).

Comparison of St,u -norms with different volume forms: If 1 ≤ Q < ∞, then for
any St,u-tangent tensorfield ξ, we have

‖ξ‖
L Q

g/ (St,u)
≈ ‖r̃

2
Q ξ‖

L Q
ω(St,u)

. (313)

Trace inequalities: For any St,u-tangent tensorfield ξ, we have

‖r̃−1/2ξ‖L2
g/(St,u)

+ ‖ξ‖L4
g/(St,u)

� ‖ξ‖H1(˜�t )
. (314)

Sobolev and Morrey-type inequalities: For any St,u-tangent tensorfield ξ, we have

‖ξ‖L2
u L2

ω(
˜�t )

� ‖ξ‖H1(˜�t )
, (315)

‖r̃1/2ξ‖2
L2p

ω L∞
t (

˜Cu)
�
{

‖r̃D/ Lξ‖L p
ωL2

t (
˜Cu)

+ ‖ξ‖L p
ωL2

t (
˜Cu)

}

‖ξ‖L∞
ωL2

t (
˜Cu)
. (316)

Furthermore, if 2 < Q <∞, then for any St,u-tangent tensorfield ξ, we have

‖ξ‖
L Q

ω(St,u)
� ‖r̃∇/ ξ‖1−

2
Q

L2
ω(St,u)

‖ξ‖
2
Q

L2
ω(St,u)

+ ‖ξ‖L2
ω(St,u)

. (317)

Moreover, if 2 < Q ≤ p (where p is as in Sect.10.1), then for any St,u-tangent
tensorfield ξ, we have

‖ξ‖
C
0,1− 2

Q
ω (St,u)

� ‖r̃∇/ ξ‖
L Q

ω(St,u)
+ ‖ξ‖L2

ω(St,u)
. (318)

In addition, if 2 ≤ Q, then for any St,u-tangent tensorfield ξ, we have

‖r̃
1
2− 1

Q ξ‖2
L2Q

g/ L∞
u (

˜�t )
�
{

‖r̃(D/ N ,∇/ )ξ‖L Q
ωL2

u(
˜�t )

+ ‖ξ‖L Q
ωL2

u(
˜�t )

}

‖ξ‖L∞
ωL2

u(
˜�t )
.

(319)
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Finally, if 0 < 1 − 2
Q < N − 2, then for any scalar function f , we have

‖r̃ f ‖L2
u L Q

ω(˜�t )
� ‖ f ‖H N−2(˜�t )

. (320)

Remark 10.3 (Silent use of (313)) Following the proof of the proposition, in the rest
of the article, we will often use the estimate (313) without explicitly mentioning it.
For example, when deriving (387), we silently use (313) when controlling the term

‖r̃1−
2
Q G‖

L Q
g/ (St,u)

on the right-hand side of the Calderon–Zygmund estimate (367).

Proof (Discussion of proof) To obtain the desired estimates, we first note that the
following bounds hold: υ ≈ r̃2 and ‖b − 1‖L∞(˜M) � λ−4ε0 ≤ 1

4 . These bounds
follow from the proof of [54, Lemma 5.4], based on the transport equations (233) and
(235a), the initial conditions (282a), (283a), and (284a) (recall that b|�0 = a and that
u|�0 = −w), and the bootstrap assumptions. The estimates in the proposition can be
proved using only on these estimates for υ and b − 1 and the bootstrap assumptions,
especially (308a)–(308b), which capture the fact that r̃−2g/ is close, in appropriate
norms, to the standard round Euclidean metric.

The desired bound (313) follows from the estimate υ ≈ r̃2 and the definitions of
the norms on the left- and right-hand sides. All of the remaining estimates follow
from proofs given in other works, thanks to the bounds for υ and b mentioned in the
previous paragraph and the bootstrap assumptions; for the reader’s convenience, we
now provide references. (314) follows from straightforward adaptations of the proofs
of [50, Lemma 7.4] and [50, Equation (7.4)]. (315) follows from a standard adaptation
of the proof of [50, Proposition 7.5], together with (313) and (314). The estimate (316)
follows from a straightforward adaptation of the proof of [50, Equation (8.17)], where
one uses r̃2 in the role of υ; see also [52, Lemma 2.13], in which an estimate equivalent
(taking into account (313)) to (316) is stated.

(317) and (318) can be proved by first noting that the same estimates hold for
the round metric e/ on the Euclidean-unit sphere (with r̃ replaced by unity and ∇/
replaced by the connection of e/), and then using the bootstrap assumptions (308a)–
(308b) to conclude the desired estimates as “perturbations” of the corresponding
ones for the round metric. We will give the details for (318) and omit the argu-
ment for (317), which can be proved using similar arguments. Let ∇/ denote the
Levi-Civita connection of g/, and let (0)∇/ denote the Levi-Civita connection of e/.
Let � schematically denote the Christoffel symbols of g/ relative to the geometric
angular coordinates, and let (0)� schematically denote the corresponding Christof-

fel symbols of e/, i.e., schematically, we have � = (g/−1)AB ∂
∂ωC g/

(

∂
∂ωD ,

∂
∂ωE

)

and

(0)� = (e/−1)AB ∂
∂ωC e/

(

∂
∂ωD ,

∂
∂ωE

)

. Then schematically, relative to the geometric

angular coordinates, we have ∇/ ξ = (0)∇/ ξ + (� − (0)�) · ξ. In view of Definition9.7,
we see that the standard Morrey inequality on the round sphere for type

(m
n

)

tensor-
fields ξ yields: ‖r̃ n−mξ‖

C
0,1− 2

Q
ω (St,u)

� ‖|(0)∇/ ξ|e/‖L Q
ω(St,u)

+ ‖|ξ|e/‖L2
ω(St,u)

. Hence,

multiplying both sides of this inequality by r̃m−n and using (308a), we find that
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‖ξ‖
C
0,1− 2

Q
ω (St,u)

� ‖r̃ (0)∇/ ξ‖
L Q

ω(St,u)
+ ‖ξ‖L2

ω(St,u)
and thus

‖ξ‖
C
0,1− 2

Q
ω (St,u)

� ‖r̃∇/ ξ‖
L Q

ω(St,u)
+ ‖ξ‖L2

ω(St,u)
+ ‖r̃m−n|(� − (0)�) · ξ|e/‖L Q

ω(St,u)
.

(321)

The bootstrap assumptions (308a)–(308b) imply that the last term on RHS (321)
satisfies the estimate

‖r̃m−n |(� − (0)�)ξ|e/‖L Q
ω(St,u )

�
∑

A,B,C=1,2

∥

∥

∥�
C

A B − (0)�
C
A B

∥

∥

∥

L Q
ω(St,u )

‖ξ‖L∞
ω(St,u )

�
∑

A,B,C,D,E=1,2

∥

∥

∥

∥

(g/−1)AB ∂

∂ωC
g/

(

∂

∂ωD
,
∂

∂ωE

)

−(e/−1)AB ∂

∂ωC
e/

(

∂

∂ωD
,
∂

∂ωE

)∥

∥

∥

∥

L Q
ω(St,u )

‖ξ‖L∞
ω(St,u )

� λ−ε0‖ξ‖L∞
ω(St,u ). (322)

From (322), in view of Definition9.7, we see that if λ is sufficiently large, then we can
absorb the last term on RHS (321) back into the left, at the expense of doubling the
(implicit) constants on the RHS. We have therefore proved (318).

The estimate (319) follows from a straightforward adaptation of the proof of [50,
Equation (8.17)],where one uses the geometric coordinate partial derivative vectorfield
∂
∂u in the role of the vectorfield ∂

∂t and r̃2 in the role of υ (note also that |D/ ∂
∂u

ξ|g/ �
|(D/ N ,∇/ )ξ|g/). Finally,wenote that the estimate (320) is proved as [54, Equation (5.39)]
as a consequence of (317)–(318).

10.3.2 Hardy–Littlewoodmaximal function

If f = f (t) is a scalar function defined on the interval I , then we define the corre-
sponding Hardy–Littlewoodmaximal functionM( f ) = M( f )(t) to be the following
scalar function on I :

M( f )(t) := sup
t ′∈I∩(−∞,t)

1

|t − t ′|
∫ t

t ′
f (τ) dτ. (323)

We will use the following well-known estimate, valid for 1 < Q ≤ ∞:

‖M( f )‖L Q(I ) � ‖ f ‖L Q(I ). (324)

10.3.3 Transport lemma

Many of the geometric quantities that we must estimate satisfy transport equations
along the integral curves of L . Our starting point for the analysis of such quantities
will often be based on the following standard “transport lemma.”
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Lemma 10.3 (Transport lemma). Let m be a constant, and let ξ and F be St,u-tangent
tensorfields such that the following transport equation holds along the null cone por-
tion˜Cu ⊂ ˜M:

D/ Lξ + mtrg/χξ = F. (325)

Then we have the following identities, where r̃ and υ are defined in Sect.9.6.3, and we
recall that [u]+ := max{u, 0} (and thus [u]+ denotes the minimum value of t along
˜Cu):

[

υmξ
]

(t, u,ω) = lim
τ↓[u]+

[

υmξ
]

(τ, u,ω)+
∫ t

[u]+

[

υmF
]

(τ, u,ω) dτ, (326a)

[

r̃2mξ
]

(t, u,ω) = lim
τ↓[u]+

[

r̃2mξ
]

(τ, u,ω)+
∫ t

[u]+

{[

r̃2mF
]

(τ, u,ω)

+m

[

r̃m
(

2

r̃
− trg/χ

)

ξ

]

(τ, u,ω)

}

dτ. (326b)

Similarly, if ξ, F, and G are St,u-tangent tensorfields such that the following trans-
port equation holds:

D/ Lξ + 2m

r̃
ξ = G · ξ + F, (327)

and if

‖G‖L∞
ωL1

t (
˜Cu)

≤ C, (328)

then under the assumptions of Sect.10.2, the following estimate holds (where the
implicit constants in (329) depend on the constant C on RHS (328)):

|r̃2mξ|g/(t, u,ω) � lim
τ↓[u]+

|r̃2mξ|g/(τ, u,ω)+
∫ t

[u]+
|r̃2mF|g/(τ, u,ω) dτ. (329)

Proof (Discussion of proof) The results are restatements of [54, Lemma 5.11] and can
be proved using the same arguments, based on Eq. (212a) and the estimate υ ≈ r̃2

noted in the proof of Proposition10.2. ��

10.4 Estimates for the fluid variables

Recall that Proposition9.7 provides the PDEs verified by the geometric quantities
under study and that some source terms in those PDEs depend on the fluid variables.
In Proposition10.4, we provide some estimates that are useful for controlling the
fluid variable source terms. In particular, we use the estimates of Proposition10.4 in
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our proof of Lemma 10.5, which provides the main new estimates needed to prove
Proposition10.1.

Proposition 10.4 (Estimates for the fluid variables) Under the assumptions of
Sect.10.2, for any 2 ≤ Q ≤ p (where p is as in (276)), the following estimates
hold on ˜M:

‖∂∂∂( 	�, 	
, 	S)‖L2
u L p

ω(˜�t )
, ‖r̃1/2∂∂∂( 	�, 	
, 	S)‖

L∞
u L2p

ω (˜�t )
� λ−1/2, (330a)

‖r̃1−
2
Q ∂∂∂2( 	�, 	
, 	S)‖L2

u L Q
g/ (

˜�t )
� λ−1/2, (330b)

‖∂∂∂( 	�, 	
, 	S)‖L2
t L∞

ω(
˜Cu)

� λ−1/2−4ε0 , (330c)

‖∂∂∂( 	�, 	
, 	S)‖L2
t L p

ω(˜Cu)
� λ−1/2−4ε0 , (330d)

‖r̃∂∂∂( 	�, 	
, 	S)‖L2
t L p

ω(˜Cu)
� λ1/2−12ε0 , (330e)

‖(∇/ ,D/ L)∂∂∂ 	�‖L2(˜Cu)
, ‖r̃1−

2
p (∇/ ,D/ L)∂∂∂ 	�‖L2

t L p
g/ (
˜Cu)

� λ−1/2, (330f)

‖(	C,D)‖L2
u L p

ω(˜�t )
, ‖r̃1/2(	C,D)‖

L∞
u L2p

ω (˜�t )
� λ−1/2, (331a)

‖r̃1−
2
Q ∂∂∂(	C,D)‖

L2
u L Q

g/ (
˜�t )

� λ−1/2, (331b)

‖(	C,D)‖L2
t L∞

ω(
˜Cu)

� λ−1/2−4ε0 , (331c)

‖(	C,D)‖L2
t L p

ω(˜Cu)
� λ−1/2−4ε0 , (331d)

‖r̃(	C,D)‖L2
t L∞

ω(
˜Cu)

� λ1/2−12ε0 , (331e)

‖∂∂∂(	C,D)‖L2(˜Cu)
, ‖r̃1−

2
p (∇/ ,D/ L)(

	C,D)‖L2
t L p

g/ (
˜Cu)

� λ−1/2. (331f)

Moreover, for any smooth function f , we have

‖∂∂∂( 	�, 	
, 	S)‖
L2

u L Q
ω(˜�t )

, ‖r̃1/2∂∂∂( 	�, 	
, 	S)‖
L∞

t L∞
u L2Q

ω (˜M)
� λ−1/2, (332a)
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∥

∥

∥r̃(∇/ ,D/ L)
{

f( 	�, 	
, 	S, 	L)∂∂∂ 	�
}∥

∥

∥

L2
t L Q

ω(˜Cu)
� λ−1/2, (332b)

∥

∥

∥r̃∂∂∂
{

f( 	�, 	
, 	S)∂∂∂( 	�, 	
, 	S)
}∥

∥

∥

L2
u L Q

ω(˜�t )
� λ−1/2, (332c)

‖(	C,D)‖
L2

u L Q
ω(˜�t )

, ‖r̃1/2(	C,D)‖
L∞

t L∞
u L2Q

ω (˜M)
� λ−1/2, (333a)

∥

∥

∥r̃(∇/ ,D/ L)
{

f( 	�, 	
, 	S, 	L)(	C,D)
}∥

∥

∥

L2
t L Q

ω(˜Cu)
� λ−1/2, (333b)

∥

∥

∥r̃∂∂∂
{

f( 	�, 	
, 	S)(	C,D)
}∥

∥

∥

L2
u L Q

ω(˜�t )
� λ−1/2, (333c)

∥

∥

∥r̃1/2f( 	�, 	L)∂∂∂( 	�, 	
, 	S)
∥

∥

∥

L2
u L∞

t L p
ω(˜M)

� λ−4ε0 . (334)

Proof (Discussion of the proof) Thanks to the assumptions of Sect. 10.2, the availabil-
ity of the energy-elliptic estimates of Proposition5.1, the estimates of Proposition6.1
along null hypersurfaces (with˜Cu in the role of N in Proposition6.1), and Proposi-
tion10.2, all estimates except for (334) follow from the same arguments given in [54,
Lemma 5.5], [54, Proposition 5.6], and [54, Lemma 5.7]. We clarify that, in view
of definition (271), (330c) follows from the bootstrap assumptions (306a)–(306b)
and the bound ‖∂∂∂( 	�, 	
, 	S)‖L∞

ω(St,u) ≤ ‖∂∂∂( 	�, 	
, 	S)‖L∞(�t ), which implies that
‖∂∂∂( 	�, 	
, 	S)‖L2

t L∞
ω(

˜Cu)
≤ ‖∂∂∂( 	�, 	
, 	S)‖L2

t L∞
x (

˜M). Similar remarks apply to (331c),
where we take into account definitions (153a)–(153b) and the remarks of Sect. 9.3.
Similar remarks apply (331e), where we take into account the bound (177) for r̃ .
We also refer the readers to the proof of [52, Proposition 2.6] for further details
on the role that the energy-elliptic estimates and the estimates along null hyper-
surface play in the proof of Proposition10.4. To prove the remaining estimate
(334), we use (177) and (330a) to conclude that ‖r̃1/2∂∂∂( 	�, 	
, 	S)‖L2

u L∞
t L p

ω(˜M) �
λ1/2−4ε0‖r̃1/2∂∂∂( 	�, 	
, 	S)‖L∞

u L∞
t L p

ω(˜M) � λ−4ε0 as desired. ��

10.5 The new estimates needed to prove Proposition 10.1

The following lemma provides the main new estimates needed to prove Proposi-
tion10.1; the other estimates needed to prove Proposition10.1were essentially derived
in [54].



41 Page 114 of 153 M. M. Disconzi et al.

Lemma 10.5 (The new estimates needed to prove Proposition 10.1). Under the
assumptions of Proposition10.1, the following estimates hold whenever60 q > 2 is
sufficiently close to 2, where p is defined in (276), and we recall that [u]+ := max{u, 0}
(and thus [u]+ denotes the minimum value of t along˜Cu).
Estimates for time-integrated terms:

λ−1
∥

∥

∥

∥

1

r̃(t, u)

∫ t

[u]+
|r̃(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L2
t L∞

x (
˜M)

� λ−1/2−12ε0 ,

(335a)

λ−1
∥

∥

∥

∥

1

r̃2(t, u)

∫ t

[u]+
|r̃2(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L2
t L∞

x (
˜M)

� λ−1/2−12ε0 ,

(335b)

λ−1
∥

∥

∥

∥

1

r̃2(t, u)

∫ t

[u]+
|r̃2(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L
q
2
t L∞

x (
˜M)

� λ
2
q −1−4ε0(

4
q +2)

,

(335c)

λ−1
∥

∥

∥

∥

1

r̃1/2(t, u,ω)

∫ t

[u]+
|r̃(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L∞
t L∞

u L p
ω(˜M)

� λ−1/2−12ε0 ,

(335d)

λ−1
∥

∥

∥

∥

1

r̃3/2(t, u,ω)

∫ t

[u]+
|r̃2(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L∞
t L∞

u L p
ω(˜M)

� λ−1/2−12ε0 ,

(335e)

λ−1
∥

∥

∥

∥

1

r̃(t, u)

∫ t

[u]+
|r̃2(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L∞(˜M)

� λ−16ε0 , (335f)

λ−1
∥

∥

∥

∥

1

r̃3/2(t, u)

∫ t

[u]+
|r̃2(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L∞(˜M)

� λ−1/2−12ε0 ,

(335g)

λ−1
∥

∥

∥

∥

1

r̃2(t, u)

∫ t

[u]+
|r̃2(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L∞(˜M)

� λ−1−8ε0 , (335h)

λ−1
∥

∥

∥

∥

1

r̃3/2(t, u)

∫ t

[u]+
|r̃3∇/ (	C,D)|g/(τ, u,ω) dτ

∥

∥

∥

∥

L∞
t L∞

u L p
ω(˜M)

� λ−1/2−8ε0 , (336a)

λ−1
∥

∥

∥

∥

1

r̃2(t, u)

∫ t

[u]+
|r̃3∇/ (	C,D)|g/(τ, u,ω) dτ

∥

∥

∥

∥

L2
t L∞

u L p
ω(˜M)

� λ−1/2−8ε0 , (336b)

60 The estimates (335c) and (340b) in fact hold whenever q ≥ 2, but in proving Propositions10.1 and 11.1,
we need these estimates only when q > 2 is sufficiently close to 2.
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λ−1
∥

∥

∥

∥

1

r̃3/2(t, u)

∫ t

[u]+

∣

∣

∣r̃3(	S · ∂∂∂ 	�,∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, ζ, r̃−1)

∣

∣

∣

g/
(τ, u,ω) dτ

∥

∥

∥

∥

L∞
t L∞

u L p
ω(˜M)

� λ−1/2−12ε0 , (337a)

λ−1
∥

∥

∥

∥

1

r̃2(t, u)

∫ t

[u]+

∣

∣

∣r̃3(	S · ∂∂∂ 	�,∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, ζ, r̃−1)

∣

∣

∣

g/
(τ, u,ω) dτ

∥

∥

∥

∥

L2
t L∞

u L p
ω(˜M)

� λ−1/2−12ε0 , (337b)

λ−1
∥

∥

∥

∥

1

r̃(t, u)

∫ t

[u]+

∣

∣

∣r̃2(	S · ∂∂∂ 	�,∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, ζ, r̃−1)

∣

∣

∣

g/
(τ, u,ω) dτ

∥

∥

∥

∥

L2
u L2

t L p
ω(˜M)

� λ−16ε0 , (338a)

λ−1
∥

∥

∥

∥

1

r̃1/2(t, u)

∫ t

[u]+

∣

∣

∣r̃2(	S · ∂∂∂ 	�,∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, ζ, r̃−1)

∣

∣

∣

g/
(τ, u,ω) dτ

∥

∥

∥

∥

L2
u L∞

t L p
ω(˜M)

� λ−16ε0 , (338b)

λ−1
∥

∥

∥

∥

1

r̃(t, u)

∫ t

[u]+
|r̃2(∂∂∂	C, ∂∂∂D)|(τ, u,ω) dτ

∥

∥

∥

∥

L2
u L2

t L p
ω(˜M)

� λ−12ε0 , (339a)

λ−1
∥

∥

∥

∥

1

r̃1/2(t, u)

∫ t

[u]+
|r̃2(∂∂∂	C, ∂∂∂D)|(τ, u,ω) dτ

∥

∥

∥

∥

L2
u L∞

t L p
ω(˜M)

� λ−12ε0 . (339b)

Standard spacetime norm estimates:

λ−1‖r̃(	C,D)‖L2
t L∞

u L p
ω(˜M) � λ−1/2−8ε0 , (340a)

λ−1‖r̃(	C,D)‖
L

q
2
t L∞

u L p
ω(˜M)

� λ
2
q −1−4ε0(

4
q +1)

, (340b)

λ−1‖r̃(	C,D)‖L2
u L2

t L p
ω(˜M) � λ−12ε0 , (340c)

λ−1‖r̃∂∂∂(	C,D)‖L2
u L1

t L p
ω(˜M) � λ− 1

2−8ε0 , (340d)

λ−1‖r̃(	S · ∂∂∂ 	�,∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S) · (∂∂∂ 	�, trg̃/χ̃
(Small), χ̂, ζ, r̃−1)‖L2

u L1
t L p

ω(˜M) � λ− 1
2−10ε0 .

(340e)

Proof Throughout the proof, we silently use the simple bound r̃(τ, u)/r̃(t, u) � 1 for
τ ≤ t .
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Toprove (335a),wefirst use (151) and thebound‖(	C,D)‖L∞
ω(St,u) ≤ ‖(	C,D)‖L∞(�t )

to deduce that

LHS (335a) � λ−1
∥

∥

∥

∥

∫ t

[u]+
|(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L2
t L∞

u L∞
ω(

˜M)

� λ−1/2−4ε0

∥

∥

∥

∥

∫ t

[u]+
‖(	C,D)‖L∞

ω(St,u) dτ

∥

∥

∥

∥

L∞
t L∞

u

� λ−1/2−4ε0‖(	C,D)‖L1
t L∞

x (
˜M).

Using (151) and (307b), we bound the RHS of the previous expression by

� λ−8ε0‖(	C,D)‖L2
t L∞

x (
˜M) � λ−1/2−12ε0

as desired.
The estimate (335b) can be proved using an argument that is nearly identical to the

one we used to prove (335a), and we therefore omit the details.
To prove (335c), we argue as above to deduce that

LHS (335c) � λ−1
∥

∥

∥

∥

∫ t

[u]+
|(	C,D)|(τ, u,ω) dτ

∥

∥

∥

∥

L
q
2
t L∞

u L∞
ω(

˜M)

� λ−1(λ1−8ε0)
2
q

∥

∥

∥

∥

∫ t

[u]+
‖(	C,D)‖L∞

ω(St,u) dτ

∥

∥

∥

∥

L∞
t L∞

u

� λ
−1+ 2

q − 16
q ε0‖(	C,D)‖L1

t L∞
x (

˜M).

Using (151) and (307b), we bound the RHS of the previous expression by

� λ
−1/2−4ε0+ 2

q − 16
q ε0‖(	C,D)‖L2

t L∞
x (

˜M) � λ
2
q −1− 16

q ε0−8ε0 = λ
2
q −1−4ε0(

4
q +2)

as desired.
The estimates (335d)–(335h) can be proved using similar arguments that also take

into account the bound (177) for r̃ , and we therefore omit the straightforward details.
To prove (336a), we first observe (switching the order of L∞

u and L∞
t ) that it suffices

to prove that for each fixed u ∈ [− 4
5λ

1−8ε0T∗, λ1−8ε0T∗], we have

λ−1
∥

∥

∥

∥

∫ t

[u]+
|r̃3/2∇/ (	C,D)|g/(τ, u,ω) dτ

∥

∥

∥

∥

L∞
t L p

ω(˜Cu)

� λ−1/2−8ε0 .

Using (151), (177), and (333b), we conclude that the LHS of the previous expression
is

� λ−1‖r̃3/2∇/ (	C,D)‖L1
t L p

ω(˜Cu)
� λ−8ε0‖r̃∇/ (	C,D)‖L2

t L p
ω(˜Cu)

� λ−1/2−8ε0
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as desired.
The estimate (336b) can be proved using a similar argument, and we omit the

details.
To prove (337a), we first observe (switching the order of L∞

u and L∞
t and using

that | 	S| � 1) that it suffices to prove that for each fixed u ∈ [− 4
5λ

1−8ε0T∗, λ1−8ε0T∗],
we have

λ−1

∥

∥

∥

∥

∫ t
[u]+

∣

∣

∣r̃3/2∂∂∂( 	�, 	
, 	S) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, ζ, r̃−1)

∣

∣

∣

g/
(τ, u,ω) dτ

∥

∥

∥

∥

L∞
t L p

ω(˜Cu)

� λ−1/2−12ε0 .

Using (151), (177), (307b), and (309), we deduce that the LHS of the previous expres-
sion is

� λ−8ε0‖∂∂∂( 	�, 	
, 	S)‖L2
t L∞

ω(
˜Cu)

+ λ1/2−12ε0‖∂∂∂( 	�, 	
, 	S)‖L2
t L∞

ω(
˜Cu)

∥

∥

∥(∂∂∂ 	�, trg̃/χ̃(Small), χ̂, ζ)
∥

∥

∥

L2
t L p

ω(˜Cu)
� λ−1/2−12ε0 (341)

as desired.
The estimates (337b), (338a), and (338b) can be proved using similar arguments,

and we omit the details.
To prove (339a), we first use (151) to deduce (switching the order of L2

u and L2
t )

that

LHS (339a) � λ−1/2−4ε0

∥

∥

∥

∥

∫ t

0
‖r̃(∂∂∂	C, ∂∂∂D)‖L2

u L p
ω(˜�τ)

dτ

∥

∥

∥

∥

L∞
t

.

Using (151) and (333c) with Q := p, we deduce that the RHS of the previous expres-
sion is

� λ−1/2−4ε0‖r̃(∂∂∂	C, ∂∂∂D)‖L1
t L2

u L p
ω(˜M) � λ1/2−12ε0‖r̃(∂∂∂	C, ∂∂∂D)‖L∞

t L2
u L p

ω(˜M) � λ−12ε0

as desired.
The estimate (339b) can be proved using similar arguments that also take into

account the bound (177) for r̃ , and we therefore omit the straightforward details.
To prove (340a), we use (151), (177), and (331a) to conclude that

LHS (340a) � λ−1/2−4ε0‖r̃1/2‖L∞(˜M)‖r̃1/2(	C,D)‖L∞
t L∞

u L p
ω(˜M) � λ−1/2−8ε0

(342)

as desired.
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To prove (340b), we use a similar argument to conclude that

λ−1‖r̃(	C,D)‖
L

q
2
t L∞

u L p
ω(˜M)

� λ−1λ
(1−8ε0)

2
q ‖r̃1/2‖L∞(˜M)‖r̃1/2(	C,D)‖L∞

t L∞
u L p

ω(˜M)

� λ
2
q −1−4ε0− 16

q ε0 = λ
2
q −1−4ε0(

4
q +1) (343)

as desired.
The estimate (340c) follows easily from (340a) and the bounds (177) for u.
To prove (340d), we use (151) and (333c) with Q := p to deduce that

λ−1‖r̃∂∂∂(	C,D)‖L2
u L1

t L p
ω(˜M) � λ−1‖r̃∂∂∂(	C,D)‖L1

t L2
u L p

ω(˜M)

� λ−8ε0‖r̃∂∂∂(	C,D)‖L∞
t L2

u L p
ω(˜M) � λ− 1

2−8ε0

as desired.
To prove (340e), we first use (151), (177), and the fact that | 	S| � 1 to deduce that

LHS (340e) � λ−1/2−4ε0
∥

∥

∥r̃(∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, ζ, r̃−1)
∥

∥

∥

L∞
u L1

t L p
ω(˜M)

� λ1/2−8ε0‖(∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S)‖L∞
u L2

t L∞
ω(

˜M)
‖(∂∂∂ 	�, trg̃/χ̃(Small), χ̂, ζ)‖L∞

u L2
t L p

ω(˜M)

+ λ−8ε0‖(∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S)‖L∞
u L2

t L p
ω(˜M)

. (344)

Using (307b) and the bootstrap assumptions (309), we conclude that RHS (344) �
λ− 1

2−10ε0 as desired. ��

10.6 Control of the integral curves of L

Themain results of this subsection are Proposition10.7 andCorollary10.8. The propo-
sition yields quantitative estimates showing that at fixed u, the distinct integral curves
of L remain separated (see Footnote 40). The corollary is a simple consequence of the
proposition and the bootstrap assumptions. It provides L2

t L∞
u C0,δ0

ω estimates for the
fluid variables. Later, we will combine these estimates with the Schauder-type esti-
mate (365) to obtain Lq

t L∞
u C0,δ0

ω -control of χ̂ for several values of q; see the proofs
of (292) and (295) for χ̂.

We start with some preliminary estimates, provided by the following lemma.

Lemma 10.6 (Preliminary results for controlling the integral curves of L). Under the
assumptions of Sect.10.2, if λ is sufficiently large, then the following results hold.

Results along �0: For A = 1, 2 and i = 1, 2, 3, let
(

∂
∂ωA

)i
denote the Carte-

sian components of ∂
∂ωA , and let !(A) be the St,u-tangent vectorfield with Cartesian

components !i
(A) := 1

r̃

(

∂
∂ωA

)i
, as in (225). Along �0 (where r̃ = w = −u), for

0 < w ≤ w∗;(λ) := 4
5T∗;(λ) and ω ∈ S

2, we view !i
(A) = !i

(A)(0, w,ω), and

similarly for the Cartesian spatial components N i and Li . Then for each ω ∈ S
2,
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limw↓0 N i (0, w,ω), limw↓0 Li (0, w,ω), and limw↓0!i
(A)(0, w,ω) exist, and we

respectively denote the limits by N i (0, 0,ω), Li (0, 0,ω), and !i
(A)(0, 0,ω). Fur-

thermore, for each ω ∈ S
2, we have that

gcd(0, 0,ω)!
c
(A)(0, 0,ω)!

d
(B)(0, 0,ω) = e/(ω)

(

∂

∂ωA
,
∂

∂ωB

)

+ O(λ−4ε0).

In addition, the following estimates hold for (w,ω) ∈ [0, 45T∗;(λ)] × S
2, where

xi (0, w,ω) are the Cartesian spatial coordinates viewed as a function of w,ω along
�0, and zi are the Cartesian spatial coordinates of the point z ∈ �0 (see Sect.9.4):

xi (0, w,ω) = zi + w
{

N i (0, 0,ω)+ O(λ−4ε0)
}

, (345a)

N i (0, w,ω) = N i (0, 0,ω)+ O(λ−4ε0), (345b)

Li (0, w,ω) = Li (0, 0,ω)+ O(λ−4ε0), (345c)

!i
(A)(0, w,ω) = !i

(A)(0, 0,ω)+ O(λ−4ε0). (345d)

Moreover, the following identity holds:

∂

∂ωA
N i (0, 0,ω) = ∂

∂ωA
Li (0, 0,ω) = !i

(A)(0, 0,ω). (346)

In addition, with de/(ω(1),ω(2))denoting the distance between the pointsω(1),ω(2) ∈
S
2 with respect to the standard Euclidean round metric e/ on S

2, we have the following
estimate:

3
∑

i=1

|N i (0, 0,ω(1))− N i (0, 0,ω(2))| =
3
∑

i=1

|Li (0, 0,ω(1))− Li (0, 0,ω(2))|

≈ de/(ω(1),ω(2)). (347)

Finally, we have the following estimate, (α = 0, 1, 2, 3):

‖Lα‖
L∞

u C
0,δ0
ω (˜�0)

� 1. (348)

Results along the cone-tip axis: In ˜M(I nt)
, let us view !i

(A) = !i
(A)(t, u,ω),

and similarly for the Cartesian spatial components N i and Li . Then for each
(u,ω) ∈ [0, T∗;(λ)] × S

2, limt↓u !
i
(A)(t, u,ω) exists, and we denote the limit by

!i
(A)(u, u,ω). Furthermore, the following estimate holds for (t,ω) ∈ [0, T∗;(λ)] ×

S
2: gab(t, t,ω)!a

(A)(t, t,ω)!
b
(B)(t, t,ω) = e/(ω)

(

∂
∂ωA ,

∂
∂ωB

)

+ O(λ−ε0), and

within each coordinate chart on S
2, for each ω in the domain of the chart,

{!(1)(t, t,ω),!(2)(t, t,ω)} is a linearly independent set of vectors in R
3.
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Moreover, along the cone-tip axis, that is, for t ∈ [0, T∗;(λ)] we have:

N i (t, t,ω) = N i (0, 0,ω)+ O(λ−8ε0), (349a)

Li (t, t,ω) = Li (0, 0,ω)+ O(λ−8ε0), (349b)

!i
(A)(t, t,ω) = !i

(A)(0, 0,ω)+ O(λ−4ε0). (349c)

In addition, for (t,ω) ∈ [0, T∗;(λ)] × S
2, the following relations hold along the

cone-tip axis, that is, for t ∈ [0, T∗;(λ)]:

∂

∂ωA
N i (t, t,ω) = ∂

∂ωA
Li (t, t,ω) = !i

(A)(t, t,ω). (350)

Results in ˜M: For u ∈ [− 4
5T∗;(λ), T∗;(λ)], t ∈ [[u]+, T∗;(λ)], and ω ∈ S

2, we have

Li (t, u,ω) = Li (0, 0,ω)+ O(λ−4ε0), (351a)

!i
(A)(t, u,ω) = !i

(A)(0, 0,ω)+ O(λ−4ε0). (351b)

Proof Proof of the results along�0.We start by showing that limw↓0!i
(A)(0, w,ω) :=

!i
(A)(0, 0,ω) exists, and we exhibit the desired properties of the limit. We will use

the evolution equation (227).
From the bootstrap assumptions, the simple bound ‖f

( 	L)‖L∞(˜M) � 1 implied by
them, the estimates of Proposition9.8, (318) with Q := p, (332a) and (332c) along
�0 with Q := p, the bound (177) for r̃ |�0 = w, and the estimate ‖!i

(A)‖L∞(˜�0)
� 1

implied by (282c), we find that the first term on RHS (227) verifies

‖a · f
( 	L) · (∂∂∂ 	�, χ̂) · 	!(A)‖L1

wL∞
ω(

˜�0)

� λ1/2−4ε0‖r̃∇/∂∂∂ 	�‖L2
wL p

ω(˜�0)
+ λ1/2−4ε0‖∂∂∂ 	�‖L2

wL2
ω(

˜�0)
+ λ1/2−4ε0‖χ̂‖L2

wL∞
ω(

˜�0)

� λ−4ε0 ,

and that the last term on RHS (227) verifies the same bound:

‖f
( 	L) · ∇/ a · 	!(A)‖L1

wL∞
ω(

˜�0)
� λ1/2−4ε0‖∇/ a‖L2

wL∞
ω(

˜�0)
� λ−4ε0 .

