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Hi Zair, please forward to the students.

Thanks!

Svetlana

Dear all,

Here are some reading materials for those of you who are actively listening:

1. The 2022 ICM proceedings paper of my plenary talk, for motivation (I
am trying to make the video available, but it may, unfortunately, take a
few days)

2. my 2018 lecture notes that we will partially follow (not today
though); they also briefly mention most of the necessary background
(some of which we will go over in detail today/tomorrow)

3. my 2019 CDM lecture notes that also contain some further
background/motivation

3. Barry Simon's 1996 Wonderland paper, over most of which we will go

over today https://nam10.safelinks.protection.outlook.com/?

url=https%3A%2F%2Furldefense.com%2Fv3%2F http%3A%2F%2Fwww.math.caltech.edu%2FSimonPapers%2F234.p
df  %3B!IGF3VTAzZAMGBMS8A!y4Y04rUQsKELeYx0skNzfeKSfOLL8pGmjRynLWGWPH5Mf4sOf9HUfIReMTXF8JUINIrv3)
ChUOrkKVWS8IFoK8SPnEwp1i%24&amp;data=05%7C01%7Czibragimov%40fullerton.edu%7Caa33e7b3ca484279987c0
8dabebe7bd3%7C82c0b871335f4b5c9ed0ad4a23565a79b%7C0%7C0%7C637944062160855171%7CUnknown%7CTW
FpbGZsb3d8eyJWIjoiMCAwLAWMDAILCJQljoiV2IuMzIliLCIBTil6lk1haWwiLCIXVCI6Mn0%3D%7C3000%7C%7C%7C&a
mp;sdata=lk6xJOVT1RtDIiISNN3Cjj2wtLVfAqvCLhN1twB9Ingc%3D&amp;reserved=0

4. Two parts of Cycon, Froese, Kirsch, Simon, from which some material
will be taken today and tomorrow, and an extra one that will be mentioned

5. My 1999 paper and Avila's 2010 paper that we plan to discuss to some
extent

https://nam10.safelinks.protection.outlook.com/?

url=https%3A%2F%2Furldefense.com%2Fv3%2F https%3A%2F%2Fwww.jstor.org%2Fstable%2F121066 %3B!!GF3
VTAzZAMGBMS8A!y4Y04rUQsKELeYx0skNzfeKSfOLL8pGmjRynLWGWPH5Mf{4sOf9HUfIReMTXF8JUINIrv3JChUOrkKVWS8IF
OoK8SONBRRtz%24&amp;data=05%7C01%7Czibragimov%40fullerton.edu%7Caa33e7b3ca484279987c08dabebe7bd3
%7C82c0b871335f4b5c9ed0a4a23565a79b%7C0%7C0%7C637944062160855171%7CUnknown%7CTWFpbGZsb3d8e
VIWIjoiMCAwWL]AWMDAILCIQIjoiV2IuMzliLCIBTil6lk1haWwiLCIXVCI6MN0%3D%7C3000%7C%7C%7C&amp;sdata=xVPI
tFZn%2Fgw0ej3TZ%2FAMUX%2BSVcQ%2B%2BBoNxBDOXDcNX4E%3D&amp;reserved=0
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https://nam10.safelinks.protection.outlook.com/?

url=https%3A%2F%2Furldefense.com%2Fv3%2F  https%3A%2F%2Fprojecteuclid.org%2Fjournals%2Facta-
mathematica%2Fvolume-215%2Fissue-1%2FGlobal-theory-of-one-frequency-Schr**Adinger-
operators%2F10.1007%2Fs11511-015-0128-

7.full  %3Bw7Y!!GF3VTAZAMGBMS8A!y4Y04rUQsKELeYx0skNzfeKSfOLL8pGmjRynLWGWPH5M{f4sOf9HUfIReMTXF8JU
INIrv3JChUOrKVWS8IFoK8SCzg84V)%24&amp;data=05%7C01%7Czibragimov%40fullerton.edu%7Caa33e7b3ca484279
987c08dabebe7bd3%7C82c0b871335f4b5c9ed0a4a23565a79b%7C0%7C0%7C637944062160855171%7CUnknown%
7CTWFEpbGZsb3d8ey)WIjoiMCAwLjAwWMDAILCJQIjoiV2IuMzliLCIBTil61k1haWwiLCIXVCI6MNn0%3D%7C3000%7C%7C%
7C&amp;sdata=QIRnP6UelbkwU56n7i9yic%2BpbAJdPWmMJECKQNIfrOY%3D&amp;reserved=0

Technically, all that is necessary will be said in the lectures, but |

do understand it is too fast for those who are seeing it for the first

time. Don't forget that Simon (and also Alberto and Omar) are providing
the tutorial today. It is best to be on top of the previous lecture

material for better understanding going forward, especially the
yesterday's lecture which contained the key preliminaries.

Finally, if anyone needs an access to Reed-Simon, please let me know
See you this afternoon!

Lana
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ONE-DIMENSIONAL
QUASIPERIODIC
OPERATORS: GLOBAL
THEORY, DUALITY,

AND SHARP ANALYSIS

OF SMALL DENOMINATORS

SVETLANA JITOMIRSKAYA

ABSTRACT

Spectral theory of one-dimensional discrete one-frequency Schrodinger operators is a field
with the origins in and strong ongoing ties to physics. It features a fascinating competi-
tion between randomness (ergodicity) and order (periodicity), which is often resolved on

a deep arithmetic level. This leads to an especially rich spectrum of phenomena, many of
which we are only beginning to understand. The corresponding analysis involves, in partic-
ular, dealing with small denominator problems. It has led to the development of non-KAM
methods in this traditionally KAM domain, and to results completely unattainable by the
old techniques, also in a number of other settings. This article accompanies the author’s
lecture at the International Congress of Mathematicians 2022. It covers several related

recent developments.
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One-dimensional discrete one-frequency Schrédinger operators

(Hy,gxn := Up—1 + Un+1 + V(X + no)u,,
wel?(Z), aeT:=R\Q,xeT,V:T >R, 0.1)

and related questions of the dynamics of quasiperiodic cocycles have not been under-
represented at the [CMs. As I remember, roughly within the last 25 years, there were sectional
lectures by H. Eliasson in 1998, myself in 2002, B. Fayad, R. Krikorian, and J. You in 2018,
as well as plenary lectures by A. Avila in 2010 and 2014, devoted either in part or in full to
this topic.

The field itself is not at all new. It may be seen as having been originated in physics
when Peierls [183] and later his student Harper [61] studied the tight-binding two-dimensional
electron in a uniform perpendicular magnetic field (also known as the Harper model) and
derived the by now iconic family H5) cos,«,x that we now, following Barry Simon [1e5], call
the almost Mathieu operator. It remains hugely popular in physics, being directly linked to
several remarkable experimental discoveries and Nobel prizes, providing, in particular, the
theoretical underpinning of the Quantum Hall Effect, as proposed by D. J. Thouless in 1983
(see, e.g. [18,19]). A Google search for “Harper’s model physics” leads to many thousands of
hits.

The field may also be seen as having been originated in a numerical experiment,
as the interest was picked after Douglas Hofstadter came up with what we now call the
Hofstadter’s butterfly [64]—a beautiful numerically produced fractal (Figure 1), discovered
even before the word “fractal” was coined by Benoit Mandelbrot. Finally, the field may be
seen as having been originated from the first application of KAM in the spectral theory—a
pioneering work of Dinaburg and Sinai [37], that preceded Hofstadter. The field has consis-
tently attracted top mathematical physicists (e.g., Bellissard, Deift, Simon, Sinai, Spencer),
dynamicists (e.g., Avila, Eliasson, Herman, Krikorian, You), and analysts (e.g., Bourgain,
Eliott, Sarnak, Schlag). Indeed, it turned out to be a fantastic ever-expanding playground
for the analysts and dynamicists alike, leading to strong cross-fertilization of ideas that have
a tendency to later expand to other subjects. Jean Bourgain wrote a book [28] devoted to
analytic, mostly one-dimensional, quasiperiodic operators that summarized significant new
understanding achieved around the turn of the century, where the work of Jean and collabo-
rators was central.

It is therefore all the more surprising that as of the time of this writing it seems that
the field is on the verge of further significant breakthroughs, with our current understanding
covering just the tip of an exciting iceberg. Given the remarkable current momentum, we
will refrain from making an attempt at an overview of the vast past literature, neither even
very recent nor a number of important milestones, and will concentrate instead only on two
selected topics that enjoyed significant recent advances and hold a particular promise to
shape some of the future discourse.

For the review up to about five years ago, see [82], and for various fine issues related
to continuity of the Lyapunov exponents, featuring, in particular, very important work by
M. Goldstein and W. Schlag, see the recent book by P. Duarte and S. Klein [38]. The 2018
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FIGURE 1
Hofstadter’s butterfly.

ICM proceedings by J. You [117] summarize, among other things, the quantitative reducibility
breakthrough developed in his group, that has led to a number of powerful consequences.
There are also recent expositions [68, 8e] that include some further remarkable results of
roughly the last decade that could not make it into this article.

1. SPECTRAL THEORY MEETS (DUAL) DYNAMICS
Quasiperiodic operators (0.1) are, of course, a particular case of one-dimensional
discrete ergodic Schrodinger operators

(Hy)y := tn—1 + tnt1 + V(T"X)un, u € *(Z), (1.1)

where x € X, and (X, u, T') is an ergodic dynamical system. Operators with ergodic poten-
tials (also in the continuum or in a more general multidimensional/covariant setting) always
have spectra and closures of the other spectral components constant for jt-a.e. x [95,102]. In
case of the minimal underlying dynamics, such as, e.g., the irrational rotation of the circle in
(0.1), the spectra [21] and absolutely continuous spectra in the one-dimensional case [97] are
constant for all x. In contrast, the point and singular continuous parts (that are constant a.e.)
can depend sensitively on x. It is an interesting problem, usually attributed to B. Simon, and
open even in the setting of (0.1) whether this still holds when they are combined together
(see Problem 6 in [67]).

The spectral theory of one-dimensional ergodic Schrodinger operators (1.1) is
deeply connected to the study of linear cocycles over corresponding underlying dynam-
ics. By an SL(2, R) cocycle, we mean a pair (7, A), where T : X — X is ergodic, A is a
measurable 2 x 2 matrix-valued function on X and det A = 1.
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We can regard it as a dynamical system on X x R? with
(T.A): (x. /) (Tx, A(x) f), (x,f) e X xR

A one-parameter family of Schrodinger cocycles over (X, u, T'), indexed by the energy
E € C,is given by (T, A) : (X,R?) — (X,R?) where (T, A) : (x,y) — (Tx, A(x, E)y),
and A € SL(2, C) is the transfer-matrix

A(x, E) = ( E-ve) -l )

1 0

with x € X, y € R?, and E € C. The eigenvalue equation Hu = Eu can be rewritten

( ”:;” ) = A(T"x,E)( u’:: )

The (top) Lyapunov exponent is then defined as L(E) := lim, oo | % In |4, (x, E)|| du,

dynamically as

where
0

An(x. E):= [] A(T'x.E). 1.2)

i=n—1
Two classical results link dynamics/Lyapunov exponents to the spectral theory of ergodic
operators:

* (Johnson’s theorem [91]) For minimal (X, u, T'), the spectrum o (H) (which is
constant in x € X) is given by the set of £ € R such that the Schrédinger cocycle
(T, A(, E)) is not uniformly hyperbolic.

¢ (Kotani theory [94]) The absolutely continuous spectrum o, (H ) (i~ a.e. constant
for any ergodic (X, u, T') and constant for minimal systems [97]) is given by the
essential closure of the set {E : L(E) = 0}.

Therefore, for minimal, and in particular quasiperiodic, underlying dynamics, spec-
trum and absolutely continuous spectrum of H, are encoded by the dynamics of the one-
parameter family A(x, E) of transfer-matrix cocycles, indexed by the energy E, but, for the
spectrum, not by any explicit quantity. One recent surprising development is that for analytic
one-frequency quasiperiodic Schrodinger operators, the spectrum (and therefore absence of
uniform hyperbolicity of the corresponding cocycles) can be characterized more directly. In
[47] we introduce a new object, dual Lyapunov exponent I:(E ), and prove

Theorem 1.1 ([47]). For quasiperiodic operators (0.1) with analytic V,
o(H) = {E : L(E)L(E) = 0}. (1.3)

Exponent f,(E ) is defined as the limit of lowest Lyapunov exponents of dual high-
dimensional cocycles (see Sections 2 and 4) which is proved to exist. There are interesting
questions of varying levels of difficulty on whether this can be appropriately extended to
higher-dimensional analytic one-frequency quasiperiodic Schrodinger cocycles, correspond-
ing to operators on the strips, to multifrequency analytic cocycles, to nonanalytic potentials,
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or even other underlying dynamics. Perhaps the most natural question is whether one can
find an analytic characterization of the absence of uniform hyperbolicity for all analytic one-
frequency quasiperiodic cocycles. For the latter, there is a topological obstruction, but one
can reduce the question, say, to cocycles homotopic to the identity.

2. AUBRY DUALITY AND HIGHER-DIMENSIONAL COCYCLES

The early work of Dinaburg—Sinai [37] notwithstanding, it is fair to say that the study
of the spectral theory of quasiperiodic operators has been largely shaped around and driven
by several explicit models, all coming from physics. The most prominent of those is the
almost Mathieu family Hj cos,«,x, Which can be argued to be the tight-binding analogue of
a harmonic oscillator. Besides being the main model in the related physics studies and that
featured in the Hofstadter’s butterfly, it is also the simplest, in many ways, analytic case,
yet it seems to represent most of the nontrivial properties expected to be encountered in the
more general situation. In some sense, it plays the same role in the theory of quasiperiodic
operators that the Ising model plays in statistical mechanics, and similarly to the latter, it
does have an important additional symmetry.

Namely, we define the Aubry dual of the one-frequency Schrodinger operator (0.1)
as ~

(I-AIV,a,gu),, = Z Vitysk + 2cos2m(60 + na)u,, neZ, 2.1
k=—oc0

where V} is the kth Fourier coefficient of V.! It can be useful to view this as a transformation
of the entire family indexed by x for fixed V, «. In this regard, this transform can be viewed
as a unitary conjugation on # = L?(T x Z), via

Uy (x.n) =¥ (n,x +an), (2.2)

where g& : L>(Z x T) — L*(T x Z) is the Fourier transform. The almost Mathieu family

is self-dual with respect to this transformation 1:12 Acos,a,x = H 2 and, in particular,

cos,a,0°
H> cos,a,x- that is, Hpj cos,,x With A = 1, is the self-dual (also called critical) point.

Aubry duality can be explained by the magnetic nature and corresponding gauge
invariance of two-dimensional magnetic Laplacians that lead to Hy o  [101]. In particular,
spectra and integrated densities of states of Hy o » and H v.a,x coincide. However, it is not
the case for the spectral type, and indeed it is natural to expect that a Fourier-type trans-
form would take localized eigenfunctions (point spectrum!) into extended ones (absolutely
continuous spectrum!), and vice versa. That was the basis for several predictions by physi-
cists Aubry and Andre [1] about the almost Mathieu family with irrational «, namely that the
spectrum of Hyj cos,a,x iS absolutely continuous for A < 1 (called subcritical) and pure point

for A > 1 (called supercritical). This was described in the paper where transformation (2.1)

1 There is a more general, multidimensional definition, but we stick to the one-dimensional
case for this exposition.
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was introduced in the context of the almost Mathieu family, leading to the name Aubry dual-
ity. This problem, along with a few others related to this family, was heavily popularized by
Barry Simon in [106,108], fueling an increased interest in the mathematics community.

Aubry duality has been formulated and explored on different levels, e.g., [18,55,101].
It has consistently played a central role in the analysis of quasiperiodic operators, in proving
absolutely continuous spectrum and reducibility [1e,31], point spectrum [17,24,50,57,70],% or
its absence [11, 69].

In general, operator (2.1) is long-range. If V' is a trigonometric polynomial of
degree d, the transfer-matrix A(x, E) of the eigenvalue equation H Vax¥ = EV gives
rise to a 2d -dimensional cocycle, which has a complex-symplectic structure [6e], so we will
view it as an Sp(2d, C) cocycle («, A), A € Sp(2d, C), a linear skew product

(a,A):{Tx(CZd - T xC2 }
(x,v) = (4o AKX, E)-v)

The Lyapunov exponents L («, A) > Lo(a, A) > --- > L, (at, A), repeated accord-
ing to their multiplicity, are defined by

Li(a, A) :nli)rgo%/;rln(ok(An(x)))dx,

where for a matrix B € M,,(C), 01(B) > -+ > 0,,(B) denote its singular values (eigen-
values of ~/B*B). Since for real E the transfer-matrix A(x, E) of the eigenvalue equa-
tion ﬁyya,xlll = EV is symplectic, its Lyapunov exponents come in the opposite pairs
{£L;(a, A)}idzl. We will now denote

Li = Lg_i(a, A), (2.3)

sothat0 < L; < L, <---<Ly.

In general, Lyapunov exponents are not nicely behaved with respect to parameter
changes. They can be (and most likely, typically are) discontinuous in « at & € Q (the almost
Mathieu cocycle is one example), are generally discontinuous in A in C°, and can be dis-
continuous in A even in C* [35,81,113,114]. It is a remarkable fact, enabling much of the
related theory, that Lyapunov exponents are continuous in the analytic category.

Theorem 2.1 ([12,29,31,73]). The functions R x C®(T, M;,(C)) > (o, A) — Li(c, A) €
[—o00, 00) are continuous at any (o, A') with o’ € R\Q.?

For the almost Mathieu operator, it leads to the exact formula for the Lyapunov expo-
nent for energies E in the spectrum of Hy cos,o,x- We have L o(E) = max{ln|A[, 0} [3e].
For Diophantine «, this continuity extends to sufficiently smooth Gevrey spaces
[35,92], and it is a remarkable recent result [48] that for certain « the transition in the topology

2 Made possible with the development of recent powerful methods [7, 14, 65,118] to establish
nonperturbative reducibility directly and independently of localization for the dual model.

3 In dimension one, it extends to the Lyapunov exponents of multifrequency cocycles
R x C®(T?,SL,(C)) 5 (a, A) — L(a, A) € [0, 00).
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for continuity of L occurs sharply at the Gevrey space G2. It should be noted that both
the original spectacular counterexample [113] and its refinements [48, 114] require « to be a
fixed irrational of bounded type, i.e., having a continued fraction expansion with bounded
coefficients. This set includes the golden mean but forms a set of zero Lebesgue measure. The
authors of all these papers also vary the cocycle, i.e., the potential. This still leaves open the
question whether continuous behavior of the Lyapunov exponents at least for Schrodinger
cocycles with regularity lower than G? is possible if a is not of bounded type. Another
open question is whether it is true that for a fixed potential of lower than G? regularity, the
Lyapunov exponent is necessarily a continuous function of energy.

3. AVILA’S GLOBAL THEORY AND CLASSIFICATION OF ANALYTIC

ONE-FREQUENCY COCYCLES

While many results exist in lower regularity, the analyticity of V in (0.1) brings
on board powerful ideas related to subharmonicity (leading, in particular, to the crucially
important for other developments continuity results) and the technique of semialgebraic sets
introduced to the field by J. Bourgain [28]. As a result, a lot more can be said about analytic
quasiperiodic operators. Particularly, while Kotani theory based its characterization of the
absolutely continuous spectrum on compexifying the energy, for analytic quasiperiodic oper-
ators there is one more natural parameter to complexify, namely the phase. This idea goes
back to M. Herman [63], and has been fruitfully used to prove positivity (and later continuity)
of the Lyapunov exponent in [29, 63,110]. Avila [5] discovered a remarkable related structure
that has served as a foundation of his global theory (later extended to the high-dimensional
cocycles in [12]). Define

0

[] 4G+ ja+ie E)| du.

Jj=n—1

1
L.(E) := nll)rgo/ r_zln

Avila observed that, for a given cocycle, L. is a convex function of €, and proved that it has
quantized derivative in €.
Theorem 3.1 ([5]). For any complex-analytic one-frequency cocycle,
o) = tim LD =LA
e—~>0+ 2rme

This was enabled through approximation by the rationals due to the continuity of the
Lyapunov exponent in the analytic category [32]. The fact that such continuity does not hold
even for higher Gevrey cocycles [48,113,114] complicates potential nonanalytic extensions.

Theorem 3.1 already enables full analytic computation of the Lyapunov exponents
for E in the spectrum, as well as of their complexifications L, and further analysis for several
models originating and relevant in physics: the almost Mathieu operator [5], the extended
Harper’s model [81], recently discovered models with mobility edges [112] and unitary almost
Mathieu operator [34], models arising in the study of the quantum graph graphene [23], and
others.
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Avila classified analytic cocycles A(x) depending on the behavior of the Lyapunov
exponent L, of the complexified cocycle A(x + i€). Namely, he distinguishes three cases,
with the terminology inspired by the almost Mathieu family:

(Subcritical) Le = 0,€ < 8, § > 0, or, alternatively, Ly = w(A4) = 0.
(Critical) Lo =0, L¢ > 0,€ > 0, or, alternatively, Lo = 0, w(A4) > 0.
(Supercritical) Lo > 0.

For the almost Mathieu family, these three regimes are uniform over the spectrum,
corresponding to the supercritical (A > 1), subcritical (A < 1), and critical (A = 1) values
of the coupling constant. Spectrally, there is purely absolutely continuous spectrum for all x
and all « € R\@Q in the subcritical case [3], purely singular continuous spectrum for all x and
all @ € R\Q in the critical case [69], and pure point spectrum for a.e. x, & with sharp spec-
tral transitions depending on the arithmetics of both & and x between pure point spectrum
and singular continuous spectrum in the supercritical case (see Section 5). Remarkably, the
critical almost Mathieu operators appear at the boundary of the two other regimes.

For general quasiperiodic operators, this classification leads to the corresponding
division of energies in the spectrum, depending on (sub/super)criticality of the cocycle
A(-, E). For convenience we will call the energy in the spectrum (super/sub)critical accord-
ing to whether the corresponding transfer-matrix cocycle is such. It is expected that the key
spectral properties of spectra in the three above regimes follow those of the corresponding
almost Mathieu operators.

Indeed, pure point spectrum for a.e. x, & holds through the supercritical set of ener-
gies, for any analytic potential [3e]. It is an important open problem to make this result
arithmetic, and it is expected that certain universal features of the transitions and structure
of the eigenfunctions discovered in [77,78] will hold globally, throughout the supercritical
regime, see Section 6.3.

The subcritical regime is subject to the almost reducibility conjecture (ARC) which
claims that subcritical cocycles are almost reducible, that is, have constant cocycles in the
closure of their analytic conjugacy class (note that since almost reducibility implies subex-
ponential growth of the iterates of the cocycle that is uniform in the (complexified) phase,
the converse is obviously true). The idea of reducing nonperturbative (global) to perturbative
(local) results originated from an earlier work by Avila and Krikorian [14]. ARC was first for-
mulated in [1e], and first established for the almost Mathieu operator [3,1e]. It was solved by
Avila for the Liouville case in [4], and the solution for the complementary Diophantine case
has been announced [5] to appear in [2]. Also, L. Ge has recently found a different proof [46].

Almost reducible (and therefore subcritical) cocycles enjoy all the dynamical and
spectral consequences of the Eliasson’s perturbative regime [39]. In particular, there is purely
absolutely continuous spectrum throughout the subcritical regime. Moreover, reducibility
can be made quantitative [117], and even arithmetically so [5e], allowing for a wealth of
conclusions. However, it remains true that the absolutely continuous spectrum is fully char-
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acterized by the subcritical regime, with no delicate dependence, as far as the spectral decom-
position goes, on any other parameters.

The critical regime is expected (see [11,82]) to support only singular continuous
spectrum (again, no dependence on the other parameters, as long as « is irrational) but
fully establishing it even for the critical almost Mathieu operator took decades and was only
accomplished recently [69].

On the other hand, the key result of Avila’s global theory [5] is that operators with
critical energies throughout the spectrum, like the critical almost Mathieu operator, are an
anomaly, that does not happen typically. In fact, for prevalent (in a certain measure-theoretic
sense) potentials, there are no critical energies, and the spectrum is contained in finitely many
intervals, with either only subcritical or only supercritical regime within each.* Moreover,
the set of potentials and energies (V, E) such that E is critical is contained in a countable
union of codimension-one analytic submanifolds of C®(T;R) x R. Another remarkable
related fact is that Lyapunov exponent enjoys even much stronger regularity when restricted
to potentials and energies with a fixed value of acceleration: it becomes real-analytic on this
(typically rather irregular) set, in both the energy E and any parameter A ranging in a real
analytic manifold A, if V) in C®(T;R) is a family real-analytic in parameter A.

From the point of view of the global theory, it becomes particularly important to
study the universal features of the two prevalent regimes, subcritical and supercritical. As
mentioned above, the absolutely continuous spectrum is fully characterized by the subcritical
regime, with no delicate dependence, as far as the spectral decomposition goes, on any other
parameters. The picture for the supercritical regime is a lot more interesting, and is in a
certain sense at the beginning of its development.

Going back to the complexified cocycle L., quantizatization of acceleration means
that as a function of € > 0, L. is convex, piecewise affine, and thus is fully characterized
by L = L¢ and monotone increasing sequences of turning points b; and slopes n; € 277,
so that the slope of L, between b; and b; 4 is n;. Clearly, sequences b; and n; present a
very important intrinsic characterization of the cocycle and the corresponding Schrédinger
operator. What information do they give us?

4. DUAL LYAPUNOV EXPONENTS OR GLOBAL THEORY DEMYSTIFIED
It turns out that Aubry duality not only provides a new proof of quantization of
acceleration, but holds key to the mystery of the global theory. We have

Theorem 4.1 ([47]). Assume @ € R\Q and V € C?(T,R). Then there exist nonnegative
{f,i(E)} such that for any E € R,

Li(E) = Jim L{(E),

4 A part of this picture was previously established in the semiclassical regime in the con-
tinuum in [40].
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I: The subcritical E III: The critical E
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II: The supercritical E

FIGURE 2
The complexified Lyapunov exponent.

where ﬁ:j (E),i =1,...,d, are the Lyapunov exponents, as defined in (2.3), of the Sp(2d, C)
transfer-matrix cocycle of the dual eigenvalue equation H vigx¥Y = EV, with
V4(x) = Dy » V and D4 being the Dirichlet kernel. Moreover,

Lo(E) = Lo(E) — > Li(E) +2n(#{i : Li(E) < 2x|e|})le]
{i:Li(E)<2nle]}

In fact, the theorem also holds for V' € C;*(T, R) and |e| < h, where C;°(T, R)
is the space of bounded analytic functions f defined on a strip {|3z| < A} with the norm
| lln = supjsz|<n |.f(2)]. See Fig. 2 for an illustration of the three possible scenarios.

This means that for the trigonometric polynomials V' the turning points b; are given
precisely by the Lyapunov exponents Li (E) of the dual cocycle, and increases in the slopes
are given by the 27 times their multiplicities; for analytic V', these objects are given by
the limits of those quantities for successive trigonometric polynomial cutoffs of V. We call
L (E) the dual Lyapunov exponents, the objects that play a role similar to that of zeros of
an analytic function in the Jensen’s formula. In particular, the acceleration w(E) turns out to
be precisely the number of vanishing dual Lyapunov exponents (an analogue of the winding
number for an analytic function on T').

11 QUASIPERIODIC OPERATORS



Besides unraveling the mystery of the behavior of complexified Lyapunov expo-
nents, this leads to a new understanding of the key statement of Avila’s global theory, namely
that for prevalent operators (0.1), almost all pairs of potentials and energies are acritical.
Indeed, it immediately follows that

Theorem 4.2 ([47]). Assume o € R\Q and V is analytic, then the energy E € R is
(1) outside the spectrum if L(E) > 0 and L, (E) >0,
(2) supercritical if L(E) > 0 and L(E) = 0,
(3) critical if L(E) = 0 and L1(E) = 0,
(4) subcritical if L(E) = 0 and L(E) > 0.

Thus, in the regime L (E) = 0, criticality is in the locus of vanishing of an additional
continuous [12] function i,l(E ), implying the prevalence of the acriticality claim. Theo-
rem 4.2, of course, also contains the statement of Theorem 1.1, with =1 1, as well as the
fact that Schrodinger cocycle is subcritical if and only if its dual Lyapunov exponents are all
positive. It also leads to a number of other powerful spectral corollaries, both for the general
analytic case and several particular models [47]. It also has exciting physics applications [1ee].

5. PRECISE ANALYSIS OF SMALL DENOMINATORS

One of the most fascinating features of the spectral theory of one-frequency quasi-
periodic operators in the supercritical regime is its delicate dependence on the arithmetics,
that can be analyzed to a remarkable depth, and in some cases completely. There were many
exciting recent developments where the arithmetics has played a crucial role (e.g., [9,15,89])
but here we focus only on the analysis of small denominators in the proofs of point spectrum
and related study of the eigenfunctions.

The main difficulty in proving point spectrum (or the phenomenon of Anderson
localization, that is, pure point spectrum with exponentially decaying eigenfunctions) and
analyzing the corresponding eigenfunctions of ergodic operators is in the fact that the eigen-
values are dense in the spectrum. Formal perturbative expansions of eigenfunctions and
eigenvalues include the (V(T"x) — V(T™x))~! terms that, of course, get arbitrarily large.
More generally, when we have resonances, that is, restrictions to boxes that are not too far
away from each other that have eigenvalues that are too close (something that is bound to
happen for ergodic operators), small denominators are created. Thus localization for ergodic
and, in particular, quasiperiodic operators can be viewed as a small denominator problem.

Indeed, it has been traditionally approached in a perturbative way: through KAM-
type schemes for large couplings [39, 44, 189], which all required Diophantine conditions on
the frequency «. Small denominators are not simply a nuisance, but lead to actual change in
the spectral behavior, since in the opposite regime of very Liouville frequencies (oo small
denominators), there is no localization even with the positivity of the Lyapunov exponent;
and delocalization (which in this case means singular continuous spectrum) can be proved by
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perturbation of nearby periodic operators [2e,54]. At the same time, for exponentially approx-
imated frequencies that are neither far from nor close enough to rationals, there is nothing
left to perturb about or to remove. Tackling those cannot be approached perturbatively, but
requires a precise analysis, giving the problem a strong number-theoretic flavor.

It should be noted that the topology of the one-dimensional line is such that even
occasional barriers make it difficult to pass through, strongly favoring localization in the
presence of even small irregularities. For example, in the one-dimensional random case,
localization holds for all couplings A, when considering a family of potentials AV, and
the same is expected but is apparently difficult to prove even for the underlying dynam-
ics (X, u, T') with very weak chaotic properties, such as a skew shift. It has even been
conjectured by Kotani and Last that absolutely continuous spectrum is impossible for one-
dimensional operators that are not almost periodic, but it has been disproved [6,111], and with
a particularly simple construction in [119]. Those examples notwithstanding, the presence
of metal-insulator transitions (that roughly correspond to transitions between the spectral
types) as couplings change remains a distinctive feature of quasiperiodic operators.

The transitions in coupling between absolutely continuous and singular spectrum
are fully determined by the vanishing/nonvanishing of the Lyapunov exponent. In the super-
critical regime, absolutely continuous spectrum is impossible, but whether the spectrum is
point or singular continuous is resolved in the competition between the depth of the small
denominators—the strength of the resonances—and the Lyapunov growth.

Two types of resonances have played a special role in the spectral theory of quasi-
periodic operators. Frequency resonances, when |V (x) — V(x 4 ka)| is small simply because
[(x + ka) — x)||r/z = llka||r/z is small, where |x|r/z = infgez |x — £|, were first
exploited in [21] based on [54] to prove the absence of eigenvalues (and therefore singular
continuous spectrum in the hyperbolic regime) for quasiperiodic operators with Liouville
frequencies. Their strength is measured by the arithmetic parameter

In|ka|r/z

B(a) = limsup — 5.1

k—o0 |k |
that is equal to zero for Diophantine (thus a.e.) «. Frequency resonances are ubiquitous for
all quasiperiodic potentials.

Another class of resonances, appearing for all even potentials, was discovered in [83],
where it was shown that the arithmetic properties of the phase also play a role and may
lead to singular continuous spectrum even for the Diophantine frequencies. Indeed, for even
potentials, phases with almost symmetries, when |V (x) — V(x 4 k| is small because || (x +
ko) — (—x)|lr/z is small, lead to resonances, regardless of the values of other parameters.
The strength of phase resonances is measured by the arithmetic parameter

5. 0) = limsup — 120 T kallz/z
k—o00 k|
Phase resonances are symmetry based and exist for all even functions V.

(5.2)

It was conjectured in [66] that for the almost Mathieu family no other resonances
appear and the competition between the Lyapunov growth and combined exponential res-
onance strength resolves in a sharp way: there is a pure point spectrum for L(E) >
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B(a) + 8(c, x) and a singular continuous spectrum in the regime L(E) < S(a) + §(a, x).
We note that for the special case of a-rational x, that is, such that 2x € Z«a + Z, we
have §(«, x) = B(«) so the resonances “double up” and the conjectured threshold becomes
2B(w).

An early nonperturbative localization method was first developed in the 1990s for
the almost Mathieu operator [84] and represented perhaps the first case of solving a tradition-
ally KAM problem in a direct way, without an inductive procedure. It presented a (simple, but
not sharp) technique to treat the nonresonant case, (o) = §(o) = 0. Further breakthroughs
came in [85] where the role of the Lyapunov exponents and corresponding deviations was
first understood, allowing to achieve the nonresonant result up to the actual Lyapunov transi-
tion, and then in the work of Bourgain and collaborators [28,38] where robust nonperturbative
methods were developed for general analytic potentials and more, leading to the proofs of
localization for a.e. frequency throughout the supercritical regime. The ideas of [85] hold
more generally, and have, in particular, led to very simple proofs of localization for the one-
dimensional Anderson model [9e]. Most importantly, however, their arithmetic nature has
been crucial for further developments. For example, the fact that localization holds for a-
rational x,” enabled Puig’s proof [164] of the ten martini problem (that the spectrum is a
Cantor set) for Diophantine «. The solution of the full ten martini problem [s,9] required, in
particular, dealing with intermediate frequencies that are neither Diophantine nor Liouville,
thus with the frequency resonances. A method to treat those has been devised in [9] leading
to the proof of localization for L(E) > 19—6/3, but failing in the neighborhood of the actual
transition. A sharp method to treat pure frequency resonances was developed in [77], and a
sharp method to treat pure phase resonances in [78].

Therefore, the sharp arithmetic spectral transition conjecture of [66] has been estab-
lished for single-type-resonances: for pure frequency resonances (that is, for the so-called
a-Diophantine phases for which §(o, x) = 0 so there are no exponential phase resonances)
in [17,52,771,° and for pure phase resonances (that is, for Diophantine frequencies for which
B(a) = 0 so there are no exponential frequency resonances) in [78].

The methods to treat pure frequency and phase resonances in [77,78] are robust in a
sense that weak exponential resonances of the other type can be added easily, but it is still an
open problem to treat combined frequency and phase resonances in a sharp way. However,
there were two very recent breakthroughs.

Namely, W. Liu has developed a way to sharply treat doubled resonances for the
almost Mathieu operator, proving localization up to the conjectured threshold:

5 This was, in fact, established in [72].

6 In [17] the pure frequency part of the conjecture of [66] has been proved by a completely
different method, namely through quantitative reducibility [117] and duality, but in a
measure-theoretic in x sense, i.e., losing the control over the arithmetics of x. A recent
breakthrough by Ge—You [56@] where an arithmetic version of quantitative reducibility was
developed has lead to a way to obtain sharp arithmetic in phase results through duality as
well, enabling, in particular, an arithmetic duality-based proof of the frequency part of the
conjecture [52], that works also for all Aubry duals (2.1) of operators (0.1).

14 S. JITOMIRSKAYA



Theorem 5.1 ([991). Operator Hyp, cos,a,x With a-rational x has Anderson localization when-
ever L(E) > 2p(a) (or equivalently, A > ¢2P@),

In Liu’s earlier work, this was established for L(E) > 38(«) [98], but a significant
new understanding of treatment of doubled resonances was necessary to go sharp, and it
was achieved in [99]. Also a-rational phases x hold special importance for various ques-
tions because eigenvalues for such x are located at gap edges [104]. Puig’s proof of the ten
martini problem for the Diophantine case [1e4] was based precisely on localization for a-
rational x. The original plan to prove the full ten martini problem was to establish localization
for a-rational x and L(E) > B(«) [8]. Not surprisingly, it failed, prompting the resonance
doubling-up conjecture in [9] that is now solved [99]. It should be noted that the singular-
continuous part of the conjecture, namely singular-continuous spectrum for «¢-rational x and
L(E) < 2B(w), is still open.

In a different direction, R. Han, F. Yang, and I [58] developed a sharp method to treat
the third type of resonances: high barriers (that effectively play the role of antiresonances),
and, moreover, combinations of frequency resonances and high barriers, in another popular
quasiperiodic family originating in physics, the Maryland model.

Maryland model is a family

(Mj q,0u)n = Up+1 + Up—1 + Atan(n(@ + ”a))un, (5.3)

where A > 0 is the coupling constant, irrational « € T = [0, 1] is the frequency, and 6 € T
is the phase with ¢ © = {1 + «Z + Z}.

It was originally proposed by Grempel, Fishman, and Prange [56] as a linear version
of the quantum kicked rotor and has attracted continuing interest from the physics commu-
nity, see, e.g., [26, 42, 45], due to its exactly solvable nature. It has explicit expression for
the Lyapunov exponent, integrated density of states, and even (a little less explicit) for the
eigenvalues and eigenfunctions. In particular, the Lyapunov exponent L, (E) is an explicit
function of A, E not dependent on «. However, the implicit expressions for the eigenfunc-
tions do not allow for easy conclusions about their behavior, which is expected to be quite
interesting, with transfer matrices satisfying certain exact renormalization [41].

Phase resonances do not exist for the Maryland model, and as a result, for Dio-
phantine (i.e., nonresonant) frequencies it has localization for all phases [87,107]. However,
it does have barriers, when the trajectory of a given phase approaches the singularity too
early. Barriers compensate for the resonances, and therefore serve as what we call in [58]
the antiresonances, providing the reason why for the Maryland model there are phases with
localization even for the most Liouville frequencies [76]. Thus Maryland model features a
combination of frequency resonances and phase antiresonances.

Maryland model was the first one where the spectral decomposition has been
resolved completely, for all values of the parameters [76].” Let p, /¢, be the continued frac-
tion approximants of «. We note that the frequency resonance index (o) defined in (5.1)

7 It also remains the only one with spectral transitions where this could be claimed.
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also satisfies B(o) = limsup,,_, o h“f]—’;“. A new index, 8™ (o, ), was introduced in [76] as

8M(01 0) := lim sup Indn1 +Inlgn(6 = %)”T

n—o00 dn

5.4
‘We have

Theorem 5.2 ([761). Hj o9 has purely singular continuous spectrum on {E : L) (E) <
M (a, 0)}, and pure point spectrum on {E : Ly (E) > §M (a, 9)}.5

This provides complete spectral analysis, for all «, 8, but was established implic-
itly: through the combination of Cayley and Fourier transforms and the study of a resulting
explicit cohomological equation, making sharp the previous work in [56,107]. The extension
of the analysis from a.e. 6 in [1e7] to all 6 in [76] required accounting for the effect of the
barriers, and Cayley transform allowed to do it, albeit in a highly implicit way. In particular,
this proof did not allow the analysis of the structure of eigenfunctions.

The method of [85] was adapted to the Maryland model in [87] where the nonresonant
situation was treated and localization for Diophantine o was shown, developing the initial
framework to study the eigenfunctions in the much more difficult resonant situation.

In [58] we show that §(«, 8) can be interpreted as the exponential strength of fre-
quency resonances, («), combined with the (negative) exponential strength of phase anti-
resonances, defined as the positions of exponential smallness of the cos( (8 + ka)),” and
develop the approach to sharply treat the “resonance tamed by an antiresonance” situation.
In particular, we give a constructive proof of the localization part of Theorem 5.2 and obtain

Theorem 5.3 ([58]). Forany a € R\Q and any 0, the spectrum on {E : Ly (E) > §M («,0))}
is pure point and for any eigenvalue E € {L (E) > 8™ (a,0)} and any € > 0, the correspond-
ing eigenfunction ¢ satisfies |pg (k)| < e~ (La(B)=8M (@.6)—)lk] for sufficiently large |k|.

Theorem 5.3 provides the sharp upper envelope, and develops the key tools to study
the fine behavior of the eigenfunctions, see Section 6.2. In fact, such a study is the most
exciting outcome of the proofs of localization based on sharp analysis of resonances.

There are several other models where sharp arithmetic spectral transitions have been
conjectured and partially established, most notably the extended Harper’s model, where for
the complete analysis one would need to develop tools to study the simultaneous presence
of three different types of resonances: frequency, phase, and singularity-induced antireso-
nances. However, for a.e. phase we expect the arithmetic frequency transition to be universal
in the class of general analytic potentials. As for the arithmetic transitions in phase, we expect
the same results to hold for general even analytic potentials for a.e. frequency. We note that
the singular continuous part up to the conjectured transition is already established, even in a
far greater generality, in [17,71,78].

8 It follows from the explicit formula for L) (E) that the equality can only happen for two
values of E.
9 So exponential largeness of the tan.
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Finally, there is a question of arithmetic interfaces, e.g., what happens for the almost
Mathieu operators with L(E) = B(«) + 6(«, 6)? It turns out that (in the pure resonance sit-
uations) both pure point and singular continuous spectra are possible depending on the finer
arithmetic properties of parameters [13,86,88]. So far we do not even have a good conjec-
ture on where the arithmetic thresholds within the transition lines lie. Making a significant
progress on this problem would require a development of polynomial (as contrasted with cur-
rent exponential) methods to tackle resonances, a very important problem in its own right,
as it could lead to universal hierarchical structures (see Section 6) on polynomial scales.

6. EXACT ASYMPTOTICS AND UNIVERSAL HIERARCHICAL

STRUCTURE OF EIGENFUNCTIONS

A very captivating question and a longstanding theoretical challenge is to explain
the self-similar hierarchical structure visually obvious in the Hofstadter’s butterfly, as well as
the hierarchical structure of eigenfunctions, as related to the arithmetics of parameters. Such
structure was first predicted for the almost Mathieu operator in the work of Azbel in 1964
[22], some 12 years before Hofstadter [64], and before numerical experimentation was possi-
ble. Such self-similar behavior is present for spectra and eigenfunctions of all quasiperiodic
operators.