We now integrate equation (227) with respect to w and use these estimates and the
initial condition for 	!(A) at the convenient value w = 1 (which, by (282c), is a value
at which the vectors 	!(1) and 	!(2) are known to be finite and linearly independent)
thereby concluding that if λ is sufficiently large, then limw↓0!i

(A)(0, w,ω) exists,

that for 0 ≤ w ≤ 4
5T∗;(λ) and ω ∈ S

2 we have

!i
(A)(0, w,ω) = !i

(A)(0, 1,ω)+ O(λ−4ε0),
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and that

gcd(0, 0,ω)!
c
(A)(0, 0,ω)!

d
(B)(0, 0,ω) ≈ e/(ω)

(

∂

∂ωA
,
∂

∂ωB

)

.

Except for (346), these arguments yield all desired results for!i
(A) along�0, including

(345d). To prove (346), we contract the estimate (286) against! j
(A)(0, w,ω), use the

identities w! j
(A) /

c
j∂c N i = ∂

∂ωA N i , ! j
(A) /

i
j = !i

(A), and Li = Bi + N i , use that

Bi (0, 0,ω) = Bi |z is independent of ω, and use the previous results proved in this
paragraph.

The results for Li and N i along �0 stated in the lemma, including (345b) and
(345c), can be obtained from similar reasoning based on the evolution equations in
(224), and we omit the details.

Next, we consider the map N(ω) := (

N 1(0, 0,ω), N 2(0, 0,ω), N 3(0, 0,ω)
)

from the domain S
2 to the target

U Tz�0 := {V ∈ Tz�0 | gcd |zV cV d = 1} " S
2.

The results from the first paragraph of this proof, including (346), yield that the
differential of N with respect to ω is injective. Thus, N is a differentiable open map
from S

2 to S
2, and it is a standard result of differential topology that N must be

a covering map (in particular, it is onto). Thus, taking into account the quantitative
bounds for the differential of N with respect to ω proved above, we conclude that
there exists a uniform constant 0 < β < π such that if λ is sufficiently large, then
(347) holds (with bounded implicit constants) for all pairs ω(1),ω(2) ∈ S

2 such
that de/(ω(1),ω(2)) < β. Moreover, since the domain S

2 is path-connected and the
target U Tz�0 " S

2 is simply connected, it is a standard result in algebraic topology
that N is in fact a diffeomorphism (see [33, Theorem 54.4] and note that U Tz�0 "
S
2 has a trivial fundamental group since it is simply connected). In particular, N is

globally injective. This fact yields (347) (again, with bounded implicit constants) for
all ω(1),ω(2) ∈ S

2 with β ≤ de/(ω(1),ω(2)) ≤ π .
To prove (345a), we first use (167) to deduce ∂

∂w
xi (0, w,ω) = [aN i ](0, w,ω).

Also using (282a) and (345b), we see that ∂
∂w

xi (0, w,ω) = N i (0, 0,ω)+O(λ−4ε0).
Integrating this estimate with respect to w starting from the value w = 0, and using
the initial condition xi (0, w,ω) = zi , we conclude (345a).

We now show that for each (u,ω) ∈ [− 4
5T∗;(λ), 0)× S

2,

lim
t↓0 !

i
(A)(t, u,ω) = !i

(A)(0, u,ω)

and

gcd(0, u,ω)!
c
(A)(0, u,ω)!

d
(B)(0, u,ω) = e/(ω)

(

∂

∂ωA
,
∂

∂ωB

)

+ O(λ−ε0).
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The desired results can be obtained by using arguments similar to the ones given in the
first paragraph of this proof, based on the evolution equation (226) and the bootstrap
assumptions, including (151), (306a), (308a), and (312).

Finally,weprove (348). The result is trivial for L0 since this component is constantly
unity. Next, we note the schematic identity ∇/ Li = f

( 	L)χ + f
( 	L) · ∂∂∂ 	�, where on the

LHS, we are viewing ∇/ Li to be the angular gradient of the scalar function Li . Hence,
applying (318) with Q := p and with the scalar function Li in the role of ξ, and using
the simple bound ‖f

( 	L)‖L∞(˜M) � 1 implied by the bootstrap assumptions, we find

that for u ∈ [− 4
5T∗;(λ), 0], we have

‖Li‖
C
0,1− 2

p
ω (S0,u)

� ‖r̃χ‖L p
ω(S0,u)

+ ‖r̃∂∂∂ 	�‖L p
ω(S0,u)

+ 1.

Also using the first identities in (200) and (204c), (207), the schematic identity kAB =
f
( 	L) · ∂∂∂ 	�, and the parameter relation (276), we find that

‖Li‖
L∞

u C
0,δ0
ω (˜�0)

� ‖r̃ trg̃/χ̃
(Small)‖L∞

u L p
ω(˜�0)

+ ‖r̃ θ̂‖L∞
u L p

ω(˜�0)
+ ‖r̃∂∂∂ 	�‖L∞

u L p
ω(˜�0)

+ 1.

From (282b) with q∗ := p, (285), (332a), and (177) for u|�0 = −w, we conclude that
the RHS of the previous estimate is � 1, which yields (348).
Proof of the results along the cone-tip axis. The ODE (161) can be expressed in
the schematic form d

dt
	Nω = f( 	�) · ∂∂∂ 	� · 	Nω, Here, 	Nω = 	Nω(t) denotes the array

of Cartesian spatial components of the unit outward normal vector N (correspond-
ing to the parameter ω ∈ S

2) along the cone-tip axis γz(t). That is, if 	N (t, u,ω)
denotes the array of Cartesian spatial components of N viewed as a function of the
geometric coordinates (t, u,ω), then 	Nω(t) := 	N (t, t,ω). Moreover, in the pre-
vious expressions, we have abbreviated 	� = 	� ◦ γz(t) and ∂∂∂ 	� = [∂∂∂ 	�] ◦ γz(t).
Integrating the ODE in time and using the bootstrap assumptions, we deduce that
| 	Nω(t) − 	Nω(0)| �

∫ t
0 ‖∂∂∂ 	�‖L∞(�τ) dτ. From this estimate, (151), and (306a), we

arrive at the desired bound (349a). The desired bound for (349b) follows from (349a),
the identity L = B + N , and the estimate |Bα(t, t,ω) − Bα(0, 0,ω)| � λ−8ε0 ,
which follows from integrating the estimate |BBα|(τ, τ,ω) � ‖∂∂∂ 	�‖L∞(�τ) (valid
since Bα = Bα( 	�)) with respect to τ and using (151) and (306a).

We now show that for each (u,ω) ∈ [0, T∗;(λ)] × S
2, limt↓u !

i
(A)(t, u,ω) :=

!i
(A)(u, u,ω) exists and that

gcd(u, u,ω)!
c
(A)(u, u,ω)!

d
(B)(u, u,ω) = e/(ω)

(

∂

∂ωA
,
∂

∂ωB

)

+ O(λ−ε0).

The desired results can be obtained by using arguments similar to the ones given in the
first paragraph of this proof, based on the evolution equation (226) and the bootstrap
assumptions, including (151), (306a), (308a), and (312); we omit the details.

We now prove (350). From the identity L = B + N and the fact that
∂

∂ωA B
α(t, t,ω) = ∂

∂ωA [Bα ◦ 	� ◦ γz(t)] = 0, we find that ∂
∂ωA N i (t, t,ω) =
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∂
∂ωA Li (t, t,ω), as is stated in (350). From the fact that limt↓u !

i
(A)(t, u,ω) =

!i
(A)(u, u,ω) and the asymptotic initial condition (283a) for |r̃ / a

j∂a Li −  / i
j |, we

find that ∂
∂ωA N i (t, t,ω) = !i

(A)(t, t,ω), which finishes the proof of (350).
We now prove (349c). We differentiate the ODE (161) with respect to the param-

eter ωA (that is, with the operator ∂
∂ωA ), use the fact that ∂

∂ωA [ 	� ◦ γz(t)] =
∂

∂ωA ([∂∂∂�] ◦ γz(t)) = 0, integrate the resulting ODE in time, and use the bootstrap
assumptions, thereby deducing that

∣

∣

∣

∣

∂

∂ωA
	Nω(t)− ∂

∂ωA
	Nω(0)

∣

∣

∣

∣

�
∫ t

0
‖∂∂∂ 	�‖L∞(�τ)

∣

∣

∣

∣

∂

∂ωA
	Nω(t)− ∂

∂ωA
	Nω(0)

∣

∣

∣

∣

dτ

+
∫ t

0
‖∂∂∂ 	�‖L∞(�τ)

∣

∣

∣

∣

∂

∂ωA
	Nω(0)

∣

∣

∣

∣

dτ. (352)

From(352), (151), (306a), (286) (which, in viewof (282c), implies that
∣

∣

∣

∂
∂ωA

	Nω(0)
∣

∣

∣ �
1), and Grönwall’s inequality, we find that ∂

∂ωA N i (t, t,ω) = ∂
∂ωA N i (0, 0,ω) +

O(λ−8ε0). From this estimate and (346), we deduce that ∂
∂ωA N i (t, t,ω) =

!i
(A)(0, 0,ω)+ O(λ−4ε0). Finally, from this bound and (350), we conclude (349c).

Proof of the results in ˜M. We now show that (351b) holds. This estimate can be
obtained by using arguments similar to the ones given in the first paragraph of this
proof, based on the evolution equation (226) and the bootstrap assumptions, including
(151), (306a), (308a), and (312). The initial conditions for !i

(A) on �0 (which are

relevant for the region ˜M(Ext)
) can be related back to !i

(A)(0, 0,ω) via the already

proven estimate (345d), while the initial conditions for !i
(A) on the cone-tip axis

(which are relevant for the region ˜M(Ext)
) can be related back to !i

(A)(0, 0,ω) via
(349c); we omit the details.

The estimate (351a) can be obtained in a similar fashion based on the evolution
equation for Li stated in (223), the bootstrap assumptions, (151), (306a), and the
already proven estimates (345c) and (349b); we omit the details. ��

We now derive quantitative control of the integral curves of L in ˜M.

Proposition 10.7 (Control of the integral curves of L in˜M). Letϒu;ω(t) be the family
of null geodesic curves from Sects.9.4.1 and 9.4.2, which depend on the parameters
(u,ω) ∈ [− 4

5T∗;(λ), T∗;(λ)] × S
2 and are parameterized by t ∈ [[u]+, T∗;(λ)] and

normalized by ϒ0
u;ω(t) = t . Let ω(1),ω(2) ∈ S

2, and let de/(ω(1),ω(2)) denote their
distance with respect to the standard Euclidean round metric e/. Under the assumptions
of Sect.10.2, the following estimate for the Cartesian components ϒαu;ω(t) (which
can be identified with the Cartesian coordinate functions xα , viewed as a function of
(t, u,ω)) holds for u ∈ [− 4

5T∗;(λ), T∗;(λ)] and t ∈ [[u]+, T∗;(λ)]:
3
∑

α=0

|ϒαu;ω(1)
(t)−ϒαu;ω(2)

(t)| ≈ r̃de/(ω(1),ω(2)). (353)
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Proof At the end of the proof, we will show that the following two estimates hold for
u ∈ [− 4

5T∗;(λ), T∗;(λ)], t ∈ [[u]+, T∗;(λ)], and ω ∈ S
2, (A = 1, 2 and i = 1, 2, 3):

ϒ i
u;ω(t) = ϒ i

u;ω([u]+)+ (t − [u]+)
{

Li (0, 0,ω)+ O(λ−4ε0)
}

, (354)

∂

∂ωA
ϒ i

u;ω(t) = r̃
{

!i
(A)(0, 0,ω)+ O(λ−4ε0)

}

. (355)

From (355) and the properties of the (linearly independent) set {!(1)(0, 0,ω),
!(2)(0, 0,ω)} shown in Lemma 10.6, it follows that the map ω →
(

ϒ1
u;ω(t), ϒ

2
u;ω(t), ϒ

3
u;ω(t)

)

has an injective differential and, in particular, there

exists 0 < β < π such that if λ is sufficiently large, then (353) holds whenever
de/(ω(1),ω(2)) < β. From (347), (354), and the fact that ϒ i

u;ω(u) is indepen-
dent of ω when u ∈ [0, T∗;(λ)], it follows that for this fixed value of β, if
λ > 0 is sufficiently large, then (353) holds whenever β ≤ de/(ω(1),ω(2)) ≤ π ,
u ∈ [0, T∗;(λ)], and t ∈ [u, T∗;(λ)]. (353) can be proved in the remaining case, in
which β ≤ de/(ω(1),ω(2)) ≤ π , u ∈ [− 4

5T∗;(λ), 0], and t ∈ [0, T∗;(λ)], via a similar
argument that also takes into account the estimate (345a), as we now explain. (345a) is
relevant in that the identity Li = Bi + N i , the fact that Bi (0, 0,ω) is independent of
ω, and the estimates (345a) and (354) collectively imply that for u ∈ [− 4

5T∗;(λ), 0],
t ∈ [0, T∗;(λ)], and ω(1),ω(2) ∈ S

2, we have

3
∑

α=0

|ϒαu;ω(1)
(t)−ϒαu;ω(2)

(t)|

= (|u| + t)

{

3
∑

i=1

|Li (0, 0,ω(1))− Li (0, 0,ω(2))| + O(λ−4ε0)

}

.

In view of (347) and the assumption β ≤ de/(ω(1),ω(2)), we see that for λ sufficiently
large, the O(λ−4ε0) term is negligible. Since r̃ = |u| + t when u ≤ 0, we have
completed the proof of (353).

It remains for us to prove (354)–(355). The estimate (355) follows directly from
multiplying (351b) by r̃ and considering the definitions of!i

(A) andϒ
i
u;ω(t). To derive

(354), we first use (351a) to deduce that ∂
∂tϒ

i
u;ω(t) = Li (t, u,ω) = Li (0, 0,ω) +

O(λ−4ε0). Integrating this estimate with respect to time starting from the time value
[u]+, we conclude (354). ��

We now derive the main consequence of Proposition10.7: a corollary that yields
L2

t L∞
u C0,δ0

ω (˜M) estimates for various fluid variables.

Corollary 10.8 (L2
t L∞

u C0,δ0
ω (˜M) estimates). Under the assumptions of Sect.10.2, we

have the following estimates:

‖∂∂∂ 	�‖
L2

t L∞
u C

0,δ0
ω (˜M)

, ‖(∂ 	
, ∂ 	S)‖
L2

t L∞
u C

0,δ0
ω (˜M)

, ‖(	C,D)‖
L2

t L∞
u C

0,δ0
ω (˜M)

� λ−1/2−3ε0 .

(356)
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Moreover,

‖( 	�, 	
, 	S)‖
L∞

t L∞
u C

0,δ0
ω (˜M)

� 1. (357)

Proof We prove (356) only for the first term on the LHS; the remaining terms on
LHS (356) can be bounded using the same arguments. To proceed, we first use (353)
to deduce that

|∂∂∂ 	�(t, u,ω(1))− ∂∂∂ 	�(t, u,ω(2))|
[r̃de/(ω(1),ω(2))]δ0

� ‖∂∂∂ 	�‖
C
0,δ0
x (˜�t )

.

From this bound, the estimate (177) for r̃ , and the inequality λ(1−8ε0)δ0 ≤ λδ0 ≤ λε0

(see (35b)–(35c)), we find, considering separately the cases 0 ≤ r̃ ≤ 1 and 1 ≤ r̃ ,
that ‖∂∂∂ 	�‖

C
0,δ0
ω (St,u)

� λε0‖∂∂∂ 	�‖
C
0,δ0
x (˜�t )

. From this bound and (307c), we conclude

the desired estimate (356).
To prove (357), we note that Proposition5.1 and Sobolev embedding H N (�t ) ↪→

C0,δ0
x (˜�t ) imply that the non-rescaled solution variables ( 	�, 	
, 	S) are bounded in

the norm ‖ · ‖
L∞

t C
0,δ0
x (˜M)

by � 1. It follows that the rescaled solution variables on

LHS (357) (as defined in Sect. 9.1 and under the conventions of Sect. 9.3) are bounded
in the norm ‖ · ‖L∞(˜M) by � 1 and in the norm ‖ · ‖

L∞
t Ċ

0,δ0
x (˜M)

by � λ−δ0 . From

these estimates and arguments similar to the ones given in the previous paragraph, we
conclude (357). ��

10.7 Estimates for transport equations along the integral curves of L in Hölder
spaces in the angular variablesω

We now derive estimates for transport equations along the integral curves of L with
initial data and source terms that are Hölder-class in the geometric angular variables
ω.

Lemma 10.9 (Estimates for transport equations along the integral curves of L in
Hölder spaces with respect to ω). Let ˜Cu ⊂ ˜M. Let F be a smooth scalar-
valued function on ˜Cu and let ϕ̊ be a smooth scalar-valued function on S[u]+,u. For
(t,ω) ∈ [[u]+, T∗;(λ)] × S

2, let the scalar-valued function ϕ be a smooth solution to
the following inhomogeneous transport equation with data given on S[u]+,u:

Lϕ(t, u,ω) = F(t, u,ω), (358a)

ϕ([u]+, u,ω) = ϕ̊(ω). (358b)

Under the assumptions of Sect.10.2, the following estimate holds for t ∈ [[u]+, T∗;(λ)]:

‖ϕ‖
C
0,δ0
ω (St,u)

� ‖ϕ̊‖
C
0,δ0
ω (S[u]+,u)

+
∫ t

[u]+
‖F‖

C
0,δ0
ω (Sτ,u)

dτ. (359)
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Moreover,

∥

∥

∥

∥

∫ t

[u]+
F(τ, u,ω) dτ

∥

∥

∥

∥

C
0,δ0
ω (St,u)

�
∫ t

[u]+
‖F‖

C
0,δ0
ω (Sτ,u)

dτ. (360)

Proof The lemma is a straightforward consequence of the fundamental theorem of
calculus and the fact that the angular geometric coordinate functions {ωA}A=1,2 are
constant along the integral curves of L = ∂

∂t .

10.8 Calderon–Zygmund- and Schauder-type Hodge estimates on St,u

Some of the tensorfields under study are solutions toHodge systems on St,u . To control
them, we will use the Calderon–Zygmund and Schauder-type estimates provided by
the following lemma.

Lemma 10.10 (Calderon–Zygmund- and Schauder-type Hodge estimates on St,u).
Under the assumptions of Sect.10.2 and the estimates of Proposition10.4, if ξ is an
St,u-tangent one-form and 2 ≤ Q ≤ p (where p is as in (276)), then

‖∇/ ξ‖L Q
g/ (St,u)

+ ‖r̃−1ξ‖L Q
g/ (St,u)

� ‖div/ξ‖L Q
g/ (St,u)

+ ‖curl/ξ‖L Q
g/ (St,u)

. (361)

Similarly, if ξ is an St,u-tangent type
(0
2

)

symmetric trace-free tensorfield, then

‖∇/ ξ‖
L Q

g/ (St,u)
+ ‖r̃−1ξ‖

L Q
g/ (St,u)

� ‖div/ξ‖
L Q

g/ (St,u)
. (362)

Moreover, let ξ be an St,u-tangent type
(0
2

)

symmetric trace-free tensorfield, let F(1)
be a scalar function, let F(2) be an St,u-tangent type

(0
2

)

symmetric tensorfield, and let
G be an St,u-tangent one-form. Assume that61

div/ξ = ∇/F(1) + div/F(2) + G. (363)

Let 2 < Q <∞, and let Q′ be defined by 1
2 + 1

Q = 1
Q′ . Then the following estimate

holds:

‖ξ‖
L Q

g/ (St,u)
�

∑

i=1,2

‖F(i)‖L Q
g/ (St,u)

+ ‖G‖
L Q′

g/ (St,u)
. (364)

61 On RHS (363), we made a minor change compared to [54]*Proposition 5.9: we allowed for the presence
of the F(2) term, in particular so that we can handle the second term on RHS (230). We will now explain

why the estimate (364) holds in the presence of this new term. First, we can split the St,u -tangent type
(0
2
)

symmetric tensorfield F(2) into its trace-free and pure-trace parts. We then bring the trace-free part over to

the left-hand side of the equation (so that the new LHS is of the form div/ (ξ − F̂(2))), while we absorb the
pure-trace part of F(2) into the F(1) term. This allows one to reduce the proof of (364) to the case in which
the F(2) term on RHS (363) is absent, as was assumed in [54, Proposition 5.9].
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In addition, if 2 < Q ≤ p (where p is as in Sect.10.1), then

‖ξ‖
C
0,1− 2

Q
ω (St,u)

�
∑

i=1,2

‖F(i)‖
C
0,1− 2

Q
ω

+ ‖r̃G‖L Q
ω(St,u)

. (365)

Similarly, assume that ξ, F(1), and F(2) are St,u-tangent one-forms and G(1), and
G(2) are scalar functions such that ξ satisfies the following Hodge system:

div/ξ = div/F(1) + G(1), (366a)

curl/ξ = curl/F(2) + G(2). (366b)

Then under the same assumptions on Q and Q′ stated in the previous paragraph, ξ

satisfies the estimates (364)–(365) with G := (G(1),G(2)).
Finally, assume that ξ, F = (F(1),F(2)), and G are St,u tensorfields of the type

from the previous two paragraphs (in particular satisfying (363) or (366a)–(366b)).
Assume that F is the St,u-projection of a spacetime tensorfield ˜F or is a contraction
of a spacetime tensorfield ˜F against L, L, or N. If Q > 2, 1 ≤ m < ∞, and δ′ > 0

is sufficiently small, then the following estimates hold, where 	̃F denotes the array of
(scalar) Cartesian component functions of˜F:

‖ξ‖L∞
ω(St,u) �

∥

∥

∥νδ′
Pν

	̃F
∥

∥

∥

�m
ν L∞

ω(St,u)
+
∥

∥

∥

	̃F
∥

∥

∥

L∞
ω(St,u)

+ ‖r̃1−
2
Q G‖

L Q
g/ (St,u)

. (367)

Proof (Discussion of proof) Aside from (365), these estimates are a restatement of
[54, Lemma 5.8], [54, Proposition 5.9], and [54, Proposition 5.10]. Thanks to the
bootstrap assumptions and the estimates of Proposition10.4, the estimates can be
proved using the same arguments given in [52, Lemma 2.18], [20, Proposition 6.20],
and [52, Proposition 3.5].

The elliptic Schauder-type estimate (365) for Hodge systems can be proved using
a perturbative argument, that is, using the (standard) fact that it holds on S2 equipped
with the standard roundmetric e/, and then obtaining the desired estimate perturbatively,
with the help of the bootstrap assumptions (308a)–(308b) (which imply that r̃−2g/ is
close to e/) and the Morrey-type estimate (318). Here we will give a detailed proof
of (365) for one-forms ξ that solve the system (366a)–(366b). The estimate (365) for
St,u-tangent type

(0
2

)

symmetric trace-free tensorfields ξ that solve (363) can be proved
using similar arguments, and we omit those details.

To proceed, we let ∇/ , g/, �, (0)∇/ , e/, and (0)� be as in our proof of (318). Let div/ξ
denote the divergence of ξ with respect to g/, and let (0)div/ξ denote the divergence
of ξ with respect to e/. Let ε/ denote the type

(0
2

)

volume form of g/, let (0)ε/ denote

the type
(0
2

)

volume form of e/, and let ε/ ## denote the type
(2
0

)

volume form of g/,
i.e., the dual of ε/ with respect to g/. Then by (366a)–(366b), ξ satisfies the following
equations, schematically depicted relative to the geometric angular coordinates, where
Id denotes the type

(1
1

)

identity tensorfield, [e/ · (r̃2g/−1)]A
B := e/BC (r̃2g/−1)AC , and
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[(0)ε/ ·(r̃2ε/ ##)]A
B := (0)ε/ BC (r̃

2ε/ ##)AC (and note that if g/ = r̃2e/, then e/·(r̃2g/−1) = Id
and (0)ε/ · (r̃2ε/ ##) = −Id):

(0)div/ξ = (0)div/
{

[Id − e/ · (r̃2g/−1)] · ξ
}

+ (0)div/
{

e/ · (r̃2g/−1) · F(1)
}

+ r̃2G(1) + ((0)� − �) · (r̃2g/−1) · F(1) + ((0)� − �) · (r̃2g/−1) · ξ, (368)

(0)curl/ξ = (0)curl/
{

[Id + (0)ε/ · (r̃2ε/ ##)] · ξ
}

− (0)curl/
{

(0)ε/ · (r̃2ε/ ##) · F(2)
}

+ r̃2G(2) + ((0)� − �) · (r̃2ε/ ##) · F(2) + ((0)� − �) · (r̃2ε/ ##) · ξ. (369)

We view (368)–(369) as a div-curl system on the standard round sphere. To control the
solutions, we will use the following simple product-type estimate, which can easily
be seen to be valid for St,u-tangent tensorfields ξ(1) and ξ(2), where “·” schematically
denotes tensor products and natural contractions:

‖ξ(1) · ξ(2)‖C
0,δ0
ω (St,u)

� ‖ξ(1)‖L∞
ω(St,u)‖ξ(2)‖Ċ

0,δ0
ω (St,u)

+ ‖ξ(2)‖L∞
ω(St,u)‖ξ(1)‖Ċ

0,δ0
ω (St,u)

.

(370)

From (368)–(369) and the fact that the analog of (365) holds on the standard round
sphere, we have, in view of Definition9.7 and (278), (370), the Morrey estimate (318)
for the standard round sphere, and (308a), the following estimate:

‖r̃ξ‖
C
0,1− 2

Q
ω (St,u)

�
∑

A,B,C=1,2

∥

∥

∥

∥

∂

∂ωC

[

IdA
B − e/B D · (r̃2g/−1)AD

]

∥

∥

∥

∥

L Q
ω(St,u)

‖r̃ξ‖
C
0,1− 2

Q
ω (St,u)

+
∑

A,B=1,2

∥

∥

∥IdA
B − e/BC · (r̃2g/−1)AC

∥

∥

∥

L∞
ω(St,u)

‖r̃ξ‖
C
0,1− 2

Q
ω (St,u)

+
∑

A,B,C=1,2

∥

∥

∥

∥

∂

∂ωC

[

IdA
B + (0)ε/ B D(r̃

2ε/ ##)AD
]

∥

∥

∥

∥

L Q
ω(St,u)

‖r̃ξ‖
C
0,1− 2

Q
ω (St,u)

+
∑

A,B=1,2

∥

∥

∥IdA
B + (0)ε/ BC (r̃

2ε/ ##)AC
∥

∥

∥

L∞
ω(St,u)

‖r̃ξ‖
C
0,1− 2

Q
ω (St,u)

+
∑

A,B,C=1,2

∥

∥

∥

(0)�
C
A B − � C

A B

∥

∥

∥

L Q
ω(St,u)

‖|r̃2g/−1|e/‖L∞
ω(St,u)‖r̃ξ‖

C
0,1− 2

Q
ω (St,u)

+
∑

A,B,C=1,2

∥

∥

∥

(0)�
C
A B − � C

A B

∥

∥

∥

L Q
ω(St,u)

‖|r̃2ε/ ##|e/‖L∞
ω(St,u)‖r̃ξ‖

C
0,1− 2

Q
ω (St,u)

+ ‖|r̃2g/−1|e/‖L∞
ω(St,u)‖r̃F(1)‖

C
0,1− 2

Q
ω (St,u)

+ ‖|r̃2ε/ ##|e/‖L∞
ω(St,u)‖r̃F(2)‖

C
0,1− 2

Q
ω (St,u)

+
∑

A,B,C=1,2

∥

∥

∥

(0)�
C
A B − � C

A B

∥

∥

∥

L Q
ω(St,u)

‖|r̃2g/−1|e/‖L∞
ω(St,u)‖r̃F(1)‖

C
0,1− 2

Q
ω (St,u)

+
∑

A,B,C=1,2

∥

∥

∥

(0)�
C
A B − � C

A B

∥

∥

∥

L Q
ω(St,u)

‖|r̃2ε/ ##|e/‖L∞
ω(St,u)‖r̃F(2)‖

C
0,1− 2

Q
ω (St,u)
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+
∑

i=1,2

‖r̃2G(i)‖L Q
ω(St,u)

. (371)

Using (371) and (308a)–(308b), we deduce that

‖r̃ξ‖
C
0,1− 2

Q
ω (St,u )

� λ−ε0‖r̃ξ‖
C
0,1− 2

Q
ω (St,u )

+
∑

i=1,2

‖r̃F(i)‖
C
0,1− 2

Q
ω (St,u )

+
∑

i=1,2

‖r̃2G(i)‖L Q
ω(St,u )

.

(372)

From (372), we see that if λ is sufficiently large, then we can absorb the first term
on RHS (372) back into the left, at the expense of doubling the (implicit) constants
on the RHS. We have therefore proved (365) for one-forms ξ that solve the system
(366a)–(366b). ��

10.9 Proof of Proposition 10.1

Armed with the previous results of Sect. 10, we are now ready to prove Proposi-
tion10.1. Let us make some preliminary remarks. We mainly focus on estimating the
terms that are new compared to [54], typically referring the reader to the relevant
spots in [54] for terms that have already been handled. When we refer to [54] for proof
details, we implicitly mean that those details can involve the results of Proposition9.8,
Lemma 9.9, the inequalities proved in Sect. 10.3, and Proposition10.4, which subsume
results derived in [54]. The arguments given in [54] often also involve the bootstrap
assumptions of Sect. 10.2, which subsume the bootstrap assumptions made in [54].
We sometimes silently use the results of Proposition9.8 and Lemma 9.9, which con-
cern estimates for the initial data of various quantities. We also stress that the order in
whichwe derive the estimates is important, thoughwe do not alwaysmake this explicit.
Moreover, throughout the proof, we silently use the simple bound r̃(τ, u)/r̃(t, u) � 1
for τ ≤ t . Finally, we highlight that the factors of f

( 	L) appearing on the RHSs of the
equations of Proposition9.7 are, by virtue of the bootstrap assumptions, bounded in
magnitude by � 1. Therefore, these factors of f

( 	L) are not important for the over-
whelming majority of our estimates, and we typically do not even mention them in
our discussion below.

Remark 10.4 In thePDEs thatweestimate below, all of the terms that are newcompared
to [54] are easy to identify: they all are multiplied by λ−1.

10.9.1 Proof of (297a)–(297b)

Based on the transport equations (233) and (235a) and Lemma 10.3, the proof of
[54]*Lemma 5.4 goes through verbatim.

10.9.2 Proof of (290) and (291)

Throughout, we will use the simple product-type estimate (370). We will also use
the simple estimate ‖f ◦ 	ϕ‖

C
0,δ0
ω (St,u)

� 1 + ‖	ϕ‖
C
0,δ0
ω (St,u)

, which is valid for scalar
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functions f of array-valued functions 	ϕ on St,u whenever f is smooth on an open set
containing the image set 	ϕ(St,u).