While this does not describe or explain the self-similarity, a step in the right direc-
tion is to prove that the spectrum is a Cantor set. Mark Kac offered ten martinis in 1982 for
the proof of the Cantor set part of Azbel’s 1964 conjecture. It was dubbed the Ten Martini
problem by Barry Simon, who advertised it in his lists of 15 mathematical physics problems
[106] and later, mathematical physics problems for the XXI century [1e8]. Most substantial
partial solutions were made by Bellissard, Simon, Sinai, Helffer, Sjostrand, Choi, Eliott, Yui,
and Last [25, 36, 62,96,189], between 1983 and 1993. J. Puig [1e4] solved it for Diophantine «
by noticing that localization at 6 = 0 [73,85] leads to gaps at corresponding (dense) eigen-
values. The final solution was given in [9]. Cantor spectrum is also prevalent for general
one-frequency operators with analytic potential: in the subcritical regime [1e], and, by very
different methods, in the supercritical regime [53] (and it is conjectured [11] also in the crit-
ical regime, which is nongeneric in itself [5]). Moreover, even all gaps predicted by the gap
labeling are open in the noncritical almost Mathieu case [19, 16], the statement that is also
expected to be true in the critical case, and recently claimed in the physics literature [27] to
follow directly from [69].

As for the understanding the hierarchical behavior of the eigenfunctions, despite
significant numerical studies and even a discovery of Bethe Ansatz solutions [116], it has
remained an important open challenge even at the physics level, although some indications
existed in the perturbative regime [33, 62,109, 126].

Sharp analysis of resonances and small denominators has led to the discovery of
universal self-similar structures of eigenfunctions defined by the type of resonance. The uni-
versal nature of these structures manifests in two ways: there is the same universal function
that depends only on the type of the resonance, that governs the behavior around each expo-
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nential frequency or phase resonance (upon (possibly) reflection and renormalization), and
it is the same structure for all the parameters involved: any (Diophantine) frequency «, (any
a-Diophantine phase 0) with B(«) < L (6(«, 6) < L), and any eigenvalue E. It has been
discovered and proved for the almost Mathieu operator [77,78] but is expected to be univer-
sal also throughout the class of analytic potentials, and more,' that is to hold in the regime
of pure resonances. For example, the same universal structure for frequency resonances has
already been proved for the Maryland model [59], for a.e. phase, namely, phases without the
exponential antiresonances, see also a result on the hierarchical structure in the semiclassical
regime [93]. However, for phases whose trajectories approach the barrier too fast, the hierar-
chical structure of the eigenfunctions is very different, and the complete analysis is extremely
delicate.

Generally, one can identify four types of (anti)resonances that lead to different uni-
versal structures:

* frequency

* phase (only even potentials)

¢ barriers (antiresonance)

* singularity (antiresonance for Jacobi matrices)

We describe the universal structures for phase and frequency resonances [77,78] in
the following subsections, and the one for the barrier antiresonances will appear in [59].

We expect that when different types of resonances are present, there will be further
different self-similar structures, universal for all corresponding parameters and different res-
onance positions. Describing these structures for different combinations of resonances is
very challenging but seems to be potentially within reach. In particular, in [58] we developed
the tools to fully describe the universal structures for the Maryland model for all parameters,
that is for combinations of frequency resonances and barrier antiresonances. We expect it to
be done in [59]. We also expect the latter structures to be universal in the class of monotone
potentials with a simple pole.

To give a glimpse into the universality results, we present two of them in more detail.

6.1. Frequency resonances

In [77] we find explicit universal functions f (k) and g(k), depending only on the
Lyapunov exponent and the position of k in the hierarchy defined by the denominators
gn of the continued fraction approximants of the flux «, that completely define the expo-
nential behavior of, correspondingly, eigenfunctions and norms of the transfer matrices of
the almost Mathieu operators, for all eigenvalues corresponding to «-Diophantine phase,
see Theorem 6.1. This result holds for all frequency and coupling pairs in the frequency-

10 For example, C2 cos-type potentials have been a popular object of study [43, 49, 51,109,
115] and there are reasons to believe that they will feature the same structure, at least in the
perturbative regime.
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resonance localization regime. Since the behavior is fully determined by the frequency and
does not depend on the phase, it is the same, eventually, around any starting point, so is also
seen unfolding at different scales when magnified around local eigenfunction maxima, thus
describing the exponential universality in the hierarchical structure.

Since we are interested in exponential growth/decay, the behavior of f and g
becomes most interesting in case of frequencies with exponential rate of approximation
by the rationals.

These functions allow describing precise asymptotics of arbitrary solutions of
H; o909 = E¢ where E is an eigenvalue. The precise asymptotics of the norms of the
transfer-matrices provides the first example of this sort for nonuniformly hyperbolic dynam-
ics. Since those norms sometimes differ significantly from the reciprocals of the eigenfunc-
tions, this leads to further interesting and unusual consequences, for example, exponential
tangencies between contracted and expanded directions at the resonant sites.

Given o € R\Q, we define functions f, g : Z* — R in the following way. Let g—;’
be the continued fraction approximants to . For any 2 < k < q”%, define f(k), g(k) as
follows:

8
Case 1. g, 1 > L ork > q,.
Iflgy, <k < ({+ 1)g, with £ > 1, set

flk) = e—lk—fq,,llnl/\\;él + e—lk—(‘e‘f‘l)Qn“"leg_i_l, 6.1)
and
g(k) = e—|k—éq,,|1n|)t|q’i_;rl + e—\k—(€+l)qnlln|/\\$, (6.2)
Ty Fev1

where for £ > 1,

_ _Indgnt1 | me
L e L

Set also 7§ = 1 for convenience.
If & <k < gy, set

fk) = e—kmlAl + e—lk—qnllnll\f{;’ 6.3)
and
HOETI 6.4)
8
Case2. ¢, 1 <% and & <k < min{g,, ¥ }.
Set
f(k) = e7FmIA, (6.5)
and
g(k) = e, (6.6)

Notice that f, g only depend on @ and A, but not on 8 or E; f(k) decays and g(k)
grows exponentially, globally, at varying rates that depend on the position of k in the hierar-
chy defined by the continued fraction expansion of ¢, see Figures 3 and 4.

19 QUASIPERIODIC OPERATORS



S k)

!
|
|
|
|
| !
| |
| |
Il |

an Lan £+ Dgn (£ +2)qn (£ +3)gn (£ + 4)gn anH k

FIGURE 3
The universal behavior of eigenfunctions at scale n.
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The universal behavior of transfer matrix norms at scale 7.

It turns out that, in the entire regime L(E) > B, the exponential asymptotics of the
eigenfunctions and norms of transfer matrices at the eigenvalues are completely determined

by f (k). g (k).

Theorem 6.1. Let o € R\Q be such that |A| > e @ Suppose 6 is Diophantine with respect
to o, E is an eigenvalue of Hy, o 9, and ¢ is the eigenfunction. Let U(k) = (¢<(bk(li)1) ) Then
for any & > 0, there exists K (depending on A, «, C,¢) such that for any |k| > K, U(k) and
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A" satisfy
FUkDe™* < Juk)|| < f(k[)e ¥ (6.7)

and
g(kDe ™ < 4kl < g(lk]es*. (6.8)

In fact, the theorem is formulated in [77] for generalized eigenfunctions, thus can also
be used to establish pure point spectrum throughout the indicated regime. Certainly, there
is nothing special about k = 0, so the behavior described in Theorem 6.1 happens around
an arbitrary point k = k¢. This implies the self-similar nature of the eigenfunctions: U(k)
behave as described at scale g, but, when looked at in windows of size g, g < gn—1, will
demonstrate the same universal behavior around appropriate local maxima/minima.

To further illustrate the above, let ¢ be an eigenfunction and U(k) = ( ¢‘(i’k(li)1) )
An immediate corollary of Theorem 6.1 is the universality of behavior at all appropriately
defined nonresonant local maxima. We will say kg is a local j-maximum of ¢ if | U(k¢)|| >
|U(k)| for |k — ko| ~ g;. Then, with an appropriate notion of nonresonance (see [77]), we
have

Theorem 6.2 ([77]). Given ¢ > 0, there exists j(g) < oo such that if ko is a nonresonant
local j-maximum for j > j(¢€), then
- [U(ko + s)|l
flshe™ < BT flsDe™!, 6.9)
for |s — kol ~ q;.

In case B(a) > 0, Theorem 6.1 also guarantees an abundance (and a hierarchical
structure) of local maxima of each eigenfunction.

Let ko be a global maximum. The self-similar hierarchical structure of local maxima
can be described in the following way. We will say that a scale n, is exponential if Ingy; 1 >
Cqnj, - Then there is a constant scale 7ig, thus a constant C := gj,41, such that for any
exponential scale n; and any eigenfunction there are local n;-maxima within distance C
of ko + sqn;, for each 0 < |s] < e
ko — e Mo ko + e Mo ].

The exponential behavior of the eigenfunction in the local neighborhood (of size of

Jo . Moreover, these are all the local nj,-maxima in

order ¢p; ) of each such local maximum, normalized by the value at the local maximum is
given by f. Note that only exponential behavior at the corresponding scale is determined by
f and fluctuations of much smaller size are invisible.

Now, let nj, < nj, be another exponential scale. Denoting “depth 17 local maxi-
mum located near ko + aj, jodnjo by ban,-o , we then have a similar picture around banj : there

Cqn

0
are local 7;, -maxima in the vicinity of b“"fo + 5qn;, for each 0 < |s| < e"™"i1. Again, this
describes all the local ¢,; -maxima within an exponentially large interval. And again, the
exponential (for the n;, scale) behavior in the local neighborhood (of size of order g, i) of

each such local maximum, normalized by the value at the local maximum, is given by f.

11 Products Ay, are defined in (1.2).
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FIGURE 5
Universal self-similar structure of eigenfunctions

Denoting those “depth 2" local maxima located near ba,,/. + an;, qn;, by ban,- an

J0 K K P J1
we then get the same picture taking the magnifying glass another level deeper, and so on.
At the end we obtain a complete hierarchical structure of local maxima that we denote by

an, with each “depth s + 1” local maximum banj A being in the cor-
s 0 s

Qn; sQn ;. sees
Jo J1
responding vicinity of the “depth s” local maximum banj an

1
behavior at the corresponding scale around each. The quality of the approximation of the

1’
ln, s and with universal
s—1

position of the next maximum gets lower with each level of depth, yet the depth of the hierar-
chy that can be so achieved is at least j/2 — C, Figure 5 schematically illustrates the structure
of local maxima of depth one and two, and Figure 6 illustrates that the neighborhood of a
local maximum appropriately magnified looks like a picture of the global maximum. See
[77] for the exact statement.

6.2. Phase resonances

In [78] we found another universal structure, this time for phase resonances. Once
again, we found (different) functions f that determine universal asymptotics of the eigen-
functions, also locally around the resonances, which features a self-similar hierarchical struc-
ture. In particular, we have Theorem just like Theorem 6.1 but with new f and for f(«) =0
and L > §(w, 0) [78]. The behavior described in this theorem happens around an arbitrary
point. This, coupled with effective control of parameters at the local maxima, allows uncover-
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Universal self-similar structure of eigenfunctions, zoomed in

ing the self-similar nature of the eigenfunctions, but this time one needs not only the rescaling
but also alternating reflections, leading to what we call the reflective-hierarchical structure.

Assume phase 0 satisfies 0 < §(«,0) <InA.Fix 0 < ¢ < §(ct, 6). Let k¢ be a global
maximum of eigenfunction ¢. Let K; be the positions of exponential resonances of the phase
0’ = 0 + koa defined by

126 + (2ko + Ki)et||ryz < e 'Kl (6.10)

This means that [v(8’ + £a) — v(0’ 4+ (K; — £)a)| < Ce~SI&il uniformly in ¢, or,
in other words, the potential v, = v(6 + na) is e~S%il-almost symmetric with respect to
(ko + Ki)/2.

Since « is Diophantine, we have

|Ki| > ceclKinl, 6.11)

where ¢ depends on ¢ and « through the Diophantine constants k, t. On the other hand, K;
is necessarily an infinite sequence. Let ¢ be an eigenfunction, and U(k) = ( ¢?k(li )1) ) We say
k is alocal K-maximum if |[U(k)|| = ||U(k + s)| forall s — k € [-K, K].

The informal description of the reflective-hierarchical structure of local maxima is
the following. There exists a constant K such that there is a local cK j-maximum b; within
distance K of each resonance K. The exponential behavior of the eigenfunction in the local
cKj-neighborhood of each such local maximum, normalized by the value at the local maxi-
mum, is given by the reflection of f.
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Global maximum

FIGURE 7
Reflective self-similarity of an eigenfunction.

Moreover, this describes the entire collection of local maxima of depth 1, that is, all
K such that K is a cK-maximum. Then we have a similar picture in the vicinity of b;: there
are local cK;-maxima b;;,i < j, within distance K?2 of each K; — K;. The exponential (on
the K; scale) behavior of the eigenfunction in the local ¢ K;-neighborhood of each such local
maximum, normalized by the value at the local maximum, is given by f.

Then we get the next level maxima bj;s, s < i in the R 3-neighborhood of
K; — K; + K and reflected behavior around each, and so on, with reflections alternat-
ing with steps. At the end we obtain a complete hierarchical structure of local maxima that
we denote by bj, j,.....j;» with each “depth s 4+ 1” local maximum by, ;, ... ; being in the cor-
responding vicinity of the “depth s local maximum bj, ;... ;... ~ ko + Zf;(l)(—l)iK i
and with universal behavior at the corresponding scale around each. The quality of the
approximation of the position of the next maximum gets lower with each level of depth, with
bjio.jr,... s determined with K* precision, thus it presents an accurate picture as long as
K, > K*.

Thus the behavior of ¢(x) is described by the same universal f in each ~ K

window around the corresponding local maximum bj, j, .. ;. after alternating reflections.

The positions of the local maxima in the hierarchy are determined up to errors that at all but
possibly the last step are superlogarithmically small in K. We call such a structure reflective
hierarchy.

Figure 7 depicts reflective self-similarity of an eigenfunction with global maximum

at 0. The self-similarity is seen as follows: I’ is obtained from I by scaling the x-axis propor-
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tional to the ratio of the heights of the maxima in I and I; Il is obtained from II by scaling
the x-axis proportional to the ratio of the heights of the maxima in II and II'. The behavior
in the regions I, II' mirrors the behavior in regions I, IT upon reflection and corresponding
dilation.

6.3. Universality and extensions

The hierarchical structures of Sections 6.1 and 6.2 are expected to hold universally
for most in the appropriate sense (albeit not all, as for the almost Mathieu) local maxima for
general analytic potentials. Establishing this fully would require certain new ideas since so far
even an arithmetic version of localization for the Diophantine case has not been established
for the general analytic family, the current state-of-the-art result by Bourgain—Goldstein [3e]
being measure-theoretic in «.

The universality of the hierarchical structures of Sections 6.1 and 6.2 is twofold:
not only it is the same universal function that governs the behavior around each exponential
frequency or phase resonance (upon reflection and renormalization), it is the same structure
for all the parameters involved: any (Diophantine) frequency « (any e-Diophantine phase )
with B(«) < L (§(o, 8) < L), and any eigenvalue E. The universal reflective-hierarchical
structure in Section 6.2 requires the evenness of the function defining the potential and,
moreover, resonances of other types may also be present in general. However, we conjectured
in [78] that for general even analytic potentials for a.e. frequency only finitely many other
exponentially strong resonances will appear, thus the structure described in Section 6.2 will
hold for the corresponding class.

The key elements of the technique developed for the treatment of arithmetic reso-
nances are robust and have made it possible to approach other questions and, in particular,
study delicate properties of the singular continuous regime. Among other things, it has
allowed obtaining upper bounds on fractal dimensions of the spectral measures and quan-
tum dynamics for the singular continuous almost Mathieu operator [79], as well as potentials
defined by general trigonometric analytic functions [75], and determining also the exact expo-
nent of the exponential decay rate in expectation for the two-point function [74], the first result
of this kind for any model. These methods are also expected to be applicable to many other
models.
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1 Introduction

Consider a two-dimensional discrete Laplacian: an operator on £%(Z?) of the
form

(Hw)m,n - 7~/)m—1,n + wm—s—l,n + wm,n—l + ¢m,n+1 (]->

The Fourier transform makes it unitarily equivalent to multiplication by
2(cos 2mx +cos 2my) on L?(T?) where T? := R?/Z?. Thus its spectrum? is the
segment [—4,4].

In physics this is a tight binding model of a single electron confined to a
2D crystal layer. What happens if we put this crystal in a uniform magnetic
field with flux orthogonal to the lattice plane? Of course, we have a freedom
of gauge choice, but all the resulting operators are unitarily equivalent, so we
may as well choose one, the so called Landau gauge, leading to the discrete
magnetic Laplacian® operator

(H(a)w>m,n - wm—l,n + 7pm—l—l,n + 6_iaml/}m,n—l + eiaml/)m,n—s—l (2>

Even though incorporating those phase factors may seem innocent enough,
basic quantum mechanics teaches us that magnetic fields may have a pro-
found effect on allowed energies. In the continuum model, subjecting the
electron plane to a perpendicular magnetic field of flux o changes the stan-
dard Laplacian into a direct integral of shifted harmonic oscillators, and thus
the [0,00) spectrum of the Laplacian turns into a discrete set of infinitely
degenerate Landau levels, at c|a|(n 4+ 1/2),n € N. It turns out that in the
discrete setting, the situation is even more dramatic and also much more
rich and interesting. For any irrational «, the spectrum of H(«) is a Cantor

2See Section 2 for a quick reminder on the basics of spectral theory and ergodic oper-
ators
3The name “discrete magnetic Laplacian” first appeared in [82)]



Figure 1: This picture is a plot of spectra of H(«) for 50 rational values of «
[48]. The fluxes o = p/q are listed on the vertical line, and the corresponding
horisontal sections are spectra of H(«).

set of measure zero, and the spectra for rational «, plotted together, form a
beautiful self-similar structure, shown on Fig.1, called Hofstadter’s butterfly.

The operator H(«), to the best of our knowledge, was introduced by
Peierls in [80], and later studied by his student Harper. The first predictions
of Cantor spectrum with arithmetic, continued-fraction based hierarchy of
both the spectrum and eigenfunctions was made by Mark Azbel [21], remark-
ably, before any numerics was even possible. Yet, the model got a particular
prominence only after Hofstadter’s numerical discovery [48].

It was noticed already by Peierls in [80] that, similarly to the described
above Landau gauge solutions for free electrons in a uniform magnetic field,
the Landau gauge in the discrete setting, as in (2), also makes the Hamilto-
nian separable and turns it into the direct integral in  of operators H, g :
I(Z) — I*(Z), of the form

(Hopp)(n) = dp(n — 1) + ¢(n+ 1) + 2cos 2m(an + 0)p(n). (3)

In this sense, H,y can be viewed as the tight-binding analogue of the
harmonic oscillator. Here « is a magnetic flux per unit cell, and 6 is a
phase parameter characterizing plane waves in the direction perpendicular
to the vector-potential, so has no meaning to the physics of the original 2D



operators. Usually, one introduces also another parameter A\, characterizing
the anisotropy of the lattice: it is the the ratio between the length of a unit
cell in the direction of the vector potential and its length in the transversal
direction, leading to the 2D operator

(H(Oé, )\)sz)m,n = ,@Dm—l,n + wm—&—l,n + Ae_iam¢m,n—l + Aeiam¢m7n+1 (4)

and the family

(Hapr@)(n) =o(n— 1)+ ¢(n+ 1) + 2 cos 2m(an + 0)p(n). (5)

In physics literature, this family has appeared under the names Harper’s,
Azbel-Hofstadter, and Aubry-Andre model (with the first two names also
used for the discrete magnetic Laplacian H(«, \)) and often restricted to the
isotropic case A = 1. In mathematics, the name almost Mathieu operator is
used universally, so we also use it for these lectures. This name was originally
introduced by Barry Simon [83] in analogy with the Mathieu equation — f” +
2 cosaf(z) = Ef(z). For @« € R\Q, H,p, is an ergodic (and minimal)
family, so (see Sections 2.3,2.4) the spectra o(Hasp) do not depend on 6
and coincide with the spectrum o, ) of the 2D operator H(a, ). In general
(which is only relevant for rational «), we have o, ) = Ugo(Hap,), and this
is what the Hofstadter butterfly represents.

These lectures are devoted to some recent (roughly last 3 years) advances
on this model. They are by no means comprehensive, neither historically, as
we only mention past papers directly relevant to the presented results, nor
even in terms of very recent advances, as it is a fast developing field with
many exciting developments even in the last few years.

In physics, this model is the theoretical underpinning of the Quantum
Hall Effect (QHE), as proposed by D.J. Thouless in 1983, and is therefore
directly related to two Nobel prizes: von Klitzig (1998, for his experimental
discovery of the Integer QHE) and Thouless (2016, for the theory behind the
QHE and related topological insulators). Thouless theory is illustrated by
Fig. 2, where Chern numbers corresponding to each gap are produced using
the equations in [92], and color-coded, with warmer colors corresponding to
positive numbers, and colder colors to negative ones.