We first prove (291). To proceed, we note that from the bootstrap assumptions, it
easily follows that ‖f

( 	L)‖L∞(˜M) � 1, ‖ 	�‖L∞(˜M) � 1, and ‖ 	L‖L∞(˜M) � 1. From
these bounds, the estimates mentioned in the previous paragraph, and (357), we see
that ‖f

( 	L)‖C
0,δ0
ω (St,u)

� 1+‖ 	�‖
C
0,δ0
ω (St,u)

+‖	L‖
C
0,δ0
ω (St,u)

� 1+‖	L‖
C
0,δ0
ω (St,u)

. Thus, to

prove (291), it suffices to show that for u ∈ [− 4
5T∗;(λ), T∗;(λ)] and t ∈ [[u]+, T∗;(λ)],

we have ‖ 	L‖
C
0,δ0
ω (St,u)

� 1. To this end, we first note that Lemma 10.6 and the

bootstrap assumptions imply that for u ∈ [− 4
5T∗;(λ), T∗;(λ)], we have the follow-

ing estimate: ‖ 	L‖
C
0,δ0
ω (S[u]+,u)

� 1 (in fact, (349c)–(350) imply the stronger bound

‖ 	L‖C0,1
ω (Su,u)

� 1 for u ∈ [0, T∗;(λ)], whose full strength we do not need here). From
this “initial data bound,” the first transport equation in (223), the estimates mentioned
in the previous paragraph, the estimate ‖f

( 	L)‖C
0,δ0
ω (St,u)

� 1+ ‖	L‖
C
0,δ0
ω (St,u)

, the esti-

mate
∫ t
[u]+ ‖∂∂∂ 	�‖

C
0,δ0
ω (Sτ,u)

dτ � λ−7ε0 (which follows from (151) and (356)), and

inequality (359), we deduce that the following bound holds for u ∈ [− 4
5T∗;(λ), T∗;(λ)]

and t ∈ [[u]+, T∗;(λ)], where we recall that [u]+ = max{0, u} is the minimum value
of t along˜Cu :

‖ 	L‖
C
0,δ0
ω (St,u)

� ‖ 	L‖
C
0,δ0
ω (S[u]+,u)

+
∫ t

[u]+
‖f
( 	L) · ∂∂∂ 	�‖

C
0,δ0
ω (Sτ,u)

dτ

� 1 + ‖	L‖
C
0,δ0
ω (S[u]+,u)

+
∫ t

[u]+
‖∂∂∂ 	�‖

C
0,δ0
ω (Sτ,u)

dτ

+
∫ t

[u]+
‖∂∂∂ 	�‖

C
0,δ0
ω (Sτ,u)

‖ 	L‖
C
0,δ0
ω (Sτ,u)

dτ

� 1 +
∫ t

[u]+
‖∂∂∂ 	�‖

C
0,δ0
ω (Sτ,u)

‖ 	L‖
C
0,δ0
ω (Sτ,u)

dτ. (373)

From (373), the estimate
∫ t
[u]+ ‖∂∂∂ 	�‖

C
0,δ0
ω (Sτ,u)

dτ � λ−7ε0 noted above, and Grön-

wall’s inequality, we deduce that ‖ 	L‖
C
0,δ0
ω (St,u)

� 1, thereby completing the proof of

(291).
We will now prove (290). To proceed, we again use the first transport equation in

(223), the fundamental theorem of calculus, and the bootstrap assumptions and argue
as above to deduce |Li (t, u,ω)− Li ([u]+, u,ω)| �

∫ t
[u]+ ‖∂∂∂ 	�‖L∞(˜�τ)

dτ � λ−7ε0 .
From this estimate and the data bounds (345c) and (349b), we conclude the desired
estimate (290).
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10.9.3 Proof of (287a)–(287b) for χ̂, D/ Lχ̂, ζ, and D/ Lζ

We first prove (287a) for ‖χ̂‖L2
t L p

ω(˜Cu)
. From the transport equation (231), (326a), and

(297a), we deduce

|r̃2χ̂|g/(t, u,ω) � lim
τ↓[u]+

|r̃2χ̂|g/(τ, u,ω)+ λ−1
∫ t

[u]+
|r̃2(	C,D)|(τ, u,ω) dτ

+
∫ t

[u]+
|r̃2(∇/ ,D/ L )ξ|g/(τ, u,ω) dτ +

∫ t

[u]+

∣

∣

∣r̃2(∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · ∂∂∂ 	�
∣

∣

∣

g/
(τ, u,ω) dτ,

(374)

where the correction mentioned in Footnote 48 leads to m = 1 in (326a), thus correct-
ing the value m = 1

2 appearing [54, Equation (5.69)]. We now divide (374) by r̃2(t, u)
and take the norm ‖ · ‖L2

t L p
ω(˜Cu)

. The arguments given just below [54, Equation (5.68)]

yield that the norms of all terms on RHS (374) are� λ−1/2 (the correction of the value
of m mentioned above does not substantially affect the arguments given there), except
the term multiplied by λ−1 was not present in [54]. To handle the remaining term, we
use (335b). We clarify that to handle the case in which u ≤ 0, this argument relies on
the initial data bound ‖w1/2χ̂‖

L∞
w L p

ω(�
w∗;(λ)
0 )

� λ−1/2, which follows from i) using

the first equation in (200) to express χ̂ in terms of θ̂ and k̂; ii) bounding θ̂ in the norm
‖w1/2 · ‖

L∞
w L p

ω(�
w∗;(λ)
0 )

by using the estimate (282b); and iii) bounding k̂ in the norm

‖w1/2 · ‖
L∞
w L p

ω(�
w∗;(λ)
0 )

by using the schematic identity k̂AB = f
( 	L) · ∂∂∂ 	�, the estimate

(291), and the estimate (330a) for r̃1/2∂∂∂ 	�; in total, this allows one to deduce (recalling
thatw = −u|�0 ≥ 0 and that r̃(τ, u) = τ−u) the estimate ‖ u2

r̃2
χ̂(0, u,ω)‖L2

t L p
ω(˜Cu)

�
‖|u|1/2χ̂(0, u,ω)‖L∞

u L p
ω

= ‖w1/2χ̂‖
L∞
w L p

ω(�
w∗;(λ)
0 )

� λ−1/2, which is needed to con-

trol the term generated by the first term on RHS (374) when u ≤ 0.
To prove the estimate for (287b) for ‖r̃1/2χ̂‖L∞

t L p
ω(˜Cu)

, we note that all terms on

RHS (374) can, after being divided by r̃3/2, be handled using similar arguments (see
just below [54, Equation (5.73)], where we again note that the correction of the pow-
ers of r̃ mentioned above does not substantially affect the arguments), but the term
multiplied by λ−1 was not present in [54]. To handle this remaining term, we use
(335e).

We now prove (287a) for ‖r̃D/ L χ̂‖L2
t L p

ω(˜Cu)
. We use the transport equation (231) to

solve forD/ L χ̂, multiply the resulting identity by r̃ , and then take the norm ‖·‖L2
t L p

ω(˜Cu)
.

Thanks to the already proven bound (287a) for ‖χ̂‖L2
t L p

ω(˜Cu)
, the same arguments given

in the paragraph below [54, Equation (5.73)] imply that all terms satisfy the desired
estimate (where the correction mentioned in Footnote 48 is not important for this
argument), except the following term was not present there: λ−1r̃ f

( 	L) · (	C,D). To
handle this remaining term, we use (340a).

The estimates (287a) and (287b) for ζ and D/ Lζ follow from a similar argument
since, by (232), ζ satisfies a transport equation that is schematically similar to the one
that χ̂ satisfies, except it features the additional source term ζ · χ̂, which can be handled
with the bootstrap assumptions (309); we omit the details. We clarify that, in view of
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the second term on LHS (232), the correct power of r̃ in the analog of inequality (374)
for ζ is r̃ . Thus, to handle the λ−1-multiplied terms, we use the estimates (335a) and
(335d) in place of the estimates (335b) and (335e) we used to handle χ̂.

10.9.4 Proof of (294) for χ̂ and ζ

These estimates follow from (316) with (χ̂, ζ) in the role of ξ, the already proven
estimates (287a) for (χ̂, ζ) and (D/ L χ̂,D/ Lζ), and the bootstrap assumptions (312) for
(χ̂, ζ).

10.9.5 Proof of (287a), (287b), (294), (288a), (288b), and (288e) for trg̃/χ̃, trg̃/χ̃(Small),
and D/ Ltrg̃/χ̃

(Small)

To prove (288a), we note that the definition (207) of trg̃/χ̃(Small) implies that it suffices
to prove the pointwise bound |r̃ trg̃/χ̃(Small)| � λ−4ε0 . To this end, we first use the
transport equation (228a) and (329) with G := 0 to deduce

|r̃2trg̃/χ̃(Small)|(t, u,ω)
� lim

τ↓[u]+
|r̃2trg̃/χ̃(Small)|(τ, u,ω)+ λ−1

∫ t

[u]+
|r̃2(	C,D)|(τ, u,ω) dτ

+
∫ t

[u]+

∣

∣

∣r̃2(∂∂∂ 	�, trg̃/χ̃(Small), r̃−1) · ∂∂∂ 	�
∣

∣

∣

g/
(τ, u,ω) dτ +

∫ t

[u]+
|r̃2χ̂ · χ̂|g/(τ, u,ω) dτ

+
∫ t

[u]+
|r̃2trg̃/χ̃(Small) · trg̃/χ̃(Small)|(τ, u,ω) dτ. (375)

We now divide (375) by r̃(t, u). To handle the term on RHS (375) that is multiplied
by λ−1, we use (335f). The remaining terms were suitably bounded in the arguments
given just below [54, Equation (5.78)]. We have thus proved (288a). The estimate
(288b) follows from nearly identical arguments, where one uses (335g) to handle the
λ−1-multiplied term; we omit the details.

The estimates (287b) and (294) for trg̃/χ̃(Small) then follow as straightforward con-
sequences of (288b).

We now prove the estimate (288e) for trg̃/χ̃(Small). First, using the transport equation
(228a), we deduce that

L(r̃2trg̃/χ̃
(Small)) = F := λ−1r̃2f

( 	L) · (	C,D)+ r̃2f
( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), r̃−1) · ∂∂∂ 	�

+ r̃2f
( 	L)χ̂ · χ̂ + r̃2trg̃/χ̃

(Small) · trg̃/χ̃(Small). (376)

From (376) and the vanishing initial condition (along the cone-tip axis) for
r̃2trg̃/χ̃(Small) guaranteed by (283a), we find, with [u]− := |min{u, 0}| and [u]+ :=
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max{u, 0}, that

trg̃/χ̃
(Small)(t, u,ω) = [u]2−

(t + [u]−)2 trg̃/χ̃
(Small)([u]+, u,ω)+ 1

r̃2(t, u)

∫ t

[u]+
F(τ, u,ω) dτ.

(377)

Using (377), applying the product-type estimate (370) to the term F in (376), using the
alreadyproven estimate (291) for f

( 	L), and using (360),wefind, in viewof the definition

(323) of the Hardy–Littlewood maximal function, that for u ∈ [− 4
5T∗;(λ), T∗;(λ)] and

t ∈ [[u]+, T∗;(λ)], we have

‖trg̃/χ̃(Small)‖
C
0,δ0
ω (St,u)

� [u]3/2−
(t + [u]−)2

∥

∥

∥|u|1/2trg̃/χ̃(Small)
∥

∥

∥

L∞
u C

0,δ0
ω (˜�0)

+ λ−1‖(	C,D)‖
L1

t C
0,δ0
ω (˜Cu)

+ ‖(∂∂∂ 	�, trg̃/χ̃(Small), χ̂)‖2
L2

t C
0,δ0
ω (˜Cu)

+ M
(

‖∂∂∂ 	�‖
L∞

u C
0,δ0
ω (˜�t )

)

. (378)

From (378), the last estimate in (285), the parameter relation (276), (151), (309),

and (356), we find that ‖trg̃/χ̃(Small)‖
C
0,δ0
ω (St,u)

� [u]3/2−
(t+[u]−)2 λ

−1/2 + λ−1+4ε0 +
M

(

‖∂∂∂ 	�‖
L∞

u C
0,δ0
ω (˜�t )

)

. Taking the norm ‖ · ‖L2
t ([[u]+,T∗;(λ)]) of this inequality and

using (151), (324) with Q := 2, and (356), we conclude the desired bound (288e) for
trg̃/χ̃(Small).

The estimate (287a) for ‖trg̃/χ̃(Small)‖L2
t L p

ω(˜Cu)
then follows as a straightforward

consequence of the estimate (288e) for trg̃/χ̃(Small).
We now prove the estimate (287a) for ‖r̃D/ L trg̃/χ̃

(Small)‖L2
t L p

ω(˜Cu)
by using the trans-

port equation (228a) to algebraically solve for r̃D/ L trg̃/χ̃
(Small). Thanks to the bound

(177) for r̃ , the bootstrap assumptions, and the already proven bounds (287a) and
(287b) for χ̂ and trg̃/χ̃(Small), the same arguments given just below [54, Equation (5.80)]
imply that all terms on RHS (228a) and the term 2

r̃ trg̃/χ̃
(Small) on LHS (228a) satisfy

(upon being multiplied by r̃ ) the desired estimate, except the following term was not
present in [54]: λ−1r̃ f

( 	L) · (	C,D). To bound this remaining term, we use (340a).

10.9.6 Proof of (287c)

(287c) follows from the already proven estimate (287b) and the bound (177) for r̃ .

10.9.7 Proof of (288c) and (288d)

To prove (288d), we first note the following bound for some factors in the next-to-
last product on RHS (228b), which follows from (151), (306a), and (309): ‖f

( 	L) ·
(∂∂∂ 	�, trg̃/χ̃(Small), χ̂)‖L∞

ωL1
t (
˜Cu)

� λ−2ε0 ≤ 1. From this bound, the transport equation
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(228b), and (329) with G := f
( 	L) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂), we deduce

|r̃3∇/ trg̃/χ̃(Small)|g/(t, u,ω)
� lim

τ↓[u]+
|r̃3∇/ trg̃/χ̃(Small)|g/(τ, u,ω)+ λ−1

∫ t

[u]+
|r̃3∇/ (	C,D)|g/(τ, u,ω) dτ

+ λ−1
∫ t

[u]+

∣

∣

∣r̃3(	S · ∂∂∂ 	�,∂∂∂ 	�,∂∂∂ 	
,∂∂∂ 	S) · (∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1)

∣

∣

∣

g/
(τ, u,ω) dτ

+
∫ t

[u]+

∣

∣

∣r̃3∇/∂∂∂ 	� · (∂∂∂ 	�, trg̃/χ̃(Small), r̃−1)

∣

∣

∣

g/
(τ, u,ω) dτ

+
∫ t

[u]+
|r̃3∇/ χ̂ · χ̂|g/(τ, u,ω) dτ

+
∫ t

[u]+

∣

∣

∣r̃3(∂∂∂ 	�, trg̃/χ̃(Small), χ̂, r̃−1) · (∂∂∂ 	�, trg̃/χ̃(Small), r̃−1) · ∂∂∂ 	�
∣

∣

∣

g/
(τ, u,ω) dτ.

(379)

In the arguments given in the paragraph below [54, Equation (5.81)], with the help
of the bootstrap assumptions, all terms on RHS (379) were shown, after dividing by
r̃2(t, u), to be bounded in the norm ‖ · ‖L2

t L p
ω(˜Cu)

by � λ−1/2 +λ−2ε0‖r̃∇/ χ̂‖L2
t L p

ω(˜Cu)
,

except that the two terms multiplied by λ−1 were not present there. To handle these
remaining terms, we use (336b) and (337b), which in total yields

‖r̃∇/ trg̃/χ̃(Small)‖L2
t L p

ω(˜Cu)
� λ−1/2 + λ−2ε0‖r̃∇/ χ̂‖L2

t L p
ω(˜Cu)

. (380)

Next, we note that the divergence equation (230), the Hodge estimate (362) with
Q := p, and the same arguments given in the paragraph below [54, Equation (5.82)]
yield

‖r̃∇/ χ̂‖L2
t L p

ω(˜Cu)
� ‖r̃∇/ trg̃/χ̃(Small)‖L2

t L p
ω(˜Cu)

+ λ−1/2. (381)

From (380) and (381), we conclude (when λ is sufficiently large) the desired bounds
in (288d).

As is noted just below [54, Equation (5.84)], the estimate (288c) can be proved
using a similar argument, based on dividing (379) by r̃3/2(t, u), where we use (336a)
and (337a) to handle the two λ−1-multiplied terms on RHS (379).

10.9.8 Proof of (295) for trg̃/χ̃
(Small) and trg/χ − 2

r̃

We first prove (295) for trg̃/χ̃(Small). A slight modification of the proof of (378) yields
the following bound:

‖trg̃/χ̃(Small)‖
L∞

u C
0,δ0
ω (˜�

(I nt)
t )

� λ−1‖(	C,D)‖
L1

t L∞
u C

0,δ0
ω (˜M(I nt)

)
+ M

(

‖∂∂∂ 	�‖
L∞

u C
0,δ0
ω (˜�

(I nt)
t )

)

+ ‖(∂∂∂ 	�, trg̃/χ̃(Small), χ̂)‖2
L2

t L∞
u C

0,δ0
ω (˜M(I nt)

)
. (382)



Rough sound waves in 3D compressible Euler flow with vorticity Page 135 of 153 41

From (382), (151), (312), and (356), we deduce

‖trg̃/χ̃(Small)‖
L∞

u C
0,δ0
ω (˜�

(I nt)
t )

� λ−1 + M
(

‖∂∂∂ 	�‖
L∞

u C
0,δ0
ω (˜�

(I nt)
t )

)

. (383)

Taking the norm ‖ · ‖L2
t ([0,T∗;(λ)]) of (383) and using (151), (324) with Q := 2, and

(356), we conclude the desired bound (295) for trg̃/χ̃(Small).
The estimate (295) for trg/χ − 2

r̃ then follows from the identity trg/χ − 2
r̃ =

trg̃/χ̃(Small) − ���L , the schematic relation ���L = f
( 	L) · ∂∂∂ 	�, the already proven esti-

mate (295) for trg̃/χ̃(Small), the product-type estimate (370), (291), and (356).

10.9.9 Proof of (295) for χ̂

We first use equation (230), the estimate (365) with Q := p, the parameter relation
(276), the product-type estimate (370), (291), and Hölder’s inequality to deduce that

‖χ̂‖
L2

t L∞
u C

0,δ0
ω (˜M(I nt)

)
� ‖trg̃/χ̃(Small)‖

L2
t L∞

u C
0,δ0
ω (˜M(I nt)

)
+ ‖∂∂∂ 	�‖

L2
t L∞

u C
0,δ0
ω (˜M(I nt)

)

+ ‖r̃1/2‖L∞(˜M)‖∂∂∂ 	�‖L2
t L∞

x (
˜M)

∥

∥

∥r̃1/2(∂∂∂ 	�, trg̃/χ̃(Small), χ̂)
∥

∥

∥

L∞
t L∞

u L p
ω(˜M)

.

(384)

Using the bound (177) for r̃ , the estimate (287b) for trg̃/χ̃(Small) and χ̂, the estimate
(330a) for ∂∂∂ 	�, the already proven estimate (295) for trg̃/χ̃(Small), (306a) for ∂∂∂ 	�, and
(356) for ∂∂∂ 	�, we conclude that RHS (384) � λ−1/2−3ε0 as desired.

10.9.10 Proof of (292) for trg̃/χ̃
(Small) and trg/χ − 2

r̃

We first bound ‖trg̃/χ̃(Small)‖
L

q
2
t L∞

u C
0,δ0
ω (˜M)

. We start by noting the following estimate,

which is a simple consequence of the estimate proved just below (378), and which
holds for t ∈ [0, T∗;(λ)]:

‖trg̃/χ̃(Small)‖
L∞

u C
0,δ0
ω (˜�t )

� t−1/2λ−1/2 + λ−1+4ε0 + M
(

‖∂∂∂ 	�‖
L∞

u C
0,δ0
ω (˜�t )

)

.

(385)

Taking the norm ‖ · ‖
L

q
2
t ([0,T∗;(λ)])

of (385) and using (151), (324) with Q := q
2 , and

(356), we conclude that if q > 2 is sufficiently close to 2, then the desired estimate
(292) for trg̃/χ̃(Small) holds.

To prove (292) for trg/χ − 2
r̃ , we use (207), the schematic relation ���L = f

( 	L) · ∂∂∂ 	�,
the product-type estimate (370), (151), (356), (291), the already proven estimate (292)
for ‖trg̃/χ̃(Small)‖

L
q
2
t L∞

u C
0,δ0
ω (˜M)

, to conclude that if q > 2 is sufficiently close to 2,
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then

‖trg/χ − 2

r̃
‖

L
q
2
t L∞

u C
0,δ0
ω (˜M)

� ‖trg̃/χ̃(Small)‖
L

q
2
t L∞

u C
0,δ0
ω (˜M)

+ ‖∂∂∂ 	�‖
L

q
2
t L∞

u C
0,δ0
ω (˜M)

� λ
2
q −1−4ε0(

4
q −1) + (λ1−8ε0)

( 2q − 1
2 ) · λ−1/2−3ε0

� λ
2
q −1−4ε0(

4
q −1)

as desired.

10.9.11 Proof of (292) for χ̂

A slight modification of the proof of (384) yields that

‖χ̂‖
L

q
2

t L∞
u C

0,δ0
ω (˜M)

� ‖trg̃/χ̃(Small)‖
L

q
2

t L∞
u C

0,δ0
ω (˜M)

+ ‖∂∂∂ 	�‖
L

q
2

t L∞
u C

0,δ0
ω (˜M)

+ ‖r̃1/2‖L∞(˜M)‖∂∂∂ 	�‖
L

q
2

t L∞
x (

˜M)

∥

∥

∥r̃1/2(∂∂∂ 	�, trg̃/χ̃(Small), χ̂)
∥

∥

∥

L∞
t L∞

u L p
ω(˜M)

.

(386)

From (386), (151), (177), (287b), the already proven bound (292) for trg̃/χ̃(Small),
(332a), and (356), we conclude that if q > 2 is sufficiently close to 2, then

‖χ̂‖
L

q
2
t L∞

u C
0,δ0
ω (˜M)

� λ
2
q −1−4ε0(

4
q −1) as desired.

10.9.12 Proof of (288e) for χ̂

Using (318) with Q := p and taking into account (276), we find that ‖χ̂‖
L2

t C
0,δ0
ω (˜Cu)

�
‖r̃∇/ χ̂‖L2

t L p
ω(˜Cu)

+ ‖χ‖L2
t L2

ω(
˜Cu)

. Using the already proven estimates (288d) for
‖r̃∇/ χ̂‖L2

t L p
ω(˜Cu)

and (287a) for ‖χ‖L2
t L p

ω(˜Cu)
, we conclude that the RHS of the pre-

vious expression is � λ− 1
2 as desired.

10.9.13 Proof of (296a)–(296b)

Based on the transport equation (234), Lemma 10.3, (284a)–(284b), (282c)–(282d),
(151), the bootstrap assumptions, Proposition10.4, and the previously proven esti-
mates (287a), (288d), (288e), and (295), the proof given in [54, Subsubsection 5.2.2]
goes through verbatim.

10.9.14 Proof of (289) and (293)

Based on the transport equation (233), the bootstrap assumptions, and the previously
proven estimates (297b) and (287a), the arguments given in the discussion surrounding
[54, Equation (5.90)] go through verbatim.
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10.9.15 Proof of (298)

Based on the evolution equations (235a)–(235b), Lemma 10.3, the bootstrap assump-
tions, and the previously proven estimate (288d), the proof of [54] Lemma 5.15 (in
which ln

(

r̃−2υ
)

was denoted by “ϕ”) goes through verbatim.

10.9.16 Proof of (288e) for ‖ζ‖
L2t C

0,δ0
ω (˜Cu) and (299)

We first simultaneously prove (288e) for ‖ζ‖
L2

t C
0,δ0
ω (˜Cu)

and (299) for ‖r̃∇/ ζ‖L2
t L p

ω(˜Cu)

with the help of the Hodge system (239a)–(239b). We now define the following two
scalar functions: F := RHS (239a),G := RHS (239b). From the Calderon–Zygmund
estimate (361) with Q := p, we deduce that for each fixed u ∈ [− 4

5T∗;(λ), T∗;(λ)],
we have ‖r̃∇/ ζ‖L2

t L p
ω(˜Cu)

� ‖r̃(F,G)‖L2
t L p

ω(˜Cu)
. In the arguments given just below

[54, Equation (5.97)], based on the bootstrap assumptions, (151), (177), and the pre-
viously proven estimates (287b), (288e) for trg̃/χ̃(Small) and χ̂, and (298), all terms
on RHSs (239a)–(239b) were shown to be bounded in the norm ‖r̃ · ‖L2

t L p
ω(˜Cu)

by

� λ−1/2 + λ−4ε0‖ζ‖L2
t L∞

ω(
˜Cu)

, except that the terms on RHS (239a) that are mul-

tiplied by λ−1 were not present there. To handle these remaining terms, we use
(340a). We have thus shown that ‖r̃∇/ ζ‖L2

t L p
ω(˜Cu)

� λ−1/2 + λ−4ε0‖ζ‖L2
t L∞

ω(
˜Cu)

.
Moreover, using (318) with Q := p, the parameter relation (276), and (287a) (which
implies that ‖ζ‖L2

t L2
ω(

˜Cu)
� ‖ζ‖L2

t L p
ω(˜Cu)

� λ−1/2), we find that ‖ζ‖
L2

t C
0,δ0
ω (˜Cu)

�
‖r̃∇/ ζ‖L2

t L p
ω(˜Cu)

+‖ζ‖L2
t L2

ω(
˜Cu)

� ‖r̃∇/ ζ‖L2
t L p

ω(˜Cu)
+λ−1/2. Combining the above esti-

mates, we find that ‖r̃∇/ ζ‖L2
t L p

ω(˜Cu)
� λ−1/2 + λ−4ε0‖r̃∇/ ζ‖L2

t L p
ω(˜Cu)

, from which
we readily conclude (when λ is sufficiently large) the desired bound (299) for
‖r̃∇/ ζ‖L2

t L p
ω(˜Cu)

and the desired bound (288e) for ‖ζ‖
L2

t C
0,δ0
ω (˜Cu)

.

To prove (299) for ‖r̃μ‖L2
t L p

ω(˜Cu)
, we must show that ‖r̃ ×RHS (236) ‖L2

t L p
ω(˜Cu)

�
λ−1/2. In the arguments given just below [54, Equation (5.101)], based on the bootstrap
assumptions, (151), (177), and the previously proven estimates (287b), (288e), and
(298), all terms on RHS (236) were shown to satisfy the desired bound, except the
term on RHS (236) that is multiplied by λ−1 was not present there. To handle this
remaining term, we use (340a).

10.9.17 Proof of (295) for ζ and (292) for ζ

To prove (295) for ζ, we will use the Hodge system (239a)–(239b). From these equa-
tions and the Calderon–Zygmund estimate (367) with ζ in the role of ξ, with Q := p
and m := 2, with f

( 	L) · ∂∂∂ 	� in the role of F (where F represents the second terms on

RHSs (239a) and (239b)), with f( 	�) · ∂∂∂ 	� in the role of 	̃F and with δ′ > 0 chosen to
be sufficiently small, we find (where the implicit constants can depend on δ′) that
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‖ζ‖
L2

t L∞
x (

˜M(I nt)
)
�
∥

∥

∥r̃(∂∂∂ 	�, trg̃/χ̃(Small), χ̂, ζ, r̃−1) · (∂∂∂ 	�, χ̂, ζ)
∥

∥

∥

L2
t L∞

u L p
ω(˜M

(I nt)
)

+ λ−1‖r̃(	C,D)‖L2
t L∞

u L p
ω(˜M)

+
∥

∥

∥r̃∇/ ln
(

r̃−2υ
)

· (∂∂∂ 	�, ζ)
∥

∥

∥

L2
t L∞

u L p
ω(˜M)

+
∥

∥

∥νδ′
Pν

(

f
( 	L) · ∂∂∂ 	�

)∥

∥

∥

L2
t �

2
νL∞

x (
˜M)

+ ‖∂∂∂ 	�‖L2
t L∞

x (
˜M)
. (387)

Assuming that δ′ > 0 is chosen to be sufficiently small (in particular, at least as
small as the parameter δ0 in (306b)), the arguments given on [54, page 52] show that,
thanks to the bootstrap assumptions, (151), (177), and the already proven estimates
(287b), (288e), (295) for trg̃/χ̃(Small) and χ̂, and (298), all terms on RHS (387) are �
λ− 1

2−3ε0 +λ−4ε0‖ζ‖
L2

t L∞
x (

˜M(I nt)
)
, except that the term onRHS (387) that ismultiplied

by λ−1 was not present in [54]. To handle this remaining term, we use (340a). This

shows that ‖ζ‖
L2

t L∞
x (

˜M(I nt)
)

� λ− 1
2−3ε0 + λ−4ε0‖ζ‖

L2
t L∞

x (
˜M(I nt)

)
which, when λ is

sufficiently large, yields the desired bound (295) for ζ.
Similarly, based on the Hodge system (239a)–(239b), the Calderon–Zygmund esti-

mate (367) with Q := p, the bootstrap assumptions, (151), (177), the already proven
estimates (287b) and (298) and the already proven estimate (292) for trg̃/χ̃(Small) and
χ̂, the arguments given on [54]*page 52 yield the desired estimate (292) for ζ, where
we use (340b) to handle the λ−1-multiplied terms on RHSs (239a)–(239b).

10.9.18 Proof of (300a)–(300c)

Based on (201a)–(201b), Lemma 10.3, the bootstrap assumptions, and the previously
proven estimate (295), the proof of these estimates given in [54, Lemma 6.1] goes

through verbatim, except for the estimate (300a) for ‖r̃
1
2 ∇/σ‖L p

ωL∞
t (

˜Cu)
. To bound this

remaining term, we first use (297a) to deduce (noting that u ≥ 0 since, by assumption,

we have˜Cu ⊂ ˜M(I nt)
)

‖r̃
1
2 ∇/σ‖p

L p
ωL∞

t (
˜Cu)

�
∫

S
2
ess supt∈[u,T∗;(λ)]|r̃

1
2 ∇/σ|p

g/ (t, u,ω) d�e/(ω)

�
∫

S
2
ess supt∈[u,T∗;(λ)]

{

υ(t, u,ω)|r̃ 1
2− 2

p ∇/σ|p
g/ (t, u,ω)

}

d�e/(ω)

:= ‖r̃
1
2− 2

p ∇/σ‖p
L p

g/ L∞
t (

˜Cu)
. (388)

From (388) and the already proven bound (300a) for ‖r̃
1
2− 2

p ∇/σ‖L p
g/ L∞

t (
˜Cu)

, we conclude

that RHS (388) � λ−p/2 as desired.

10.9.19 Proof of (301a)–(301b)

We make the bootstrap assumption ‖∇/σ‖
L2

u L2
t L∞

ω(
˜M(I nt)

)
≤ 1; this is viable because

(301a) yields an improvement of this bootstrap assumption.



Rough sound waves in 3D compressible Euler flow with vorticity Page 139 of 153 41

We start by deriving a preliminary estimate for ‖r̃∇/˜ζ‖
L2

u L2
t L p

ω(˜M
(I nt)

)
using Hodge

system (240a)–(240b). To proceed, we define the following two scalar functions:
F := RHS (240a), G := RHS (240b). From these equations and the Calderon–
Zygmund estimate (361), we deduce

‖r̃∇/˜ζ‖
L2

u L2
t L p

ω(˜M
(I nt)

)
� ‖r̃F‖

L2
u L2

t L p
ω(˜M

(I nt)
)
+ ‖r̃G‖

L2
u L2

t L p
ω(˜M

(I nt)
)
+ ‖r̃ μ̌‖

L2
u L2

t L p
ω(˜M

(I nt)
)
.

In the last two paragraphs of the proof of [54, Proposition 6.3], based on the bootstrap
assumptions, (151), (177), and the previously proven estimates (287a) and (295), the
author showed that all terms on RHSs (240a)–(240b) are bounded in the norm ‖r̃ ·
‖

L2
u L2

t L p
ω(˜M

(I nt)
)
by � λ−4ε0 , except that the terms on RHS (240a) that are multiplied

by λ−1 were not present there. To handle these remaining terms, we use (340c), which
in total yields the desired preliminary estimate ‖r̃∇/˜ζ‖

L2
u L2

t L p
ω(˜M

(I nt)
)

� λ−4ε0 +
‖r̃ μ̌‖

L2
u L2

t L p
ω(˜M

(I nt)
)
.

We now derive estimates for μ̌. Using the transport equation (237), the identity
(326a), the vanishing initial conditions for r̃2μ̌ along the cone-tip axis guaranteed by

(283a), and (297a), we see that in ˜M(I nt)
, we have

|r̃2μ̌|(t, u,ω) �
∫ t

u
r̃2

{|I(1) + I(2)|
}

(τ, u,ω) dτ, (389)

where I(1) and I(2) are defined in (238a)–(238b). We now divide (389) by r̃(t, u) and
take the norm ‖ · ‖

L2
u L2

t L p
ω(˜M

(I nt)
)
. In the proof of [54, Proposition 6.3], the author

derived estimates for the terms on RHS (389) that imply, based on the bootstrap
assumptions, (151), (177), and the previously proven estimates (287a), (287c), (288c),
(288d), and (295), that ‖r̃ μ̌‖

L2
u L2

t L p
ω(˜M

(I nt)
)
� λ−4ε0 + λ−8ε0‖r̃ μ̌‖

L2
u L2

t L p
ω(˜M

(I nt)
)
+

λ−4ε0‖r̃∇/˜ζ‖
L2

u L2
t L p

ω(˜M
(I nt)

)
, except that the terms on RHS (238b) that are multi-

plied by λ−1 were not present there. To handle these remaining terms, we use
(338a) and (339a). Considering also the preliminary estimate for ‖r̃∇/˜ζ‖

L2
u L2

t L p
ω(˜M

(I nt)
)

derived in the previous paragraph, we deduce ‖r̃ μ̌‖
L2

u L2
t L p

ω(˜M
(I nt)

)
� λ−4ε0 +

λ−8ε0‖r̃ μ̌‖
L2

u L2
t L p

ω(˜M
(I nt)

)
. Thus, when λ is sufficiently large, we conclude the desired

bound (301a) for ‖r̃ μ̌‖
L2

u L2
t L p

ω(˜M
(I nt)

)
. Inserting this bound into the preliminary esti-

mate for ‖r̃∇/˜ζ‖
L2

u L2
t L p

ω(˜M
(I nt)

)
derived in the previous paragraph, we also conclude

the desired bound (301a) for ‖r̃∇/˜ζ‖
L2

u L2
t L p

ω(˜M
(I nt)

)
.

A similar argument yields (301b), where we divide (389) by r̃1/2(t, u), and to
handle the terms on RHS (238b) that are multiplied by λ−1, we use (338b) and (339b);
we omit the details.

It remains for us to prove the estimate (301a) for ‖∇/σ‖
L2

u L2
t C

0,δ0
ω (˜M(I nt)

)
. First, using

definition (211), (318) with Q := p, and the parameter relation (276), we see that

‖∇/σ‖
L2

u L2
t C

0,δ0
ω (˜M(I nt)

)
� ‖r̃∇/ (˜ζ, ζ)‖

L2
u L2

t L p
ω(˜M

(I nt)
)
+ ‖∇/σ‖

L2
u L2

t L2
ω(

˜M(I nt)
)
.
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We have already shown that ‖r̃∇/˜ζ‖
L2

u L2
t L p

ω(˜M
(I nt)

)
� λ−4ε0 . To bound

‖r̃∇/ ζ‖
L2

u L2
t L p

ω(˜M
(I nt)

)
by � λ−4ε0 , we square the already proven estimate (299) for

‖r̃∇/ ζ‖L2
t L p

ω(˜Cu)
, integrate with respect to u over u ∈ [0, T∗;(λ)], and use the bound

(177) for u. Finally, to obtain the bound ‖∇/σ‖
L2

u L2
t L2

ω(
˜M(I nt)

)
� λ−4ε0 , we square

the already proven estimate (300a) for ‖∇/σ‖L2
t L p

ω(˜Cu)
, integrate with respect to u over

u ∈ [0, T∗;(λ)], and use the bound (177) for u. Combining these estimates, we conclude
that ‖∇/σ‖

L2
u L2

t C
0,δ0
ω (˜M(I nt)

)
� λ−4ε0 as desired.

Remark 10.5 Throughout the rest of the proof of Proposition10.1, we silently use
the following estimates, valid for 1 ≤ Q ≤ ∞, which are simple consequences of
(297a): | f (t, u)| � ‖ f ‖

L Q
ω(St,u)

and ‖ f ‖
L Q

ω(St,u)
� ‖ f ‖

L Q
ω(St,u)

(see (205) regarding
the “overline” notation).

10.9.20 Proof of (302)

Using the Hodge system (210), (318) with Q := p, and (361) with Q := p, we find
that

‖(r̃∇/μ/ ,μ/ )‖L p
ω(St,u)

, ‖μ/ ‖L∞
ω(St,u) � ‖r̃(μ̌ − μ̌)‖L p

ω(St,u)
. (390)

Taking the norm ‖ · ‖L2
t L2

u
of (390) over the range of (t, u)-values corresponding

to ˜M(I nt)
and using the already proven estimate (301a) for ‖r̃ μ̌‖

L2
u L2

t L p
ω(˜M

(I nt)
)
, we

arrive at the desired bound (302).

10.9.21 Proof of (303)–(305b)

Wefirst note that the decomposition (303) follows from the definitions of the quantities
involved.

Throughout the rest of proof, D−1(F,G) will denote the solution ξ the following
Hodge system on St,u : div/ξ = F, curl/ξ = G. In our applications, ξ will be a one-form
or a symmetric trace-free type

(0
2

)

tensor (where in the latter case, one can show that
the one-forms F and G are constrained by the relation GA = εABFA, where εAB is
the antisymmetric symbol with ε12 = 1 relative to a g/-orthonormal frame on St,u).

We start by proving (305a) for the term ‖˜ζ−μ/ ‖
L2

t L∞
x (

˜M(I nt)
)
on theLHS.Wewill use

the Hodge system (241a)–(241b). Note that we can split˜ζ−μ/ = D−1(div/ξ, curl/ξ)+
D−1(· · · , · · · ), where div/ξ is the first term on RHS (241a), curl/ξ is the first term on
RHS (241b), and (· · · , · · · ) denotes the remaining terms on RHSs (241a)–(241b).
Recall that the St,u-tangent tensorfields denoted here by ξ have Cartesian component
functions of the form f

( 	L) · ∂∂∂ 	� (and thus ξ satisfies the hypotheses needed to apply

the estimate (367) with f
( 	L) · ∂∂∂ 	� in the role of F and f( 	�) · ∂∂∂ 	� in the role of 	̃F).

Therefore, using (367) with δ′ > 0 chosen to be sufficiently small (at least as small
as the parameter δ0 > 0 in (306b)) and m := 2 to handle the term D−1(div/ξ, curl/ξ),
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and (318) and (361) with Q := p to handle the term D−1(· · · , · · · ), we deduce that

‖˜ζ − μ/ ‖
L2

t L∞
x (

˜M(I nt)
)
� ‖r̃(∂∂∂ 	�, trg̃/χ̃(Small), χ̂, ζ, r̃−1) · (∂∂∂ 	�, χ̂, ζ)‖

L2
t L∞

u L p
ω(˜M

(I nt)
)

+ λ−1‖r̃(	C,D)‖L2
t L∞

u L p
ω(˜M)

+
∥

∥

∥νδ′
Pν

(

f( 	�) · ∂∂∂ 	�
)∥

∥

∥

L2
t �

2
νL∞

x (
˜M)

+ ‖∂∂∂ 	�‖L2
t L∞

x (
˜M).

(391)

At the very end of the proof of [54, Proposition 6.4] (inwhich the author derived bounds
for the second piece of a quantity denoted by “A†,” which was split into two pieces
there), the author gave arguments showing that, thanks to the bootstrap assumptions,
(177), and the previously proven estimates (287c) and (295), all terms on RHS (391)

are � λ− 1
2−3ε0 , except that the term λ−1‖r̃(	C,D)‖L2

t L∞
u L p

ω(˜M) was not present in
[54]. To handle this remaining term, we use (340a). We have therefore proved (305a)
for ‖˜ζ − μ/ ‖

L2
t L∞

x (
˜M(I nt)

)
.

To prove (304), we first note that in view of (245), it suffices to show that
r̃μ/ (t, u,ω) = O(r̃)as t ↓ u. The desired bound follows from applying the Calderon–
Zygmund estimate (367) with F = 0 to the Hodge system (210) and using the
asymptotic estimate (283a) for μ̌.

We now prove the estimate (305a) for the remaining term ‖μ/ (1)‖L2
t L∞

x (
˜M(I nt)

)
on

the LHS. Note that μ/ (1) solves the Hodge-transport system (243a)–(243b), where the
inhomogeneous term I(1) − I(1) is defined by (238a). From (297a), (326a), and the
initial condition (304), we deduce the pointwise identity

μ/ (1)(t, u,ω) = υ− 1
2 (t, u,ω)

∫ t

u

[

υ
1
2D−1(I(1) − I(1), 0)

]

(τ, u,ω) dτ. (392)

The term I(1)−I(1) onRHS (392) is the same term appearing in [54]. At the start of the
last paragraph in the proof of [54, Proposition 6.4] (in which the author derived bounds
for the first piece of quantity denoted byA†, whichwas split into two pieces), the author

derived estimates for RHS (392) showing that ‖μ/ (1)‖L2
t L∞

x (
˜M(I nt)

)
� λ− 1

2−4ε0 , which

is in fact slightly better than the bound stated in (305a).
Finally, we prove the estimate (305b) for μ/ (2) using the Hodge-transport system

(244a)–(244b). We first define the following two scalar functions: F := RHS (244a),
G := RHS (244b). From (244a)–(244b), (297a), (326a), and the initial condition
(304), we deduce the pointwise identity

μ/ (2)(t, u,ω) = υ− 1
2 (t, u,ω)

∫ t

u

[

υ
1
2D−1(F,G)

]

(τ, u,ω) dτ. (393)

From (318) with Q := p and (361), we find that ‖D−1(F,G)‖L∞
ω(St,u) �

‖r̃(F,G)‖L p
ω(St,u)

. From this estimate, (393), (297a), and the simple bound



41 Page 142 of 153 M. M. Disconzi et al.

r̃(τ, u)/r̃(t, u) � 1 for τ ≤ t , we deduce that

‖μ/ (2)‖L2
u L∞

t L∞
ω(

˜M(I nt)
)
� ‖r̃(F,G)‖

L2
u L1

t L p
ω(˜M

(I nt)
)
.

In [54, Equation (6.37)] and the discussion below that equation, based on the
bootstrap assumptions, (151), (177), and the already proven estimates (287a),
(287c), (288d), (295), (301a), and (302), the author gave arguments that imply that

‖r̃(F,G)‖
L2

u L1
t L p

ω(˜M
(I nt)

)
� λ− 1

2−4ε0 as desired, except that the terms in I(2) − I(2)

(i.e., the first term RHS (244a)) generated by the two terms on RHS (238b) with
the coefficient λ−1 were not present in [54]. To handle these new terms, we use
(340d)–(340e).We have therefore proved (305b), which completes the proof of Propo-
sition10.1.

11 Summary of the reductions of the proof of the Strichartz estimate
of Theorem 7.2

In this section, we outline how the Strichartz estimate of Theorem 7.2 follows as a
consequence of the estimates for the eikonal function that we derived in Sect. 10. We
only sketch the arguments since, given the estimates that we derived in Sect. 10, the
proof of Theorem 7.2 follows from the same arguments given in [54]. For the reader’s
convenience, we note that the flow of the logic can be summarized as follows, although
in Sects. 11.1–11.5, we will discuss the steps in the reverse order:

1. Estimates for the eikonal function, connection coefficients, and conformal factor
σ obtained in Sect. 10

2. �⇒ Estimates for a conformal energy for solutions ϕ to the linear wave equation
�g( 	�)ϕ = 0

3. �⇒ Dispersive-type decay estimate for the linear wave equation solution ϕ
4. �⇒ Rescaled version of the desired Strichartz estimates
5. �⇒ Theorem 7.2.

We remind the reader that the completion of the proof of Theorem 7.2 closes
the bootstrap argument initiated in Sect. 3.5, thereby justifying the estimate (17) and
completing the proof of Theorem 1.2.

11.1 Rescaled version of Theorem 7.2

From standard scaling considerations, one can easily show that Theorem 7.2 (where
in (108), 	� denotes the non-rescaled wave variables) would follow62 from a rescaled
version of it, which we state as Theorem 11.1. Here we do not provide the simple proof
that Theorem 7.2 follows from Theorem 11.1; we refer readers to [54, Section 3.1]
and [54, Theorem 3.3] for further discussion.

62 More precisely, the analog of Theorem 7.2 in [54], namely [54, Theorem 3.2], was stated only in
the special case τ = tk , where τ is as in the statement of Theorem 7.2. However, the case of a general
τ ∈ [tk , tk+1] follows from the same arguments.
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Theorem 11.1 (Rescaled version of Theorem 7.2). Let P denote the Littlewood–Paley
projection onto frequencies ξ with 1

2 ≤ |ξ | ≤ 2. Under the assumptions of Sect.10.2,
there is a �0 > 0 such that for every λ ≥ �0, every q > 2 that is sufficiently close to
2, and every solution ϕ to the homogeneous linear wave equation

�g( 	�)ϕ = 0 (394)

on the slab [0, T∗;(λ)] × R
3, the following mixed space-time estimate holds:

‖P∂∂∂ϕ‖Lq ([0,T∗;(λ)])L∞
x

� ‖∂∂∂ϕ‖L2(�0)
. (395)

We clarify that in (394), the argument “ 	�” in g( 	�) denotes the rescaled solution, as
in Sects.9.1 and 9.3.

11.2 Dispersive-type decay estimate

Aswe discussed in Sect. 11.1, to prove Theorem 7.2, it suffices to prove Theorem 11.1.
Theorem11.1 can be shown, via a technical-but-by-now-standardTT∗ argument, to fol-
low as a consequence of the dispersive-type decay estimate provided by Theorem 11.2.
See [54, Appendix B] for a proof that Theorem 11.1 follows from Theorem 11.2. We
remark that the proof given in [54, Appendix B] goes through almost verbatim, with
only minor changes needed to handle the fact that the future-directed unit normal to
�t is B in the present article (and thus the B-differentiation occurs on LHS (397)),
while in [54], the future-directed unit normal to �t is ∂t .

We now state Theorem 11.2. In Sect. 11.3, we will discuss its proof.63

Theorem 11.2 (Dispersive-type decay estimate) Let P denote the Littlewood-Paley
projection onto frequencies ξ with 1

2 ≤ |ξ | ≤ 2. Under the conventions of Sect.9.3
and the assumptions of Sect.10.2, there exists a large�0 > 0 and a function d(t) ≥ 0
such that if λ ≥ �0 and if q > 2 is sufficiently close to 2, then

‖d‖
L

q
2 ([0,T∗;(λ)])

� 1, (396)

and for every solution ϕ to the homogeneous linear wave equation (394) on the slab
[0, T∗;(λ)] × R

3, the following decay estimate holds for t ∈ [0, T∗;(λ)]:

‖PBϕ‖L∞(�t ) �
{

1

(1 + t)
2
q

+ d(t)

}{

3
∑

m=0

‖∂mϕ‖L1(�0)
+

2
∑

m=0

‖∂m∂tϕ‖L1(�0)

}

.

(397)

63 The presence of up to three derivatives of ϕ on RHS (397) is not problematic because in practice, the
estimate (397) is only used on functions supported near unit frequencies in Fourier space (and thus the
functions’ derivatives can be controlled in terms of the function itself, by Bernstein’s inequality). See [54,
Appendix B], especially the first estimate on page 105.
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11.3 Reduction of the proof of Theorem 11.2 to the case of compactly supported
data

It is convenient to reduce the proof of Theorem 11.2 to a spatially localized version in
which the L1 norms on the RHSs of the estimates are replaced with terms involving L2

norms, which are more natural (in view of their connection to energy estimates). More
precisely, the same arguments given in [54, Section 4] yield that Theorem 11.2 follows
as a consequence of Proposition11.1, which is an analog of [54, Proposition 4.1], and
Lemma 11.2, which is an analog of [54, Lemma 4.2]. We will discuss the proof of
Proposition11.1 in Sect. 11.5, while we provide the simple proof of Lemma 11.2 in
this subsection.

Proposition 11.1 (Spatially localized version of Theorem 11.2) Let R > 0 be as in
Sect.9.1, fix any64 z ∈ �0, and let γz(1) be the unique point on the cone-tip axis in�1
(see Sect.9.4.1 for the definition of the cone-tip axis). Let P denote the Littlewood–
Paley projection onto frequencies ξ with 1

2 ≤ |ξ | ≤ 2. Under the assumptions of
Sect.10.2, there exists a large �0 > 0 and a function d(t) ≥ 0 such that if λ ≥ �0
and if q > 2 is sufficiently close to 2, then

‖d‖
L

q
2 ([0,T∗;(λ)])

� 1, (398)

and for every solution ϕ to the homogeneous linear wave equation (394) on the slab
[0, T∗;(λ)] × R

3 whose data on �1 are supported in the Euclidean ball BR(γz(1)) of
radius R centered at γz(1), the following decay estimate holds for t ∈ [1, T∗;(λ)]:

‖PBϕ‖L∞(�t ) �
{

1

(1 + |t − 1|) 2q
+ d(t)

}

{‖∂∂∂ϕ‖L2(�1)
+ ‖ϕ‖L2(�1)

}

. (399)

Remark 11.1 (ϕ vanishes in
([1, T∗;(λ)] × R

3) \˜M(I nt)
1 ) From the definition (171)

of ˜M(I nt)
1 , (174b), (174c), (175), and standard domain of dependence consider-

ations, it follows that the solution ϕ from Proposition11.1 satisfies ϕ ≡ 0 in
([1, T∗;(λ)] × R

3) \˜M(I nt)
1 .

Lemma 11.2 (Standard energy estimate for the wave equation). Under the bootstrap
assumption (306a) for the first term on the LHS, there exists a large�0 > 0 such that
if λ ≥ �0, then solutions ϕ to the homogeneous linear wave equation (394) (where
in (394), g = g( 	�), with 	� the rescaled solution) verify the following estimate for
t ∈ [0, T∗;(λ)]:

‖∂∂∂ϕ‖L2(�t )
� ‖∂∂∂ϕ‖L2(�0)

. (400)

64 Aswehighlighted inRemark9.1, the hypersurface thatwedenote by “�0” in this proposition corresponds
to the hypersurface that we denoted by “�tk ” in Sects. 3–8. Similar remarks apply for the other constant-time
hypersurfaces appearing in this proposition.
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Moreover, for 0 ≤ t ≤ 1, we have

‖ϕ‖L2(�t )
� ‖∂∂∂ϕ‖L2(�0)

+ ‖ϕ‖L2(�0)
. (401)

Proof Reasoning as in our proof of (52), but omitting the ϕ2 term in the analog of the
energy (49) and the energy identity (53), we find that

‖∂∂∂ϕ‖2L2(�t )
� ‖∂∂∂ϕ‖2L2(�0)

+
∫ t

0
‖∂∂∂ 	�‖L∞(�τ)‖∂∂∂ϕ‖2L2(�τ)

dτ.

(400) now follows from this estimate, Grönwall’s inequality, and the estimate
‖∂∂∂ 	�‖L1([0,T∗;(λ)])L∞

x
� λ−8ε0 ≤ 1, which is a simple consequence of (151) and

(306a).
(401) then follows from (400) and the fundamental theorem of calculus. ��

11.4 Mild growth rate for a conformal energy

The proof of Proposition 11.1 fundamentally relies on deriving estimates for a confor-
mal energy, which we define in this subsection. We stress that our definition coincides
with the definition of the conformal energy given in [54, Definition 4.4].

11.4.1 Definition of the conformal energy

We start by fixing two smooth, non-negative cut-off functions of (t, u), denoted by W
and W and satisfying 0 ≤ W (t, u) ≤ 1, 0 ≤ W (t, u) ≤ 1, such that the following
properties hold for t > 0:

W (t, u) =
{

1 if u
t ∈ [0, 1/2],

0 if u
t ∈ (−∞,−1/4] ∪ [3/4, 1], W (t, u) =

{

1 if u
t ∈ [0, 1],

0 if u
t ∈ (−∞,−1/4],

(402a)

W (t, u) = W (t, u) if t ∈ [1, T∗;(λ)] and u

t
∈ [−1/4, 0]. (402b)

See Fig. 4 for a schematic depiction of the regions in the case z := 0, where for
convenience,we have suppressed the “quasilinear nature” of the geometry by depicting
it as flat.

Definition 11.1 (Conformal energy). For scalar functions ϕ that vanish outside of
˜M(I nt)

1 (see definition (171) and Remark 11.1), we define the conformal energy C [ϕ]
as follows:

C [ϕ](t) :=
∫

˜�
(I nt)
t

(W − W )t2
{

|Dϕ|2 + |r̃−1ϕ|2
}

d�g

+
∫

˜�
(I nt)
t

W
{

|r̃DLϕ|2 + |r̃∇/ ϕ|2g/ + |ϕ|2
}

d�g. (403)
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Fig. 4 Schematic illustration of the regions appearing in definition (402a) in the case z := 0

11.4.2 The precise eikonal function and connection coefficient estimates needed for
the proof of the conformal energy estimate

The following corollary is a routine consequence of Proposition10.1. It provides all
of the estimates for the eikonal function and connection coefficients that are needed
to prove Theorem 11.3, which in turn provides the main estimates needed to prove
Proposition11.1. Some statements in the corollary are redundant in the sense that they
already appeared in Proposition10.1. For the reader’s convenience, we have allowed
for redundancies; having all needed estimates in the same corollary will facilitate our
discussion of the proof of Theorem 11.3.

Corollary 11.3 (The precise estimates needed for the proof of the conformal energy
estimate). Let

A := f
( 	L) ·

(

trg̃/χ̃
(Small), χ̂, trg/χ − 2

r̃
, ζ, ∂∂∂ 	�, 	C,D, b−1 − 1

r̃
, k, L ln b, θ̂,θ − 2

r̃

)

,

(404)

where f
( 	L) is any smooth function of the type described in Sect.9.9.1.

Under the assumptions of Sect.10.2, the following estimates hold:

T∗;(λ) ≤ λ1−8ε0T∗, 0 ≤ r̃ < 2T∗;(λ), (405a)

‖b − 1‖L∞(˜M) � λ−ε0 ≤ 1

4
, υ ≈ r̃2, r̃ trg̃/χ̃ ≈ 1. (405b)

Moreover, we have the following estimates,65 where the norms are defined in
Sects.9.10 and 9.12, the corresponding spacetime regions such as˜Cu ⊂ ˜M are defined

65 Our estimates (406a) and (409b) feature the power −1/2 − 3ε0 on the RHS, as opposed to the power
−1/2 − 4ε0 that appeared in the analogous estimates of [54]. This minor change has no substantial effect
on the main results.
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in Sect.9.5 (see especially (172)), and p is as in (276):

‖A‖
L2

t L∞
x (

˜M(I nt)
)
� λ−1/2−3ε0 , (406a)

‖r̃(∇/ ,D/ L)A‖L2
t L p

ω(˜Cu)
, ‖A‖L2

t L p
ω(˜Cu)

, ‖r̃1/2A‖
L∞

t L2p
ω (˜Cu)

� λ−1/2, (406b)

‖r̃
1
2 Lσ‖

L∞
t L2p

ω (˜Cu)
, ‖r̃

1
2− 2

p ∇/σ‖L p
g/ L∞

t (
˜Cu)
, ‖r̃

1
2 ∇/σ‖L p

ωL∞
t (

˜Cu)
,

‖∇/σ‖L2
t L p

ω(˜Cu)
� λ−1/2, if˜Cu ⊂ ˜M(I nt)

, (407a)

‖σ‖
L∞(˜M(I nt)

)
� λ−8ε0 , (407b)

‖r̃−1/2σ‖
L∞(˜M(I nt)

)
� λ− 1

2−4ε0 , (407c)

∥

∥

∥

∥

r̃1/2
(

b−1 − 1

r̃
, trg/χ − 2

r̃
, trg/χ + 2

r̃
, kN N

)∥

∥

∥

∥

L∞
t L2

ω(
˜Cu)

� λ−1/2, (408)

‖μ/ (2)‖L2
u L∞

t L∞
ω(

˜M(I nt)
)
· ‖r̃1/2∇/σ‖

L∞
u L∞

t L p
ω(˜M

(I nt)
)
� λ−1−4ε0 , (409a)

‖(ζ,˜ζ − μ/ ,μ/ (1))‖L2
t L∞

x (
˜M(I nt)

)
· ‖r̃1/2∇/σ‖

L∞
t L∞

u L p
ω(˜M

(I nt)
)
� λ−1−3ε0 , (409b)

‖r̃3/2(μ̌, trg/χ ·���L)‖L2
u L∞

t L p
ω(˜M

(I nt)
)
� λ−4ε0 , (409c)

‖r̃∇/σ‖
L∞

u L∞
t L p

ω(˜M
(I nt)

)
� λ−4ε0 , (409d)

∥

∥

∥

∥

r̃−1/2
{

L

(

1

2
trg̃/χ̃υ

)

− 1

4

(

trg/χ
)2
υ + 1

2
{L ln b} trg̃/χ̃υ − |∇/σ|2g/υ

}∥

∥

∥

∥

L∞
u L∞

t L
p
2
ω(˜M

(I nt)
)

� λ− 1
2 .

(409e)

Proof The bootstrap assumptions imply that ‖f
( 	L)‖L∞(˜M(I nt)

)
� 1; thus, we can ignore

f
( 	L) throughout the rest of this proof. The estimates (405a), (405b), (406a), (406b),
(407a), (407b), and (407c) are restatements of (151), (177), (307b), and of estimates
derived in Propositions10.1 and 10.4, combined with the schematic relations L ln b =
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f
( 	L) · ∂∂∂ 	�, Lσ = f

( 	L) · ∂∂∂ 	�, k = f( 	�) · ∂∂∂ 	�, θ̂ = χ̂ + f
( 	L) · ∂∂∂ 	�, and θ − 2

r̃ =
trg̃/χ̃(Small) + f

( 	L) · ∂∂∂ 	� (see (197a), (201a), (233), (200), and (207)). Here we clarify
that although the proof of the estimate (295) relied on Schauder-type estimates for χ̂

that forced us to obtain control of ‖(trg̃/χ̃(Small), trg/χ − 2
r̃ , χ̂)‖L2

t L∞
u C

0,δ0
ω (˜M(I nt)

)
, we

have stated the estimate (406a) in terms of the weaker norm ‖ · ‖
L2

t L∞
x (

˜M(I nt)
)
; control

of this weaker norm is sufficient for the proof of Theorem 11.3.
(408) follows from (406b) and the schematic relations trg/χ − 2

r̃ = trg̃/χ̃(Small) +
f
( 	L) · ∂∂∂ 	�, trg/χ + 2

r̃ = −trg̃/χ̃(Small) + f
( 	L) · ∂∂∂ 	�, and kN N = f

( 	L) · ∂∂∂ 	� (see (197a),
(200), and (207)).

(409a) follows from (300a) and (305b).
(409b) follows from (300a), (305a), and (406a) for ζ.
(409c) follows from (288a), (301b), (334), the estimate ‖r̃1/2‖L∞(˜M) � λ1/2−4ε0

guaranteed by (405a), (332a) for the second term on the LHS, and the schematic
relations ���L = f

( 	L) · ∂∂∂ 	� and trg̃/χ̃ = trg/χ + f
( 	L) · ∂∂∂ 	�.

(409d) follows from the bound (407a) for ‖r̃
1
2 ∇/σ‖L p

ωL∞
t (

˜Cu)
and the estimate

‖r̃1/2‖L∞(˜M) � λ1/2−4ε0 guaranteed by (405a).
To obtain (409e), we first use (229), the estimate (405b) for υ, and the aforemen-

tioned estimate

‖r̃1/2‖L∞(˜M) � λ1/2−4ε0

to deduce that

LHS (409e) � ‖r̃1/2(∂∂∂ 	�, 	C,D)‖L∞
t L∞

u L p
ω(˜M)

+ λ1/2−4ε0

∥

∥

∥r̃1/2(∂∂∂ 	�, trg̃/χ̃(Small), χ̂,∇/σ)
∥

∥

∥

2

L∞
u L∞

t L p
ω(˜M

(I nt)
)
. (410)

From the estimate (331a), the estimate (406b) for ‖r̃1/2A‖L∞
t L p

ω(˜Cu)
, and the estimate

(407a) for ‖r̃
1
2 ∇/σ‖L p

ωL∞
t (

˜Cu)
, we conclude that RHS (410) � λ−1/2 as desired. ��

11.4.3 Mild growth estimate for the conformal energy

The main estimate needed to prove Proposition 11.1 is provided by the following
theorem. The proof of the theorem is fundamentally based on the estimates for the
acoustic geometry provided by Corollary11.3.

Theorem 11.3 (Mild growth estimate for the conformal energy). Let R > 0 be as
in Sect.9.1 and let γz(1) be the unique point γz(1) on the cone-tip axis in �1 (see
Sect.9.4.1). Let ϕ be any solution to the covariant linear wave equation (394) on the
slab [0, T∗;(λ)] × R

3 such that (ϕ|�1, ∂tϕ|�1) is supported in the Euclidean ball of
radius R centered at the point γz(1) in �1 (and thus Remark 11.1 applies).

Then under the assumptions of Sect.10.2, for any ε > 0, there exists a constant
Cε > 0 (which can blow up as ε ↓ 0) such that the conformal energy of ϕ (which is
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defined in (403)) satisfies the following estimate for t ∈ [1, T∗;(λ)]:

C [ϕ](t) ≤ Cε(1 + t)2ε
{

‖∂∂∂ϕ‖2L2(�1)
+ ‖ϕ‖2L2(�1)

}

. (411)

Proof (Discussion of proof) Given the estimates that we have already derived, the
proof of Theorem 11.3 is the same as the proof of [54, Theorem 4.5] given in [54,
Section 7.6]. Thus, here we only clarify which estimates are needed to apply the
preliminary arguments given in [54, Section 7], which are used in [54, Section 7.6] to
prove Theorem 11.3.

The proof of (411) given in [54, Section 7] is carried out via a bootstrap argument,
wherein one needs to establish [54, Equations (7.61)–(7.63)] to close the bootstrap;
see [54, Section 7.4.1]. For the reader’s convenience, we first list the main steps given
in [54, Section 7], which lead to the proof of Theorem 11.3. They are a collection
estimates for the linear solution ϕ in the statement of the theorem:

1. The most basic ingredient in the proof is that one needs a uniform bound, in
terms of the data, for a standard non-weighted energy of ϕ along a portion of the
constant-time hypersurfaces �t and null cones˜Cu ; see [54, Lemma 7.1].

2. A Morawetz-type energy estimate, which, when combined with Step 1, yields
preliminary control of a coercive spacetime integral of |∂∂∂ϕ|2 and ϕ2 near the cone-
tip axis. The integral involves weights with negative powers of r̃ , and it is bounded
by the data plus some error terms that are controlled later in the argument.

3. In this step, onemakes preliminary progress in controlling the yet-to-be-controlled
error termsmentioned above in Step 2. Specifically, one derives estimates showing
that r̃ -weighted versions of ϕ can be controlled in L2 along a portion of�t in terms
of aweighted spacetime integral involving the square of its outgoing null derivative
and an integral of ϕ2 along a portion of a sound cone.

4. Comparison results for various norms and energies, some of which involve the
conformal metric g̃ from Sect. 9.7.1 and a corresponding conformally rescaled
solution variable ϕ̃ := e−σϕ.

5. Weighted energy estimates for the wave equation �g̃ϕ̃ = · · · , where the energies
control the L and ∇/ derivatives of ϕ̃ along portions of �t with weights involving
υ (see (193)) and positive powers of r̃ . These are obtained by multiplying the
wave equation �g̃ϕ̃ = · · · by (Lϕ̃ + 1

2 trg̃/χ̃)r̃
m for appropriate choices of m ≥ 0,

and integrating by parts. Ultimately, when combined with the results from the
previous steps, this allows one to bound the conformal energy (i.e., the terms on

on RHS (403)) in the region {u ≤ 3t
4 }∩˜M(I nt)

; see [54, Section 7.6], in particular
[54, Equation (7.94)] and [54, Equation (7.95)].

6. A decay estimate for the standard non-weighted energy along �t , showing in
particular that it decays like (1+ t)−2; see [54, Equation (7.93)]. Ultimately, when
combined with the preliminary estimates for ϕ provided by Step 3, this yields the
desired control of the conformal energy (i.e., the terms on on RHS (403)) in the

region {u ≥ t
2 } ∩ ˜M(I nt)

; see [54, Section 7.6].

Wenowdiscuss preciselywhich of the estimateswe have already derived are needed
to repeat the arguments of [54, Section 7] and to carry out the above steps. We will
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not fully describe all of the analysis in [54, Section 7]; rather, we will describe only
the part of the analysis that relies on the estimates we have derived. Specifically, we
focus primarily on arguments that rely on estimates for the acoustic geometry. We
again emphasize that although we have derived the same estimates for the acoustic
geometry as in [54], our proof of the estimates (derived in Sect. 10) required substantial
additional arguments because we had to control new source terms coming from the
entropy and vorticity. The remaining arguments, not discussed here, needed to close
the bootstrap—and hence establish Theorem 11.3—are the same as in [54, Section 7],
towhichwe refer the reader formore details.We start by noting that the basic estimates
(405a), (405b), and (407b) are used throughout [54, Section 7]. We also refer readers
to Footnote 65 regarding a minor discrepancy between the estimates we derived here
and corresponding estimates in [54]; we will not comment further on these issues.

Step 1 (see [54, Lemma 7.1]) is essentially equivalent to the basic energy estimates
for the wave equations derived in the proofs of Propositions4.1 and 6.1, differing only
in that the needed estimates are spatially localized. For the proof, one needs only the
bound

‖(B)πππαβ‖L1
t L∞

x
� λ−8ε0 , (412)

where (B)πππαβ are the Cartesian components of the deformation tensor of B. Recalling
that each Cartesian component Bα satisfies Bα = f( 	�) for some smooth function
f (where 	� is the rescaled solution), we see that the Cartesian components (B)πππαβ
satisfy (B)πππαβ = f( 	�) · ∂∂∂� (for some other smooth function f). Hence, the desired
bound (412) follows from (151), (307c), and Hölder’s inequality.

The Morawetz estimate from Step 2 is provided in [54, Lemma 7.4] and [54,
Lemma 7.5]. The proof relies on applying the divergence theorem (the geometric
version, with respect to the rescaled metric g) on an appropriate spacetime region to
the vectorfield (X)Jα[ϕ] := Qαβ [ϕ]Xβ − 1

2

{

(g−1)αβ∂β!
}

ϕ2 + 1
2!(g

−1)αβ∂β(ϕ
2),

where Qαβ [ϕ] is defined in (45), X := f N , N is the outward g-unit normal to St,u in

�t (see (181)), f := ε−1
0 − ε−1

0
(1+r̃)2ε0

, and! := r̃−1 f . The error terms involve various
geometric derivatives of N that can be expressed in terms of connection coefficients
of the null frame and their first derivatives. For the proof of [54, Lemma 7.4] and [54,
Lemma 7.5] to go through verbatim, one needs only the estimates (406a) and (406b);
see just below [54, Equation (7.18)].