The model also has very strong relationship to the theory of graphene
(Geim and Novoselov, Nobel prize 2010), a robust 2D magnetic material

4



Figure 2: This picture is produced by Avron-Osadchy-Seiler [19].

whose spectra also form similar butterflies, and quasicrystals (Schechtman,
Nobel prize 2011), as it is a standard model of a 1D quasicrystal. To make it
a total of five Nobel prizes, one can also argue a weak relationship to the An-
derson localization Nobel prize (Anderson, 1977), for Anderson localization
is one property of this family for certain parameters, and, more importantly,
it features the metal-insulator transition (something only seen, but promi-
nently yet mysteriously so, in 3D or higher, for the random model). Then,
one can also add a 2014 Fields medal and the 2020 Heineman prize to the
list!

One of the most interesting features of the almost Mathieu family is
sharp phase transitions in its several parameters, for various properties. The
system, in particular, has distinct behaviors for A < 1 and A > 1. These
two regimes have traditionally been approached perturbatively, by different
KAM-type schemes, and then non-perturbative methods have been devel-
oped [51, 53|, allowing to obtain the a.e. results up to the phase transition
value A = 1. Since then, even sharper localization [7, 60, 61] and reducibil-
ity [96] techniques have been developed, allowing to treat various delicate
questions on both A > 1 and A < 1 sides. None of these methods work
for the actual transition point A = 1, and the operator at the critical value
remains least understood. Yet it corresponds to the isotropic model, so is
the most important operator in the one-parameter family from the physics
viewpoint. From the dynamical systems point of view, the critical case is
also special: the transfer-matrix cocycle for energies on the spectrum is crit-
ical in the sense of Avila’s global theory (see Sections 2.5, 2.7), and thus



non-amenable to either supercritical (localization) or subcritical (reducibil-
ity) methods. The global theory tells us that critical cocycles are rare in
many ways, so it is almost tempting to ignore them in a large mathematical
picture. Yet, as models coming from physics tend to be entirely critical on
their spectra in this sense, one can actually argue that it is their study that
is the most important.

After the preliminaries, we start with two very recent results on the crit-
ical case: the singular-continuous nature of the spectrum and Hausdorff di-
mension of the spectrum as a set, both subject to long-standing conjectures.
Our solution of both conjectures is based on exploring certain hidden singu-
larity of the model. The developed technique allowed also to obtain sharp
estimate on the Hausdorff dimension of the spectrum for another interest-
ing model, quantum graph graphene, where singularity is also present. The
study of the Hausdorff dimension of course only makes sense once we know
the spectrum has measure zero. This was proved by Last [73] for a.e. irra-
tional a, but remarkably resisted treatment for the remaining zero measure
set, that included the golden mean, the most popular irrational number in
the physics community. Barry Simon listed the problem to obtain the result
for the remaining parameters in his list of mathematical problems for the
XXI century [86]. It was solved by Avila-Krikorian [10] who were able to
treat Diophantine « using deep dynamical methods (for A # 1 the solution
was given in [57]). Our proof of the Hausdorff dimension estimate [58] (joint
with Igor Krasovsky) allows also to give a very simple proof of this theorem,
simultaneously for all irrational a.

Another very interesting feature of the almost Mathieu family is that,
while « is a parameter coming from physics, the system behaves differently
depending on whether « is rational or irrational. While this aspect was
well understood already in the 60s, and the metal-insulator transition at
A = 1 was discovered by the physicists, Aubry and Andre [1], the physicists
missed further dependence on the arithmetics within the class of irrational
numbers. In mathematics, it was soon understood by Avron and Simon [17],
based on Gordon [40], that within the super-critical regime the arithmetics
of a plays a role, and later, in [67], that so does the arithmetics of 6. In
[50] we conjectured that there is the second sharp transition governed by the
arithmetics of the continued fraction expansion of o and the exponential rate
of phase-resonances. The recent proof of this conjecture, joint with Wencai
Liu, for both the frequency and phase cases, is discussed in Sec. 6.

A very captivating question and a longstanding theoretical challenge is

6



to explain the self-similar hierarchical structure visually obvious in the Hof-
stadter’s butterfly, as well as the hierarchical structure of eigenfunctions, as
related to the continued fraction expansion of the magnetic flux. Such struc-
ture was first predicted in the work of Azbel in 1964 [21], some 12 years
before Hofstadter [48] and before numerical experimentation was possible.

The simplest mathematical feature of the spectrum for irrational o one
observes in the Hofstadter’s picture, is that it is a Cantor set. Mark Kac of-
fered ten martinis in 1982 for the proof of Azbel’s 1964 Cantor set conjecture.
It was dubbed the Ten Martini problem by Barry Simon, who advertised it
in his lists of 15 mathematical physics problems [85] and later, mathematical
physics problems for the XXI century [86]. Most substantial partial solu-
tions were made by Bellissard, Simon, Sinai, Helffer, Sjostrand, Choi, Eliott,
Yui, and Last, between 1983-1994. J. Puig [81] solved it for Diophantine « by
noticing that localization at § = 0 [53] leads to gaps at corresponding (dense)
energies. Final solution was given in [7]. Cantor spectrum is also generic for
general one-frequency operators with analytic potential: in the subcritical
regime [8], and, by very different methods, in the supercritical regime [39]
(and it is conjectured [9] also in the critical regime, which is actually non-
generic in itself [5]). Moreover, even all gaps predicted by the gap labeling
are open in the non-critical almost Mathieu case [8, 15]. Ten Martini and its
dry version were very important challenges in themselves, even though these
results, while strongly indicate, do not describe or explain the hierarchical
structure, and the problem of its description/explanation remains open, even
in physics. As for the understanding the hierarchical behavior of the eigen-
functions, despite significant numerical studies and even a discovery of Bethe
Ansatz solutions [94], it has also remained an important open challenge even
at the physics level. Certain results indicating the hierarchical structure
in the corresponding semi-classical /perturbative regimes were previously ob-
tained in the works of Sinai, Helffer-Sjostrand, and Buslaev-Fedotov (see
(30, 46, 88], and also [99] for a different model).

In Secs. 7,8 we present the solution of the latter problem in the expo-
nential regime. We describe the universal self-similar exponential structure
of eigenfunctions throughout the entire localization region. In particular, we
determine explicit universal functions f(k) and g(k), depending only on the
Lyapunov exponent and the position of k in the hierarchy defined by the
denominators ¢, of the continued fraction approximants of the flux «, that
completely define the exponential behavior of, correspondingly, eigenfunc-
tions and norms of the transfer matrices of the almost Mathieu operators,

7



for all eigenvalues corresponding to a.e. phase, see Theorem 8.1. Our result
holds for all frequency and coupling pairs in the localization regime. Since
the behavior is fully determined by the frequency and does not depend on
the phase, it is the same, eventually, around any starting point, so is also
seen unfolding at different scales when magnified around local eigenfunc-
tion maxima, thus describing the exponential universality in the hierarchical
structure, see, for example, Theorems 7.2, 7.4.

Moreover, our proof of the phase part of the arithmetical spectral transi-
tion conjecture uncovers a universal structure of the eigenfunctions through-
out the corresponding pure point spectrum regime, Theorem 8.1, which,
in presence of exponentially strong resonances, demonstrates a new phe-
nomenon that we call a reflective hierarchy, when the eigenfunctions feature
self-similarity upon proper reflections (Theorem 8.2). This phenomenon was
not even previously described in the (vast) physics literature. This joint work
with Wencai Liu will also be presented in Sections 7,8.

In the next section we list the basic definitions/necessary facts. Sections
3-5 are devoted to the critical almost Mathieu operator, and Sections 6-8 to
sharp arithmetic spectral transitions and universal structure of eigenfunctions
in the (supercritical) regime of localization.

2 The basics

2.1 The spectrum

The spectrum of a bounded linear operator H on a Hilbert space H, denoted
o(H), is the set of energies E for which H — E does not have a bounded
inverse. If H is finite-dimensional, it clearly coincides with the set of the
eigenvalues. For an infinite-dimensional space, however, there are more ways
not to be invertible than to have a kernel.

Example: Let (X, u) be a measure space. Given bounded f : X — R,
define the multiplication operator Hy by

Hy: L*(X, ) — L*(X, 1), He(g) = fg.

Then the formal inverse of Hy — E' is, of course, H . and it is easy to show

that o(Hy) is the p-essential range of f, thatis {E : p{z : [f(x) —E| < €}) >
0,any € > 0.}



Note that the specrum is a unitary invariant, and it turns out that the
example above is in this sense all there is:

Spectral theorem: Every self-adjoint A : H — H is unitarily equivalent
to Hy for some f, X, pu.

It should be noted that no uniqueness of either of f, X or u is claimed
(or holds) here; in fact the more standard statement is with and f fixed as
x, X being a direct sum of copies of R.

Example 1: If A:R” — R" is a self-adjoint matrix with distinct eigen-
values A\; < Ay < ... < \,, one can take X = R, p any measure that lives on
U™, \; and gives non-zero weight to each \;, and f = z. Then L*(X, u1) is just
R™ and the spectral theorem boils down to the diagonalization theorem for
self-adjont matrices. In case of higher dimensional eigenspaces, one can take
X equal to the union of k copies of R, with k equal to the largest multiplicity
of an eigenvalue, and modify the p accordingly, keeping f = z.

Example 2: By Fourier transforming ¢?(Z?) into L?(T?) where T = R/Z,
the discrete 2D Laplacian

(Hw)m,n = wmfl,n + zbm+1,n + wm,nfl + wm,n+1

is unitarily equivalent t0 Hycoszi2cosy 00 L*(T?), s0 o(H) = [—4,4].

2.2 Spectral measure of a self-adjoint operator

Let H be a self-adjoint operator on a Hilbert space H. The time evolution of
a wave function is described in the Schrodinger picture of quantum mechanics

by
Oy
/Z/_
ot
The solution with initial condition ¥ (0) = vy is then given by

¢(t) — G_itH@Z)().

Another version of the spectral theorem says that for any ¢y € H, there
is a unique finite measure ji,, (called the spectral measure of 1y € H) such
that

= H.

(e, o) = / e djigy (V). (6)

R

9



2.3 Spectral decompositions

Every finite measure on R is uniquely decomposed into three mutually sin-
gular parts

M= ppp + fse + Hac,

where pp stands for pure point, the atomic part of the measure, ac stands
for absoltely continuous with respect to Lebesgue measure, and sc stands
for singular continuous, that is all the rest: the part that is singular (with
respect to Lebesgue), yet continuous (has no atoms).
Define

Hy={p€H:pgis}

where v € {pp, sc,ac}. Then we have H = H,, P Hse D Hae-

H preserves each H.,, so we can define: o, (H) = o(H|y, ), v € {pp, sc, ac}.
The set 0,,(H) admits a direct characterization as the closure of the set of
all eigenvalues

opp(H) = 0,(H),

where

op(H) = {\: there exists a nonzero vector ¢» € ‘H such that Hy = A\ }.

2.4 Ergodic operators

We are going to study Schrodinger operators with potentials related to dy-
namical systems. Let H = A + V be defined by

(Hu)(n) =u(n +1) +u(n — 1) + V(n)u(n) (7)

on a Hilbert space H = (*(Z). Here V : Z — R is the potential. Let
(2, P) be a probability space. A measure-preserving bijection 7" : 2 — 2 is
called ergodic, if any T-invariant measurable set A C  has either P(A) =1
or P(A) = 0. By a dynamically defined potential we understand a family
Vo(n) = v(T"w),w € Q, where v : @ — R is a measurable function. The
corresponding family of operators H, = A + V,, is called an ergodic family.
More precisely,

(Hyu)(n) =u(n+1)+un—1) +v(T"w)u(n). (8)

10



Theorem 2.1 (Pastur [79]; Kunz-Souillard [72] ). There ezists a full measure
set Qo and 32, >0 0 D Doae C R such that for all w € Qo, we have

o(Hy) =>_, and 0,(Hy) =3 , v = pp, sc, ac.

Theorem 2.2 (Avron-Simon [18], Last-Simon [76]). If T is minimal, then
o(Hy) =Y, and 04.(H,) =>_,, for all w € Q.

Theorem 2.2 does not hold for o, (H,,) with v € {sc,pp} [67], but it is an
interesting and difficult open problem whether it holds for o, (H,,).

2.5 Cocycles and Lyapunov exponents

By an SL(2,R) cocycle, we mean a pair (T, A), where T : Q — () is ergodic,
A is a measurable 2 x 2 matrix valued function on 2 and detA = 1.
We can regard it as a dynamical system on  x R? with

(T, A) : (x, f) — (T, A(@)f), (z,f) € Q2 x R

For k > 0, we define the k-step transfer matrix as

Ap(z) = [TAT ). (9)

=k

For k < 0, define
Ai(z) = A:,lc(Tka:). (10)

Denote Ay = I, where [ is the 2x 2 identity matrix. Then fi(z) = In||Ax(x)||
is a subadditive ergodic process. The (non-negative) Lyapunov exponent for
the cocycle (a, A) is given by

T o L Y ) P C3 13
n n n n n—00 n

(11)
with both the second and the third equality in (11) guaranteed by Kingman’s
subadditive ergodic theorem. Cocycles with positive Lyapunov exponent
are called hyperbolic. Here one should distinguish uniform hyperbolicity
where there exists a continuous splitting of R? into expanding and contracting
directions, and nonuniform hyperbolicity, where L > 0 but such splitting does
not exist. Nevertheless, we have

11



Theorem 2.3 (Oseledets). Suppose L(T,A) > 0. Then, for almost every
xr € Q , there exist solutions vt , v~ € C? such that ||Ay(z)vE|| decays ex-
ponentially at oo, respectively, at the rate —L(T, A). Moreover, for every
vector w which is linearly independent with v (resp., v7), ||Ax(z)w]|| grows
exponentially at +oo (resp., —o0) at the rate L(T, A).

Suppose u is an eigensolution of H,u = Eu, where H, is given by (8).

Then
[ u(lvi(i;nz)n } = Ap(T"x) { u(%@l) } : (12)

where A, (z) is the n-step transfer matrix of (T, Ag(x)) and

Ap(a) = [TE—lv(:L*) —01 } .

Such (T, Ag(x)) are called Schrédinger cocycles. Denote by L(E) the Lya-
punov exponent of a Schrédinger cocycle (we omit the dependence on T'
and v). It turns out that (at least for uniquely ergodic dynamics) the re-
solvent set of H, is precisely the set of E' such that the Schrodinger cocycle
(T, Ag(z)) is uniformly hyperbolic. The set o N {L(E) > 0} is therefore
the set of non-uniform hyperbolicity for the one-parameter family of cocycles
(T, Ag(x))ger, and is our main interest. Then Oseledets theorem can be
reformulated as

Theorem 2.4. Suppose that L(E) > 0. Then, for every x € Qg (where
Qp has full measure), there exist solutions ¢, ¢~ of Hy¢p = E¢ such that ¢*
decays exponentially at +00, respectively, at the rate —L(E). Moreover, every
solution which is linearly independent of ¢ (resp., ¢~) grows exponentially
at +00 (resp., —oo) at the rate L(E).

It turns out that the set where the Lyapunov exponent vanishes fully
determines the absolutely continuous spectrum.

Theorem 2.5 (Ishii-Pastur-Kotani). o,.(H,) = {F € R: L(F) = O}ESS for
almost every x € ().

The inclusion “C” was proved by Ishii and Pastur [49, 79]. The other, a
lot more difficult, inclusion was proved by Kotani [71, 84].
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2.6 Continuity of the Lyapunov exponent

Lyapunov exponent L(«, A) := L(R,, A) is generally not a very nice function
of its parameters. It can be a discontinuous function of « at o € Q (almost
Mathieu cocycle is one example), is generally discontinuous in A in C° and
can be discontinuous in A even in C* [93]. It is a remarkable fact, enabling
much of the related theory, that it is continuous in the analytic category

Theorem 2.6. [29, 56] L(f + .,.) : T x C¥(T,SL(2,R)) — R is jointly
continuous at irrational 5 .

For the almost Mathieu operator, it leads to

Theorem 2.7. [29] For every o € R\Q, A € R and E € 0(Hxap), one has
L) o(E) = max{ln |A|,0}.

2.7 Implications of Avila’s global theory

Continuity of the Lyapunov exponent in the analytic category [29, 56] makes
it possible to make conclusions from the study of its behavior for complexified
cocycles, and Avila [5] discovered a remarkable related structure. Analytic
cocycles A(z) can be classified depending on the behavior of the Lyapunov
exponent L¢ of the complexified cocycle A(x + ie). Namely, we distinguish
three cases:

Subcritical: L¢=0,e <9, § > 0.
Supercritical: L° > 0
Critical: Otherwise, that is LY = 0, L€ > 0,¢ > 0.

Avila observed that, for a given cocycle, L is a convex function of e,
and proved that it has quantized derivative in €. This has enabled the global
theory [5], where Avila shows, in particular, that prevalent potentials are
acritical, that is have no critical transfer-matrix cocycles for energies in their
spectrum. The almost reducibility conjecture [5, 8] states that subcritical
cocycles are almost reducible, that is have constant cocycles in the closure of
their analytic conjugacy class. It was solved by Avila for the Liouville case in
[3] and the solution for the Diophantine case has been announced [4]. Both
almost reducible and supercritical cocycles are well studied and their basic
spectral theory is understood.
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For the almost Mathieu cocycle, quantization of acceleration allows to
exactly compute L¢(FE) for F in the spectrum, leading to

Subcritical, i.e. A < 1: In this case, L(E) = 0 for E € o(H) ) and
e < % H) o0 has purely ac spectrum [8, 16].

Critical, i.e. A = 1: In this case, for E' € 0(H) 4,) the cocycle is critical

Supercritical, i.e. A > 1: L(E)=1InA> 0 for £ € 0(H)ap)-

We now quickly review the basics of continued fraction approximations.

2.8 Continued fraction expansion

Define, as usual, for 0 < a < 1,
a02:070@ = Q,
and, inductively for k£ > 0,
1

ar = o] o = oy — ay.

We define

Po ::07 qo = 17

=1 q=awu,
and inductively,

Pr = QgPr—1+ Dr—2,
qx = OpQr—1+ gr—2.

Recall that {g, }nen is the sequence of denominators of best rational approx-
imants to irrational number «, since it satisifies

for any 1 <k < gui1, ||kallr/z 2> ||gne|r/z- (13)

Moreover, we also have the following estimate,

1 1
<A, £ | guallrz <

14
2Qn+1 n+1 ( )
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14

e « is called Diophantine if there exists x,v > 0 such that ||ka|| >

[Fe]
for any k # 0, where ||z|| = min |z — k.
keZ
e « is called Liouville if
—In ||k In g,
B(a) = limsup — nflkale/z = lim sup Sl (15)

e « is called weakly Diophantine if f(a) = 0.

Clearly, Diophantine implies weakly Diophantine. By Borel-Cantelli lemma,
Diophantine « form a set of full Lebesgue measure.

3 Do critical almost Mathieu operators ever
have eigenvalues?

The critical almost Mathieu operator H, ¢ given by

(Hopp)(n) = d(n— 1)+ ¢(n+ 1) + 2cos 2w (an + 0)p(n), (16)

has been long (albeit not from the very beginning [83]*) conjectured to have
purely singular continuous spectrum for every a € R\Q and every 6. Since
the spectrum (which is #-independent for « € R\Q [18] ) has Lebesgue mea-
sure zero [10], the problem boils down to the proof of absence of eigenvalues,
see e.g. problem 7 in [52]. This simple question has a surprisingly rich (and
dramatic) history.

Aside from the results on topologically generic absence of point spectrum
[17, 67] that hold in a far greater generality, all the proofs were, in one way
or another, based on the Aubry duality [1], a Fourier-type transform for
which the family {H,g}¢ is a fixed point. One manifestation of the Aubry
duality is: if u € (*(Z) solves the eigenvalue equation H,gu = Fu, then
V¥ = ™04z + na) solves

n

H, ,v*° = Ev® (17)

for a.e. x, where 4(x) = > €™y, is the Fourier transform of u. This
led Delyon [35] to prove that there are no ¢! solutions of H,eu = Eu, for

41t is the paper where the name almost Mathieu was introduced.
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otherwise (17) would hold also for z = 6, leading to a contradiction. Thus
any potential eigenfunctions must be decaying slowly. Chojnacki [32] used
duality-based C*-algebraic methods to prove the existence of some continuous
component, but without ruling out the point spectrum. [41] gave a duality-
based argument for no point spectrum for a.e. #, but it had a gap, as it was
based on the validity of Deift-Simon’s [33] theorem on a.e. mutual singularity
of singular spectral measures, which is only proved in [33] in the hyperbolic
case, and is still open in the regime of zero Lyapunov exponents. Avila
and Krikorian (see [6]) used convergence of renormalization [11] and non-
perturbative reducibility [29] to show that for every o € R\Q, eigenvalues
may only occur for countably many 6. Then Avila [6] found a simple proof of
the latter fact, also characterizing this potentially exceptional set of phases
explicitly: these are phases 6 that are a-rational, i.e. 20+ ka € Z, for some k.
The argument of [6] was incorporated in [9], where it was developed to prove
a.e. absence of point spectrum for the extended Harper’s model (EHM) in
the entire critical region (the EHM result was later further improved by Han
[42]). The proof in [6, 9] has as a starting point the dynamical formulation
of the Aubry duality: if v} solves the eigenvalue equation H,,v = Ev,
then so does its complex conjugate v, and this can be used to construct
an L2-reducibility of the transfer-matrix cocycles to the rotation by 6, given
independence of v and v. Unfortunately those vectors are always linearly
dependent if # is a-rational. Thus the argument hopelessly breaks down for
20 + ka € Z.