In obtaining estimates for r̃ -weighted versions ϕ2 in Step 3, in the sub-step provided
by [54, Lemma 7.6], one needs the estimate (406a); see below [54, Equation (7.34)].

For the comparison results from Step 4, in the sub-step provided by [54, Proposi-
tion 7.10], one needs the estimates (406b) and (407a); see below [54, Equation (7.43)]
and [54, Equation (7.45)]. In the sub-step provided by [54, Lemma 7.11], one needs
the estimates (406b) and (407a).

In deriving the weighted energy estimate from Step 5, in the sub-step provided
by [54, Lemma 7.15], one needs the estimate (406a); see the first line of the proof.
Then, in the same proof, to bound the error terms denoted on [54, page 87] by “Ai”,
(i = 1, 2, 3), one needs, respectively, the estimates (409a), (409b), and (409c); see
the analysis just below [54, Equation (7.72)].
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For the energy-decay estimate provided by Step 6, in the sub-step provided by [54,
Proposition 7.22], the estimates (409d)–(409e) are ingredients needed to help bound
the term denoted by “I” on [54, page 94]; see [54, page 95] for the role that (409d)–
(409e) play. One also needs (407a) (see the bottom of [54, page 95]) and (406a) (see
the top of [54, page 96]). ��

11.5 Discussion of the proof of Proposition 11.1

Thanks to the assumptions of Sect. 10.2 and the estimates for the acoustic geometry that
we obtained in (292), Proposition11.1 follows as a consequence of Theorem 11.3 and
the same arguments given in [54, Section 4.1] (see in particular [54, Proposition 4.1])
and Lemma 11.2.

Acknowledgements We are grateful to Qian Wang and the anonymous referees for offering enlightening
comments and insights, and for suggestions that have helped improve the exposition.

References

1. Bahouri, H., Chemin, J.-Y.: Équations d’ondes quasilinéaires et estimations de Strichartz. Am. J. Math.
121(6), 1337–1377 (1999)

2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier analysis and nonlinear partial differential equations,
Grundlehren derMathematischenWissenschaften [Fundamental Principles ofMathematical Sciences],
vol. 343. Springer, Heidelberg (2011)

3. Buckmaster, T., Shkoller, S., Vicol, V.: Formation of point shocks for 3D compressible Euler. To appear
in Commun. Pure Appl. Math. preprint available (2019). arXiv:1912.04429

4. Buckmaster, T., Shkoller, S., Vicol, V.: Shock formation and vorticity creation for 3d Euler. To appear
in Commun. Pure Appl. Math. preprint available (2020). arXiv:2006.14789

5. Christodoulou,D.: The formation of shocks in 3-dimensional fluids. EMSMonographs inMathematics.
European Mathematical Society (EMS), Zürich (2007)

6. Christodoulou, D.: The formation of black holes in general relativity. EMSMonographs in Mathemat-
ics. European Mathematical Society (EMS), Zürich (2009)

7. Christodoulou, D., Klainerman, S.: The Global Nonlinear Stability of the Minkowski Space. Princeton
Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

8. Christodoulou, D., Miao, S.: Compressible flow and Euler’s equations. Surveys of Modern Mathemat-
ics, vol. 9. International Press, Somerville, MA; Higher Education Press, Beijing (2014)

9. Dafermos, M., Luk, J.: The interior of dynamical vacuum black holes I: the C0-stability of the Kerr
Cauchy horizon. arXiv e-prints (2017). arXiv:1710.01722

10. Disconzi, M.M., Ebin, D.G.: Motion of slightly compressible fluids in a bounded domain, II. Commun.
Contemp. Math. 19(4), 1650054, 57 (2017)

11. Disconzi, M.M., Luo, C., Mazzone, G., Speck, J.: Rough sound waves in 3D compressible Euler flow
with vorticity. arXiv e-prints (2019). arXiv:1909.02550

12. Disconzi, M.M., Speck, J.: The relativistic Euler equations: remarkable null structures and regularity
properties. Ann. Henri Poincaré 20(7), 2173–2270 (2019)

13. Ettinger, B., Lindblad, H.: A sharp counterexample to local existence of low regularity solutions to
Einstein equations in wave coordinates. Ann. Math. (2) 185(1), 311–330 (2017)

14. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Math-
ematics. Springer, Berlin (2001). Reprint of the 1998 edition

15. Graf, O.: Global nonlinear stability of Minkowski space for spacelike-characteristic initial data. arXiv
e-prints (2021). arXiv:2010.12434v2

16. Granowski, R.: Asymptotically stable ill-posedness of geometric quasilinear wave equations. Ph.D.
Thesis (2018) (English). Copyright—Database copyright ProQuest LLC; ProQuest does not claim
copyright in the individual underlying works; Last updated 2018-06-28

http://arxiv.org/abs/1912.04429
http://arxiv.org/abs/2006.14789
http://arxiv.org/abs/1710.01722
http://arxiv.org/abs/1909.02550
http://arxiv.org/abs/2010.12434v2


41 Page 152 of 153 M. M. Disconzi et al.

17. Klainerman, S.: A commuting vectorfields approach to Strichartz-type inequalities and applications to
quasi-linear wave equations. Int. Math. Res. Not. 5, 221–274 (2001)

18. Klainerman, S.,Rodnianski, I.: Improved localwell-posedness for quasilinearwave equations in dimen-
sion three. Duke Math. J. 117(1), 1–124 (2003)

19. Klainerman, S., Rodnianski, I.: Causal geometry of Einstein-vacuum spacetimes with finite curvature
flux. Invent. Math. 159(3), 437–529 (2005)

20. Klainerman, S., Rodnianski, I.: The causal structure of microlocalized rough Einstein metrics. Ann.
Math. (2) 161(3), 1195–1243 (2005)

21. Klainerman, S., Rodnianski, I.: Rough solutions of the Einstein-vacuum equations. Ann. Math. (2)
161(3), 1143–1193 (2005)

22. Klainerman, S., Rodnianski, I.: A geometric approach to the Littlewood–Paley theory. Geom. Funct.
Anal. 16(1), 126–163 (2006)

23. Klainerman, S., Rodnianski, I.: On the radius of injectivity of null hypersurfaces. J. Am. Math. Soc.
21(3), 775–795 (2008)

24. Klainerman, S., Rodnianski, I., Szeftel, J.: The bounded L2 curvature conjecture. Invent. Math. 202(1),
91–216 (2015)

25. Lindblad, H.: Counterexamples to local existence for quasilinear wave equations. Math. Res. Lett.
5(5), 605–622 (1998)

26. Luk, J., Speck, J.: Shock formation in solutions to the 2D compressible Euler equations in the presence
of non-zero vorticity. Invent. Math. 214(1), 1–169 (2018)

27. Luk, J., Speck, J.: The hidden null structure of the compressible Euler equations and a prelude to
applications. J. Hyperbolic Differ. Equ. 17(1), 1–60 (2020)

28. Luk, J., Speck, J.: The stability of simple plane-symmetric shock formation for 3D compressible Euler
ow with vorticity and entropy. arXiv e-prints (2021). arXiv:2107.03426

29. Majda, A.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables.
Applied Mathematical Sciences, vol. 53. Springer, New York (1984)

30. Merle, F., Raphaël, P., Rodnianski, I., Szeftel, J.: On the implosion of a three dimensional compressible
fluid. arXiv e-prints (2019). arXiv:1912.11005

31. Moschidis, G.:A proof of the instability ofAdS for the Einstein–masslessVlasov system. arXiv e-prints
(2018). arXiv:1812.04268

32. Moschidis, G.: A proof of the instability of AdS for the Einstein-null dust system with an inner mirror.
Anal. PDE 13(6), 1671–1754 (2020)

33. Munkres, J.R.: Topology. Prentice-Hall, Hoboken (2000)
34. Poisson, E.: The motion of point particles in curved spacetime. Living Rev. Relativ. 7(1), 6 (2004)
35. Ringström, H.: The Cauchy Problem in General Relativity. ESI Lectures in Mathematics and Physics,

European Mathematical Society (EMS), Zürich (2009)
36. Rodnianski, I., Speck, J.: A regime of linear stability for the Einstein-scalar field system with applica-

tions to nonlinear Big Bang formation. Ann. Math. (2) 187(1), 65–156 (2018)
37. Rodnianski, I., Speck, J.: Stable Big Bang formation in near-FLRW solutions to the Einstein-scalar

field and Einstein-stiff fluid systems. Sel. Math. 24, 4293–4459 (2018)
38. Shao, A.: Breakdown criteria for nonvacuum Einstein equations. PhD dissertation. Princeton, New

Jersey (2010)
39. Smith, H.F.: A parametrix construction for wave equations with C1,1 coefficients. Ann. Inst. Fourier

(Grenoble) 48(3), 797–835 (1998)
40. Smith, H.F., Tataru, D.: Sharp counterexamples for Strichartz estimates for low regularity metrics.

Math. Res. Lett. 9(2–3), 199–204 (2002)
41. Smith, H.F., Tataru, D.: Sharp local well-posedness results for the nonlinear wave equation. Ann.Math.

(2) 162, 291–366 (2005)
42. Speck, J.: Shock Formation in Small-Data Solutions to 3D Quasilinear Wave Equations. Mathematical

Surveys and Monographs (2016)
43. Speck, J.: The maximal development of near-FLRW data for the Einstein-scalar field system with

spatial topology S3. Commun. Math. Phys. 364(3), 879–979 (2018)
44. Speck, J.:Anew formulation of the 3DcompressibleEuler equationswith dynamic entropy: remarkable

null structures and regularity properties. Arch. Ration. Mech. Anal. 234(3), 1223–1279 (2019)
45. Tataru, D.: Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave

equation. Am. J. Math. 122(2), 349–376 (2000)

http://arxiv.org/abs/2107.03426
http://arxiv.org/abs/1912.11005
http://arxiv.org/abs/1812.04268


Rough sound waves in 3D compressible Euler flow with vorticity Page 153 of 153 41

46. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. II.
Am. J. Math. 123(3), 385–423 (2001)

47. Tataru, D.: Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III.
J. Am. Math. Soc. 15(2), 419–442 (2002)

48. Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDE. Birkhäuser, Boston (1991)
49. Wang, Q.: Causal geometry of Einstein-vacuum spacetime. Ph.D. Thesis (2006). (English) Copyright

- Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying
works; Last updated 2016-06-23

50. Wang, Q.: Improved breakdown criterion for Einstein vacuum equations in CMC gauge. Commun.
Pure Appl. Math. 65(1), 21–76 (2012)

51. Wang, Q.: A geometric approach for sharp Local well-posedness of quasilinear wave equations. arXiv
e-prints (2014). arXiv:1408.3780

52. Wang, Q.: Causal geometry of rough Einstein CMCSH spacetime. J. Hyperb. Differ. Equ. 11(3), 563–
601 (2014)

53. Wang, Q.: Rough solutions of Einstein vacuum equations in CMCSH gauge. Commun. Math. Phys.
328(3), 1275–1340 (2014)

54. Wang, Q.: A geometric approach for sharp local well-posedness of quasilinear wave equations. Ann.
PDE 3(1), 12 (2017)

55. Wang, Q.: Rough solutions of the 3-D compressible Euler equations. To appear in Annals of Mathe-
matics, preprint available (2019). arXiv:1911.05038

56. Zhang, H.: On the 2D compressible Euler equations: low regularity solutions II. arXiv e-prints (2020).
arXiv:2012.01060

57. Zhang, H.: On the rough solutions of 3D compressible Euler equations: an alternative proof. arXiv
e-prints (2021). arXiv:2104.12299

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1408.3780
http://arxiv.org/abs/1911.05038
http://arxiv.org/abs/2012.01060
http://arxiv.org/abs/2104.12299


Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-022-01783-3
Arch. Rational Mech. Anal. 245 (2022) 127–182

The relativistic Euler equations
with a physical vacuum boundary: Hadamard
local well-posedness, rough solutions,

and continuation criterion

Marcelo M. Disconzi, Mihaela Ifrim & Daniel Tataru

Communicated by N. Masmoudi

Abstract

In this paper we provide a complete local well-posedness theory for the free
boundary relativistic Euler equations with a physical vacuum boundary on a
Minkowski background. Specifically, we establish the following results: (i) lo-
cal well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and
continuous dependence on the data; (ii) low regularity solutions: our uniqueness
result holds at the level of Lipschitz velocity and density, while our rough solutions,
obtained as unique limits of smooth solutions, have regularity only a half derivative
above scaling; (iii) stability: our uniqueness in fact follows from a more general
result, namely, we show that a certain nonlinear functional that tracks the distance
between two solutions (in part by measuring the distance between their respective
boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale
invariant energy estimates for solutions; (v) a sharp continuation criterion, at the
level of scaling, showing that solutions can be continued as long as the velocity is
in L1

t Lip and a suitable weighted version of the density is at the same regularity
level. Our entire approach is in Eulerian coordinates and relies on the functional
framework developed in the companionwork of the second and third authors on cor-
responding non relativistic problem. All our results are valid for a general equation
of state p(�) = �γ , γ > 1.
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1. Introduction

In this article, we consider the relativistic Euler equations, which describe the
motion of a relativistic fluid in a Minkowski background M

d+1, d ≥ 1. The fluid
state is represented by the (energy) density � ≥ 0, and the relativistic velocity u.
The velocity is assumed to be a forward time-like vector field, normalized by

uαuα = −1. (1.1)

The equations of motion consist of

∂αT α
β = 0, (1.2)

where T is the energy-momentum tensor for a perfect fluid, defined by

Tαβ :=(p + �)uαuβ + p mαβ. (1.3)

Here m is the Minkowski metric, and p is the pressure, which is subject to the
equation of state

p = p(�).
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Projecting (1.2) onto the directions parallel and perpendicular to u, using definition
(1.3), and the identity (1.1), yields the system{

uμ∂μ� + (p + �)∂μu
μ = 0

(p + �)uμ∂μuα + �μ
α∂μ p = 0,

(1.4)

with u satisfying the constraint (1.1), which is in turn preserved by the time evolu-
tion. Here � is is the projection on the space orthogonal to u and is given by

�αβ = mαβ + uαuβ.

Throughout this paper, we adopt standard rectangular coordinates inMinkowski
space, denoted by {x0, x1, . . . , xd}, and we identify x0 with a time coordinate,
t :=x0. Greek indices vary from 0 to d and Latin indices from 1 to d.

The system (1.4) can be seen as a nonlinear hyperbolic system, which in the
reference frame of the moving fluid has the propagation speed

c2s (�):=dp

d�
,

which is subject to
0 ≤ cs < 1,

implying that the speed of propagation of sound waves is always non-negative and
below the speed of light (which equals to one in the units we adopted).

In this article we consider the physical situation where vacuum states are al-
lowed, i.e. the density is allowed to vanish. The gas is located in the moving domain

	t :={x ∈ R
d | �(t, x) > 0},

whose boundary
t is the vacuum boundary, which is advected by the fluid velocity
u.

The distinguishing characteristic of a gas, versus the case of a liquid, is that
the density, and implicitly the pressure and the sound speed, vanish on the free
boundary 
t ,

� = 0, p = 0, cs = 0 on 
t .

Thus, the equations studied here provide a basic model of relativistic gaseous stars
(see Section 1.6). An appropriate equation of state to describe this situation is 1

(see,e.g., [[37], Section 2.4] or [35]):

p(�) = �κ+1, where κ > 0 is a constant. (1.5)

The decay rate of the sound speed at the free boundary plays a critical role.
Precisely, there is a unique, natural decay rate which is consistent with the time

1 Observe that the requirement 0 ≤ c2s < 1 imposes a bound on �. This occurs because
power-law equations of state such as (1.5) are no longer valid if the density is very large
[17].
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evolution of the free boundary problem for the relativistic Euler gas, which is
commonly referred to as physical vacuum, and has the form

c2s (t, x) ≈ dist(x, 
t ) in 	t , (1.6)

where dist(·, ·) is the distance function. Exactly the same requirement is present in
the non-relativistic compressible Euler equations. As in the non-relativistic setting,
(1.6) should be considered as a condition on the initial data that is propagated by
the time-evolution.

There are two classical approaches in fluid dynamics, using either Eulerian
coordinates, where the reference frame is fixed and the fluid particles are moving,
or using Lagrangian coordinates, where the particles are stationary but the frame
is moving. Both of these approaches have been extensively developed in the con-
text of the Euler equations, where the local well-posedness problem is very well
understood.

By contrast, the free boundary problem corresponding to the physical vacuum
has been far less studied and understood. Because of the difficulties related to
the need to track the evolution of the free boundary, all the prior work is in the
Lagrangian setting and in high regularity spaces which are only indirectly defined.

Our goal in this paper is to provide the first local well-posedness result for this
problem. Unlike previous approaches, which were limited to proving energy-type
estimates at high regularity and in a Lagrangian setting [12,16], here we consider
this problem fully within the Eulerian framework, where we provide a complete
local well-posedness theory, in the Hadamard sense, in a low regularity setting. We
summarize here the main features of our result, which mirror the results in the last
two authors’ prior paper devoted to the non-relativistic problem [14], referring to
Section 1.5 for precise statements:

a) We prove the uniqueness of solutions with very limited regularity v ∈ Lip,
� ∈ Lip2. More generally, at the same regularity level we prove stability, by
showing that bounds for a certain nonlinear distance between different solutions
can be propagated in time.

b) Inspired by [14], we set up the Eulerian Sobolev function space structurewhere
this problem should be considered, providing the correct, natural scale of spaces
for this evolution.

c) We prove sharp, scale invariant3 energy estimates within the above mentioned
scale of spaces, which guarantee that the appropriate Sobolev regularity of
solutions can be continued for as long as we have uniform bounds at the same
scale v ∈ Lip.

d) We give a constructive proof of existence for regular solutions, fully within the
Eulerian setting, based on the above energy estimates.

2 In an appropriately weighted sense in the case of �, see Theorem 1.1.
3 While this problem does not have an exact scaling symmetry, one can still identify a

leading order scaling.
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e) We employ a nonlinear Littlewood-Paley type method, developed prior work
[14], in order to obtain rough solutions as unique limits of smooth solutions.
This also yields the continuous dependence of the solutions on the initial data.

1.1. Space-time foliations and the material derivative

The relativistic character of our problem implies that there is no preferred choice
of coordinates. On the other hand, in order to derive estimates and make quantita-
tive assertions about the evolution, we have to choose a foliation of spacetime by
space-like hypersurfaces. Here, we take advantage of the natural set-up provided
by Minkowski space and foliate the spacetime by {t = constant} slices. We then
define the material derivative, which is adapted to this specific foliation, as

Dt := ∂t + ui

u0
∂i . (1.7)

The vectorfield Dt is better adapted to the study of the free-boundary evolution
than working directly with uμ∂μ. Indeed, in order to track the motion of fluid
particles on the boundary, we need to understand their velocity relative to the
aforementioned spacetime foliation. The velocity that is measured by an observer in
a reference frame characterized by the coordinates (t, x1, . . . , xd) is ui/u0. This is
a consequence of the fact that in relativity observers are defined by their world-lines,
which can be reparametrized. This ambiguity is fixed by imposing the constraint
uμuμ = −1. As a consequence, the d-dimensional vectorfield (u1, . . . , ud) can
have norm arbitrarily large, while the physical velocity has to have norm at most
one (the speed of light).

It follows, in particular, that fluid particles on the boundary move with velocity
ui/u0. These considerations also imply that the standard differentiation formula
for moving domains holds with Dt , i.e.,

d

dt

∫
	t

f dx =
∫

	t

Dt f dx +
∫

	t

f ∂i

(
ui

u0

)
dx . (1.8)

This formula remains valid with the good variable v we introduce below since
vi/v0 = ui/u0.

1.2. The good variables

The starting point of our analysis is a good choice of dynamical variables. We
seek variables that are tailored to the characteristics of the Euler flow all the way to
moving boundary, where the sound characteristics degenerate due to the vanishing
of the sound speed. Our choice of good variables will

(i) better diagonalize the system with respect to the material derivative,
(ii) be associated with truly relativistic properties of the vorticity, and
(iii) lead to good weights that allow us to control the behavior of the fluid variables

when one approaches the boundary.
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Property (i) will be intrinsically tied with both the wave and transport character
of the flow in that (a) the diagonalized equations lead to good second order equations
that capture the propagation of sound in the fluid, see Section 3.2, and (b) it provides
a good transport structure that will allow us to implement a time discretization
for the construction of regular solution, see Section 6. Property (ii) will ensure a
good coupling between the wave-part and the transport-part of the system. Finally,
property (iii) will lead to the correct functional framework needed to close the
estimates.4 Our good variables, denoted by (r, v), are defined in (1.9) and (1.15).
The corresponding equations of motion are (1.16), which we now derive.

Our first choice of good variables is a rescaled version of the velocity given by

vα = f (�)uα, (1.9)

where f is given by

f (�):= exp
∫

c2s (�)

p(�) + �
d�. (1.10)

Although we are interested in the case p(�) = �κ+1, it is instructive to consider
first a general barotropic equation of state; see the discussion related to the vorticity
further below.

In order to understand our choice for f , compute

∂μvα = f ′(�)∂μ�uα + f (�)∂μu
α.

Solving for ∂μuα and plugging the resulting expression into the second equation
of (1.4) we find

p + �

f
uμ∂μvα + c2s m

αμ∂μ� +
(

− f ′

f
(p + �) + c2s

)
uαuμ∂μ� = 0.

We see that the term in parenthesis vanishes if f is given by (1.10), resulting in an
equation which is diagonal with respect to the material derivative, and which we
write as

Dtv
α + c2s f

2

(p + �)v0
mαμ∂μ� = 0. (1.11)

We notice that in terms of v, the material derivative (1.7) reads as

Dt = ∂t + vi

v0
∂i .

In view of the constraint (1.1), we have that v0 satisfies

v0 =
√

f 2 + |v|2, |v|2:=vivi , (1.12)

4 It is well known that we can think of the relativistic Euler flow as a wave-transport
system. What is relevant here is that the wave evolution that comes out of the diagonalized
equations allows estimates all the way to the free surface.
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and in solving for v0 we chose the positive square root because u, and thus v, is a
future-pointing vectorfield.

We now show that our choice (1.9) also diagonalizes the first equation in (1.4).
First, we use (1.11) with α = 0 and solve to ∂tv

0, obtaining

∂tv
0 = c2s f

2

(p + �)v0
∂t� − vi

v0
∂iv

0

= c2s f
2

(p + �)v0
∂t� − f f ′

(v0)2
vi∂i� − viv j

(v0)2
∂iv j ,

where in the second equality we used (1.12) to compute ∂iv
0. Using the above

identity for ∂tv
0, we find the following expression for ∂μvμ:

∂μvμ = c2s f
2

(p + �)v0
∂t� − f f ′

(v0)2
vi∂i� +

(
δi j − viv j

(v0)2

)
∂iv j ,

where δ is the Euclidean metric. Expressing ∂μuμ in terms of ∂μvμ (and derivatives
of �) and using the above expression for ∂μvμ, we see that the first equation in (1.4)
can be written as

Dt� + p + �

a0v0

(
δi j − viv j

(v0)2

)
∂iv j − c2s

2 f 2

a0(v0)3
vi∂i� = 0. (1.13)

Here we are using the notation

a0 := 1 − c2s
|v|2
(v0)2

. (1.14)

Observe that Eqs. (1.11) and (1.13) are valid for a general barotropic equation
of state. We now assume the equation of state (1.5). Then the sound speed is given

by c2s = (κ + 1)�κ and f becomes f (�) = (1 + �κ)1+ 1
κ (we choose the constant

of integration by setting f (0) = 1, so that v = u when � = 0). It turns out that it is
better to adopt the sound speed squared as a primary variable instead of � because
it plays the role of the correct weight in our energy functionals. We thus define5 the
second component of our good variables by

r :=1 + κ

κ
�κ . (1.15)

Therefore, using (r, v) as our good variables, and p(�) given by (1.5) we find
that the Eqs. (1.11) and (1.13) become{

Dtr + rGi j∂iv j + ra1v
i∂i r = 0

Dtvi + a2∂i r = 0,

(1.16a)

(1.16b)

5 The factor 1
κ in the definition of r is a matter of convenience. Although r and c2s differ

by this factor, we slightly abuse the terminology and also call r the sound speed squared.
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where we have defined

Gi j := κ〈r〉
a0v0

(
δi j − viv j

(v0)2

)
, 〈r〉:=1 + κr

κ + 1
,

and the coefficients a0, a1 and a2 are given by

a0:=1 − κr
|v|2
(v0)2

, a1:= − 2κ〈r〉2+ 2
κ

(v0)3a0
, a2:=〈r〉1+ 2

κ

v0
.

Equations (1.16) are the desired diagonal with respect to Dt equations, and the
rest of the article will be based on them. In writing these equations we consider
only the spatial components vi as variables, with v0 always given by

v0 =
√

〈r〉2+ 2
κ + |v|2. (1.17)

The specific form of the coefficients a0, a1, and a2 is not very important for our
argument. We essentially only use that they are smooth functions of r and v, and
that a0, a2 > 0.

The operator Gi j∂i (·) j can be viewed as a divergence type operator. This di-
vergence structure is related to the fact that Equations (1.16) express the wave-like
behavior of r and of the divergence part of v. The symmetric and positive-definite
matrix c2s G

i j is closely related to the inverse of the acoustical metric; precisely,
they agree at the leading order near the boundary.

As we will see, Equations (1.16) also have the correct balance of powers of r
to allow estimates all the way to the free boundary. The r factor in the divergence
of v is related to the propagation of sound in the fluid (see Section 3.2) whereas
the r factor in the last term of (1.16a) will allow us to treat ra1vi∂i r essentially as
a perturbation at least in elliptic estimates (see Section 5).

One can always diagonalize Eq. (1.4) by simply algebraically solving for
∂t (�, u). But it is not difficult to see that this procedure will not lead to equa-
tions with good structures for the study of the vacuum boundary problem. In this
regard, observe that the choice (1.9) is a nonlinear change of variables, whereas
algebraically solving for ∂t (�, u) is a linear procedure.

We now comment on the relation between v and the vorticity of the fluid ω. It
is well-known (see, e.g., [5] Section IX.10.1) that in relativity the correct notion of
vorticity is given by the following two-form in spacetim

ωαβ :=(dstv)αβ = ∂αvβ − ∂βvα, (1.18)

where dst is the exterior derivative in spacetime. This is true not only for the power
law equation of state (1.5), but also for an arbitrary barotropic equation of state.

A computation using (1.18) (see, e.g., [5]) and the equations of motion implies
that

vαωαβ = 0, (1.19)

and that ω satisfies the following evolution equation

vμ∂μωαβ + ∂αvμωμβ + ∂βvμωαμ = 0. (1.20)
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Observe that (1.20) implies that ω = 0 if it vanishes initially.
Since we will consider only the spatial components of v as independent, we use

(1.19) to eliminate the 0 j components of ω from (1.20) as follows: from (1.19) we
can write

ω0 j = − vi

v0
ωi j . (1.21)

Using (1.21) into (1.20) with α, β = i, j we finally obtain

Dtωi j + 1

v0
∂iv

kωk j + 1

v0
∂ jv

kωik − 1

(v0)2
∂iv

0vkωk j + 1

(v0)2
∂ jv

0vkωki = 0.

(1.22)

Equation (1.22) will be used to derive estimates for ωi j that will complement the
estimates for r and the divergence of v obtained from (1.16).

We remark that in the literature, the use ofv, givenby (1.9), seems to be restricted
mostly to definition and evolution of the vorticity. To the best of our knowledge,
this is the first time when it was observed that the same change of variables needed
to define the relativistic vorticity also diagonalizes the equations of motion with
respect to Dt .

1.3. Scaling and bookkeeping scheme

Although Eq. (1.16) do not obey a scaling law, it is still possible to identify a
scaling law for the leading order dynamics near the boundary. This will motivate the
control norms we introduce in the next section, as well as provide a bookkeeping
scheme that will allow us to streamline the analysis of many complex multilinear
expressions we will encounter.

As we will see, the contribution of last term in (1.16a) to our energies is negli-
gible, due to the multiplicative r factor. Thus, we ignore this term for our scaling
analysis.6 Replacing all coefficients that are functions of (r, v) by 1, while keep-
ing the transport and divergence structure present in the equations, we obtain the
following simplified version of (1.16):

This system is expected to capture the leadingorder dynamics near the boundary,
and also mirrors the nonrelativistic version of the compressible Euler equations,
considered in the predecessor to this paper, see [14]. Equations (1.23) admit the
scaling law

(r(t, x), v(t, x)) 	→ (λ−2r(λt, λ2x), λ−1v(λt, λ2x)).

Based on this leading order scaling analysis, we assign the following order to the
variables and operators in Eq. (1.16):

6 And then indeed turns out to be lower order from a scaling perspective.
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(i) r and v have order −1 and −1/2, respectively. More precisely, we only count
v as having order −1/2 when it is differentiated. Undifferentiated v’s have
order zero.

(ii) Dt and ∂i have order 1/2 and 1, respectively.
(iii) G, a0, a1, and a2, and more generally, any smooth function of (r, v) not

vanishing at r = 0, have order 0.

Expanding on (iii) above, the order of a function of r is defined by the order of
its leading term in the Taylor expansion about r = 0, being of order zero if this
leading term is a constant. The order of a multilinear expression is defined as the
sum of the orders of each factor. Here we remark that all expressions arising in this
paper are multilinear expressions, with the possible exception of nonlinear factors
as in (iii) above.

According to this convention, all terms in equation (1.16b) have order zero,
and all terms in (1.16a) have order −1/2, except for the last term in (1.16a) which
has order −1. Upon successive differentiation of any multilinear expression with
respect to Dt or ∂ , all terms produced are the same (highest) order, unless some of
these derivatives apply to nonlinear factors as in (iii); then lower order terms are
produced.

1.4. Energies, function spaces, and control norms

Here we introduce the function spaces and control norms that we need in order
to state our main results. A more detailed discussion is given in Section 2. With
some obvious adjustments, here we follow the lat two authors’ prior work in [14].
We assume throughout that r is a positive function on 	t , vanishing simply on the
boundary, and so that r is comparable to the distance to the boundary 
t .

In order to identify the correct functional framework for our problem, we start
with the linearization of the Eq. (1.16). In Section 3 we show that the linearized
equations admit the following energy

‖(s, w)‖2H =
∫

	t

r
1−κ
κ (s2 + a−1

2 rGi jwiw j ) dx,

which defines the (time dependent) weighted L2 space H.
The motivation for the definition of higher order norms and spaces comes from

the good second order equations mentioned in Section 1.2. From Eq. (1.16), we
find that the second order evolution is governed at leading order by a wave-like
operator which is essentially a variable coefficient version of D2

t − r. This points
toward higher order spaces built on powers of r. Taking into account also the
form of the linearized energy above, we are led to the following. We defineH2k as
the space of pairs of functions (s, w) in 	t for which the norm below is finite

‖(s, w)‖2H2k :=
2k∑

|α|=0

k∑
a=0|α|−a≤k

‖r 1−κ
2κ +a∂αs‖2L2 +

2k∑
|α|=0

k∑
a=0|α|−a≤k

‖r 1−κ
2κ + 1

2+a∂αw‖2L2 .

The definition of H2k for non-integer k is given in Section 2, via interpolation.
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In view of the scaling analysis of Section 1.3, we introduce the critical space
H2k0 where

2k0 = d + 1 + 1

κ
, (1.24)

which has the property that its leading order homogeneous component is invariant
with respect to the scaling discussed in Section 1.3. Associated with the exponent
2k0 we define the following scale invariant time dependent control norm

A:=‖∇r − N‖L∞ + ‖v‖
Ċ

1
2
.

here N is a given non-zero vectorfield with the following property. In each suf-
ficiently small neighborhood of the boundary, there exists a x0 ∈ 
t such that
N (x0) = ∇r(x0). The fact that we can choose such a N follows from the prop-
erties of r . The motivation for introducing N is that we can make A small by
working in small neighborhood of each reference point x0, whereas ‖∇r‖L∞ is a
scale invariant quantity that cannot be made small by localization arguments.

We further introduce a second time dependent control norm that is associated
with H2k0+1, given by7

B:=A + ‖∇r‖
C̃

1
2

+ ‖∇v‖L∞ ,

where

‖ f ‖
C̃

1
2
:= sup

x,y∈	t

| f (x) − f (y)|
r(x)

1
2 + r(y)

1
2 + |x − y| 12

.

It follows that ‖∇r‖
C̃

1
2
scales like the Ċ

3
2 norm of r , but it is weaker in that it

only uses one derivative of r away from the boundary. The norm B will control the
growth of our energies, allowing for a secondary dependence on A.

When the density is bounded away from zero, the relativistic Euler equations
can be written as a first-order symmetric hyperbolic system (see, e.g., [1]) and
standard techniques can be applied to derive local estimates. The difficulties in
our case come from the vanishing of r on the boundary. Using the finite speed of
propagation of the Euler flow, we can use a partition of unity to separate the near-
boundary behavior, where r approaches zero, from the bulk dynamics, where r is
bounded away from zero. Furthermore, we can also localize to a small set where A
is small. Such a localization will be implicitly assumed in all our analysis, in order
to avoid cumbersome localization weights through the proofs.

1.5. The main results

Here we state our main results. Combined, these results establish the sharp
local well-posedness and continuation criterion discussed earlier. We will make
all our statements for the system written in terms of the good variables (r, v), i.e.,

7 In [14] the A component is omitted, and B is a homogeneous norm. But here, we need
to also add the lower order component A in order to be able to handle lower order terms.
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Eq. (1.16). Readers interested in the evolution of (1.4) should have no difficulty
translating our statements to the original variables � and u.

We recall that Eq. (1.16) are always considered in the moving domain given by

	:=
⋃

0≤t<T

{t} × 	t ,

for some T > 0, where the moving domain at time t , 	t , is given by

	t = {x ∈ R
d | r(t, x) > 0}.

We also recall that we are interested in solutions satisfying the physical vacuum
boundary condition

r(t, x) ≈ dist(x, 
t ), (1.25)

where dist(·, ·) is the distance function. Hence, by a solution we will always mean
a pair of functions (r, v) that satisfies Eq. (1.16) within 	, and for which (1.25)
holds.

We begin with our uniqueness result:

Theorem 1.1. (Uniqueness)Eq. (1.16) admit at most one solution (r, v) in the class

v ∈ C1
x , ∇r ∈ C̃

1
2
x .

For the next Theorem, we introduce the phase space

H2k :={(r, v) | (r, v) ∈ H2k}. (1.26)

We refer to Section 2 for a more precise definition of H2k , including its topology.
Since the H2k norms depend on r , it is appropriate to think of H2k in a nonlinear
fashion, as an infinite dimensional manifold. We also stress that, while k was an
integer in our preliminary discussion in Section 1.4, in Section 2 we extend their
definition for any k ≥ 0. Consequently, H2k is also defined for any k ≥ 0, and our
Theorems 1.2 and 1.4 below include non-integer values of k.

Theorem 1.2. Equations (1.16) are locally well-posed inH2k for any data (r̊ , v̊) ∈
H2k with r̊ satisfying (1.25), provided that

2k > 2k0 + 1, (1.27)

where k0 is given by (1.24).

Local well-posedness in Theorem 1.2 is understood in the usual quasilinear fashion,
namely:

• Existence of solutions (r, v) ∈ C([0, T ],H2k).
• Uniqueness of solutions in a larger class, see Theorem 1.1.
• Continous dependence of solutions on the initial data in the H2k topology.



The relativistic Euler equations with a physical vacuum boundary 139

Furthermore, in our proof of uniqueness in Section 4 we establish something
stronger, namely, that a suitable nonlinear distance between two solutions is prop-
agated under the flow. This distance functional, in particular, tracks the distance
between the boundaries of the moving domains associated with different solutions.
Thus, our local well-posedness also includes:

• Weak Lipschitz dependence on the initial data relative to a suitable nonlinear
functional introduced in Section 4.

An important threshold for our results corresponds to the uniform control pa-
rameters A and B. Of these A is at scaling, while B is one half of a derivative above
scaling. Thus, by Lemma 2.5 of Section 2, we will have the bounds

A � ‖(r, v)‖H2k , k > k0 = d + 1

2
+ 1

2κ
,

and

B � ‖(r, v)‖H2k , k > k0 + 1

2
= d + 2

2
+ 1

2κ
.

Next, we turn our attention to the continuation of solutions.

Theorem 1.3. For each integer k ≥ 0 there exists an energy functional E2k =
E2k(r, v) with the following properties:
a) Coercivity: as long as A remains bounded, we have

E2k(r, v) ≈ ‖(r, v)‖2H2k .

b) Energy estimates hold for solutions to (1.16), i.e.

d

dt
E2k(r, v) �A B‖(r, v)‖2H2k .

By Gronwall’s inequality, Theorem 1.3 readily implies

‖(r, v)(t)‖2H2k � e
∫ t
0 C(A)B(τ ) dτ‖(r̊ , v̊)‖2H2k , (1.28)

where C(A) is a constant depending on A. The energies E2k will be constructed
explicitly only for integer k. Nevertheless, our analysis will show that (1.28) will
also hold for any k > 0. This will be done using a mechanism akin to a paradiffer-
ential expansion, without explicitly constructing energy functionals for non-integer
k. As a consequence, we will obtain

Theorem 1.4. Let k be as in (1.27). Then, the H2k solution given by Theorem 1.2
can be continued as long as A remains bounded and B ∈ L1

t (	).
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1.6. Historical comments

The study of the relativistic Euler equations goes back to the early days of rela-
tivity theory, with the works of Einstein [7] and Schwarzschild [38]. The relativistic
free-boundary Euler equations were introduced in the ’30s in the classical works of
Tolman, Oppenheimer, and Volkoff [34,39,40], where they derived the now-called
TOV equations.8 With the goal of modeling a star in the framework of relativity,
Tolman, Oppenheimer, and Volkoff studied spherically symmetric static solutions
to the Einstein-Euler system for a fluid body in vacuum and identified the vanishing
of the pressure as the correct physical condition on the boundary. Observe that such
a condition covers both the cases of a liquid, where � > 0 on the boundary, as well
as a gas, which we study here, where � = 0 on the boundary. This distinction is
related to the choice of equation of state.

Although the TOV equations have a long history and the study of relativistic
stars is an active and important field of research (see, e.g., [37], Part III and [30],
Part V), the mathematical theory of the relativistic free-boundary Euler equations
lagged behind.

Ifwe restrict ourselves to spherically-symmetric solutions, possibly also consid-
ering coupling to Einstein’s equations, a few precise and satisfactory mathematical
statements can be obtained. Lindblom [20] proved that a static, asymptotically flat
spacetime, that contains only a uniform-density perfect fluid confined to a spatially
compact region ought to be spherically symmetric, thus generalizing to relativity
a classical result of Carleman [4] and Lichtenstein [19] for Newtonian fluids. The
proof of existence of spherically symmetric static solutions to the Einstein-Euler
system consisting of a fluid region and possibly a vacuum region was obtained by
Rendall and Schmidt [36]. Their solutions allow for the vanishing of the density
along the interface of the fluid-vacuum region, although it is also possible that the
fluid occupies the entire space and the density merely approaches zero at infinity.
Makino [21] refined this result by providing a general criterion for the equation
of state which ensures that the model has finite radius. Makino has also obtained
solutions to the Einstein-Euler equations in spherical symmetry with a vacuum
boundary and near equilibrium in [22,23], where equilibrium here corresponds to
the states given by the TOV equations. In [24], Makino extended these results to
axisymmetric solutions that are slowly rotating, i.e., when the speed of light is
sufficiently large or when the gravitational field is sufficiently weak (see also the
follow-up works [25,26] and the preceding work in [13]). Another result within
symmetry class related to the existence of vacuum regions and relevant for themath-
ematical study of star evolution is Hadžić and Lin’s recent proof of the “turning
point principle” for relativistic stars [11].

The discussion of the last paragraph was not intended to be an exhaustive ac-
count of the study of the relativistic free-boundary Euler equations under symmetry

8 In order to provide some context, we briefly discuss the general relativistic free-boundary
Euler equations, i.e., including both the cases of a gas and a liquid.We do not, however, make
an overview of related works that treat the non-relativistic free-boundary Euler equations.
See [14] and references therein for such a discussion.



The relativistic Euler equations with a physical vacuum boundary 141

assumptions, and we refer the reader to the above references for further discussion.
Rather, the goal was to highlight that a fair amount of results can be obtained in
symmetry classes. This is essentially because some of the most challenging aspects
of the problem are absent or significantly simplified when symmetry is assumed.
This should be contrasted with what is currently known in the general case, which
we now discuss.

Local existence and uniqueness of solutions the relativistic Euler equations in
Minkowski background with a compactly supported density have been obtained by
Makino and Ukai [27,28] and LeFloch and Ukai [18]. These solutions, however,
require some strong regularity of the fluid variables near the free boundary and,
in particular, do not allow for the existence of physical vacuum states. Similarly,
Rendall [35] established a local existence and uniqueness9 result for the Einstein-
Euler system where the density is allowed to vanish. Nevertheless, as the author
himself pointed out, the solutions obtained are not allowed to accelerate on the free
boundary and, in particular, do not include the physical vacuum case. Rendall’s
result has been improved by Brauer and Karp [2,3], but still without allowing
for a physical vacuum boundary. Oliynyk [31] was able to construct solutions
that can accelerate on the boundary, but his result is valid only in one spatial
dimension. A new approach to investigate the free-boundary Euler equations, based
on a frame formalism, has beenproposedbyFriedrich in [8] (see also [9]) and further
investigated by the first author in [6], but it has not led to a local well-posedness
theory.

In the case of a liquid, i.e., where the fluid has a free-boundary where the
pressure vanishes but the density remains strictly positive, a-priori estimates have
been obtained by Ginsberg [10] and Oliynyk [32]. Local existence of solutions
was recently established by Oliynyk [33] whereas Miao, Shahshahani, and Wu
[29] proved local existence and uniqueness for the case when the fluid is in the
so-called hard phase, i.e., when the speed of sound equals to one. See also [41],
where the author, after providing a proof of local existence for the non-isentropic
compressible free-boundary Euler equations in the case of a liquid, discusses ideas
to adapt his proof for the relativistic case.

Finally, for the case treated in this paper, i.e., the relativistic Euler equations
with a physical vacuum boundary, the only results we are aware of are the a-priori
estimates by Hadžić, Shkoller, and Speck [12] and Jang, LeFloch, and Masmoudi
[15]. In particular, no local existence and uniqueness (let along a complete local
well-posedness theory as we present here) had been previously established.

1.7. Outline of the paper

Our approach carefully considers the dual role of r , on the one hand, as a
dynamical variable in the evolution and, on the other hand, as a defining function
of the domain that, in particular, plays the role of a weight in our energies. An

9 More precisely, only a type of partial uniqueness has been obtained, see the discussion
in [35].
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important aspect of our approach is to decouple these two roles. Such decoupling is
what allows us to work entirely in Eulerian coordinates. When comparing different
solutions (which in general will be defined in different domains), we can think of
the role of r as a defining function as leading to a measure of the distance between
the two domains (i.e., a distance between the two boundaries), whereas the role of
r as a dynamical variable leads to a comparison in the common region defined by
the intersection of the two domains. For instance, in our regularization procedure
for the construction of regular solutions, the defining functions of the domains are
regularized at a different scale than the main dynamical variables.

Although the relativistic and non-relativistic Euler equations, and their corre-
sponding physical vacuum dynamics, are very different, some of our arguments
here will closely follow those in the last two authors’ prior work [14], where re-
sults similar to those of Section 1.5 were established for the non-relativistic Euler
equations in physical vacuum. Thus, when it is appropriate, we will provide a brief
proof, or quote directly from [14]. This is particularly the case for Sects. 6 and 7.

The paper is organized as follows:

1.7.1. Function spaces, Sect. 2 This section presents the functional framework
needed to studyEq. (1.16). These are spaces naturally associatedwith the degenerate
wave operator

D2
t − rGi j∂i∂ j

that is key to our analysis. Similar scales of spaces have been introduced in [14]
treating the non-relativistic case and also in [16] where the non-relativistic problem
had been considered in Lagrangian coordinates and in high regularity spaces.

Our function spacesH2k are Sobolev-type spaceswithweights r . Since the fluid
domain is determined by 	t := {r > 0}, the state space H2k is nonlinear, having a
structure akin to an infinite dimensional manifold.

Interpolation plays two key roles in our work. Firstly, it allows us to define
H2k for non-integer k without requiring us to establish direct energy estimates with
fractional derivatives. This is in particular important for our low regularity setting
since the critical exponent (1.24) will in general not be an integer. Secondly, we
interpolate betweenH2k and the control norms A and B. For this we use some sharp
interpolation inequalities presented in Section 2.3. These inequalities are proven in
the last two authors’ prior work [14] and, to the best of our knowledge, have not
appeared in the literature before. In fact, it is the use of these inequalities that allows
us to work at low regularity, to obtain sharp energy estimates, and a continuation
criterion at the level of scaling.

1.7.2. The linearized equation and the corresponding transition operators,
Sect. 3 The linearized equation and its analysis form the foundation of our work,
rather than direct nonlinear energy estimates. Besides allowing us to prove non-
linear energy estimates for single solutions, basing our analysis on the linearized
equation will also allow us to get good quantitative estimates for the difference of
two solutions. The latter is important for our uniqueness result and for the construc-
tion of rough solutions as limits of smooth solutions. We observe that there are no
boundary conditions that need to be imposed on the linearized variables. This is
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related to the aforementioned decoupling of the roles of r and signals a good choice
of functional framework.

Using the linearized equation we obtain transition operators L1 and L2 that
act at the level of the linearized variables s and w. These transition operators are
roughly the leading elliptic part of the wave equations for s and the divergence part
of w. Note that since the wave evolution for the fluid degenerates on the boundary
due to the vanishing of the sound speed, so do the transition operators L1 and L2.
We refer to L1 and L2 as transition operators because they relate the spacesH2k+2

and H2k in a coercive, invertible manner. Because of that, these operators play
an important role in our regularization scheme used to construct high-regularity
solutions.

1.7.3. Difference estimates and uniqueness, Sect. 4 In this section we construct
a nonlinear functional that allows us tomeasure the distance between two solutions.
We show that bounds for this functional are propagated by the flow, which in
particular implies uniqueness.A fundamental difficulty is that, sincewe areworking
in Eulerian coordinates, different solutions are defined in different domains. This
difficulty is reflected in the nonlinear character of our functional, which could
be thought of as measuring the distance between the boundaries of two different
solutions. The low regularity at which we aim to establish uniqueness leads to some
technical complications that are dealt with by a careful analysis of the problem.

1.7.4. Energy estimates and coercivity, Sect. 5 The energies that we use contain
two components, a wave component and a transport component, in accordance
with the wave-transport character of the system. The energy is constructed after
identifying Alinhac-type “good variables” that can be traced back to the structure
of the linearized problem. This connection with the linearized problem is also key
to establish the coercivity of the energy in that it relies on the transition operators
L1 and L2 mentioned above.

1.7.5. Existence of regular solutions, Sect. 6 This section establishes the exis-
tence of regular solutions. It heavily relies on the last two authors’ prior work [14],
to which the reader is referred for several technical points.

Our construction is based essentially on an Euler scheme to produce good
approximating solutions. Nevertheless, a direct implementation of Euler’s method
loses derivatives.Weovercome this by preceding each iterationwith a regularization
at an appropriate scale and a separate transport step. Themain difficulty is to control
the growth of the energies at each step.

1.7.6. Rough solutions as limits of regular solutions, Sect. 7 In this section we
construct rough solutions as limits of smooth solutions, in particular establishing
the existence part of Theorem 1.2. We construct a family of dyadic regularizations
of the data, and control the corresponding solutions in higher H2k norms with our
energy estimates, and the difference of solutions in H with our nonlinear stability
bounds. The latter allow us to establish the convergence of the smooth solutions to
the desired rough solution in weaker topologies. Convergence in H2k is obtained
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with more accurate control using frequency envelopes. A similar argument then
also gives continuous dependence on the data.

1.8. Notation for v, ω and the use of Latin indices

In view of Eq. (1.16) and the corresponding vorticity evolution (1.22), we have
now written the dynamics solely in terms of r and the spatial components of v,
i.e., vi . We henceforth consider v as a d-dimensional vector field, so that whenever
referring to v we always mean (v1, . . . , vd). v0 is always understood as a shorthand
for the RHS of (1.17). Similarly, by ω will stand for ωi j .

Recalling that indices are raised and lowered with the Minkowski metric and
that m0i = 0 = m0i , mi j = δi j , we see that tensors containing only Latin indices
have indices equivalently raised and lowered with the Euclidean metric.

2. Function spaces

Here we define the function spaces that will play a role in our analysis. They
are weighted spaces with weights given by the sound speed squared r which, in
view of (1.25), is comparable to the distance to the boundary. More precisely, since
a solution to (1.16) is not a-priori given, in the definitions below we take r to be a
fixed non-degenerate defining function for the domain 	t , i.e., proportional to the
distance to the boundary 
t . In turn, the boundary 
t is assumed to be Lipschitz.

We denote the L2-weighted spaces with weights h by L2(h) and we equip them
with the norm

‖ f ‖L2(h):=
∫

	t

h| f |2 dx .

With these notations the base L2 space of pairs of functions in 	 for our system,
denoted byH, is defined as

H = L2(r
1−κ
κ ) × L2(r

1
k ).

This space depends only on the choice of r . However, we will often use an equiv-
alent norm that also depends on v, which corresponds to the energy space for the
linearized problem and will also be important in the construction of our energies:

‖(s, w)‖2H =
∫

	t

r
1−κ
κ (s2 + a−1

2 rGi jwiw j ) dx . (2.1)

This uses G to measure the pointwise norm of the one form w. The H norm is
equivalent to the H0 norm (see the definition of H2k below) since G is equivalent
to the the Euclidean inner product with constants depending on the L∞ norm of
(r, v).

We continue with higher Sobolev norms. We define H j,σ , where j ≥ 0 is an
integer and σ > − 1

2 , to be the space of all distributions in 	t whose norm

‖ f ‖2H j,σ :=
∑
|α|≤ j

‖rσ ∂α f ‖2L2
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is finite. Using interpolation, we extend this definition, thus defining Hs,σ for all
real s ≥ 0.

To measure higher regularity we will also need higher Sobolev spaces where
the weights depend on the number of derivatives. More precisely, we define H2k

as the space of pairs of functions (s, w) defined inside 	t , and for which the norm
below is finite :

‖(s, w)‖2H2k :=
2k∑

|α|=0

k∑
a=0|α|−a≤k

‖r 1−κ
2κ +a∂αs‖2L2 +

2k∑
|α|=0

k∑
a=0|α|−a≤k

‖r 1−κ
2κ + 1

2+a∂αw‖2L2 .

We extend the definition of H2k to non-integer k using interpolation. An explicit
characterization ofH2k for non-integer k, based on interpolation, was given in the
last two authors’ prior work [14]. Using the embedding theorems given below, we

can show that theH2k norm is equivalent to the H2k, 1−κ
2κ +k × H2k, 1

2κ +k norm.

2.1. The state space H2k .

As already mentioned in the introduction, the state space H2k is defined for
k > k0 (i.e. above scaling) as the set of pairs of functions (r, v) defined in a domain
	t in Rd with boundary 
t with the following properties:

a) Boundary regularity: 
t is a Lipschitz surface.
b) Nondegeneracy: r is a Lipschitz function in 	̄t , positive inside	t and vanishing

simply on the boundary 
t .
c) Regularity: The functions (r, v) belong toH2k .

Since the domain	t itself depends on the function r , one cannot think ofH2k as
a linear space, but rather as an infinite dimensional manifold. However, describing a
manifold structure forH2k is beyond the purposes of our present paper, particularly
since the trajectories associated with our flow are merely expected to be continuous
with values in H2k . For this reason, here we will limit ourselves to defining a
topology on H2k .

Definition 2.1. A sequence (rn, vn) converges to (r, v) in H2k if the following
conditions are satisfied:

i) Uniform nondegeneracy, |∇rn| ≥ c > 0.
ii) Domain convergence, ‖rn − r‖Lip → 0. Here, we consider the functions rn

and and r as extended to zero outside their domains, giving rise to Liptschitz
functions in Rd .

iii) Norm convergence: for each ε > 0 there exist a smooth function (r̃ , ṽ) in a
neighbourhood of 	 so that

‖(r, v) − (r̃ , ṽ)‖H2k (	) ≤ ε, lim sup
n→∞

‖(rn, vn) − (r̃ , ṽ)‖H2k (	n)
≤ ε.
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The last condition in particular provides both a uniform bound for the sequence
(rn, vn) in H2k(	n) as well as an equicontinuity type property, insuring that a
nontrivial portion of theirH2k norms cannot concentrate on thinner layers near the
boundary. This is akin to the the conditions in the Kolmogorov-Riesz theorem for
compact sets in L p spaces.

This definition will enable us to achieve two key properties of our flow:

• Continuity of solutions (r, v) as functions of t with values in H2k .
• Continuous dependence of solutions (r, v) ∈ C(H2k) as functions of the initial

data (r̊ , v̊) ∈ H2k .

2.2. Regularization and good kernels

In what follows we outline the main steps developed in Section 2 of [14], and
in which, for a given state (r, v) in H2k , we construct regularized states, denoted
by (rh, vh), to our free boundary evolution, associated to a dyadic frequency scale
2h , h ≥ 0. This relies on having good regularization operators associated to each
dyadic frequency scale 2h , h ≥ 0. We denote these regularization operators by
�h , with kernels Kh . These are the same as in [14], and their exact definition can
be found in there as well. A brief description on how one should envision these
regularization operators is in order.

It is convenient to think of the domain 	t as partitioned in dyadic boundary
layers, denoting by 	[ j] the layer at distance 2−2 j away from the boundary. Within
each boundary layer we need to understand which is the correct spatial regular-
ization scale. The principal part of the second order elliptic differential operator
associated to our system is the starting point. Given a dyadic frequency scale h, our
regularizations will need to select frequencies ξ with the property that rξ2 � 22h ,
which would require kernels on the dual scale

δx ≈ r
1
2 2−h .

However, if we are too close to the boundary, i.e. r � 2−2h , then we run into
trouble with the uncertainty principle, as we would have δx � r . To remedy this
issue we select the spatial scale r � 2−2h and the associated frequency scale 22h as
cutoffs in this analysis. Then the way the regularization works is as follows: (i) for
j < h, the regularizations (rh, vh) in	[ j] are determined by (r, v) also in	[ j], and
(ii) for j = h, the values of (r, v) in 	[h] determine (rh, vh) in a full neighborhood
	̃[>h] of 
, of size 2−2h . The regularized state is obtained by restricting the full
regularization to the domain 	h :=

{
rh > 0

}
.

For completeness we state the result in [14], and refer the reader there for the
proof:

Proposition 2.2. Assume that k > k0. Then given a state (r, v) ∈ H2k , there exists
a family of regularizations (rh, vh) ∈ H2k , so that the following properties hold
for a slowly varying frequency envelope ch ∈ �2 which satisfies

‖ch‖�2 �A ‖(r, v)‖H2k . (2.2)
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i) Good approximation,

(rh, vh) → (r, v) in C1 × C
1
2 as h → ∞, (2.3)

and

‖rh − r‖L∞(	) � 2−2(k−k0+1)h . (2.4)

ii) Uniform bound,

‖(rh, vh)‖H2k �A ‖(r, v)‖H2k . (2.5)

iii) Higher regularity

‖(rh, vh)‖H2k+2 j
h

� 22h j ch, j > 0. (2.6)

iv) Low frequency difference bound:

‖(rh+1, vh+1) − (rh, vh)‖Hr̃
� 2−2hkch, (2.7)

for any defining function r̃ with the property |r̃ − r | � 2−2h .

2.3. Embedding and interpolation theorems

In this section we state some embedding and interpolation results that will be
used throughout.They have been proved in the last two authors’ prior paper [14],
to which the reader is referred to for the proofs.

Lemma 2.3. Assume that s1 > s2 ≥ 0 and σ1 > σ2 > − 1
2 with s1 − s2 = σ1 − σ2.

Then we have

Hs1,σ1 ⊂ Hs2,σ2 .

As a corollary of the above lemma we have embeddings into standard Sobolev
spaces.

Lemma 2.4. Assume that σ > 0 and σ ≤ j . Then we have

H j,σ ⊂ H j−σ .

In particular, by standard Sobolev embeddings, we also have Morrey type em-
beddings into Cs spaces:

Lemma 2.5. We have

H j,σ ⊂ Cs, 0 ≤ s ≤ j − σ − d

2
,

where the equality can hold only if s is not an integer.

Next, we state the interpolation bounds.
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Proposition 2.6. Let σ0, σm ∈ R and 1 ≤ p0, pm ≤ ∞. Define

θ j = j

m
,

1

p j
= 1 − θ j

p0
+ θ j

pm
, σ j = σ0(1 − θ j ) + σmθ j ,

and assume that

m − σm − d

(
1

pm
− 1

p0

)
> −σ0, σ j > − 1

p j
.

Then for 0 < j < m we have

‖rσ j ∂ j f ‖L p j � ‖rσ0 f ‖1−θ j
L p0 ‖rσm∂m f ‖θ j

L pm .

Remark 2.7. One particular case of the above proposition which will be used later
is when p0 = p1 = p2 = 2, with the corresponding relation in between the
exponents of the rσ j weights.

As the objective here is to interpolate between the L2 type Hm,σ norm and L∞
bounds, wewill need the following straightforward consequence of Proposition 2.6:

Proposition 2.8. Let σm > − 1
2 and

m − σm − d

2
> 0.

Define

θ j = j

m
,

1

p j
= θ j

2
, σ j = σmθ j .

Then for 0 < j < m we have

‖rσ j ∂ j f ‖L p j � ‖ f ‖1−θ j
L∞ ‖rσm∂m f ‖θ j

L2 .

We will also need the following two variations of Proposition 2.8:

Proposition 2.9. Let σm > − 1
2 and

m − 1

2
− σm − d

2
> 0.

Define

σ j = σmθ j , θ j = 2 j − 1

2m − 1
,

1

p j
= θ j

2
.

Then for 0 < j < m we have

‖rσ j ∂ j f ‖L p j � ‖ f ‖1−θ j

Ċ
1
2

‖rσm∂m f ‖θ j

L2 .
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Proposition 2.10. Let σm > m−2
2 and

m − 1

2
− σm − d

2
> 0.

Define

σ j = σmθ j − 1

2
(1 − θ j ), θ j = j

m
,

1

p j
= θ j

2
.

Then for 0 < j < m we have

‖rσ j ∂ j f ‖L p j � ‖ f ‖1−θ j

C̃
1
2

‖rσm∂m f ‖θ j

L2 .

3. The linearized equation

Consider a one-parameter family of solutions (rτ , vτ ) for themain system (1.16)
such that (rτ , vτ )|τ=0 = (r, v), Then formally the functions d

dτ
(rτ , vτ )

∣∣
τ=0 =

(s, w), defined in the moving domain 	t , will solve the corresponding linearized
equation. Precisely, a direct computation shows that, for (s, w) in	t , the linearized
equation can be written in the form

where f and gi represent perturbative terms of the form

f = V1s + rW1w, g = V2s + W2w

with potentials V1,2 and W1,2 which are linear in ∂(r, v), with coefficients which
are smooth functions of r and v.

Importantly, we remark that for the above system we do not obtain or require
any boundary conditions on the free boundary 
t . This is related to the fact that our
one parameter family of solutions are not required to have the same domain, as it
would be the case if one were working in Lagrangian coordinates.

For completeness, we also provide the explicit expressions for the potentials
V1,2 and W1,2, though this will not play any role in the sequel. We have

V1 = v j

(v0)3
〈r〉1+ 2

κ ∂ j r − Gi j∂iv j − r
∂Gi j

∂r
∂iv j ,

Wl
2 = −∂Gi j

∂vl
∂iv j − ra3G

il∂i r,

V2,i = − v j

(v0)3
〈r〉1+ 2

κ ∂ jvi + ∂a2
∂r

∂i r,

(W2)
l
i = − a0

κ〈r〉G
jl∂ jvi + ∂a2

∂vl
∂i r,
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where a3 is a smooth function of (r, v), given by

a0
κ〈r〉 − 1

κ
= ra3, a3 = − 1

〈r〉
(
1

2
+ |v|2

(v0)2

)
. (3.2)

As for the other coefficients, the particular form of a3 is not relevant, but we wrote
it here for completeness.

3.1. Energy estimates and well-posedness

We now consider the well-posedness of the linearized problem (3.1) in the time
dependent space H. For the purpose of this analysis, we will view H as a Hilbert
space whose squared norm plays the role of the energy functional for the linearized
equation,

Elin(s, w):=‖(s, w)‖2H =
∫

	t

r
1−κ
κ (s2 + a−1

2 rGi jwiw j ) dx . (3.3)

We will use this space for both the linearized equation and its adjoint. Our main
result here is as follows:

Proposition 3.1. Let (r, v) be a solution to (1.16). Assume that both r and v are
Lipschitz continuous and that r vanishes simply on the free boundary. Then, the
linearized Eq. (3.1) are well-posed in H, and the following estimate holds for
solutions (s, w) to (3.1): ∣∣∣∣ ddt ‖(s, w)‖2H

∣∣∣∣ � B‖(s, w)‖2H. (3.4)

Proof. We first remark that ( f, g) are indeed perturbative terms, as they satisfy the
estimate

‖( f, g)‖H � B‖(s, w)‖H. (3.5)

This in turn follows from a trivial pointwise bound on the corresponding potentials,

‖V1,2‖L∞ + ‖W1,2‖L∞ � B.

We multiply (3.1a) by r
1−κ
κ s and contract (3.1b) with a−1

2 r
1
κ Gi jw j to find

1

2
r

1−κ
κ Dts

2 + 1

κ
r

1−κ
κ Gi j∂i rw j s + r

1
κ Gi j∂iw j s + 1

2
r

1
κ a1v

i∂i s
2 = f r

1−κ
κ s,

1

2
a−1
2 r

1
κ Gi j Dt (wiw j ) + r

1
κ Gi jw j∂i s = a−1

2 r
1
κ Gi j giw j .

Next, we add the two equations above, noting that the second and third terms on the
LHS of the first equation combine with the second term on the LHS of the second
equation to produce
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1

κ
r

1−κ
κ Gi j∂i rw j s + r

1
κ Gi j∂iw j s + r

1
κ Gi jw j∂i s

= ∂i (r
1
κ )Gi jw j s + r

1
κ Gi j∂iw j s + r

1
κ Gi jw j∂i s

= Gi j∂i (r
1
κ w j s)

This yields

1

2
r

1−κ
κ Dts

2 + 1

2
a−1
2 r

1
κ Gi j Dt (wiw j ) + 1

2
r

1
κ a1v

i∂i s
2 + Gi j∂i (r

1
κ w j s)

= f r
1−κ
κ s + a−1

2 r
1
κ Gi j giw j .

We now integrate the above identity over 	t , using the formula (1.8) to produce
a time derivative of the energy. For this, we need to write the terms on the left as
perfect derivatives ormaterial derivatives.Whenwe do so the zero order coefficients
do not cause any harm.We only need to be careful with the terms where a derivative

falls on r
1−κ
κ because this could potentially produce a term with the wrong weight

(i.e., one less power of r ). However, this does not occur because we can solve for
Dtr in (1.16a):

Dtr
1−κ
κ = 1 − κ

κ
r

1
κ
−2Dtr = r

1−κ
κ O(∂(r, v)).

Using the above observations, we obtain∣∣∣∣ ddt ‖(s, w)‖2H
∣∣∣∣ � B‖(s, w)‖2H + ‖(s, w)‖H‖( f, g)‖H � B‖(s, w)‖2H.

Wenow compute the adjoint equation to (3.1) with respect to the duality relation
defined by theH inner product determined by the norm (3.3). The terms f and g on
the RHS of (3.1) are linear expressions in s and rw and and in s andw, respectively,
with ∂(r, v) coefficients. Thus, the source terms in the adjoint equation have the
same structure as the original equation. Let us write the LHS of (3.1) as

Dt

(
s
w

)
+ Ai∂i

(
s
w

)
+ B

(
s
w

)
,

where

Ai =
[
a1rvi rGi j

a2δil 03×3

]

and

B =
[
01×1

1
κ
Gi j∂i r

03×1 03×3

]
.

With respect to the H inner product, the adjoint term corresponding to Ai∂i is

Ãi∂i = −
[
a1rvi rGi j

a2δil 03×3

]
∂i −

[
0 1

κ
Gi j∂i r

1
κ
r−1a2∂lr 03×3

]



152 Marcelo M. Disconzi, Mihaela Ifrim & Daniel Tataru

modulo terms that are linear expressions in s̃ and rw̃ and in s̃ and w̃ (with ∂(r, v)

coefficients) in the first and second components, respectively, where s̃ and w̃ are
elements of the dual. Similarly, the adjoint term corresponding to B is

B̃ =
[

01×1 01×3
1
κ
r−1a2∂lr 03×3

]
.

Combining these expressions, we see that the bad term on the lower left corner of
the second matrix in Ãi∂i cancels with the corresponding terms in B̃. Therefore,
the adjoint problem is the same as the original one, modulo perturbative terms, and
it therefore admits an energy estimate similar to the energy estimate (3.4) we have
for the linearized Eq. (3.1).

In a standard fashion, the forward energy estimate for the linearized equa-
tion and the backward in time energy estimate for the adjoint linearized equation
yield uniqueness, respectively existence of solutions for the linearized equation, as
needed. This guarantees the well-posedness of the linearized problem.

3.2. Second order transition operators

An alternative approach the linearized equations is to rewrite the linearized
Eq. (3.1) as a second order system which captures the wave-like part of the fluid
associated with the propagation of sound. Applying Dt to (3.1a) and using (3.1b)
and vice-versa, and ignoring perturbative terms, we find

D2
t s ≈ L̂1s,

D2
t wi ≈ (L̂2w)i ,

(3.6a)

(3.6b)

where
L̂1s:=r∂i

(
a2G

i j∂ j s
)

+ a2
κ
Gi j∂i r∂ j s,

(L̂2w)i :=a2

(
∂i (rG

ml∂mwl) + 1

κ
Gml∂mr∂iwl

)
.

(3.7a)

(3.7b)

Equations (3.6a) and (3.6b) are akin to wave equations in that the operators L̂1 and
L̂2 satisfy elliptic estimates as proved in Section 5.2. More precisely, the operator
L̂2 is associated with the divergence part of w, and it satisfies elliptic estimates
once it is combined with a matching curl operator L̂3.