Moreover, it was noted in [9] that in the bulk of the critical region, for
a-rational phases 6, the extended Harper’s operator actually does have eigen-
values. Also, supercritical almost Mathieu with Diophantine «, has eigen-
values (with exponentially decaying eigenfunctions) for a-rational phases as
well [56]. All this increased the uncertainty about whether eigenvalues may
exist for the a-rational phases also for the critical almost Mathieu.

We will present the fully self-contained proof of

Theorem 3.1. [54] H,p does not have eigenvalues for any o, 0 (and thus
has purely singular-continuous spectrum for all o ¢ Q).

In our proof we replace the Aubry duality by a new transform, inspired
by the chiral gauge transform of [58].
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4 Proof of Theorem 3.1.

Given u € (*(Z), set

U(ZC) — Z uneﬂin(9+na721) (18)
and

ufl — U(ZL‘ + na)ewin(a;_t,_na;se) (19)

where Uy 18 defined for a.e. x.
Let H® : RZ — RZ x € R/2Z, be given by

(H2v),, = 2cos w(x + na)v, 1 +2cos w(z + (n 4+ 1)a)v,4 (20)

Lemma 4.1. If u € (*(Z) solves Hypu = Eu, then u* € R is a formal
solution of the difference equation

~m+05a

H, u’ = Eu” (21)
for a.e. x.

Proof. If (Tw), := ups1 + uy—1, and (Su), = cos2mw(0 + na)u,, we
obtain (Tu)(x) = u(z — a)e™0Te=20) 4 y(x 4 a)e™(=0+a+22) and (Su)(z) =
u(r —a)e?™ +u(x ;l— a)e”?™? leading, by a straightforward computation, to
(T + S)u)* = HL 7w, O

We note that the family { 2} ,eg oz is self-dual with respect to the Aubry-
type duality. Namely, the following holds. For x € R/2Z,v € (*(Z) for a.e.

B, we can define w® € R% by

B+ na

Trin(x—i-g)' 29
10 it (22)

wyy =

Lemma 4.2. If v € (*(Z) solves H*v = Ewv, then, for a.e. 5, w® € R is a
formal solution of the difference equation

HY P wf = EuP. (23)

Proof. A similar direct computation. n
Let now u € ¢*(Z) with ||u|lz = 1 be a solution of H, pu = Eu. By Lemma
4.1, (21) holds, which implies that we also have, for a.e. x,
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~$+95a e

H 7 @ = Eu? (24)

thus the Wronskian of «* and @* is constant in n. That is

cos (z + na)Im (u(z + na)i(x + (n — 1)a)e™@rnatialdy — ¢(z)  (25)

for some ¢(z), all n and a.e. z. Here and below a(«, ) stands for (an ex-
plicit) real-valued function that does not depend on n,z. Its exact form is
not important. a(«, ) may stand for different such functions in different
expressions.

By ergodicity, this implies that, for a.e. x and some constant c,

67ri1’+ia(oc,c9) o U( —Wix—ia(ave)) = c. (26)

cosmz(u(x)u(r — @) r — a)u(x)e
It follows by Cauchy-Schwarz that u(x)u(z — a)e™@+@@f) ¢ L1 which
implies that ¢ = 0. We note that a similar argument was used by R. Han in

[42]. Thus we have

u(:r;)'&(x . a)em’eria(a,O) o u(oc . Oé)a($)€fﬂ-ixfia(a,0) —0 (27>

for a.e. x.
Lemma 4.3. For a.e. z, we have u(z) # 0.

Proof. Indeed, otherwise, by the ergodic theorem, there would exist
(in fact, a full measure of, but it is not important) x such that u] solves
(21) and u? = 0 for infinitely many n (in fact, only four such n suffice for
the argument). Let n; < n;y1 — 1,7 € Z, be the labeling of zeros of such
u®. Clearly, if v € R” is a solution of (20) with v, = v, = 0, we have
v, k€ n+1,m—1]

that vp, m € 2(Z) defined by (Vi m)r =
[n,m] (Z) Y (V) 0, otherwise

is also a

solution of (21). Set v*' :=

Clearly, for any I C Z the collection {v®};c; is linearly independent in
(%(Z) . This implies that the corresponding Aubry dual collection {w®"#};c;
constructed by (22) from {v®};c;, is linearly independent in RZ. Thus, by
Lemmas 4.1,4.2 we obtain, for a.e. 3, infinitely many linearly independent

X
u[ni»niJrl] :
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w®? € RZ, that all solve (23). This is in contradiction with the fact that
the space of solutions of (23) is two-dimensional for a.e. f. O
Therefore we can define for a.e. z, a unimodular measurable function on

R/27

) = @eﬂ'ieria(a,@)

By (5.2), (28) we have that, for a.e. z,

¢(x) — ¢(x _ a)e—Qm’z-&-ia(a,G), (29>
and expanding ¢(x) into the Fourier series, ¢(z) = > po _ axe™*, we obtain
|ag12| = |ax|, a contradiction. O

5 Thouless’ Hausdorff dimension conjecture

The spectrum of H, 4 for irrational « is a 6-independent® fractal, beautifully
depicted via the Hofstadter butterfly [48]. There have been many numerical
and heuristic studies of its fractal dimension in physics literature (e.g., [38,
69, 89, 95]). A conjecture attributed to Thouless (e.g., [95]), and appearing
already in the early 1980’s, is that the dimension is equal to 1/2. It has
been rethought after rigorous and numerical studies demonstrated that the
Hausdorff dimension can be less than 1/2 (and even be zero) for some «
[12, 75, 95|, while packing/box counting dimension can be higher (even equal
to one) for some (in fact, of the same!) « [68]. However, all these are
Lebesgue measure zero sets of a;, and the conjecture may still hold, in some
sense. There is also a conjecture attributed to J. Bellissard (e.g., [45, 75])
that the dimension of the spectrum is a property that only depends on the
tail in the continued fraction expansion of o and thus should be the same
for a.e. « (by the properties of the Gauss map). We discuss the history of
rigorous results on the dimension in more detail below.

In the past few years, there was an increased interest in the dimension of
the spectrum of the critical almost Mathieu operator, leading to a number
of other rigorous results mentioned above. Those include zero Hausdorff di-
mension for a subset of Liouville @ by Last and Shamis [75], also extended
to all weakly Liouville® o by Avila, Last, Shamis, Zhou [12]; the full pack-
ing (and therefore box counting) dimension for weakly Liouville o [68], and

5Also for any A # 0.
6We say « is weakly Liouville if 8(c) := — limsup 17 0, where [|6]| = dist (6, Z).
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existence of a dense positive Hausdorff dimension set of Diophantine o with
positive Hausdorff dimension of the spectrum by Helffer, Liu, Qu, and Zhou
[45]. All those results, as well as heuristics by Wilkinson-Austin [95] and, of
course, numerics, hold for measure zero sets of a. Recently, B. Simon listed
the problem to determine the Hausdorff dimension of the spectrum of the
critical almost Mathieu on his new list of hard unsolved problems [87].

The equality in the original conjecture can be viewed as two inequalities.
In a joint work with Igor Krasovsky [58] we prove one of those for allirrational
a. This is also the first result on the fractal dimension that holds for more
than a measure zero set of a. Denote the spectrum of an operator K by
o(K), the Lebesgue measure of a set A by |A|, and its Hausdorff dimension
by dimy(A). We have

Theorem 5.1. [58] For any irrational o and real 6, dimy(o(Hyyg)) < 1/2.

Of course, it only makes sense to discuss upper bounds on the Hausdorff
dimension of a set on the real line once its Lebesgue measure is shown to be
zero. The Aubry-Andre conjecture stated that the measure of the spectrum
of Hypg is equal to 4|1 — |A||, so to 0 if A = 1, for any irrational «. This
conjecture was popularized by B. Simon, first in his list of 15 problems in
mathematical physics [85] and then, after it was proved by Last for a.e.
« [73, 74], again as Problem 5 in [86], which was to prove this conjecture
for the remaining measure zero set of o, namely, for a of bounded type.”
The arguments of [73, 74] did not work for this set, and even though the
semi-classical analysis of Hellfer-Sjostrand [46] applied to some of this set for
H,p, it did not apply to other such «, including, most notably, the golden
mean — the subject of most numerical investigations. For the non-critical
case, the proof for all « of bounded type was given in [58], but the critical
“bounded-type” case remained difficult to crack. This remaining problem for
zero measure of the spectrum of H,y was finally solved by Avila-Krikorian
[10], who employed a deep dynamical argument. We note that the argument
of [10] worked not for all a, but for a full measure subset of Diophantine «.
Here we give a very simple argument that recovers this theorem and thus
gives an elementary solution to Problem 5 of [86]. Moreover, our argument
works simultaneously for all irrational «.

Theorem 5.2. For any irrational o and real 6, |0(Hup)| = 0.

"That is o with all coefficients in the continued fraction expansion bounded by some
M.
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The proofs are based on two key ingredients. We introduce what we call
the chiral gauge transform and show that the direct sum in ¢ of operators
Hy, g is isospectral with the direct sum in 0 of H, ¢ given by

(Hoo)(n) = 2sin 27 (a(n — 1) 4+ 0)p(n — 1)+ 2sin 2 (an + )d(n+1). (30)

This representation of the almost Mathieu operator corresponds to choos-
ing the chiral gauge for the perpendicular magnetic field applied to the elec-
tron on the square lattice,

[ o o [ ([
[ o
o °
[ o
° ° () ) )
Figure 3
Any choice of gauge such that
Cm,n + Dm+1,n71 - Oerl,nfl - Dm,n = 2m - 20&, (31>

leads to an operator on ¢*(Z?)

(HC,DI/J)m,n - eicmm¢m+1,n—1+eiDm’nwm+l,n+l+€_icm71’n+lwm—l,n—l—l_}_e_iDmil’nilQ/}m—l,n—l
(32)
which represents the Hamiltonian of an electron in a uniform perpendicular
magnetic field with flux 2ra. Here 4ma is the total flux through each doubled
cell.
The chiral gauge that corresponds to (30) is given by

Cm,n =0
Dy, = 4mmao
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It was previously discussed non-rigorously in [78, 94]. The advantage of (30)
is that it is a singular Jacobi matrix, that is one with off-diagonal elements
not bounded away from zero, so that the matrix quasi-separates into blocks.

This alone is already sufficient to conclude Theorem 5.2 because H is
represented by a matrix with off-diagonal terms nearly vanishing along a
subsequence. Singular Jacobi matrices are trace-class perturbations of di-
rect sums of finite blocks, thus never have absolutely continuous spectrum.
Therefore, by Kotani theory (that does extend to the singular case), and the
fact that the Lyapunov exponent is zero on the spectrum, as easily follows
from the formula for the invariance of the IDS under the gauge transform
and a Thouless-type formula for the Lyapunov exponent, the measure of the
spectrum must be zero.

The second key ingredient is a general result on almost Lipshitz conti-
nuity of spectra for singular quasiperiodic Jacobi matrices. The modulus of
continuity statements have, in fact, been central in previous literature. We
consider a general class of quasiperiodic C! Jacobi matrices, that is operators
on (*(Z) given by

(Hypaod)(n) =00+ (n—1)a)p(n—1)+b(0+na)p(n+1)+v(0+na)p(n),

(33)
with b(z),v(z) € C*(R), and periodic with period 1.
Let M, be the direct sum of H, ;49 over 6 € [0,1),
Mv,b,a - 696‘6[0,1)1‘.—[1),b,oz,9- (34>

Continuity in « of 0(M,p,) in the Hausdorff metric was proved in [18].
Continuity of the measure of the spectrum is a more delicate issue, since,
in particular, |o(M,)| can be (and is, for the almost Mathieu operator) dis-
continuous at rational «. Establishing continuity at irrational « requires
quantitative estimates on the Hausdorff continuity of the spectrum. In the
Schrodinger case, that is for b = 1, Avron, van Mouche, and Simon [20] ob-
tained a very general result on Hélder—% continuity (for arbitrary v € C1),
improving Hélder-% continuity obtained earlier by Choi, Elliott, and Yui [31].
It was argued in [20] that Holder continuity of any order larger than 1/2 would
imply the desired continuity property of the measure of the spectrum for all
«. Lipshitz continuity of gaps was proved by Bellissard [23] for a large class of
quasiperiodic operators, however without a uniform Lipshitz constant, thus
not allowing to conclude continuity of the measure of the spectrum. In [57]
(see also [63]) we showed a uniform almost Lipshitz continuity for Schrédinger
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operators with analytic potentials and Diophantine frequencies in the regime
of positive Lyapunov exponents, which, in particular, allowed us to complete
the proof of the Aubry-Andre conjecture for the non-critical case.

Namely, a Jacobi matrix (33) is called singular if for some 6y, b(6y) = 0.
We assume that the number of zeros of b on its period is finite. In this case,
uniform almost Lipshitz continuity (with a logarithmic correction) holds [58]
which allows to conclude continuity of the measure of the spectrum for general
singular Jacobi matrices:

Theorem 5.3. For singular H, ;.9 as above, for any irrational o there exists

. . Pn;

a subsequence of canonical approrimants —q"’ such that
s
J

U(Mv )‘ (35)

In the case of Schrodinger operators (i.e., for b = 1), the statement (35)
was previously established in various degrees of generality in the regime of
positive Lyapunov exponents [57, 66] and, in all regimes for analytic [64]
or sufficiently smooth [98] v. Typically, proofs that work for b = 1 extend
also to the case of non-vanishing b, that is non-singular Jacobi matrices, and
there is no reason to believe the results of [64, 98] should be an exception. On
the other hand, extending various Schrodinger results to the singular Jacobi
case is technically non-trivial and adds a significant degree of complexity
(e.g. [9, 44, 65]). Our proof however is based on showing that a singularity
can be exploited, rather than circumvented, to establish enhanced continuity
of spectra and therefore Theorem 5.3. Of course, Theorem 5.2 also follows
immediately from the chiral gauge representation, the bound (36) below, and
Theorem 5.3, providing a third proof of Problem 5 of [86].

Moreover, enhanced continuity combined with the chiral gauge represen-
tation allows to immediately prove Theorem 5.1 by an argument of [73].
Indeed, the original intuition behind Thouless’ conjecture on the Hausdorff
dimension 1/2 is based on another fascinating Thouless’ conjecture [90, 91]:
that for the critical almost Mathieu operator H, g, in the limit p, /g, — «, we
have g,|0(M,, /q,)| = ¢ where ¢ = 32C./m, C. being the Catalan constant.
Thouless argued that if o(M,) is “economically covered” by (M, /q,) and if
all bands are of about the same size then the spectrum, being covered by ¢,
intervals of size é, has the box counting dimension 1/2. Clearly, the exact
value of ¢ > 0 is not important for this argument. An upper bound of the
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form
qn\o(Mpn/qnﬂ < C, n=12,..., (36)

was proved by Last [73]®, which, combined with H'dlder—% continuity, led

him in [73] to the bound < % for the Hausdorff dimension for irrational «
satisfying lim,, oo &0 — Pp/qn]qt = 0. Such « form a zero measure set. The
almost Lipschitz continuity and (36) allow us to obtain the result (Theorem
5.1) for all irrational .

Since our proof of Theorem 5.1 only requires an estimate such as (36)
and the existence of isospectral family of singular Jacobi matrices, it applies
equally well to all other situations where the above two facts are present.
For example, Becker et al [24] recently introduced a model of graphene as a
quantum graph on the regular hexagonal lattice and studied it in the presence
of a magnetic field with a constant flux ®, with the spectrum denoted o®.
Upon identification with the interval [0, 1], the differential operator acting on
each edge is then the maximal Schrodinger operator % + V(z) with domain
H?, where V is a Kato-Rellich potential symmetric with respect to 1/2. We
then have

Theorem 5.4. For any symmetric Kato-Rellich potential V € L?, the Haus-
dorff dimension dimgy(c®) < 1/2, for all irrational .

This result was proved in [24] for a topologically generic but measure zero
set of a.

The basic idea behind the proof that singularity leads to enhanced conti-
nuity is that creating approximate eigenfunctions by cutting at near-zeros of
the off-diagonal terms leads to smaller errors in the kinetic term. However,
without apriori estimates on the behavior of solutions (and it is in fact natu-
ral for solutions to be large around the singularity) this in itself is insufficient
to achieve an improvement over the Hélder exponent 1/2; so the argument
ends up being not entirely straightforward.

6 Small denominators and arithmetic spec-
tral transitions

In general, localization for quasiperiodic operators is a classical case of a
small denominator problem, and has been traditionally approached in a per-

8with C = 8e.
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turbative way: through KAM-type schemes for large couplings [36, 37, 88]
(which, being KAM-type schemes, all required Diophantine conditions on fre-
quencies). The opposite regime of very Liouville frequencies allowed proofs of
delocalization by perturbation of periodic operators. Unlike the random case,
where, in dimension one, localization holds for all couplings, a distinctive fea-
ture of quasiperiodic operators is the presence of metal-insulator transitions
as couplings increase. Even when non-perturbative methods, for the almost
Mathieu and then for general analytic potentials, were developed in the 90s
27, 51, 53], allowing to obtain localization for a.e. frequency throughout
the regime of positive Lyapunov exponents, they still required Diophantine
conditions, and exponentially approximated frequencies that are neither far
from nor close enough to rationals remained a challenge, as for them there
was nothing left to perturb about or to remove. It has gradually become
clear that small denominators are not simply a nuisance, but lead to actual
change in the spectral behavior.

The transitions in coupling between absolutely continuous and singular
spectrum are governed by vanishing/non-vanishing of the Lyapunov expo-
nent. It turns out that in the regime of positive Lyapunov exponents (also
called supercritical in the analytic case, with the name inspired by the al-
most Mathieu operator) small denominators lead also to more delicate tran-
sitions: between localization (point spectrum with exponentially decaying
eigenfunctions) and singular continuous spectrum. They are governed by the
resonances: eigenvalues of box restrictions that are too close to each other
in relation to the distance between the boxes, leading to small denominators
in various expansions. All known proofs of localization, are based, in one
way or another, on avoiding resonances and removing resonance-producing
parameters, while all known proofs of singular continuous spectrum and even
some of the absolutely continuous one are based on showing their abundance.

For quasiperiodic operators, one category of resonances are the ones de-
termined entirely by the frequency. Indeed, for smooth potentials, large co-
efficients in the continued fraction expansion of the frequency lead to almost
repetitions and thus resonances, regardless of the values of other parameters.
Such resonances were first understood and exploited to show singular contin-
uous spectrum for Liouville frequencies in [17], based on [40] . The strength
of frequency resonances is measured by the arithmetic parameter

In ||k
f(a) = limsup _Inflkall/z (37)

25



where ||z||r/z = infyez |x — €|. Another class of resonances, appearing for all
even potentials, was discovered in [67], where it was shown for the first time
that the arithmetic properties of the phase also play a role and may lead to
singular continuous spectrum even for the Diophantine frequencies. Indeed,
for even potentials, phases with almost symmetries lead to resonances, re-
gardless of the values of other parameters. The strength of phase resonances
is measured by the arithmetic parameter

In ||20 + ka||R/Z

d(a,8) = limsup — (38)

k—o0 ‘k ‘

In both these cases, the strength of the resonances is in competition with
the exponential growth controlled by the Lyapunov exponent. It was con-
jectured in 1994 [50] that for the almost Mathieu family- the prototypical
quasiperiodic operator - the two above types of resonances are the only ones
that appear, and the competition between the Lyapunov growth and reso-
nance strength resolves, in both cases, in a sharp way.

Recall that « is called weakly Diophantine if 5(a) = 0, and @ is called
a-Diophantine if §(«,6) = 0. By a simple Borel-Cantelli argument, both
weakly Diophantine and a-Diophantine numbers form sets of full Lebesque
measure (for any «). Separating frequency and phase resonances, the fre-
quency conjecture was that for a-Diophantine phases, there is a transition
from singular continuous to pure point spectrum precisely at 5(«) = L, where
L is the Lyapunov exponent. The phase conjecture was that for weakly Dio-
phantine frequencies, there is a transition from singular continuous to pure
point spectrum precisely at d(«, 6) = L.

Operator H is said to have Anderson localization if it has pure point
spectrum with exponentially decaying eigenfunctions. We have

Theorem 6.1. [Phase,[61]] For weakly Diophantine c,
1. Hy g has Anderson localization if |\| > €59

2. Hy a9 has purely singular continuous spectrum if 1 < |A| < eS(a0)
3. Hjy ap has purely absolutely continuous spectrum if |\| < 1.
and

Theorem 6.2. [Frequency, [60]]
For a-Diophantine 0,
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1. H) op has Anderson localization if |A| > eBle)

2. Hyap has purely singular continuous spectrum if 1 < |A| < €%,
3. Hy ap has purely absolutely continuous spectrum if |\| < 1.
Remark

1. Part 2 of Theorem 6.1 holds for all irrational «, and part 2 of Theorem
6.2 ([14], see also a footnote in [7]) holds for all 6. Both also hold for
general Lipshitz v replacing the cos.

2. Part 3 of both theorems is known for all «, 6 [6] and is included here
for completeness.

3. Parts 1 and 2 of both Theorems put together verify the conjecture in
[50], as stated there. The frequency half was first proved in [14] in a
measure-theoretic sense (for a.e. 0).

For § = § = 0 (which is a.e. «,8) the result follows from [53]. Proofs of
the localization part of both theorems are based on the method developed in
[53]. However, since the arithmetic transitions happen within the excluded
measure zero set where the resonances are exponentially strong, new ideas
were needed to handle those. A progress towards the localization side of
the above conjecture in the frequency case was made in [7] (localization for
|A] > e as a step in solving the Ten Martini problem). The method
developed in [7] that allowed to approach exponentially small denominators
on the localization side was brought to its technical limits in [77], where the
result for [A| > e2? was obtained.

There have been no previous results on the transition in phase for 0 < § <
oco. Singular continuous spectrum was first established for 1 < |\| < e®(:9)
(correspondingly, 1 < |A| < e®¥(®) for sufficiently small ¢ [18, 67]. One can see
that even with tight upper semicontinuity bounds the argument of [67] does
not work for ¢ > 1/4, New ideas to remove the factor of 4 and approach the
actual threshold were required to prove Theorems 6.1, 6.2 in, correspondingly,
(60, 61] . The singular continuous spectrum up to the threshold for frequency
was established in [7, 14].
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7 Exact asymptotics and universal hierarchi-
cal structure for frequency resonances

In this section we describe the universal self-similar exponential structure of
eigenfunctions throughout the entire localization regime. We present explicit
universal functions f(k) and g(k), depending only on the Lyapunov exponent
and the position of k in the hierarchy defined by the denominators ¢, of
the continued fraction approximants of the flux «, that completely define
the exponential behavior of, correspondingly, eigenfunctions and norms of
the transfer matrices of the almost Mathieu operators, for all eigenvalues
corresponding to a.e. phase, see Theorem 8.1. This result holds for all
frequency and coupling pairs in the localization regime. Since the behavior
is fully determined by the frequency and does not depend on the phase, it
is the same, eventually, around any starting point, so is also seen unfolding
at different scales when magnified around local eigenfunction maxima, thus
describing the exponential universality in the hierarchical structure, see, for
example, Theorems 7.2,7.4.

Since we are interested in exponential growth/decay, the behavior of f
and g becomes most interesting in case of frequencies with exponential rate
of approximation by the rationals.

These functions allow to describe precise asymptotics of arbitrary solu-
tions of Hy 409 = E¢ where £ is an eigenvalue. The precise asymptotics
of the norms of the transfer-matrices, provides the first example of this sort
for non-uniformly hyperbolic dynamics. Since those norms sometimes differ
significantly from the reciprocals of the eigenfunctions, this leads to further
interesting and unusual consequencies, for example exponential tangencies
between contracted and expanded directions at the resonant sites.

From this point of view, this analysis also provides the first study of
the dynamics of Lyapunov-Perron non-regular points, in a natural setting.
An artificial example of irregular dynamics can be found in [22], p.23, how-
ever it is not even a cocycle over an ergodic transformation, and we are not
aware of other such, even artificial, ergodic examples where the dynamics
has been studied. Loosely, for a cocycle A over a transformation f acting
on a space X (Lyapunov-Perron) non-regular points z € X are the ones
at which Oseledets multiplicative ergodic theorem does not hold coherently
in both directions. They therefore form a measure zero set with respect to
any invariant measure on X. Yet, it is precisely the non-regular points that
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are of interest in the study of Schrodinger cocycles in the non-uniformly hy-
perbolic (positive Lyapunov exponent) regime, since spectral measures, for
every fixed phase, are always supported on energies where there exists a so-
lution polynomially bounded in both directions, so the (hyperbolic) cocycle
defined at such energies is always non-regular at precisely the relevant phases.
Thus the non-regular points capture the entire action from the point of view
of spectral theory, so become the most important ones to study. One can
also discuss stronger non-regularity notions: absence of forward regularity
and, even stronger, non-exactness of the Lyapunov exponent [22]. While
it is not difficult to see that energies in the support of singular continuous
spectral measure in the non-uniformly hyperbolic regime always provide ex-
amples of non-exactness, our analysis gave the first non-trivial example of
non-exactness with non-zero upper limit (Corollary 7.12). Finally, as we
understand, it also provided the first natural example of an even stronger
manifestation of the lack of regularity, the exponential tangencies (Corol-
lary 7.13). Tangencies between contracted and expanded directions are a
characteristic feature of nonuniform hyperbolicity (and, in particular, always
happen at the maxima of the eigenfunctions). They complicate proofs of
positivity of the Lyapunov exponents and are viewed as a difficulty to avoid
through e.g. the parameter exclusion [25, 97]. However, when the tangen-
cies are only subexponentially deep they do not in themselves lead to non-
exactness. Corollary 7.13 presents the first natural example of exponentially
strong tangencies (with the rate determined by the arithmetics of o and the
positions precisely along the sequence of resonances.)

For the almost Mathieu operator the k-step transfer matrix defined by
(9),(10), becomes

Au(0) = T A0+ jo) = A0+ (k— D) A(0 + (k — 2)a) - A(6)  (39)

j=k—1
and
A4(8) = AT (0 — ko) (0)
for k > 1, where A(0) = E- 2)\1008 2m0 _01 > As is clear from the

definition, Ay also depends on 6 and E but since those parameters will be
usually fixed, we omit this from the notation.
Given o € R\Q we define functions f, g : Z™ — R™ in the following way.
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Let p” be the continued fraction approximants to . For any £ < k < 42t
deﬁne f(k),g(k) as follows:

8
Case 1 ¢, > %” or k> q,.
If (g, < k < (¢ +1)g, with £ > 1, set

flk) = e—|k—an|1n\)\|7:? + 6—|k—(€+1)qn|ln|)\\F?+17 (41)
and
g(k) = €—|k—€qn\ln\>\|q7i_:;1 i e—|k—(€+1)qn\ln\)\|$’ (42)
Ty Ty
where for ¢ > 1,
e

Set also 7 = 1 for convenience.
If £ <k <qy,,set

f(k) = e_klnl)‘| + €—|k—qn\ln\)\|77711’ (43)

and
g(k) = ek, (44)

Case 2 an <% and & <k < min{q,, &5}
Set

flk) = e "I (45)

and

g(k) = ek, (46)

Notice that f, g only depend on o and A but not on 6 or E. f(k) decays
and g(k) grows exponentially, globally, at varying rates that depend on the
position of k in the hierarchy defined by the continued fraction expansion of
a, see Fig.4 and Fig.5.

We say that ¢ is a generalized eigenfunction of H with generalized eigen-
value F, if

H¢ = E¢, and |¢(k)| < C(1 + [k]). (47)
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It turns out that in the entire regime |\| > e, the exponential asymptotics
of the generalized eigenfunctions and norms of transfer matrices at the gen-
eralized eigenvalues are completely determined by f(k), g(k).

Theorem 7.1. Let a € R\Q be such that |\| > %@, Suppose 6 is Diophan-
tine with respect to o, E is a generalized eigenvalue of Hy .9 and ¢ is the

generalized eigenfunction. Let U(k) = ( gzﬁ(i(ﬁ)l) ) Then for any € > 0,
there exists K (depending on X, ., C,e) such that for any |k| > K, U(k) and
Ay satisfy

FkDe ™ < UK < F(IkDe, (48)

and

g([kl)e= " < || ALl < g([K])e . (49)

Figure 4
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Certainly, there is nothing special about k = 0, so the behavior described
in Theorem 8.1 happens around arbitrary point k& = ky. This implies the
self-similar nature of the eigenfunctions): U(k) behave as described at scale
¢r but when looked at in windows of size g, ¢x < ¢,—1 Will demonstrate the
same universal behavior around appropriate local maxima/minima.

To make the above precise, let ¢ be an eigenfunction, and U (k) = ( 4 (2(_)1) ) .
Let I7 = [—<1¢j, $2q;], for some 0 < 1,62 < 1. We will say ko is a local j-

61,52

maximum of ¢ if ||U(ko)|| > ||U(k)|| for k — ko € IZ _ . Occasionally, we will

S1,62°
also use terminology (7, ¢)-maximum for a local j-maximum on an interval
J
I§7§'

Fix k < oo, v > 1. We will say a local j-maximum kg is nonresonant if

126 + (2ko + k) [z > ——,
j—1
for all |k| < 2¢;_; and
126 + (2ko + k)|[gyz > ﬁ (50)
for all 2Qj—1 < |l€| < 2q]
We will say a local j-maximum is strongly nonresonant if
120+ (2ko + k)al gz > ﬁ (51)
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for all 0 < |k| < 2¢;.
An immediate corollary of Theorem 8.1 is the universality of behavior at
all (strongly) nonresonant local maxima.

Theorem 7.2. Given € > 0, there exists j(€) < oo such that if ko is a local
j-mazimum for j > j(€), then the following two statements hold:
If ko is nonresonant, then

fishe 1 < WEEeEll < et (52)
forall2s € I7 . |s| > “=.
If ko 1s strongly nonresonant, then
fishet < RO LN < fapes, (53)
forall2s eIl .
Remark 7.3. 1. For the neighborhood of a local j-maximum described

in the Theorem 7.2 only the behavior of f(s) for ¢;—1/2 < |s| < ¢;/2
is relevant. Thus f implicitly depends on j but through the scale-
independent mechanism described in (41),(43) and (45).

2. Actually, one can formulate (52) in Theorem 7.2 with non-resonant
condition (50) only required for 2¢;_; < |k| < g; rather than for 2¢;_; <
k] < 24;.

In case S(a) > 0, Theorem 8.1 also guarantees an abundance (and a

hierarchical structure) of local maxima of each eigenfunction. Let ky be a

global maximum? .

91f there are several, what follows is true for each.
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Universal hierarchical structure of an eigenfunction
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Figure 6
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We first describe the hierarchical structure of local maxima informally. We
will say that a scale nj, is exponential if In Gnjo+1 > CGn; - Then there is a
constant scale ny thus a constant C' := gs,+1, such that for any exponential
scale n; and any eigenfunction there are local nj-maxima within distance
C of ko + sy, for each 0 < [s| < ™. Moreover, these are all the lo-
cal nj-maxima in [kg — e“"o, ko + ¢“™o]. The exponential behavior of the
eigenfunction in the local neighborhood (of size of order gy, ) of each such
local maximum, normalized by the value at the local maximum is given by
f. Note that only exponential behavior at the corresponding scale is de-
termined by f and fluctuations of much smaller size are invisible. Now, let
n;, < nj, be another exponential scale. Denoting “depth 1”7 local maximum
located near ko + nj, Gn,, by banjo we then have a similar picture around
ba% : there are local n;-maxima in the vicinity of banj0 + sqy;, for each
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0 < [s| < 1. Again, this describes all the local g, -maxima within an

exponentially large interval. And again, the exponential (for the n;, scale)
behavior in the local neighborhood (of size of order gy, ) of each such lo-
cal maximum, normalized by the value at the local maximum is given by
f. Denoting those “depth 2”7 local maxima located near banjo + n;, Gn;, 5
by banj0 an, W€ then get the same picture taking the magnifying glass an-
other level deeper, and so on. At the end we obtain a complete hierarchical
structure of local maxima that we denote by banjo P—— with each “depth
. being in the corresponding vicinity of

ey @
g1 nj

the “depth s” local maximum banj an
10

s+ 17 local maximum banjo .
Sy and with universal behavior
at the corresponding scale around each. The quality of the approximation
of the position of the next maximum gets lower with each level of depth, yet
the depth of the hierarchy that can be so achieved is at least j/2 — C, see
Corollary 7.7. Fig. 6 schematically illustrates the structure of local max-
ima of depth one and two, and Fig. 7 illustrates that the neighborhood of
a local maximum appropriately magnified looks like a picture of the global
maximum.
We now describe the hierarchical structure precisely. Suppose

K

“2((9 + kOOé) + kOéHR/Z > ‘k‘"ﬂ

(54)
for any k € Z\{0}. Fix 0 < ¢, ¢, with ¢ + 2e¢ < 1. Let n; — oo be such that
Ingn,41 > (¢ +2€)In|Agy,. Let ¢; = (Ingy, 41 — Infay,|)/In|A|g,, —e. We

(11’1 |)\‘an

have ¢; > € for 0 < a,;, <e . Then we have

Theorem 7.4. There exists ng(a, A, k, v, €) < 0o such that for any jo > j1 >

© > ks g, = g+ K, and 0 < ay; < edn|’\|q"a‘i,i =0,1,...,k, for all
0 < s < k there exists a local nj,-maximum banj n ooy, OT) the interval
. 0 1 s
banj i eting, T I:“l for all 0 < s < k such that the following holds:
0 1 s 59

I |banj0 — (ko + an;y Gny, )| < a1,

IT For any 1 < s < k, |banj0,an, . — (ban an an ot n, Gn;, )| <

J1 Js Jo g1 M s —
q’flo-l—s—‘rl .

III Zf 2('r - banjoyanj17-~~7anjk) € [Cjk,]. and |.T - banjo’anjl""’anjk’ Z qﬁ0+k7 then

for each s =0,1,.... k,
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) U]
flag)e el <
(@) 0t o,

“"js| is large enough.

i < flxo)et™, (55)

100

where x5 = |z — b,

QAn, ;. Qp . ...
"JO’ nJl’ ’

: ‘ InAgn;  elnAgn,
Moreover, every local n; -mazimum on the interval banj e . H[—€T s eI

J1 Js—1

s of the form b,, an, JOT SOME A .
Jjo’ Js

anj17"~7

Remark 7.5. By I of Theorem 7.4, the local maximum can be determined
up to a constant Ky = gs,+1. Actually, if &y is only a local n; 4+ 1-maximum,
we can still make sure that I, II and IIT of Theorem 7.4 hold. This is the
local version of Theorem 7.4

Remark 7.6. ¢;,+1 is the scale at which phase resonances of 6+ kg« still can
appear. Notably, it determines the precision of pinpointing local n;,-maxima
in a (exponentially large in qnjo) neighborhood of kg, for any j5. When
we go down the hierarchy, the precision decreases, but note that except for
the very last scale it stays at least iterated logarithmically !© small in the
corresponding scale gy,

Thus for z € banj n seoan; T [— C; In;, » %qnj |, the behavior of ¢(z) is de-
0 1 s s s
scribed by the same universal f in each g,, -window around the correspond-

ing local maximum ban]. , ,s = 0,1,..., k. We call such a structure

A yeensln g

hierarchical, and we will say that a local j-maximum is k-hierarchical if the
complete hierarchy goes down at least k£ levels. We then have an immediate
corollary

Corollary 7.7. There exists C = C(a, A\, k,v,€) such that every local n;-
mazimum in [kg — e N ko 4 e s at least (/2 — C)-hierarchical.

Remark 7.8. The estimate on the depth of the hierarchy in the corollary
assumes the worst case scenario when all scales after ng are Liouville. Oth-
erwise the hierarchical structure will go even much deeper. Note that a local
n;-maximum that is not an n;;-maximum cannot be k-hierarchical for £ > j.

Another interesting corollary of Theorem 8.1 is

10f5r most scales even much less
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Theorem 7.9. Let a € R\Q be such that |\ > ¢*®) and 0 is Diophantine
with respect to a. Then H)y o 9 has Anderson localization, with eigenfunctions
decaying at the rate In [\ — 5.

This solves the arithmetic version of the second transition conjecture in
that it establishes localization throughout the entire regime of («, ) where
localization may hold for any 6 (see the discussion in Section 6), for an
arithmetically defined full measure set of 6.

Also, it could be added that, for all 8, H, , ¢ has no localization (i.e., no
exponentially decaying eigenfunctions) if |\| = €°

Let 1 (k) denote any solution to H) 491 = E1 that is linearly independent

with respect to ¢(k). Let U(k) = ( ” (Ilé(ﬁ)l) ) An immediate counterpart
of (49) is the following

Corollary 7.10. Under the conditions of Theorem 8.1 for large k vectors
U(k) satisfy )
g(lkDe™ M < [T < g([k[)e™. (56)

Thus every solution is exponentially expanding at the rate g(k) except
for one that is exponentially decaying at the rate f(k).

It is well known that for E in the spectrum the dynamics of the transfer-
matrix cocycle Ay is nonuniformly hyperbolic. Moreover, E being a gener-
alized eigenvalue of H,,¢ already implies that the behavior of A is non-
regular. Theorem 8.1 provides precise information on how the non-regular
behavior unfolds in this case. We are not aware of other non-artificially con-
structed examples of non-uniformly hyperbolic systems where non-regular
behavior can be described with similar precision.

The information provided by Theorem 8.1 leads to many interesting corol-
laries. Here we only want to list a few immediate sharp consequences.

Corollary 7.11. Under the condition of Theorem 8.1, we have

i)

In||A In||U
hmsupMzhmsupM:mw
i)
C oA I [UR)]
h,?l};lf P h;?i}i,‘fT =In|\ - 5.
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iii) Outside an explicit sequence of lower density zero, 1

o LA WO
k—o0 k k—o0

Therefore the Lyapunov behavior for the norm fails to hold only along a
sequence of density zero. It is interesting that the situation is different for
the eigenfunctions. While, just like the overall growth of ||Ag| is In || — B,
the overall rate of decay of the eigenfunctions is also In |A\| — 3, they however

decay at the Lyapunov rate only outside a sequence of positive upper density.
That is

Corollary 7.12. Under the condition of Theorem 8.1, we have

1)

-1
limsupM =1In ||,
k—o0 k
ii)
lirninfM =In |\ — 5.
k—o0

ii1) There is an explicit sequence of upper density 1 — %hﬁ/\‘ , 12 along which

Y 0]

k—o0 k

=In|\|

iv) There is an explicit sequence of upper density %hﬁ:\' Salong which
—In||U(k
sy~ LU R

< In|Al.

The fact that g is not always the reciprocal of f leads also to another
interesting phenomenon.

Let 0 < 0, < 7 be the angle between vectors U(k) and U(k).

1 The sequence with convergence to the Lyapunov exponent contains gq,,n =1, .

2The sequence contains %], n =1, - .

13This sequence can have lower density ranging from 0 to %lnﬁW depending on finer
continued fraction properties of .
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Corollary 7.13. We have

|
lim sup In o =0, (57)
k—o0 k
and "
A A
hlgri)loglfT =—0. (58)

Thus neighborhoods of resonances ¢,, are the places of exponential tangen-
cies between contracted and expanded directions, with the rate approaching
— 3 along a subsequence.'* This means, in particular, that A, with k ~ g,
is exponentially close to a matrix with the trace e™ =% Exponential tan-
gencies also happen around points of the form jq, but at lower strength.

8 Asymptotics of eigenfunctions and univer-
sal hierarchical structure for phase reso-
nances

Our proof of localization is, again, based on determining the ezact asymp-
totics of the generalized eigenfunctions in the regime |A| > ¥ However,
the asymptotics (and the methods required) are very different in the case of
phase resonances.
For any ¢, let o (we can choose any one if x is not unique) be such that
| sin (26 + zoa)| = | r‘rlir'le‘ | sin (20 + za)|.
x|<2
Let n = 0 if 20 + xo«v € Z, otherwise let 1 € (0,00) be given by the following
equation,
| sin (26 + zoa)| = e, (59)

Define f : Z — R* as follows.
Case 1: 2o+ £ < 0. Set f({) = e I
Case 2. xg - > 0. Set f(£) = e~ (zol+lt=zo) I gnlt] 1 o=t A
We say that ¢ is a generalized eigenfunction of H with generalized eigen-

value F, if )
He = E¢, and |p(k)| < C(1+ [k]). (60)

141n fact, the rate is close to —1“37’;“ for any large n.
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For a fixed generalized eigenvalue FE and corresponding generalized eigen-

function ¢ of Hy o9, let U({) = ( ¢<¢2(€)1) > We have

Theorem 8.1. Assume In |A| > d(a, 0). Then for any € > 0, there exists K
such that for any || > K, U({) satisfies

FOe T < U] < f(O)e. (61)
In particular, the eigenfunctions decay at the rate In|A| — 0(a, 6).

Remark

e For 0 = 0 we have that for any € > 0,
e~ < f(p) < e=OnN-2)ld

This implies that the eigenfunctions decay precisely at the rate of Lya-
punov exponent In|Al.

e For § > 0, by the definition of § and f, we have for any € > 0,

f(g) < e—(ln|)\\—5—a)|€|. (62)

e By the definition of § again, there exists a subsequence {/;} such that
|sin (20 + Lia)| < e” O]
By the DC on «a, one has that

|sin7(20 + (;0)| = ‘ Tmrlé ‘ | sin (26 + xa)|.

Then
f(fz) > 6_(111‘)\'_5—’—8)‘&'. (63)

This implies the eigenfunctions decay precisely at the rate In|\| —

d(a, 0).

e [f x4 is not unique, by the DC on «, 7 is necessarily arbitrarily small.
Then
eI <1y (0)|]| < e~ =2l
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The behavior described in Theorem 8.1 happens around arbitrary point.
This, coupled with effective control of parameters at the local maxima, allows
to uncover the self-similar nature of the eigenfunctions. Hierarchical behav-
ior of solutions, despite significant numerical studies and even a discovery of
Bethe Ansatz solutions [94] has remained an important open challenge even
at the physics level. In the previous section we described universal hierar-
chical structure of the eigenfunctions for all frequencies a and phases with
d(er,0) = 0. In studying the eigenfunctions of Hy .4 for é(a, ) > 0 Wencai
Liu and I [61] obtained a different kind of universality throughout the pure
point spectrum regime, which features a self-similar hierarchical structure
upon proper reflections.