Even though in this paper we do not use the operators L̂1 and L̂2 directly in
connection to the correspondingwave equation, they nevertheless play an important
role at two points in our proof. Because slightly different properties of L̂1 and L̂2
are needed at these two points, we will take advantage of the fact that only their
principal part is uniquely determined in order to make slightly different choices for
L̂1 and L̂2. Precisely, these operators will be needed as follows:

I. In the proof of our energy estimates in Section 5.2, in order to establish the
coercivity of our energy functionals. There we will need the coercivity of L̂1
and L̂2 + L̂3, but we also want their coefficients to involve only r,∇r and
undifferentiated v.
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II. In the constructive proof of existence of regular solutions, in our paradifferential
style regularization procedure. There we use functional calculus for both L̂1
and L̂2 + L̂3, so we need them to be both coercive and self-adjoint, but we no
longer need to impose the previous restrictions on the coefficients.

The two sets of requirements are not exactly compatible, which is why two
choices are needed.10

We begin with the case (I), where we modify L̂1 and L̂2 as follows:

L̃1s:=Gi ja2

(
r∂i∂ j s + 1

κ
∂i r∂ j s

)
,

(L̃2w)i :=a2G
ml

(
∂i (r∂mwl) + 1

κ
∂mr∂iwl

)
.

(3.8a)

(3.8b)

To L̃2 we associate an operator L̃3 of the form

(L̃3w)i :=r− 1
κ a2G

i j∂ l [r1+ 1
κ (∂lw j − ∂ jwl)]. (3.9)

For case (II), we keep the first of the operators, setting L1 = L̂1 but make some
lower order changes to L̂2 and L̂3 as follows:

(L2w)i :=∂i

(
a22(r∂m + 1

κ
∂mr)(a

−1
2 Gmlwl)

)
. (3.10)

(L3w)i :=r− 1
κ a2Fi j∂l [GlmG jpr1+

1
κ (∂mwp − ∂pwm)], (3.11)

where F is the inverse of the matrix G, i.e., F = G−1.

It is not difficult to show that L1 is a self-adjoint operator in L2(r
1−κ
κ ) with

respect to the inner product defined by the first component of theH norm in (2.1),
and

D(L1) =
{
f ∈ L2(r

1−κ
κ ) | L1 f ∈ L2(r

1−κ
κ ) in the sense of distributions

}
.

Similarly, both L2 and L3 are self-adjoint operators in L2(r
1
κ ) with respect to

the inner product defined by the second component of theH norm in (2.1) and

D(L2) =
{
f ∈ L2(r

1
κ ) | L2 f ∈ L2(r

1
κ ) in the sense of distributions

}
.

and similarly for L3. We further note that L2L3 = L3L2 = 0 and that the output
of L2 is a gradient, whereas L3w depends only on the curl of w.

10 Heuristically, both would be fulfilled by an appropriate Weyl type paradifferential quan-
tization, but that would be very cumbersome to use in the presence of the free boundary.
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As seen above, it is the operator L̂2 that naturally come out of the equations
of motion rather than L2 (recall that L1 = L̂1). Thus, we need to compare these
operators; we also compare L1 and L̃1 for later reference. We have⎧⎨

⎩
(L2w)i = (L̂2w)i + ∂i a2r∂m(Gmlwl) + ∂i (ra

3
2∂ma

−1
2 Gmlwl) + a2

κ
∂i (G

ml∂mr)wl

L1s = L̃1s + r∂i (a2G
i j )∂ j s.

(3.12)

We will establish coercive estimates for L1, L2, and L3 (see Sects. 5 and 6),
from which follows that the above domains can be characterized as

D(L1) = H2, 1+κ
2κ , D(L2 + L3) = H2, 1+3κ

2κ .

4. The uniqueness theorem

In this Section we establish Theorem 1.1. It will be a direct consequence of the
more general Theorem 4.2 below, which establishes that a suitable functional that
measures the difference between two solutions is propagated by the flow.

Weconsider two solutions (r1, v1) and (r2, v2)defined in the respective domains
	1

t and 	2
t . Put 	t :=	1

t ∩ 	2
t , 
t :=∂	t . If the boundaries of the domains 	1

t and
	2

t are sufficiently close, which will be the case of interest here, then 	t will have
a Lipschitz boundary. Let D1

t and D2
t be the material derivatives associated with

the domains 	1
t and 	2

t , respectively. In 	t define the averaged material derivative

Dt :=D1
t + D2

t

2

and the averaged G,

Gi j
mid :=Gi j

(
r1 + r2

2
,
v1 + v2

2

)
.

We note that the above averaged material derivative is not exactly advecting the
domain 	t . Fortunately exact advection is not at all needed for what follows. See
also Remark 4.3 below.

To measure the difference between two solutions on the common domain 	t ,
we introduce the following distance functional:

DH((r1, v1), (r2, v2)):=
∫

	t

(r1 + r2)
1−κ
κ ((r1 − r2)

2 + (r1 + r2)|v1 − v2|2) dx

(4.1)

which is the same as in [14]. We could have used G to measure |v1 − v2|, but the
Euclidean metric suffices. This is not only because both metrics are comparable
but also because we will not use (4.1) directly in conjunction with the equations.
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We will, however, use G further below when we introduce another functional for
which the structure of the equations will be relevant.

We observe the following Lemma, which has been proved in [14]:

Lemma 4.1. Assume that r1 and r2 are uniformly Lipschitz and nondegenerate,
and close in the Lipschitz topology. Then we have∫


t

|r1 + r2| 1κ +2dσ � DH((r1, v1), (r2, v2)). (4.2)

One can view the integral in (4.2) as a measure of the distance between the two
boundaries, with the same scaling as DH.

We now state our main estimate for differences of solutions:

Theorem 4.2. Let (r1, v1) and (r2, v2) be two solutions for the system (1.16) in

[0, T ], with regularity∇r j ∈ C̃
1
2 , v j ∈ C1, so that r j are uniformly nondegenerate

near the boundary and close in the Lipschitz topology, j = 1, 2. Then we have the
uniform difference bound

sup
t∈[0,T ]

DH((r1, v1)(t), (r2, v2)(t)) � DH((r1, v1)(0), (r2, v2)(0)). (4.3)

We remark that

DH((r1, v1), (r2, v2)) = 0 iff (r1, v1) = (r2, v2),

which implies our uniqueness result.
The remaining of this Section is dedicated to proving Theorem 4.2.

4.1. A degenerate energy functional

Wewill not work directly with the functional DH because it is non-degenerate,
so we cannot take full advantage of integration by parts when we compute its time
derivative. We thus consider the modified difference functional

D̃H((r1, v1), (r2, v2)) :=
∫

	t

(r1 + r2)
1−κ
κ

(
a(r1 − r2)

2

+b(a21 + a22)
−1Gi j

mid(v1 − v2)i (v1 − v2) j
)
dx,

(4.4)

where a21 and a22 are the coefficient a2 corresponding to the solutions (r1, v1) and
(r2, v2), respectively, and a and b are functions of μ:=r1 + r2 and ν = r1 − r2 with
the following properties

(1) They are smooth, nonnegative functions in the region {0 ≤ |ν| < μ}, even in
ν, and homogeneous of degree 0, respectively 1.

(2) They are connected by the relation μa = b.
(3) They are supported in {|ν| < 1

2μ}, with a = 1 in {|ν| < 1
4μ}.
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Remark 4.3. The choice of the weights a and b above guarantees that the integrand
in (4.4) above vanishes polynomially on the boundary of the common domain 	t .
This is why we refer to this difference functional as degenerate, and is also the
reason why we are able to use the averaged material derivative Dt to propagate
bounds for D̃H in time even though it does not exactly advect 	t .

From [14] we also borrow the equivalence property of the two distance func-
tionals defined above:

Lemma 4.4. Assume that A = A1 + A2 is small. Then

DH((r1, v1), (r2, v2)) ≈A D̃H((r1, v1), (r2, v2)). (4.5)

4.2. The energy estimate

To prove the Theorem4.2 it remains to track the time evolution of the degenerate
distance functional D̃H. This is the content of the next result, which immediately
implies Theorem 4.2 after an application of Gronwall’s inequality.

Proposition 4.5. We have

d

dt
D̃H((r1, v1), (r2, v2)) � (B1 + B2)DH((r1, v1), (r2, v2)). (4.6)

Proof. The difference of the two solutions to (1.16) in the common domain 	t

satisfies

2Dt (r1 − r2) = − (D1
t − D2

t )(r1 + r2) − (r1(G1)
i j + r2(G2)

i j )∂i ((v1) j − (v2) j )

− (r1(G1)
i j − r2(G2)

i j )∂i ((v1) j + (v2) j )

− (r1a11v
i
1 + r2a12v

i
2)∂i (r1 − r2)

− (r1a11v
i
1 − r2a12v

i
2)∂i (r1 + r2),

(4.7)

and

2Dt ((v1)i − (v2)i ) = − (D1
t − D2

t )((v1)i + (v2)i ) − (a2,1 + a2,2)∂i (r1 − r2)

− (a21 − a22)∂i (r1 + r2).

(4.8)

Above, Gi and a1i correspond to G and a1 for the solutions (ri , vi ), i = 1, 2. We
observe that the difference of material derivatives can be written as

(D1
t − D2

t ) = (ṽ1 − ṽ2) · ∇, ṽi = vi

v0
.



The relativistic Euler equations with a physical vacuum boundary 157

To compute the time derivative of the degenerate distance we use the standard
formula for differentiation in a moving domain 	t ,

d

dt

∫
	t

f (t, x) dx =
∫

	t

Dt f + f ∇ · v(t) dx, (4.9)

where v is in our case the average velocity. Classically this holds under the as-
sumption that the domain 	t is advected by Dt . But in our case we replace this
assumption with the alternative condition that f vanishes on the boundary of 	t .
Using this formula we obtain

d

dt
D̃H(t) = I1 + I2 + I3 + I4 + I5 + I6 + O(B1 + B2)DH(t),

where the integrals Ii , i = 1, 6, represent contributions as follows:
(a) I1 represents the contribution where the averaged material derivative falls

on a or b,

I1 =
∫

	t

(r1 + r2)
1−κ
κ [aμ(r1 − r2)

2 + bμ(a21 + a22)
−1Gi j

mid(v1 − v2)
2 ]Dt (r1 + r2) dx

+
∫

	t

(r1 + r2)
1−κ
κ [aν(r1 − r2)

2 + bν(a21 + a22)
−1Gi j

mid(v1 − v2)
2 ]Dt (r1 − r2) dx .

Here the derivatives of a and b are homogeneous of order −1, respectively 0. We
get Gronwall terms when they get coupled with factors of r1 + r2 or r1 − r2 from
the material derivatives. We discuss I1 later.

(b) I2 gathers the contributions where the averaged material derivative is ap-
plied to (a21 + a22)−1 and to Gi j

mid . These expressions are smooth functions of
(r1, v1), (r2, v2), and thus their derivatives are bounded by B1 + B2,

I2 = O(B1 + B2)DH(t).

(c) I3 represents the main contribution of the averaged material derivative that
falls onto (r1 − r2) respectively on v1 − v2 which consists of the first and second
terms on the RHS in (4.7), and the second term in (4.8):

I3 = −
∫

	t

(r1 + r2)
1−κ
κ a(r1 − r2)

[
(ṽi1 − ṽi2)∂i (r1 + r2)

+ (r1(G1)
i j + r2(G2)

i j )∂i ((v1) j − (v2) j )
]
dx

−
∫

	t

(r1 + r2)
1−κ
κ bGi j

mid((v1) j − (v2) j )∂i (r1 − r2) dx .

This term will need further discussion.
(d) In I4 we place the contribution of the forth term on the RHS of (4.7):

I4 = −
∫

	t

(r1 + r2)
1−κ
κ a(r1 − r2)(r1a11v

i
1 + r2a12v

i
2)∂i (r1 − r2) dx .

This term will be discussed later.
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(e) I5 is given by the third and fifth terms on the RHS in (4.7) and the third term
on the RHS from (4.8)

I5 =
∫

	t

(r1 + r2)
1−κ
κ a(r1 − r2)(r1(G1)

i j − r2(G2)
i j )∂i ((v1) j + (v2) j ) dx

−
∫

	t

(r1 + r2)
1−κ
κ a(r1 − r2)(r1a11v

i
1 − r2a12v

i
2)∂i (r1 + r2) dx

−
∫

	t

(r1 + r2)
1−κ
κ b(a21 + a22)

−1Gi j
mid((v1) j − (v2) j )(a21 − a22)∂i (r1 + r2) dx .

All of the terms in I5 are straightforward Gronwall terms.

(f) I6 contains the terms where Dt falls on (r1 + r2)
1−κ
κ :

I6 = 1 − κ

κ

∫
	t

(r1 + r2)
1
κ
−2

(
a(r1 − r2)

2+b(a21+a22)
−1

×Gi j
mid(v1 − v2)i (v1 − v2) j

)
Dt (r1 + r2) dx .

We will analyze I6 later.
It remains to take a closer look at the integrals I1, I3, I4, and I6. We consider

them in succession.
The bound for I1. Here we write

2Dt (r1 + r2) = 2D1
t r1 + D2

t r2 − (ṽ1 − ṽ2) · ∇(r1 − r2),

and

2Dt (r1 − r2) = 2D1
t r1 − D2

t r2 − (ṽ1 − ṽ2) · ∇(r1 + r2).

The first two terms have size O(B(r1+r2)) so their contribution is a Gronwall term.
We are left with the contribution of the last terms, which yields the expressions

I a1 =
∫

	t

(r1 + r2)
1−κ
κ aμ(r1 − r2)

2(ṽ1 − ṽ2) · ∇(r1 − r2) dx

+
∫

	t

(r1 + r2)
1−κ
κ bμ(a21 + a22)

−1Gi j
mid((v1)i − (v2)i )((v1) j

− (v2) j )(ṽ1 − ṽ2)·∇(r1 − r2) dx,

I b1 =
∫

	t

(r1 + r2)
1−κ
κ aν(r1 − r2)

2(ṽ1 − ṽ2)·∇(r1 + r2) dx

+
∫

	t

(r1 + r2)
1−κ
κ bν(a21 + a22)

−1Gi j
mid((v1)i − (v2)i )((v1) j

− (v2) j )(ṽ1 − ṽ2)·∇(r1 + r2) dx .

For the second integral in both expressions,we bound |ṽ1−ṽ2| � |r1−r2|+|v1−v2|
and estimate their part by∫

	t

(r1 + r2)
1−κ
κ |r1 − r2||v1 − v2|2 dx � DH(t)
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and

J2 =
∫

	t

(r1 + r2)
1−κ
κ |v1 − v2|3 dx,

which is discussed later.
We are left with the first integrals in I a1 and I b1 , which we record as

Ja1 =
∫

	t

(r1 + r2)
1−κ
κ aμ(r1 − r2)

2(ṽ1 − ṽ2) · ∇(r1 − r2) dx

and

Jb1 =
∫

	t

(r1 + r2)
1−κ
κ aν(r1 − r2)

2(ṽ1 − ṽ2) · ∇(r1 + r2) dx .

These integrals are also discussed later.
The bound for I3. For I3, we seek to capture the same cancellation that it is

seen in the analysis of the linearized equation. We look at the last term in I3, use
b = a(r1 + r2), and integrate by parts; if the derivatives falls on G then this is a
straightforward Gronwall term. We are left with three contributions, two of which
we pair with the first two terms in I3. We obtain

I3 = −
∫

	t

(r1 + r2)
1−κ
κ a(r1 − r2)

[
(ṽi1 − ṽi2) − 1

κ
Gi j

mid ((v1) j − (v2) j )

]
∂i (r1 + r2) dx

−
∫

	t

(r1 + r2)
1−κ
κ a(r1 − r2)

[
(r1(G1)

i j + r2(G2)
i j ) − (r1 + r2)G

i j
mid

]
∂i ((v1) j − (v2) j ) dx

+
∫

	t

(r1 + r2)
1
κ ∂i aG

i j
mid ((v1) j − (v2) j )(r1 − r2) dx + O(B1 + B2)DH

= I 13 + I 23 + J c1 + O(B1 + B2)DH.

For the first integral, I 13 we expand the difference ṽi1 − ṽi2, seen as a function
of v1 and v2, in a Taylor series around the center (v1 + v2)/2. We have

∂ṽi

∂v j
= 1

v0

(
δi j − viv j

(v0)2

)
,

where we recognize the matrix on the right as being the main part in G. Thus, we
can write∣∣∣∣(ṽi1 − ṽi2) − 1

κ
Gi j

mid((v1) j − (v2) j )

∣∣∣∣ � |r1 − r2| + (r1 + r2)|v1 − v2| + |v1 − v2|3,

where the quadratic v1 − v2 terms cancel because we are expanding around the
middle, and we used (3.2) to get the second term on the right. The contributions of
all of the terms in the last expansion are Gronwall terms.

For the second integral I 23 we have a simpler expansion∣∣∣(r1(G1)
i j + r2(G2)

i j ) − (r1 + r2)G
i j
mid

∣∣∣ � |r1 − r2| + (r1 + r2)|(v1) j − (v2) j |2,

where all contributions qualify again as Gronwall terms.
Finally, the last integral, J c1 , is estimated below.
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The bound for I4. After an integration by parts we have

I4 = 1

2

∫
	t

(r1 + r2)
1−κ
κ ∂i a (r1a11v

i
1 + r2a12v

i
2)(r1 − r2)

2 dx

+ 1 − κ

2κ

∫
	t

(r1 + r2)
1
κ
−2∂i (r1 + r2)a(r1a11v

i
1 + r2a12v

i
2)(r1 − r2)

2 dx

+ O(B1 + B2)DH.

Writing
|r1a11vi1 + r2a12v

i
2| � r1 + r2,

both integrals are bounded by O(B1 + B2)DH.
The bound for I6. We use Dt (r1 + r2) = D1

t r1 + D2
t r2 − (ṽ1 − ṽ2) · ∇(r1 − r2)

where the first two terms are bounded by (B1 + B2)(r1 + r2) and yield Gronwall
contributions. Then we write

I6 � Jd1 + J2 + O(B1 + B2)DH,

where

Jd1 = 1 − κ

κ

∫
	t

(r1 + r2)
1
κ
−2a(r1 − r2)

2(ṽ1 − ṽ2) · ∇(r1 − r2) dx .

To summarize the outcome of our analysis so far, we have proved that

d

dt
D̃H(t) ≤ Ja1 + Jb1 + J c1 + Jd1 + O(J2) + O(B1 + B2)DH.

It remains to estimate J2, Ja1 , J
b
1 , J

c
1 , and Jd1 , which we write here again for

convenience:

J2 =
∫

	t

(r1 + r2)
1−κ
κ |v1 − v2|3 dx,

Ja1 =
∫

	t

(r1 + r2)
1−κ
κ aμ(r1 − r2)

2(ṽ1 − ṽ2) · ∇(r1 − r2) dx,

Jb1 =
∫

	t

(r1 + r2)
1−κ
κ aν(r1 − r2)

2(ṽ1 − ṽ2) · ∇(r1 + r2) dx,

J c1 =
∫

	t

(r1 + r2)
1
κ ∂i aG

i j
mid((v1) j − (v2) j )(r1 − r2) dx,

Jd1 = 1 − κ

κ

∫
	t

(r1 + r2)
1
κ
−2a(r1 − r2)

2(ṽ1 − ṽ2) · ∇(r1 − r2) dx .

The integral J2 is the same as in [14] and can be estimated accordingly, using
interpolation inequalities; see Lemma 4.4 in [14].

The bound for the integrals Ja1 , J
b
1 , J

c
1 and Jd1 matches estimates for similar

integrals in [14]. Precisely, the integrals Ja1 and Jb2 are estimated as the integrals
called Jb1 and J c1 in [14], respectively, see Lemmas 4.6–4.13 in [14]. The integral
J c1 is estimated as the integral Jd1 in [14], see Lemmas 4.6–4.13 in [14]. The integral
Jd1 is estimated as the integral Ja1 in [14], see Lemmas 4.6–4.13 in [14].
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We caution the reader that the arguments in [14] are not straightforward, and
involve peeling off a carefully chosen boundary layer, with separate estimates inside
the boundary layer and outside it. The only difference in the present paper is the
presence of additional weights in the integrals, which are smooth functions of
r1, r2, v1, v2. For instance, the difference ṽ1 − ṽ2 can be expanded as

ṽ1 − ṽ2 = f (r, v)(r1 − r2) + g(r, v)(v1 − v2),

where r, v stand for r1, r2, v1, v2 and f, g are smooth. The contribution of the first
term admits a straightforward Gronwall bound, and the contribution of the second
term is akin to the corresponding integral in [14] but with the added smooth weight.
The point is that every time we integrate by parts and the derivative falls on the
smooth weight, the corresponding contribution is a straightforward Gronwall term.
Hence such smooth weights make no difference if added in the arguments in [14].

��

5. Energy estimates for solutions

Our goal in this section is to establish uniform control over the H2k norm of
the solutions (r, v) to (1.16) with growth given by the norms A and B. For this, we
will use appropriate energy functionals E2k = E2k(r, v) constructed out of vector
fields naturally associated with the evolution. Our functionals will be associated
with thewave and transport parts of the system,whichwill be considered atmatched
regularity.

The vector fields we will consider are:

• The material derivative Dt , which has order 1/2.
• All regular derivatives ∂ , which have order 1.
• Multiplication by r , which has order −1.

Thewave part of the energywill be associatedmainlywith Dt , whereas the transport
part will be associated with all of the above vector fields.

5.1. Good variables and the energy functional

Heuristically, higher order energy functionals should be obtained by applying
an appropriate number of vector fields to the equation, and then verifying that the
output solves the linearized equation modulo perturbative terms. In the absence of
the free boundary, there are two equally good choices, (i) to spatially differentiate
the equation, using the ∂ j vector fields, or (ii) to differentiate the equation in time,
using the ∂t vector field.

However, in the free boundary setting, both of the above choices have issues, as
neither ∂ j nor ∂t are adapted to the boundary. For ∂t we do have a seemingly better
choice, namely to replace it by the material derivative Dt . However, this has the
downside that it does not arise from a symmetry of the equations, and consequently
the expressions (D2k

t r, D2k
t v) are not good approximate solutions to the linearized

equations. To address this matter, we add suitable corrections to these expressions,
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obtaining what we call the good variables (s2k, w2k). Precisely, motivated by the
linearized equations (3.1), we introduce

s0:=r,

w0:=v,

s1:=∂t r,

w1:=∂tv,

s2:=D2
t r + 1

2

a0a2
κ〈r〉G

i j∂i r∂ j r,

(wk)i :=Dk
t vi , k ≥ 2,

sk :=Dk
t r − a0

κ〈r〉G
i j∂i r D

k−1
t v j , k ≥ 3.

(5.1)

Here, we use the full Eq. (1.16) to interpret (s j , w j ) as multilinear expressions in
(r, v), with coefficientswhich are functions of undifferentiated (r, v). Observe that it

wouldbe compatiblewith the linearized equations to define sk with
1

κ
Gi j∂i r D

k−1
t v j

instead of
a0

κ〈r〉G
i j∂i r D

k−1
t v j . The difference between the two cases, however, is a

perturbative term due to (3.2), and the definition we adopt here is more convenient

because
a0

κ〈r〉 is what appears in the commutator [Dt , ∂].
Using equations (1.16), we find that for k ≥ 1, our good variables (s2k, w2k)

can be seen as approximate solutions to the linearized equation (3.1). Precisely,
they satisfy the following equations in 	 (compare with (3.1)):

with source terms ( f2k, g2k) which will be shown to be perturbative, see
Lemma5.7. For later usewecompute the expressions for the source terms ( f2k , g2k),
which are given by

f2k = [rGi j∂i , D
2k
t ]v j + [ra1vi∂i , D2k

t ]r − r
a0a1
κ〈r〉G

pq∂qrv
i∂i D

2k−1
t vp

(5.3a)

−Dt

(
a0

κ〈r〉G
i j∂i r

)
D2k−1
t v j − ra1v

i∂i

(
a0

κ〈r〉G
pq∂pr

)
D2k−1
t vq

−ra3G
i j∂i r(w2k) j ,

(g2k)i = D2k−1
t [a2∂i , Dt ]r + [a2∂i , D2k−1

t ]Dtr − a0a2
κ〈r〉G

jl∂ j r∂i D
2k−1
t vl

−a2∂i

(
a0

κ〈r〉G
ml∂mr

)
D2k−1
t vl , (5.3b)

where we used that
[A, BC] = [A, B]C + B[A,C].

to write
[a2∂i , D2k

t ] = [a2∂i , D2k−1
t ]Dt + D2k−1

t [a2∂i , Dt ].
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We also define

ω2k = ra∂bω, |b| ≤ 2k − 1, |b| − a = k − 1, (5.4)

which we think of as the vorticity counterpart to (s2k, w2k). These we will think of
as solving approximate transport equations; using (1.22) we find

Dt (ω2k)i j + 1

v0
(∂iv

l(ω2k)l j + ∂ jv
l(ω2k)il) − vl

(v0)2
(∂iv

0v(ω2k)l j − ∂ jv
0(ω2k)li )

= (h2k)i j ,

(5.5)
where h2k is given by

(h2k)i j =
[
Dt , r

a∂b
]
ωi j +

[
1

v0
∂iv

l , ra∂b
]

ωl j +
[
1

v0
∂ jv

l , ra∂b
]

ωil

−
[

1

(v0)2
∂iv

0vl , ra∂b
]

ωl j +
[

1

(v0)2
∂ jv

0vl , ra∂b
]

ωli . (5.6)

We introduce the wave energy

E2k
wave(r, v):=

k∑
j=0

‖(s2 j , w2 j )‖2H,

the transport energy

E2k
transport(r, v):=‖ω‖2

H2k−1,k+ 1
2κ

,

and the total energy

E2k(r, v):=E2k
wave(r, v) + E2k

transport(r, v). (5.7)

5.2. Energy coercivity

Our goal in this section is to show that the energy (5.7) measures the H2k size
of (r, v). To do so, we would like to consider the energy as a functional of (r, v)

defined at a fixed time. This can be done by using Eq. (1.16) to algebraically solve
for spatial derivatives of (r, v).

Theorem 5.1. Let (r, v) be smooth functions in 	. Assume that r is positive in 	

and uniformly non-degenerate on the 
. Then

E2k ≈A ‖(r, v)‖2H2k .
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Proof. We begin with the � part. We consider the wave part of the energy and the
corresponding expressions for (s2k, w2k). Using use Eq. (1.16a) and (1.16b) to suc-
cessively solve for Dt (r, v), we obtain that each (s2k, w2k) is a linear combination
of multilinear expressions in r and ∂v (with order zero coefficients).

We will use our bookkeeping scheme of Section 1.3 to understand the ex-
pressions for (s2k, w2k). It is useful to record here the order and structure of the
linear-in-derivatives top order terms obtained by using the equations to inductively
compute D2k

t (r, v) and D2k−1
t (r, v), which involve 2k and 2k − 1 derivatives, re-

spectively:

D2k
t r ≈ rk∂2kr + rk+1∂2kv ≈ rk∂2kr,

(k − 1) ≈ (k − 1) + (k − 3

2
) ≈ (k − 1),

D2k
t v ≈ rk∂2kv + rk∂2kr ≈ rk∂2kv,

(k − 1

2
) ≈ (k − 1

2
) + (k − 1) ≈ (k − 1

2
),

D2k−1
t r ≈ rk∂2k−1r + rk∂2k−1v ≈ rk∂2k−1v,

(k − 3

2
) ≈ (k − 2) + (k − 3

2
) ≈ (k − 3

2
),

D2k−1
t v ≈ rk∂2k−1v + rk−1∂2k−1r ≈ rk−1∂2k−1r,

(k − 1) ≈ (k − 3

2
) + (k − 1) ≈ (k − 1).

(5.8a)

(5.8b)

(5.8c)

(5.8d)

Expressions (5.8) are obtained by successively solving for Dt (r, v) in (1.16a)–
(1.16b). Below each expression in (5.8a)-(5.8d) we have written the orders of the
corresponding terms. The terms of order k−3/2, k−1, k−2, and k−3/2 in (5.8a),
(5.8b), (5.8c), and (5.8d), respectively have orders less than the other terms in the
same expressions, despite having the same number of derivatives, and hence are
dropped in the second ≈ on each line. Such terms have smaller order, even though
they have the same number of derivatives, because of extra powers of r , and come
from the term ra1vi∂i r in (1.16a).

We begin with the expressions of highest order (see Section 1.3), thus we first
focus on the multilinear expressions that come from ignoring the last term on LHS
(1.16a) and also where no derivative lands on G, a1, and a2. We also consider first
the case when every time we commute Dt with ∂ , the derivative lands on vi and
not on r via v0.

In this case, the corresponding multilinear expressions for (s2k, w2k) have the
following properties:

• They have order k − 1 and k − 1
2 , respectively.• They have exactly 2k derivatives.

• They contain at most k + 1 and k factors of r , respectively.

Thus, a multilinear expression for s2k in this case has the form

M = ra
J∏

j=1

∂n j r
L∏

l=1

∂mlv, (5.9)
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where n j ,ml ≥ 1, and subject to

∑
n j +

∑
ml = 2k,

a + J + L/2 = k + 1,
(5.10)

and when J = 0 or L = 0 the corresponding product is omitted. We claim that it
is possible to choose b j and cl such that

0 ≤ b j ≤ (n j − 1)
k

2k − 1
, 0 ≤ cl ≤ (ml − 1)

k + 1/2

k − 1/2
, a =

∑
b j +

∑
cl .

This follows from observing that

∑
(n j − 1)

k

2k − 1
+

∑
(ml − 1)

k + 1/2

k − 1/2
≤

(∑
n j +

∑
ml − J − L

) k

2k − 1

= (2k − J − L)
k

2k − 1
≤ (a + k − 1)

k

2k − 1
≤ a,

since a ≤ k. Equality holds only if a = k, J = 1 and L = 0 (i.e., for the leading
linear case). This shows that it is possible to make such a choice of b j and cl , which
allows us to use our interpolation theorems

‖rb j ∂n j r‖
L p j (r

1−κ
κ )

� (1 + A)
1− 2

p j ‖(r, v)‖
2
p j

H2k ,

‖rcl ∂mlv‖
Lql (r

1−κ
κ )

� A
1− 2

ql ‖(r, v)‖
2
ql
H2k ,

where
1

p j
= n j − 1 − b j

2(k − 1)
,
1

ql
= ml − 1/2 − cl

2(k − 1)
.

Observe that the numerators in 1/p j and 1/ql correspond to the orders of the
expressions being estimated and they add up to k − 1 (as needed).

In addition to the principal part discussed above, we also obtain lower order
terms in our expression for s2k . There are three sources of such terms:

i) The terms from the commutator [Dt , ∂] where derivatives apply to r via v0.
This corresponds to the second term in the formal expansion

[Dt , ∂] ≈ (∂v)∂ + (∂r)∂,

whose order is easily seen to be 1/2 lower.
ii) If any derivatives are applied to either r or v via a0, a1, a2 or G, this increases

the order of the resulting expression by 0, respectively 1/2, compared to the
full order of the derivative which is 1.

iii) Contributions arising from the last term in (1.15), whose order is, to start with,
1/2 lower than the rest of the terms in the (1.15).
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The contributions of all such terms to s2k have lower order. More precisely, they
contain expressions of the form (5.9) but with (5.10) replaced by

∑
n j +

∑
ml = 2k,

a + J + L/2 = k + 1 + j

2
,

(5.11)

where j > 0, and which have lower order k − 1 − j
2 . All such lower order terms

can be estimated in a similar fashion, but using lower Sobolev norms for (r, v).
We continue with the � part. Applying Dt to (5.2a) and (5.2b) and using defi-

nitions (5.1) we find the following recurrence relations

s2 j = L̃1s2 j−2 + F2 j ,

(w2 j )i = (L̃2w2 j−2)i + G2 j ,

(5.12a)

(5.12b)

where L̃1 and L̃2 have been defined in Section 3. The next Lemma characterizes the
error terms on the RHS of (5.12), and the lemma that follows gives a quantitative
relation between the 2 j and 2 j − 2 quantities.

Lemma 5.2. For j ≥ 2, the terms F2 j and G2 j in (5.12) are linear combinations of
multilinear expressions in r and ∂v with 2 j derivatives and of order at most j − 1
and j − 1

2 , respectively. Moreover, they are either

(i) non-endpoint, by which we mean multilinear expressions of order j − 1 and
j − 1

2 , respectively, containing at most j + 1 and j factors of r , respectively,
and whose products contain at least two factors of ∂≥2r or ∂≥1v, or

(ii) they have order strictly less than j − 1 and j − 1
2 , respectively, and contain at

most j + 2 and j + 1 factors of r , respectively.

Proof. We begin with j ≥ 3. We will analyze

s2 j = D2 j
t r − a0

κ〈r〉G
lm∂lr D

2 j−1
t vm . (5.13)

In order to keep track of terms according to the statement of the Lemma, we observe
that s2 j has order j − 1. We will make successive use of the commutator

[Dt , ∂l ] = − a0
κ〈r〉G

pq∂lvq∂p + 〈r〉1+ 2
κ

(v0)3
v p∂lr∂p.

We begin with the first term on RHS (5.13). From (1.16), we compute.