Assume phase 6 satisfies 0 < §(«,0) <InA. Fix 0 < ¢ < §(, 0).
Let ko be a global maximum of eigenfunction ¢.!® Let K; be the positions
of exponential resonances of the phase ' = 6 + kqa defined by

11260 + (2ko + Ki)o|[gjz < el (64)

This means that |v(6 + fa) —v (0 + (K; — £)a)| < Ce™IKil uniformly in ¢,
or, in other words, the potential v, = v(# + na) is e~*il-almost symmetric
with respect to (ko + K;)/2.

Since « is Diophantine, we have

| K| > ce™itl, (65)

where ¢ depends on ¢ and « through the Diophantine constants x, 7. On the
other hand, K; is necessarily an infinite sequence.

Let ¢ be an eigenfunction, and U (k) = ( ¢(i(ﬁ)1) ) . We say k is a local
K-maximum if ||U(k)|| > ||[U(k + s)|| for all s — k € [-K, K].

We first describe the hierarchical structure of local maxima informally.
There exists a constant K such that there is a local cK j-maximum b; within
distance K of each resonance K ;- The exponential behavior of the eigenfunc-
tion in the local cKj-neighborhood of each such local maximum, normalized
by the value at the local maximum is given by the reflection of f. More-
over, this describes the entire collection of local maxima of depth 1, that is
K such that K is a cK-maximum. Then we have a similar picture in the

15Can take any one if there are several.
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vicinity of b; : there are local cK;-maxima b;;,7 < j, within distance K2 of
each K; — K;. The exponential (on the K; scale) behavior of the eigenfunc-
tion in the local cK;-neighborhood of each such local maximum, normalized
by the value at the local maximum is given by f. Then we get the next
level maxima b;;,s < ¢ in the f(?’—neighborhood of K; — K; + K, and re-
flected behavior around each, and so on, with reflections alternating with
steps. At the end we obtain a complete hierarchical structure of local max-
ima that we denote by bj, ;.. ., with each “depth s + 17 local maximum
bjo.i1.....js being in the correspondlng vicinity of the “depth s” local maximum
bjojries R Ko+ D i, ( 1)'K;, and with universal behavior at the corre-
sponding scale around each The quality of the approximation of the position
of the next maximum gets lower with each level of depth, with b, ;, i |
determined with K precision, thus it presents an accurate picture as long
as K, > K*.
We now describe the hierarchical structure precisely.

Theorem 8.2. [61] Assume sequence K; satisfies (64) for some ¢ > 0. Then
there exists K(a, \,0,¢) < o0'® such that for any jo > j1 > o> 5, >0
with K, > K*1 for each 0 < s < k there exists a local =~ K, -mazimum!”
bjo.jr.....js such that the following holds:

21n)\

I [Bjgjrnge — Ko — 3o o(—1)K;, | < Ko+

II For anye >0, if CK*' < |z — by, | < 155 K5, |, where C' is a large
constant depending on o, \,0,s and e, then for each s =0,1, ..., k,

L o U (2)]]
F(D) el < U (bjo ii...5)

where T3 = x — bjy .. j,-

< FU(=1) el (66)

Thus the behavior of ¢(x) is described by the same universal f in each
51y ij, window around the corresponding local maximum by, ;, . ;. after al-
ternating reflections. The positions of the local maxima in the hierarchy are
determined up to errors that at all but possibly the last step are superloga-
rithmically small in K;,. We call such a structure reflective hierarchy.

16 X depends on @ through 26 + ka, see (38).
17 Actually, it can be a local (*5 — ) Kj,-maximum for any ¢ > 0.
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reflective self-similarity of an eigenfunction

Global maximum

IT

v

(@ S

K

J1

Figure 8: This depicts reflective self-similarity of an eigenfunction with
global maximum at 0. The self-similarity: I’ is obtained from I by scaling
the z-axis proportional to the ratio of the heights of the maxima in I and I'.
IT" is obtained from II by scaling the x-axis proportional to the ratio of the
heights of the maxima in II and II'. The behavior in the regions I, II" mirrors
the behavior in regions I, IT upon reflection and corresponding dilation.

Finally, as in the frequency resonance case, we discuss the asymptotics of
the transfer matrices. Let, as before, Ag = I and for k > 1,

Au(0) = ] A0+ ja) =A@+ (k— 1)) A0 + (k — 2)a) - - A(6)

j=k—1

and

ALy(0) = A6 — ka),
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E —2\cos2m —1
1 0
matrix. It also depends on a and E but since those parameters will be fixed,
we omit them from the notation.
We define a new function g : Z — R™ as follows.
Case 1: If zo - £ < 0 or |xo| > |¢], set

where A(f) = ( Thus Ay is the (k-step) transfer

g(t) = et
Case 2: If x- ¢ > 0 and |zo| < |[€] < 2|z, set
g(£) = A=l g cl2zo—dlnlA]
Case 3: If o - € > 0 and [¢] > 2|x|, set
g(g) — e(mA=n)le|
We have
Theorem 8.3. Under the conditions of Theorem 8.1, we have
g(O)e™ <[] Al]] < g(0)e. (67)
Let ¢(¢) denote any solution to Hy 4 ¢t = Et) that is linearly independent

with ¢(£). Let U(¢) = ( wgﬁ(f>1) ) An immediate counterpart of (67) is

the following
Corollary 8.4. Under the conditions of Theorem 8.1, vectors (j(ﬁ) satisfy
g(O)e 1 < U] < g()e . (68)
Our analysis also gives

Corollary 8.5. Under the conditions of Theorem 8.1, we have,

i

In|lA —1 k
lim sup n | Ayl zlimsupwzlnw,
k—o00 k—00 k
ii)
In|lA —1 k
lim inf B[4 :liminfwzln\)\|—5.
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ii1) outside a sequence of lower density 1/2,

. —In|[UR)]]
Jim R In[A[, (69)
iv) outside a sequence of lower density 0,
_Inf[Ag]]

Note that (70) also holds throughout the pure point regime of [60]. As in
the previous section, the fact that g is not always the reciprocal of f leads
to exponential tangencies between contracted and expanded directions with
the rate approaching —¢ along a subsequence. Tangencies are an attribute
of nonuniform hyperbolicity and are usually viewed as a difficulty to avoid
through e.g. the parameter exclusion. Our analysis allows to study them
in detail and uncovers the hierarchical structure of exponential tangencies
positioned precisely at phase resonances. The methods developed to prove
these theorems have made it possible to determine also the ezract exponent
of the exponential decay rate in expectation for the two-point function [59],
the first result of this kind for any model.

9 Further extensions

While the almost Mathieu family is precisely the one of main interest in
physics literature, it also presents the simplest case of analytic quasiperiodic
operator, so a natural question is which features discovered for the almost
Mathieu would hold for this more general class. Not all do, in particular,
the ones that exploit the self-dual nature of the family H),¢ often cannot
be expected to hold in general. In case of Theorems 6.2 and 7.1, we conjec-
ture that they should in fact hold for general analytic (or even more general)
potentials, for a.e. phase and with In |\| replaced by the Lyapunov expo-
nent L(E), but with otherwise the same or very similar statements. The
hierarchical structure theorems 7.2 and 7.4 are also expected to hold uni-
versally for most (albeit not all, as in the present paper) appropriate local
maxima. Some of our qualitative corollaries may hold in even higher gen-
erality. Establishing this fully would require certain new ideas since so far
even an arithmetic version of localization for the Diophantine case has not
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been established for the general analytic family, the current state-of-the-art
result by Bourgain-Goldstein [27] being measure theoretic in «. However,
some ideas of our method can already be transferred to general trigonomet-
ric polynomials [63]. Moreover, our method was used recently in [43] to show
that the same f and g govern the asymptotics of eigenfunctions and uni-
versality around the local maxima throughout the a.e. localization regime
in another popular object, the Maryland model, as well as in several other
scenarios (work in progress).

So we expect the same arithmetic frequency transition for general analytic
potentials, but as far as the arithmetic phase transitions, we expect the same
results to hold for general even analytic potentials for a.e. frequency, see
more detail below. We note that the singular continuous part up to the
conjectured transition is already established, even in a far greater generality,
in [14, 61].

The universality of the hierarchical structure described in Sections 7, 8 is
twofold: not only it is the same universal function that governs the behavior
around each exponential frequency or phase resonance (upon reflection and
renormalization), it is the same structure for all the parameters involved: any
(Diophantine) frequency «, (any a-Diophantine phase #) with f(«) < L,
(0(a,0) < L), and any eigenvalue E. The universal reflective-hierarchical
structure requires evenness of the function defining the potential, and more-
over, in general, resonances of other types may also be present. However,
we conjectured in [61] that for general even analytic potentials for a.e. fre-
quency only finitely many other exponentially strong resonances will appear,
thus the structure described here will hold for the corresponding class, with
the In A replaced by the Lyapunov exponent L(F) throughout.

The key elements of the technique developed for the treatment of arith-
metic resonances are robust and have made it possible to approach other
scenarios, and in particular, study delicate properties of the singular contin-
uous regime, obtaining upper bounds on fractal dimensions of the spectral
measure and quantum dynamics for the almost Mathieu operator [62], as
well as potentials defined by general trigonometric analytic functions [63].

Finally, we briefly comment that for Schrodinger operators with analytic
periodic potentials, almost Lipshitz continuity of gaps holds for Diophantine
a for all non-critical (in the sense of Avila’s global theory [5]) energies [64].
For critical energies, we do not have anything better than Hb’lder—% regularity
that holds universally. For the prototypical critical potential, the critical
almost Mathieu, almost Lipshitz continuity of spectra also holds, because of
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the hidden singularity. This leads to two potentially related questions for
analytic quasiperiodic Schrodinger operators:

1. Does some form of uniform almost Lipshitz continuity always hold?
2. Is there always a singularity hidden behind the criticality?

A positive answer to the second question would lead to a statement that
critical operators never have eigenvalues and that Hausdorff dimension of the
critical part of the spectrum is always bounded by 1/2.
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9. Random Jacobi Matrices

In this chapter and the next one, we discuss two rather new subjects of mathema-
tical research: random and almost periodic operators. Those operators serve in
solid state physics as models of disordered systems, such as alloys, glasses and
amorphous materials. The disorder of the system is reflected by the dependence
of the potential on some random parameters. Let us discuss an example. Suppose
we are given an alloy, that is, a mixture of (say two) crystalline materials. Suppose
furthermore that the atoms (or ions) of the two materials generate potentials of
the type 4, f(x — xo) and 4, f(x — x,), respectively, where x, is the position of
the atom. If atoms of the two kinds are spread randomly on the lattice Z* with
exactly one atom at each site, then the resulting potential should be given by

Volx) = ¥ qi@)f(x — i),
ieZ"
where g; are random variables assuming the values 4, and 4, with certain
probabilities.

Schrodinger operators with stochastic (i.e. random or almost periodic) poten-
tials show quite “unusual” spectral behavior. We will give examples, in this and
the next chapter, of dense point spectrum, singular continuous spectrum and
Cantor spectrum.

Despite intensive research by many mathematicians since the seventies, the
theory of stochastic Schrodinger operators is far from being complete. In fact,
most of the basic problems are unsolved in dimension v > 1.

We will not attempt to give a complete treatment of the subject, but rather
introduce some of the basic problems, techniques and fascinating results in the
field. We will not discuss stochastic Schrodinger operators, i.e. operators of the
form H, = H, + V, on L3(R"), but a discretized version of those operators
acting on the sequence space 12(Z"), namely Jacobi matrices. The operator H, is
replaced by a finite difference operator, and the potential becomes a function on
Z’ rather than on R". This model is known in solid state physics as the “tight
binding approximation.” We refer to Schrodinger operators on L?(R') as the
continuous case, and to the tight binding model as the discrete case.

The advantage of this procedure is twofold: Some technically difficult but
unessential problems of the continuous case disappear, and our knowledge
(especially for the almost periodic case) is larger for the discrete case.

Two recent reviews of random Schrodinger operators from distinct points of
view from each other and from our discussion here are Carmona [61] and Spencer
[347].
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In this chapter, we assume some knowledge of basic concepts of probability
theory. The required preliminaries can be found in any textbook on probability
theory (for example, Breiman [53]).

9.1 Basic Definitions and Results

Let u = {u(n)},cz- denote an element of 12(Z"); i.e. |lu| := [znez|u(,,)|2]l/z < .
Set [n| = max|n;| and |n|, := )}, |n;| for ne Z*. We define a discrete analog 4,
of the Laplacian on L?(R?) by:

dawi)= Y  [u(j)—u()] =[ Y u(j)] — 2vu(i) . 9.1
Jili=ile=1 ili=ile=1
Here 4, is a bounded operator on [2(Z"), a fact that makes life easier than in
the continuous case. The spectrum of 4, is purely absolutely continuous, and
6(4y) = 0,.(44) = [—4v,0]. This can be seen by Fourier transformation.
Note that

Cu,—dguy = Y |uti) — u(j)?
li=ji =1
(each pair occurring once in the sum), explaining why we can regard (9.1) as an
analog of the Laplacian.

If V is a function on Z* playing the role of a potential, a natural analog of
the Schrodinger operator is the operator

H=—-4,+V. 9.2)

However, it is common to consider + 4, instead of — 4,, and furthermore, to sub-
sume the diagonal terms of 4, into the potential. Since 4, is bounded, this proce-
dure has no “essential” effect on the properties of H. Indeed, since the operator
(=1)¥ defined by [(—1)"ul(n)=(—1)"u(m) obeys (—1)YH[(-1)*]'=
4v+ 4, + V, H and the operator H below are unitarily equivalent up to a
constant. Thus, we consider the operators

(Howy(m)= Y u(j) and 9.3)
Jili=nl. =1
(Hu)(n) = (Hyu)(n) + V(n)u(n) . 9.4)

The potentials ¥ we are interested in form a random field, i.e. for any ne Z*, the
Potential ¥V (n) evaluated at n is a random variable (= measurable function) on
4 probability space (2, F, P). F is a o-algebra on £, and P a probability measure
on (2, F). We adopt the common use in probability theory to denote the integral
With respect to P by E (for “expectation™), i.e. _|' f(w)dP(w) =: E(f). Without loss
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of generality, we may (and will) assume that
Q=sl'=Xs s 9.5)
A

where S is a (Borel-) subset of R, and F is the 5-algebra generated by the cylinder
sets, i.e. by sets of the form {w|w; €4,,...,w; €A4,}fori,,...,i,eZ"and A,,
..., A, Borel set in R. We define the shift operators T, on Q by

Tw(j)=w(j—1i) . 9.6)

A probability measure P on Q2 is called stationary if P(T,”' A) =fd\for any A€ F.
A stationary probability measure is called ergodic, if any shift invariant set A4, i.e.
aset A with T,"' A = A for all ie Z*, has probability, P(A), zero or one.

If V,,(n) is a real-valued random field on Z*, it can always be realized on the
above probability space in such a way that V_(n) = w(n). V is called stationary
(ergodic), if the corresponding probability measure P is stationary (ergodic).

An important example of an ergodic random field is a family of independent,
identically distributed random variables. In this case, the measure P is just the
product measure

ieZ"
of the common distribution P, of the random variables V, (i), i.e. Py(4) =
P(V,(i)e A) for any A€ B(R) and i€ Z*. We have, for example:

(S, ..., 0,)dP)[=E(/)]
= [ f(x1s..., Xa)dPo(x,)dPy(x3)...dPy(x,)

The Hamiltonian H,, with V,, i.i.d. is referred to as the Anderson model.

Another important class of ergodic potentials are almost periodic potentials.
We introduce and investigate those potentials in Chap. 10.

For a fixed w, the operator H,, is nothing but a discretized Schrodinger
operator with a certain potential. Therefore, it may seem to the reader that the
introduction of a probability space is useless since we could as well consider each
V,, as a deterministic potential. The point of random potentials is that we are no
longer interested in properties of H, for a fixed w, but only in properties for
typical w. More precisely, we are interested in theorems of the form: H,, has a
property, p, for all w in a set 2, = 2 with P(,) = 1. This will be abbreviated
by: H,, has the property, p, P-almost surely (or P-a.s. or a.s.).

If not stated otherwise, V,, is assumed to be a stationary ergodic random field
satisfying | V,,(n)] < C < x for all n and w. However, the boundedness assump-
tion can be omitted (or replaced by a moment condition) for many purposes.

We state and prove the following proposition for later use, as well as to
demonstrate typical techniques concerning ergodicity. A random variable f is
called invariant under T; if f(T;w) = f(w) for all i.
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Proposition 9.1. Suppose the family of measure preserving transformation, T, is
ergodic. If arandom variable, f: £ — R, is invariant under { T;}, then f is constant
P-a.s.

Remark. The proof extends easily to f: 2 » Ru {oc}.

Proof. Define 2, = {w|f(w) < M}. Since f is invariant, the set £, is invariant
under T; and consequently has probability zero or 1. For M < M’ we have
Qy < Q- Moreover,

UQu=U 2u=92 and

McR MeZ
) @u= (). 2u
MeR MeZ

has probability zero. Thus,

My,= inf M
P(2p)=1

is finite. Since

Qy

Mo

= ﬂ Qy,+1m and
neN
QMo = {wlf(w) <My} = U QMO‘U/H)
neN
we have P(Q,, ) = 1, P(@,, ) = 0, and consequently
P({w|f(w) = Mo}) = PRy \2y,)=1. O
Let us define, for uel?(Z2*)
(U;u)(n) = u(n — i) . 9.7)

lf V., is an ergodic potential with corresponding measure preserving transforma-
tions {T;};. z, then

H; . = UH,U* , (9.8)

a rfflation basic to some elementary properties of H,,. Stochastic operators H,,
satisfying (9.8) are sometimes called ergodic operators.
The following theorem is a basic observation of Pastur [271] (with some

‘[Cjcohsriical supplements for the unbounded and the continuous case in [221] and
< ):

'[heorem 9.2 (Pastur). Let V,, be an ergodic potential. Then there exists a set
< < R such that

o(H,)=2% P-as. .
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Moreover,
04(H,) = ¢ P-as. .

To prove Theorem 9.2, we need a preparatory lemma. We say that a family
{A,},eq of bounded operators on a Hilbert space H is weakly measurable if the
mapping w+— {¢, A,¥) is measurable for all ¢, y e H.

Lemma 9.3. Suppose that {P,,} . is a weakly measurable family of orthogonal
projections satisfying (9.8). Then

dim Ran(P,) is zero P-as. or

dim Ran(P,) is infinite P-a.s. .

Proof. The P, are positive operators, hence the trace tr P, is uniquely defined
(possibly + o). Fixing w and choosing an orthonormal basis a, (w), a,(w) ... of
Ran(P,) and an orthonormal basis b, (w), b,(w) ... of Ran(P,)* we see that

tr P, = ¥ <ayw), Pai(w)) + ¥ <bi(w), P,b(w))
=Y <ai(w),a;(w)) = dim Ran(P,).

Now let {e;,i€ Z*} be the standard orthonormal basis in 12(Z"), i.e. e;(n) = §,,.
Thentr P, = Y {e;, P,e;) is a random variable (= measurable). Moreover,

tr PT,w = Z <P1',wei’ PT,mei>
= Z(Pwe‘-j, Pwei_j> = ter .

By Proposition 9.1, dimran P, = tr P, is thus a.s. constant. Hence P-a.s.:

rP,=E(rP,)> Y E(<{e,P,e))
lils N

= z E(<e0’PT,we0>)= Z E(<e0’Pwe0>) )

liisN liilsN
(where we use that T; are measure preserving)
= (2N + 1)’E(<eo, Pye0))

Since N was arbitrary, tr P, = O or tr P, = o0 according to E({ey, P,e0)) = 0 or
not. B
Proof of Theorem 9.2. Denote the spectral projections of H, by E ,(w). Equation
(9.8) implies that

Ey(T.w) = UEs(0)U* . 9.9

This follows from the fact that the right-hand side of (9.9) is the spectral resolution
for the operator U;H,U?*.
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We now prove that for a fixed Borel set 4 the function w+— E 4(w) is weakly
measurable. Itis not difficult to see that products of bounded, weakly measurable
functions are weakly measurable. So, in particular, H], is weakly measurable for
any n€ N. We can approximate E,(w) in the strong topology by w-independent
polynomials in H,,. Thus, E 4(w) is weakly measurable. Therefore, by Lemma 9.3,
for fixed 4 dim Ran(E,) is either zero a.s. or infinite a.s.

For any pair {(p,q) of rational numbers, we set n(p,q):=0 if
dimRan(E, ,(w)) =0 P-as. and n(p,q):= o if dimRan(E, ,(w)) = o
P-as. According to Lemma 9.3, n(p,q) is well defined. Define £, ,:=
{w|dimRan E, ; () = n(p,q)} and

Qo = ﬂ Qp.q .
p.qeQ

Since £, , has probability 1 and the intersection over p, g€ Q is countable, we
have P(Q,) = 1.