D2
t r = rGml∂l(a2∂mr) − [Dt , rG

ml∂l ]vm − [Dt , ra1v
l∂l ]r + ra1v

i∂i

(
rGml

)
∂lvm

+ ra1v
i∂i (ra1v

l∂l)r + r2a21v
lvm∂l∂mr + r2a1G

mlvi∂i∂lvm .
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Then,

D2 j
t r = D2 j−2

t D2
t r = D2 j−2

t

(
rGml∂l(a2∂mr)

− [Dt , rG
ml∂l ]vm − [Dt , ra1v

l∂l ]r
+ ra1v

i∂i

(
rGml

)
∂lvm + ra1v

i∂i (ra1v
l∂l)r

+ r2a21v
lvm∂l∂mr + r2a1G

mlvi∂i∂lvm,
)
. (5.14)

and we will consider each term on RHS (5.14) separately.
The terms ∂i

(
rGml

)
and ∂i (ra1vl∂l)r have order at most zero, thus

D2 j−2
t

(
ra1v

i∂i

(
rGml

)
∂lvm + ra1v

i∂i (ra1v
l∂l)r

)
has order at most j − 3/2 and belongs to F2 j . Next,

[Dt , rG
ml∂l ]vm = [Dt , rG

ml ]∂lvm + rGml [Dt , ∂l ]vm .

For the first term on the RHS, we have

[Dt , rG
ml ]∂lvm = DtrG

lm∂lvm + r
∂Glm

∂r
Dtr∂lvm + r

∂Glm

∂vi
Dtvi∂lvm .

The second and third terms have order ≤ −1 and −1/2, respectively, thus they
belong to F2 j after differentiation by D2 j−2

t . For the first term, we have

DtrG
lm∂lvm = −rGi j∂iv j G

lm∂lvm − ra1v
i∂i rG

lm∂lvm .

The first term satisfies the non-endpoint property while the second has order −1/2,
thus both terms belong to F2 j after differentiation by D2 j−2

t . Next,

rGml [Dt , ∂l ]vm = − ra0
κ(1 + 〈r〉G

pq∂lvqG
ml∂pvm + r〈r〉1+ 2

κ

(v0)3
Gmlv p∂lr∂pvm .

The second term has order−1/2 so it belongs to F2 j upon differentiation by D2 j−2
t .

The first term has order zero, thus producing a top order (i.e., j − 1) term when
differentiated by D2 j−2

t . Nevertheless, it has two ∂≥1v terms so it satisfies the
non-endpoint property and hence it also belongs to F2 j .

We now turn to the other commutator in (5.14):

[Dt , ra1v
l∂l ]r = [Dt , ra1vl ]∂lr + ra1vl [Dt , ∂l ]r

= Dtra1vl∂lr + r ∂a1
∂r Dtrvl∂lr + r ∂a1

∂vi
Dtviv

l∂lr + ra1Dtv
l∂lr

− ra0a1
κ〈r〉 G

pqvl∂lvq∂pr + ra1〈r〉1+ 2
κ

(v0)3
v pvl∂lr∂pr.

The terms on the RHS have orders ≤ −1/2,−3/2,−1,−1,−1/2,−1, respec-
tively, so they all belong to F2 j upon differentiation by D2 j−2

t .
For the last two terms on RHS (5.14),

r2a21v
lvm∂l∂mr + r2a1G

mlvi∂i∂lvm,
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we see that they have orders −1 and −1/2, thus also belong to F2 j after differen-

tiation by D2 j−2
t .

Therefore, writing ≈ for equality modulo terms that belong to F2 j , (5.14) be-
comes

D2 j
t r = D2 j−2

t D2
t r

≈ D2 j−2
t

(
rGml∂l(a2∂mr)

)

=
2 j−2∑
�=0

(
2 j − 2

�

)
D2 j−2−�
t r D�

t

(
Gml∂l(a2∂mr)

)

= r D2 j−2
t

(
Gml∂l(a2∂mr)

)
+

2 j−2−1∑
�=0

(
2 j − 2

�

)
D2 j−2−�
t r D�

t

(
Gml∂l(a2∂mr)

)
.

In the second sum, we can further write

D2 j−2−�
t r D�

t

(
Gml∂l(a2∂mr)

)
= D2 j−2−�

t r D�
t

(
Gmla2∂l∂mr + Gml∂la2∂mr

)

The term D2 j−2−�
t r D�

t (G
ml∂la2∂mr) has order at most j−3/2 and can be absorbed

into F2 j . For the first term, if D�
t hits G

mla2 we again obtain a term of order strictly
less than j − 1 that is part of F2 j . Finally, for the term

D2 j−2−�
t rGmla2D

�
t ∂l∂mr,

we use that � ≤ 2 j − 2 − 1 and (1.16a) to write

D2 j−2−�
t rGmla2D

�
t ∂l∂mr = −Gmla2D

�
t ∂l∂mrD

2 j−3−�
t

(
rG pq∂pvq

)
− Gmla2D

�
t ∂l∂mrD

2 j−3−�
t

(
ra1v

p∂pr
)
.

The first term contains a ∂≥1v and a ∂≥2r so it belongs to F2 j , whereas the second
term has order at most j − 3/2 so it belongs to F2 j as well. Hence, we have that

D2 j
t r ≈ r D2 j−2

t

(
Gml∂l(a2∂mr)

)
= r D2 j−3

t

(
Gml∂l(a2∂mDtr)

)
+ r D2 j−3

t

(
[Dt ,G

lm∂l(a2∂m ·)]r
)
.

We now compute the commutator on the second term on the RHS:

[Dt ,G
lm∂l(a2∂m ·)]r = Dt

(
Glm∂l(a2∂mr)

)
− Glm∂l (a2∂mDtr)

= ∂Glm

∂r
Dtr∂l(a2∂mr) + ∂Glm

∂vi
Dtvi∂l(a2∂mr)

+ GlmDt∂l(a2∂mr) − Glm∂l(a2∂mDtr).
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The first and second terms on the RHS of the second equality have orders ≤ 1/2
and 1, respectively, so they produce terms of order at most j − 3/2 when hit by
r D2 j−3

t and thus can be discarded. Continuing

[Dt ,G
lm∂l(a2∂m ·)]r ≈ GlmDt∂l(a2∂mr) − Glm∂l(a2∂mDtr)

= Glm
(
a2Dt∂l∂mr − a2∂l∂mDtr

)
+ Glm

(
Dt∂la2∂mr + ∂la2Dt∂mr + Dta2∂m∂lr − ∂la2∂mDtr

)
.

All the terms inside the second parenthesis have orders at most 1 (thus giving order
at most j − 3/2 when hit by r D2 j−3

t ) and can be discarded. The terms in the first
parenthesis give Glma2[Dt , ∂l∂m]r . Continuing

[Dt ,G
lm∂l(a2∂m ·)]r ≈ Glma2[Dt , ∂l∂m]r = Glma2

(
[Dt , ∂l ]∂mr + ∂l ([Dt , ∂m]r)

)

= Glma2
(

− a0
κ〈r〉G

pq∂lvq∂p∂mr + 〈r〉1+ 2
κ

(v0)3
v p∂lr∂p∂mr

)

+ Glma2∂l
(

− a0
κ〈r〉G

pq∂mvq∂pr + 〈r〉1+ 2
κ

(v0)3
v p∂mr∂pr

)
.

The second term in the first parenthesis has order 1. The second term in the second
parenthesis produces, after differentiation by ∂l , terms of order at most 1. Hence, the
second terms in both parenthesis give order at most j −3/2 after we apply r D2 j−3

t
and belong to F2 j . Moreover, when ∂l in front of the second parenthesis hits the
zero order coefficients in the first term it gives terms of order at most 1 which can
again be discarded; when it hits ∂pr it produces a term that can be combined with
the first term in the first parenthesis. Therefore, we have

D2 j
t r ≈ r D2 j−3

t

(
Gml∂l(a2∂mDtr)

)
− r D2 j−3

t

(a0a2
κ〈r〉G

lm∂l∂mvqG
pq∂pr

)
− 2r D2 j−3

t

(a0a2
κ〈r〉G

lmG pq∂mvq∂p∂lr
)
.

(5.15)

The last term on RHS (5.15) has a ∂v∂2r factor. Hence it produces, after application
of r D2 j−3

t either non-endpoint terms or terms of order < j − 1, so it belongs to
F2 j .

We now analyze the second term on RHS (5.15). We distribute D2 j−3
t . When-

ever at least one Dt hits one of the zero order factors it results in a term of order
≤ j − 3/2 that can be absorbed into F2 j . Hence we are left with

− r
a0a2
κ〈r〉G

lmG pq D2 j−3
t

(
∂l∂mvq∂pr

)

= −r
a0a2
κ〈r〉G

lmG pq
2 j−3∑
�=0

(
2 j − 3

�

)
D2 j−3−�
t ∂l∂mvq D

�
t ∂pr.
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The terms in the sum with l �= 0 belong to F2 j . For, after commuting Dt with ∂ ,
we obtain either lower order terms or ∂v∂2r factors, so we are left with

−r
a0a2
κ〈r〉G

lmG pq D2 j−3
t ∂l∂mvq∂pr = −r

a0a2
κ〈r〉G

lmG pq∂l∂mD
2 j−3
t vq∂pr

− r
a0a2
κ〈r〉G

lmG pq [D2 j−3
t , ∂l∂m]vq∂pr.

The first term on the RHS belongs to L̃1ss j−2. The second term on the RHS be-
longs to F2 j . This can be seen by computing the commutator in similar fashion to

what we did to compute [Dt ,Glm∂l(a2∂m ·)] (in fact, [D2 j−3
t ,Glm∂l(a2∂m ·)]r and

[D2 j−3
t , ∂l∂m] are the same modulo lower terms).
It remains to analyze the first term on RHS (5.15). We have

r D2 j−3
t

(
Gml∂l(a2∂mDtr)

)
= Gml∂l(a2∂mD2 j−2

t r) + r [D2 j−3
t ,Glm∂l(a2∂m ·)]Dtr.

The first term on the RHS belongs to L̃1s2 j−2. The term of order j − 1 from the
second term on the RHS is non-endpoint, as it comes from combining ∂v from the
commutator with ∂v from Dtr .

We next consider the second term on (5.13). We have

− a0
κ〈r〉G

lm∂lr D
2 j−1
t vm = − a0

κ〈r〉G
lm∂lr D

2 j−3
t Dt (−a2∂mr)

= a0
κ〈r〉G

lm∂lr D
2 j−3
t

(
a2∂mDtr + [Dt , a2∂m]r

)
.

(5.16)

Consider the second term on RHS (5.16). Using arguments similar to above, we
can show that all terms belong to F2 j , except for the term that corresponds to all

D2 j−3
t hitting the ∂v from the commutator [Dt , ∂m], i.e., except for

−a2

(
a0

κ〈r〉
)2

Glm∂lrG
pq D2 j−3

t ∂mvq∂pr = −a2

(
a0

κ〈r〉
)2

Glm∂lrG
pq∂mD2 j−3

t vq∂pr

− a2

(
a0

κ〈r〉
)2

Glm∂lrG
pq [D2 j−3

t , ∂m ]vq∂p.

The commutator term can again be shown to belong to F2 j using the same sort of
calculations as above. Modulo terms that can be absorbed into F2 j , the remaining
term can be written as

a2
a0

κ〈r〉G
lm∂l r∂m

(
− a0

κ〈r〉G
pq D2 j−3

t vq∂pr
)

= a2
κ
Glm∂l r∂m

(
− a0

κ〈r〉G
pq D2 j−3

t vq∂pr
)

+ ra3G
lm∂l r∂m

(
− a0

κ〈r〉G
pq D2 j−3

t vq∂pr
)
,

where we used (3.2). The first term on the RHS belongs to L̃1s2 j−2 and the second
one can be absorbed into F2 j .
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The first term on RHS (5.16) is treated with similar ideas. We notice that the
top order term in that expression is

a0
κ〈r〉G

lm∂lra2∂mD
2 j−2
t r = a2

κ
Glm∂lr∂mD

2 j−2
t r + ra3G

lm∂lr∂mD
2 j−2
t r.

The first term belongs to L̃1ss j−2 and the second one to F2 j .
The case j = 2 is done separately (since the definition of s2 is different, recall

(5.1)), but it follows essentially the same steps as above. Finally, the proof for G2 j
is done with the same type of calculations employed above and we omit it for the
sake of brevity.

To continue our analysis, we need some coercivity estimates for the L̃1, respec-
tively L̃2 + L̃3. ��
Lemma 5.3. Assume that A is small. Then

‖s‖
H2, 1

2κ + 1
2

� ‖L̃1s‖
H0, 1

2κ − 1
2

+ ‖s‖
L2(r

1−κ
κ )

,

‖w‖
H2, 1

2κ +1 � ‖(L̃2 + L̃3)w‖
H0, 1

2κ
+ ‖w‖

L2(r
1
κ )

.

(5.17a)

(5.17b)

Here we remark that the lower order terms on the right play no role in the proof,
and can be omitted if (s, w) are assumed to have small support (by Poincare’s
inequality), or if we use homogeneous norms on the left.

As a consequence of the second estimate above, we have

Corollary 5.4. Assume that A is small. Then

‖w‖
H2, 1

2κ +1 � ‖L̃2w‖
H0, 1

2κ
+ ‖curlw‖

H1, 1
2κ +1 + ‖w‖

L2(r
1
κ )

.

In Section 6 will also need the following straightforward alternative form of the
above result:

Corollary 5.5. Assume that B is small. Then the same result as in Lemma 5.3 holds
for the operators L1, respectively L2 + L3.

Here the smallness condition on B allows us to treat the differences L̃1 − L1,
L̃2 − L2, L̃3 − L3 perturbatively.

Proof. We start with two simple observations. First of all, using a partition of unity
one can localize the estimates to a small ball. We will assume this is done, and
further we will consider the interesting case where this ball is around a boundary
point x0; the analysis is standard elliptic otherwise. We can assume that at x0 on
the boundary we have ∇r(x0) = en so that in our small ball we have

|∇r − en| � A � 1. (5.18)

Secondly, the smallness condition on A guarantees that the coefficients G and
a2 have a small variation in a small ball, andwe can freeze these coefficientsmodulo
perturbative errors. Hence, we will simply freeze them, and assume that a2 and G
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are constant. Then a2 only plays a multiplicative role, and will be set to 1 for the
rest of the argument.

A preliminary step in the proof is to observe that we have the weaker bounds

‖s‖
H2, 1

2κ + 1
2

� ‖L̃1s‖
H0, 1

2κ − 1
2

+ ‖s‖
H1, 1

2κ − 1
2
,

‖w‖
H2, 1

2κ +1 � ‖(L̃2 + L̃3)w‖
H0, 1

2κ
+ ‖w‖

H1, 1
2κ

.

These bounds can be proved in a standard elliptic fashion by integration by parts,
e.g. in the case of the first bound one simply starts with the integral representing
‖L̃1s‖2

H0, 1
2κ

and exchange derivatives between the two factors. The details are left

for the reader.
In view of the above bounds, it suffices to show that

‖s‖
H1, 1

2κ − 1
2

� ‖L̃1s‖
H0, 1

2κ − 1
2

+ ‖s‖
L2(r

1−κ
2κ )

,

‖w‖
H1, 1

2κ
� ‖(L̃2 + L̃3)w‖

H0, 1
2κ

+ ‖w‖
L2(r

1
κ )

.

(5.19a)

(5.19b)

For (5.19a), compute∫
	t

r
1−κ
κ ∂ns L̃1s dx =

∫
	t

r
1−κ
κ ∂nsG

i j a2

(
r∂i∂ j s + 1

κ
∂i r∂ j s

)
dx

= −1

2

∫
	t

r
1
κ a2∂n

(
Gi j∂i s∂ j s

)
dx + 1

2

∫
	t

r
1
κ a2∂nG

i j∂i s∂ j s dx

−
∫

	t

r
1
κ ∂ns∂i (a2G

i j )∂ j s dx

�
∫

	t

r
1−κ
κ a2G

i j∂i s∂ j s dx +
∫

	t

rr
1−κ
κ |∂s|2 dx,

which suffices, by the Cauchy-Schwarz inequality.
Now we consider (5.17b). As discussed above, we set a2 = 1 and assume G is

a constant matrix. We recall that L̃2 has the form

(L̃2w)i = Gml
(

∂i (r∂mwl) + 1

κ
∂mr∂iwl

)
(5.20)

while L̃3 is given by

(L̃3w)i = r− 1
κ Gml∂l

(
r1+

1
κ (∂mwi − ∂iwm)

)
(5.21)

Then a direct computation shows that

r
1
κ ((L̃2 + L̃3)w)i = ∂l(G

mlr1+
1
κ ∂mwi ) + r

1
κ (∂lrG

lm∂mwi − ∂lG
lm∂iwm)

We will take advantage of the covariant nature of this operator in order to simplify
it. Interpreting G as a dual metric and w as a one form, we see that the above
operator viewed as a map from one forms to one forms is invariant with respect
to linear changes of coordinates. Here we are interested in changes of coordinates
which preserve the surfaces xn = const . But even with this limitation, it is possible
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to choose a linear change of coordinates, namely the semigeodesic coordinates
relative to the surface xn = 0,

y′ = Ax ′ + bxn, yn = xn

so that the metric G becomes a multiple of the identity. Then the estimate (5.19b)
reduces to its euclidean counterpart, which is discussed in detail in [14] in the
corresponding nonrelativistic context.

To finish the proof of Theorem 5.1, we will establish

‖(s2 j−2, w2 j−2)‖H2k−2 j+2 � ‖(s2 j , w2 j )‖H2k−2 j + ε‖(r, v)‖H2k , 1 ≤ j ≤ k,

(5.22)
where ε > 0 is sufficiently small. We are using ε here to include two types of small
error terms: (a) the terms that we estimate using O(A) as well as (b) the terms that
have an extra factor of r and for which we can use smallness of r near the boundary;
the latter type arise from the last term of (1.16a). Concatenating these estimates we
then obtain the conclusion of the theorem.

To prove (5.22), we first consider ‖(F2 j ,G2 j )‖H2k−2 j . Using our interpolation
inequalities, the non-endpoint property, and the structure of (F2 j ,G2 j ) described
in in Lemma 5.2, we obtain

‖(F2 j ,G2 j )‖H2k−2 j � ε‖(r, v)‖H2k .

It remains to handle the term ‖(s2 j , w2 j )‖H2k−2 j . For j = k the desired estimate
is a direct consequence of Lemma 5.3.

We move to treat the case 2 ≤ j < k. The idea is to apply Lemma 5.3 with
s2 j−2 and w2 j−2 replaced by suitable weighted derivatives of themselves. More
precisely, we set {

s:=Ls2 j−2

w:=Lw2 j−2,

where
L = ra∂b, 2a ≤ b ≤ 2(k − j).

Applying L to (5.12a), we obtain

Ls2 j = L̃1Ls2 j−2 + [L , L̃1]Ls2 j−2 + LF2 j .

The term LF2 j can again be dealt with using Lemma 5.2, as above. Thus we focus
on the commutator. To analyze it, we consider induction on a, starting at a = 0,
and observe the following:

• All terms where at least one r factor gets differentiated twice are non-endpoint
terms and can be estimated by interpolation.

• The terms where two r factors are differentiated are handled by the induction
on a.

• Terms where only one r gets differentiated are also handled by induction on a
unless a = 0.
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Therefore, all terms in the commutator where a > 0 are perturbative terms. We
now focus on the case a = 0.

Consider a frame (x ′, xn) in Minkowski space that is adapted to a point near
the boundary in the sense that

|∂ ′r | � A, |∂nr − 1| � A.

Then, all terms in the commutator with tangential derivatives only are error terms.
For terms involving ∂n , we find

[∂bn , L̃1]s ≈ ba2G
i j∂i∂ j∂

b−1
n s

≈ ba2G
i j∂i r∂ j∂

b
n s + ba2G

ni ′∂i ′∂
b
n s + ba2G

i ′ j ′∂i ′∂ j ′∂
b−1
n s,

where primed indices run from 1 to n − 1. The last two terms on the RHS can be
treated by yet another induction, this time over b. The first term on the RHS can be
combined back with L̃1, yielding ∂bn L̃1 ≈ L̃b

1∂
b
n , where

L̃b
1 = ra2G

i j∂i∂ j s + a2

(
1

κ
+ b

)
Gi j∂i r∂ j s.

The operator L̃b
1 has a similar structure to L̃1, and an inspection in the proof of

Lemma 5.3 shows that the corresponding coercive estimate for s holds with L̃b
1 in

place of L̃1.
The above argument works for j ≥ 2 in that (5.12a) is valid only for j ≥ 2.

However, a minor change in the above using the definition s2 yields the result also
for j = 1. This takes care of the s terms in (5.22); the proof for the w terms is
similar. ��

5.3. Energy estimates

In this Section we establish

Theorem 5.6. The energy functional E2k defined in (5.7) satisfies the following
estimate:

d

dt
E2k(r, v) �A B‖(r, v)‖2H2k .

Proof. In view of Eqs. (5.2a)–(5.2b) and (5.5), the the energy estimates for the
linearized equation in Section 3, and estimates for transport equations, it suffices to
show that the terms f2k , g2k and h2k , given by (5.3a), (5.3b), and (5.6), respectively,
are perturbative, i.e., they satisfy the estimate

‖( f2k, g2k)‖H + ‖h2k‖
L2(r

1
κ )

� B‖(r, v)‖H2k .

To prove this bound we need to understand the structure of ( f2k, g2k), respectively
h2k . ��
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Lemma 5.7. Let k ≥ 1. Then source terms f2k and g2k in the linearized Eq. (5.2)
for (s2k, w2k), given by (5.3a)-(5.3b) are multilinear expressions in (r,∇v), with
coefficients which are smooth functions of (r, v), which have order ≤ k − 1

2 , re-
spectively ≤ k, with exactly 2k + 1 derivatives, and which are not endpoint, in the
sense that there is no single factor in f2k , respectively g2k which has order larger
that k − 1, respectively k − 1

2 .
Similarly, the source term h2k in the vorticity transport Eq. (5.5), given by (5.6),

has the same properties as g2k above.

Once the lemma is proved, arguing similarly to Section 5.2, we see that this
suffices to apply our interpolation results in Propositions 2.6, 2.9 and 2.10 and
obtain the desired bound. Here we remark that a scaling analysis shows that in the
interpolation estimates we need to use at most one B control norm, with equality
exactly in the case of terms of highest order. One should also compare with the
situation in the similar computation in [14], where no lower order terms appear.
Hence, the poof of the theorem is concluded once we prove the above lemma.

Proof of Lemma 5.7. Consider first f2k . The fact that all terms in fk have order at
most k − 1

2 is obvious. The non-endpoint property can be understood as asking
that there are no derivatives of order 2k + 1, and that, in addition, for the terms of
maximum order, they have at least two factors of the form ∂2+r or ∂1+v. Notably,
this excludes any terms of the form

f (r, v)rk+1− j (∇r) j∂2k+1− jv, 0 ≤ j ≤ k + 1.

A similar reasoning applies for g2k and h2k , where the forbidden terms are those
with a factor with 2k + 1 derivatives, as well as those of maximum order of the
form

f (r, v)rk− j (∇r) j∂2k+1− j r, 0 ≤ j ≤ k.

We start with a simple observation, which is that, if in (5.3a) or (5.3b), any
derivative falls on a coefficient such as G, a0, a1, or a2, then we obtain lower order
terms which automatically satisfy the above criteria. Thus, for the purpose of this
Lemma we can treat these coefficients as constants.

A second observation is that there are no factors with 2k+1 derivatives in either
s2k or w2k , due to the commutator structures present in both (5.3a) or (5.3b). This
directly allows us to discard all lower order terms, and in particular those containing
a1 and a3. By the same token we can set a0 = 1 and 〈r〉 = 1.

Given the above observations, it suffices to consider the reduced expressions

f reduced2k = Gi j [r∂i , D2k
t ]v j − 1

κ
Gi j Dt (∂i r) D

2k−1
t v j

(greduced2k )i = a2(D
2k−1
t [∂i , Dt ]r − a0

κ〈r〉G
jl∂ j r∂i D

2k−1
t vl)

+ a2([∂i , D2k−1
t ]Dtr − 1

κ
Gml∂i∂mrD

2k−1
t vl),

(5.23)

(5.24)
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Consider f reduced2k first. When commuting ∂ and D2k
t , this produces at least one

∂v, so [r∂i , D2k
t ]v j is not an endpoint term. Similarly, Dt (∂i r) has order 1/2 so

the second expression is also not an endpoint term.
We now investigate greduced2k . Neither of the first two terms is perturbative, but

we have a leading order cancellation between them, based on the relations

[Dt , ∂i ] = −∂i

(
v j

v0

)
∂ j ,

and

∂i

(
v j

v0

)
= a0

κ〈r〉G
jl∂ivl − 〈r〉1+ 2

κ

(v0)3
v j∂i r. (5.25)

The contribution of the second term is lower order and thus perturbative. The
contribution of the first term is combined with the second term in (5.24) to obtain
a commutator structure [

D2k−1
t ,

a0
κ〈r〉G

jl∂ j r∂i

]
vl ,

which yields only balanced terms.
The third term in (5.24) is also balanced due to the commutator structure, while

the last term has a direct good factorization.
We next move to h2k . From (5.6) we see that we are commuting ra∂b with either

Dt or ∂v, so we always obtain ∂v factors that give non-endpoint terms. The only
possible exception is when all derivatives in the commutator with Dt are applied
to the r term in v0. But this yields a lower order term. ��

6. Construction of regular solutions

In this section we provide the first step in our proof of local well-posedness,
namely, here we present a constructive proof of regular solutions. The rough solu-
tions are obtained in the last section as unique limits of regular solutions.

Given an initial data (r̊ , v̊) with regularity

(r̊ , v̊) ∈ H2k,

where k is assumed to be sufficiently large, wewill construct a local in time solution,
bounded in H2k , with a lifespan depending on the H2k size of the data.

6.1. Construction of approximate solutions

We discretize the problem with a time-step ε > 0. Then, given an initial
data (r̊ , v̊) ∈ H2k , our objective is to produce a discrete approximate solution
(r( jε), v( jε)), with properties as follows:

• (Norm bound) We have

E2k(r(( j + 1)ε), v(( j + 1)ε)) ≤ (1 + Cε)E2k(r(( jε), v( jε)).
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• (Approximate solution)⎧⎨
⎩ r(( j + 1)ε) − r( jε) + ε

[
vm∂mr + rGml∂mvl + ra1v

l∂lr
]
( jε) = O(ε2)

vi (( j + 1)ε) − vi ( jε) + ε
[
vm∂mvi + a2∂i r

]
( jε) = O(ε2).

The first property will ensure a uniform energy bound for our sequence. The second
property will guarantee that in the limit we obtain an exact solution. There we use
a weaker topology, where the exact choice of norms is not so important (e.g. C2).

Having such a sequence of approximate solutions, it is straightforward to pro-
duce, as the limit on a subsequence, an exact solution (r, v) on a short time interval
which stays bounded in the above topology. The key point is the construction of
the above sequence. It suffices to carry out a single step:

Theorem 6.1. Let k be a large enough integer. Let (r̊ , v̊) ∈ H2k with size

E2k(r̊ , v̊) ≤ M,

and ε �M 1. Then there exists a one step iterate (ř , v̌)with the followingproperties:

(1) (Norm bound) We have

E2k(ř , v̌) ≤ (1 + C(M)ε)E2k(r̊ , v̊),

(2) (Approximate solution){
ř − r̊ + ε[v̊i∂i r + r̊ G̊i j∂i v̊ j + r̊ å1v̊

i∂i r̊ ] = O(ε2)

v̌i − v̊i + ε[v̊ j∂ j v̊i + å2∂i r̊ ] = O(ε2),

where G̊, å1, and å2 are G, a1, and a2 evaluated at (r̊ , v̊).

The strategy for the proof of the theorem is the same as in the last two authors’
previous paper [14], by splitting the time step into three:

• Regularization,
• Transport,
• Euler’s method,

where the role of the first two steps is to improve the error estimate in the third step.
The regularization step is summarized in the next Proposition:

Proposition 6.2. Given (r̊ , v̊) ∈ H2k , there exist regularized versions (r, v) with
the following properties:

r − r̊ = O(ε2), v − v̊ = O(ε2),

respectively
E2k(r, v) ≤ (1 + Cε)E2k(r̊ , v̊),

and
‖(r, v)‖H2k+2 � ε−1M.
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Proof. We repeat the construction in [14]. There are only a few minor differences,
namely

• The self-adjoint operators L1, L2 and L3 there are replaced by their counterparts
in this paper, i.e., (3.7a), (3.10), and (3.9) (recall that L1 = L̂1 and L3 = L̃3).

• Using (3.12), relations similar to (5.12) continue to hold for the self-adjoint
operators. Thus, the approximate relations between (s2k, w2k) and (s−

2k, w
−
2k)

in Section 6 of [14] also hold here.
• The elliptic estimates of Lemma 5.3 hold for L1 and L2, L3, with essentially
the same proof.

Aside from the aboveminor differences, themost important observation in invoking
the proof given in [14] is that the counterpart of Lemma 6.3 in [14] still holds with
a minor change. For convenience we state here its counterpart (below, Ds2k and
Dw2k are the differentials of s2k and w2k as functions of r and v):

Lemma 6.3. We have the algebraic relations{
Ds2k(ř , v̌)(r̊ − ř , v̊ − v̌) = (L1(ř))

k(r̊ − ř) + F̃2k

Dw2k(ř , v̌)(r̊ − ř , v̊ − v̌) = (L2(ř))
k(v̊ − v̌) + G̃2k,

where the error terms (F̃2k, G̃2k) are linear in (r̊ − ř , v̊ − v̌),

F̃2k = D1
2k(ř , v̌)(r̊ − ř , r̊ − v̌), G̃2k = D2

2k(ř , v̌)(r̊ − ř , r̊ − v̌).

Their coefficients are multilinear differential expressions in (ř , v̌), have order at
most k − 1, respectively k − 1

2 , and whose monomials fall into one of the following
two classes:

i) Have maximal order but contain at least one factor with order > 0, i.e. ∂2+ř
or ∂1+v̌, or

ii) Have order strictly below maximum.

By comparison, the similar relations in Lemma 6.3 in [14] are homogeneous,
so only terms of type (i) arise in the error terms. Here our equations are no longer
homogeneous, and lower order terms do appear. In particular, we note that all the
contributions coming from the last term in the first equation (1.16a) belong to the
class (ii) above. This is correlated with and motivates the fact that this term was
neglected in our definition of the operator L1.

With these observations in mind, the proof given in [14] applies directly here.
We now use Proposition 6.2 in order to prove Theorem 6.1.
Proof of Theorem 6.1. For the transport step, we define

x̌ i = xi + ε
vi (x)

v0(x)
,

where, in agreement with the our definition of the material derivative, we iterate
the coordinates by flowing with vi/v0, and not simply vi .
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Then we carry out the Euler step, and define (r0, v0) by⎧⎨
⎩ ř(x̌) = r(x) − ε

[
rGi j∂iv j + ra1v

i∂i r
]
(x)

v̌i (x̌) = vi (x) − ε [a2∂i r ] (x).

To show that (ř , v̌) have the properties in the Theorem, the argument is com-
pletely identical to the one in [14]. ��

7. Rough solutions and continuous dependence

The last task of the current work is to construct rough solutions as limits of
smooth solutions, and conclude the proof of Theorem 1.2. Fortunately, the argu-
ments in the preceding paper [14] by the last two authors for the similar part of
the results apply word for word. This is despite the fact there are several differ-
ences between the two problems that play a role on how the energy estimates are
obtained, as well as on how uniqueness is proved. However, the functional frame-
work developed in [14] and also implemented here does not see these differences.
Furthermore, the proof of the similar result in [14] only uses (i) the regularization
procedure in Section 2, (ii) the difference bounds of Theorem 1.1, and (iii) the
energy estimates of Theorem 1.3, without any reference to their proof.

Thus, in our current result we rely on the same succession of steps as in the non-
relativistic companion work of the last two authors [14], which we briefly outline
here for the reader. These steps are
1. Regularization of the initial data.We regularize the initial data; this is achieved
by considering a family of dyadic regularizations of the initial data as described in
Section 2. These data generate corresponding smooth solutions byTheorem1.2. For
these smooth solutions we control on the one hand higher Sobolev norms H2k+2 j

using our energy estimates in Theorem 1.3, and on the other hand the L2-type
distance between consecutive solutions, which is at the level of the H norms, by
Theorem 1.1.
2. Uniform bounds for the regularized solutions. To prove these bounds we use a
bootstrap argument on our control norm B, where B is time dependent. The need for
an argument of this kind is obvious. Oncewe have the regularized data sets (r̊ h, v̊h),
we also have the corresponding smooth solutions (rh, vh) generated by the smooth
data (r̊ h, v̊h). A-priori these solutions exist on a time interval that depends on h.
Instead, wewould like to have a lifespan boundwhich is independent of h. This step
requires closing the bootstrap argument via the energy estimates already obtained
in Section 5.
3. Convergence of the regularized solutions. We obtain the convergence of the
regular solutions (rh, vh) to the rough solution (r, v) by combining the high and
the low regularity bounds directly. This yields rapid convergence in allH2k′

spaces
below the desired threshold, i.e. for k′ < k. Here we rely primarily on results in
Section 4, namely Theorem 1.1.
4. Strong convergence.Hereweprove the convergence of the smooth solutions to the
rough limit in the strong topology H2k . To gain strong convergence in H2k we use
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frequency envelopes to more accurately control both the low and the high Sobolev
norms above. This allows us to bound differences in the strong H2k topology. A
similar argument yields continuous dependence of the solutions in terms of the
initial data, also in the strong topology. For more details we refer the reader to [14].
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