We claim that for w,, w, € 22, the spectra 6(H,, ) and 6(H,,,) coincide. Indeed,
if i¢ o(H,,), then

dlm Ran E(A..Az)(wl) =0
forall 4,, 4, with 4, < 4 < 4, sufficiently near to A. Since w,, w, € 2, we have

dim Ran E(p.q)(wl) = dim E(p,q)(wz)

for p, ge Q, so
dim Ran E‘Ahzz)(wz) = 0

for i,,4,eQ with 4, < 4 < 4, sufficiently near to A. This implies A¢a(H,) The
claim follows by interchanging the roles of w, and w,.
Now, suppose that 1€ a4;,(H,,) for an w € £2,. Then

0 <dimRank; ;,(w) < o

for some 4, < 4 < 4,, 4,, 4,€ Q. But this contradicts the choice of we 2,. So
O4i(H,) = ¢ P-as. B

Remark. (1) The use of the countable set of pairs @ x @ in the above proof is
essential, since an uncountable intersection of sets of full probability may have
Probability strictly less than 1.

(2) To prove the result for unbounded operators needs a bit more technique
to prove the weak measurability of E 4(w) (see [205]).

The following theorem is due to Kunz-Souillard [221], and was extended to
4 more general context by Kirsch and Martinelli [205]:

Theorem 9.4 (Kunz-Souillard). Let V, be an ergodic potential. Then there exist
Sets Y acs e ¥ pp = R such that
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g.H,) =2, P-as.
o.(H,)=2%,, P-as.
o,p(H,) =2, P-as.

Notational Warning. By o,,(H) we denote the closure of the set e(H) := {4|/4is an
eigenvalue of H}. This notation disagrees with that of Reed and Simon 1 [292].
In fact, the above theorem would be wrong for ¢(H,,)!

Remark. At first glance, given Theorem 9.2, Theorem 9.4 looks rather trivial.
However, there is a pitfall: The necessary measurability of certain projections is
nontrivial.

Proof. We define E(w) := E 4(w)P.(w) where P.(w) is the projector onto the
continuous subspace w.r.t. H,. Analogously, we define E%(w) := E 4(w)P, (w),
etc. Then the proof of Theorem 9.2, with E 4(w) replaced by E3‘(w) etc., proves
Theorem 9.4 except for one point: We have to prove the weak measurability of
E*¥(w), E(w) and E%P(w). For this, it suffices to prove the weak measurability of
¢ (w) and E%(w).
It is not difficult to verify by the RAGE-theorem (Theorem 5.8) that

T
(@, P.(w)y> = lim lim 1 f (o, eH=F(|j| > J)e itH= > dt (9.10)
J-+x T—x 2T “r

where F(A) is multiplication with the characteristic function of A. Since

eirH.. - z

the right-hand side of (9.10) is measurable, hence P.(w) and therefore E§(w) :=
E 4(w)P,(w) is weakly measurable.

We prove the weak measurability of E3(w) using an argument of Carmona
[61]. We need a lemma:

(itH,,)"
n!

Lemma. Let # be the family of finite unions of open intervals, each of which has
rational endpoints. Then, for any Borel set A4,

”sing(A) = lim sup ”(A nl)=:v(4),

n~x leg.|l|<n!
where || = Lebesgue measure.
Proof of Lemma. Note first that the sup decreases as n increases, so the limit

defining v(A) exists.
Write dy, . (x) = f(x)dx and set g(R) = p, . ({x|f(x) > R}) so g(R) O as
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R — oo. Then u, . (I) < R|I| + g(R) so
wAND < p(A)+ Rl + g(R) .

Thus, for any R, v(4) < u,(A) + g(R), and thus v(4) < u,(A).
Conversely, find B with |B] =0 and u,(R\B) = 0. Find open sets C,, so
AnBc C,and|C,| 0. Given nand ¢, find mso |C,| < n™! and then I € #, so

[I(C,,,\” < ¢ Then
pAND 2 p(AnC,) — u(C\D) 2 p(AnB) —e=p(A)—¢ .

Thus, v(A4) > p(A) — eso v(A) > u,(A). B
Conclusion of the Proof of Theorem 9.4. For any ¢,
(@, Ej(w)g) =lim  sup (¢, Esn ()9) ,

n—x lel,|l|<n™!
since I is countable and (¢, E,~;(w)p) is measurable, we conclude that
(. E%(w)) is measurable. By polarization, E}(w) is weakly measurable.

We close this section with the following observation due to Pastur [271]
which is special to the one-dimensional case:

Theorem 9.5 (Pastur). If v = 1, then for any given 4, P({w|4 is an eigenvalue of
H,})=0.

Remarks (1). It does not follow from Theorem 9.5 that H,, has no eigenvalues. An
uncountable union of sets of probability zero may have positive probability (or
may even be unmeasurable).

(2) While this observation of Pastur and the proof we give is one-dimen-
sional, the result is true in any dimension. It follows from Theorem 9.9 below
(see Avron and Simon [31]). This multidimensional result is more subtle, and is
still not proven for the continuous case.

Proof. trE;; =0 as. or trEj;; = o as. according to Lemma 9.3. But our
one-dimensional finite difference equation has at most a two-dimensional space
of solutions, hence tr E;=0as. B

Corollary. If the point spectrum 2ol = 0,p(H,)as.] is non-empty, then it is
locally uncountable.

9.2 The Density of States

In this section, we briefly discuss an important quantity for disordered systems,
the density of states k(E). For recent surveys on this subject, see [202, 342]. The
quantity k(E) measures, in some sense, “how many states” correspond to energies
below the level E.
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Recall that our Hamiltonians H, model the motion of a single particle
(electron) in a solid with infinitely many centers of forces (nuclei, ions) located at
some fixed positions. This is the so-called one-body approximation. However, in
a solid with infinitely many nuclei, we also have infinitely many electrons. We
cannot handle directly a problem with infinitely many particles, but we should
at least take into account the fermionic nature of the electrons via the Pauli
exclusion principle. This principle states that two fermions (e.g. electrons or
protons) cannot occupy the same quantum mechanical state (see also Chap. 3).
This leads to the well-known fact that electrons in an atom do not all have the
“ground-state energy”, but fill up the energy levels starting from the ground state
energy up to a certain level. Such a phenomenon also should occur in our
disordered solid. However, we are faced with the problem of having to distribute
infinitely many fermions on a continuum of energy levels. To get rid of this
problem, we will restrict the problem first to a finite domain. In such a domain,
we should have only finitely many electrons. To do this, let, as usual, E 4(w) denote
a spectral projection measure associated with H,, and denote, by y,, the charac-
teristic function of the “cube” C, = {ieZ'|-L<i,<L;k=1,...,v}. The
“number of electrons” in C, should be a density times #C, = (2L + 1)*. We
define a measure dk, by

1
oL + 1y TEA@) 9.11)

1 .
:[dk,_ = mdlm Ran(xLEA(w)xL) =

This measures “how many electrons per lattice site (i.e. per nucleus) can be put
into energy levels in the set A without violating the Pauli principle if we restrict
the whole problem to the cube C,.” We may hope that the measures dk, converge
(in some sense), if we send C, to Z¢ (i.e. L — o0).

The appropriate convergence of measures is the vague convergence, i.e.
dp, — duif | f du, — | f dp for any continuous function f with compact support.
We define the measure dk by

[ f(A)dk(4) := E(f(H,)(0,0)) ,

where A(0,0) is a shorthand notation for (d,, A48, ).

Theorem 9.6. For any bounded measurable function f there is a set 2, of
probability 1 such that

[f(Ddky(2)— [ f(A)dk(2) asL— oo . 9.12)

Proof. Fix a bounded measurable function f. Define f(w):= f(H,)(0,0). By
stationarity,

f(H,)(n,n) = f(T,w) .
We have
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. . 1
[radia) = i L+ 1y T
1 _
(2L + 1) I"IZS:Lf(H”)(n’ n) = (2L 1y Inlst(T;'w) =(s) .

To the last expression we apply Birkhofl’s ergodic theorem (see e.g. Breiman [53])
which states that

Z (T, w) converges to E(¢) P-ass. if e L'(P) .

(2L+ &
Thus,
lim(s) = E(f(w)) = E(f(H,)(0,0)) = [ f(A)dk(2) . &

Since the set 2, may depend on f, it is not clear that there is an w € Q such that
(9.12) is true for all bounded measurable functions f. However, we have
Theorem 9.7. dk, converges vaguely to dk for P-a.s.

Remark. Notice that the limit measure dk is non-random.

Proof. There exists a countable subset F, of C,, the continuous functions with
compact support, such that for any f e C, there is a sequence { f,} in F with f, - f
uniformly, and ( J, supp f, is contained in a ( f-dependent) compact set. Set

Qo = n Qg .
We have P(R2,) = 1. Moreover, one checks that (9.12) holds for any w e £2, and
any feC,. B

We define

K(E) := | x(-x.p(A) dk(4)

and call this quantity the integrated density of states. (Note that it is sometimes
this quantity that is called “density of states” in the literature.)

The following theorem states a connection between the spectrum and the
density of states.

Theorem 9.8 (Avron and Simon [31]).
supp(dk) = X[ = a(H,)as.] .

Remark. From our intuition at the beginning of this section, the theorem certainly
should hold.

Proof. If 4,¢ X, there is a non-negative continuous function with f(4,) = 1 and
f =0o0n Z. Thus, f(H,) = 0and so [ f(A)dk = (f(H,,)(0,0)) = 050 /o ¢supp dk.
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Conversely, if 4, ¢supp(dk), then there is a positive continuous function f
with f(4o) = 1 and [ f(4)dk = 0. Thus, for ae. w, f(H,)(0,0) =0, and so by
f(H,,)(n,n) = f(Hzx,)(0,0) we know that a.e. w, (,,f(H,)é,) = 0 for all n. But
since f(H,) > 0, this implies that f(H,) = 0. Since f is continuous and f(4,) = 1,
this implies that i,¢2. [

It is easy to see that the measure dk is a continuous measure, i.e. the function
k(E) is continuous, in the one-dimensional case. It was proven by Craig and
Simon [69] that in the multidimensional case, k(E) is even log-Holder continuous
(see [69] for details). Those authors use a version of the Thouless formula (see
Chap. 9.4) for a strip to establish this result. Recently Delyon and Souillard [86]
found a very elementary proof for the continuity (not log-Holder continuity) of k.

Theorem 9.9 (Craig-Simon, Delyon-Souillard). k(E) is a continuous function.

Proof. We follow Delyon and Souillard [86]. Fix A. Let f, be a sequence of con-
tinuous functions with f,(4) = 1 and f,(x)}0if x # 4. Then f,(H,,)(0,0)| E, ;,(0,0)
and j Ja(x)dk(x) | k(4 + 0) — k(4 — 0). Thus, by the definition of dk and Theorem
9.6, it is enough to prove that

. 1
[E(E“}(0,0)) = llm(z—l—*_—l)vlr(E“,xL) =0.

We remark that the set where the first equality holds may be 4-dependent,
but that does not change the fact that for 4 fixed it holds a.e., and we need only
look at a typical point.

A solution Y of H,y = Ey is uniquely determined inside C, by its values on

CL = U CL.j ’
j=1

where C, , = {ieC,liy= —Lor —L+ 1} and C,, = {ieC,liy= —Lor L} if
k> 2. For

W) = [E — Via = 8,)10(x = 5,) = bla = 28,) = 3 Va5, +5)
+ ¥l -6, —8)]
allows us then to determine y inductively fora, = —L + 2,..., L. Thus,
dimy,[RanE;;] < #(Cp) < v@L+ 1) .
But
tr(x.En) < dimy (RanE )l x Eqy |l < dimyg (RanE ;)
so (2L + 1)~"tr(x.E)) = 0. O
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There are some more results on the regularity of the density of states. We
mention Wegner’s proof of the existence of a density for dk for the Anderson
model when the common distribution has a density (see Wegner [366] or Fréhlich
and Spencer [119] Appendix C). Constantinescu Frohlich and Spencer [67]
proved the analyticity of k(E) if | E| is large for i.i.d. Gaussian V_(n).

However, for v > 1, there seems to be no regularity result for k(E) in the con-
tinuous case, so far. For v = 1, it is not difficult to show that k(E) is continuous.

Frequently the density of states is defined in a slightly different way than
above. Instead of restricting E 4(w) to cubes, one restricts H,, itself. Let us set
Cyvm={keZ’IN<k;<M;i=1,...,v} for N, MeZ. We then define an
operator HVM on [2(Cy, 5, ~ C™~N*17) by its matrix elements:

HYM, ;= €6, HSM0;) := (8, H,d)) (9.13)

for i, je Cy y- Equation (9.13) can be looked upon as imposing “boundary
conditions” u(k) = O for k¢ Cy ., k nearest neighbors to Cy .
We set

pn.m(A) ;= # {A€ A|4is an eigenvalue of HY M} | 9.14)

It can be shown (see Avron and Simon [31]) that the measures (# Cy ») ' dpy. m
converge vaguely to dk as |M — N| — oo.

The rigorous investigation of the density of states goes back to Benderskii-
Pastur [44], who proved the existence of k as the limit of dp_, , /(2L + 1)*. The
existence of dk was proven in increasing generality and by different methods by
Pastur [269]), Nakao [262], Kirsch and Martinelli [206] and others. The way
of defining dk through dk, is due to Avron and Simon [31]. The definition of dk
via the rotation number in the one-dimensional continuous case was introduced
by Johnson and Moser [186] (see Delyon and Souillard [85] for the discrete
case).

There is large interest in the asymptotic behavior of k(E) for large and small
values in E. In the continuous case, k(E) behaves like t,E*?/(2n)" as E = o (1,
is the volume of the unit ball in R*); see Pastur [269], Nakao [262], Kirsch and
Martinelli [206]. This is the same behavior as for the free operator H,. However,
as E goes to E, := infa(H,,), the behavior of k(E) differs heavily from the free
case. As a rule, k(E) decays for E \ E, much faster than kq(E)—the density of
states for H,. For E, > — 0, it was predicted by Lifshitz [234] on the basis of
physical arguments that k(E) should behave like C, exp[ —c,(E — E,)""?] as
ENE,, which is now called the Lifshitz behavior. For rigorous treatment of
the Lifshitz behavior for the discrete case, see Fukushima [123], Romerio and
Wreszinski [298) and Simon [341]; for the continuous case, see Nakao [262],
Pastur [270), Kirsch and Martinelli [207] and Kirsch and Simon [208]. The
behavior of k(E) as E N E, = —oo is treated in Pastur [269] (see also Fukushima,
Nagai and Nakao [124], Nakao [262], Kirsch and Martinelli [206]).
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9.3 The Lyaponov Exponent and the Ishii-Pastur-Kotani Theorem

For most of the rest of this chapter, we suppose that v = 1, for it is the one-
dimensional case which is best understood. What makes the one-dimensional
case accessible is that, for fixed E, a solution of (H, — E)u = 0 is determined by
its values at two succeeding points (initial value problem for a second-order
difference equation).

Fix E. We consider the one-dimensional difference equation of second
order

un+1)+um—1)+[V,(n)— EJu(n)=0 . 9.15)

and introduce the vector-valued function

utr) = (u(;;(-:) ”) '

Define

E-V,n -1
1 0/

A,(E):= A,(E,w) = (

A function u(n) is a solution of (9.15) if and only if

u(n + 1) = A,y (E)u(n) .
Set

®,(E) := &,(w,E) := A,(E)A,_,(E)... A,(E) . (9.16)
Then

u(n) = P,(E)u(0)

defines the solution of (9.15) “to the right” with initial condition

1
uf0) = (Z:o;) '

Similarly u(—n) = &_,(E)u(0) with &_,(E):= A_,,,(E)™"... Ao(E)~! defines the
solution to the left. Note that

L (0 1
""‘E"‘<—1 E—V,..,w)'

We now define
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1
5% =l — 9.17
7+ (w, E) NliTw'N'lnll¢~(w,E)ll (9.17a)
o1
+*(,E):= lim —In|®Py(w,E)| . (9:17b)
U N=tw |N|

Remark. For definiteness, let ||A|| denote the operator norm of the matrix 4.
However, the limits (9.17a) and (9.17b) do not change, if we use another norm.

These quantities measure the growth of the matrix norm || ®y(w, E)|. Since
det A,(E) = 1 and hence det®y = 1, it follows that ||@y(w, E)| > 1, and con-
sequently 0 < y*(w, E) < 7* (o, E). Indeed, if det A = 1, at least one eigenvalue
of A satisfies |A| > 1, thus, || 4] > 1.

Theorem 9.10 (Furstenberg and Kesten [126]). For fixed E and P-almost all o

1 .
+X(E):= lim —In|®y(w, E)| 9.18)
N-‘t:o'NI

exists, is independent of w and
7 (E) =77 (E) . (9.19)

We call y(E) := y*(E) the Lyaponov exponent for H,,. We will see in a moment
that y(E) plays a central role in the investigation of one-dimensional stochastic
Jacobi matrices.

To prove (9.18), we will exploit Kingman’s subadditive ergodic theorem [200]
which we state without proof. We remark that a multi-dimensional version of
the subadditive ergodic theorem can be used to prove the existence of the
(intcgrated) density of states by means of Dirichlet-Neumann bracketing (see
[206, 325]).

Since now v = 1, we have T, = (T,)". Weset T:=T,,so T, = T". Wecall T
ergodic if {T"},. 7 is ergodic. A sequence {Fy}y.n of random variables is called
a subadditive process if

Fy,m(w) < Fy() + Fy(T"w)
where T is a measure preserving transformation.
Theorem 9.11 (Subadditive Ergodic Theorem, Kingman [200]). If F is a sub-

additive process satisfying E(]Fy|) < oo for each N, and I'(F) := infE(Fy)/N >
— %, then Fy(w)/N converges almost surely. If, furthermore, T is ergodic, then

.1
lim = Fy() = I'F)

almost surely.
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Proof of Theorem 9.10. Define Fy(w) = In||@y(w, E)|. Since

Fyiu(w) =In

N+M N .‘
[1 Aiw.E)-[] Aiw,Ey
j=N+1 i=1 i

N
j(Tyw, E)- L—! Afw,E) H
< In([| @y (Tyw, E)| | Py(w, E)Il)
= Fy(Tyw) + Fy(w)

the process Fy, is subadditive.
Moreover,

o)
—lEE: 14w, E)

E(n|| 4w, E)I)

IE”FN“ = -[E(In

j=1

= E(In||4o(w, E)I) ,

where we used the stationarity of V, (n) in the last step. Moreover,
E(In* | V,,(0)|) < oc implies E(In|Ay(w, E)||) < cc. In addition, as noted above,
Fy > 0soinf[E(Fy)/N] = 0 > —oc. Thus, Theorem 9.11 implies that

lim -—In |Py(w, E)|| = mf ——IE(ln |Py(w, E)||) a.s.

N*+1

and

lim —In | Py(w, E)|| = inf —[E(In |®Py(w, E)||) as.
N—-x |N] n<o |N|

Now we prove (9.19). Since, for N>0, &_y=AIL...AZjA;' =
(AgA_,...A_y)"!, we have by stationarity

E(n(®P_y., 1) = E(n|D5' ) . (9.20)

Moreover, for

-0 70



9.3 The Lyaponov Exponent and the Ishii-Pastur-Kotani Theorem 179
we have
JO ) = Byt
Thus. since [|[Jull = |J'ull = |lull and we have (9.20),it follows that y* = y~. O

The following “multiplicative ergodic theorem™ of Osceledec [267] connects
the large N behavior of @y with the behavior of solutions @y u.

Theorem 9.12 (Multiplicative Ergodic Theorem, Osceledec). Suppose {4,),n
is a sequence of real 2 x 2 matrices satisfying (i) lim,_, (1/n)In|A4,| =0 and
(ii) det 4, = 1. If y:=lim,__ (1/n)In||A4,-...- A, | > 0, then there exists a one-
dimensional subspace ¥~ < R? such that

1
lim-In||A4,-...-A,v|| = —y forveV_,v+#0
n
and
1
lim'—llnllA,,-...-A,v||=7 forve¢ V. .

Osceledec proved a probabilistic version of this theorem (see Osceledec [267],
Raghunathan [291]). Ruelle realized it was a deterministic theorem; for a proof,
see Ruelle [301].

Osceledec’s theorem tells us that under the hypothesis y(E) > 0, there exists
P-as. only “exponentially growing” and “exponentially decaying” solution (to
the right) of the equation H,u = Eu. The exponentially decaying solution occurs
only for a particular initial condition 4u. ; any other initial condition leads to an
increasing solution. The same is true for solutions to the left with a particular
initial condition Au_. An (/2-) eigenvector can only occur if the lines iu, , Au_
happen to coincide.

However, we have to be very careful with assertions as above, since these
considerations are justified only for fixed E. If we allow E to vary through an
uncountable set, it may happen that the exceptional w for which y*(w, E) #
7(E) > 0 may add up to a set of measure 1!

_ For example, we cannot conclude that for P-a.a. w any solution of H,u = Eu
(with arbitrary E e R) is either exponentially increasing or decreasing! However,
the Lyaponov exponent y(E) characterizes the absolutely continuous spectrum
completely.

Suppose 4 is a measure on R, U, .. its absolutely continuous part. We call a
Set A an essential support of u, . if: (1) There is a set, B, of Lebesgue measure zero
such that u(R\(4 U B)) = 0. (2) If u(C) = 0, then the Lebesgue measure |A A C|
IS zero. The essential support is defined uniquely up to sets of Lebesgue measure

2cro. We define the essential closure A% := {i||AN (4 — ¢4+ ¢€)| >0 for all
&> 0},
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Theorem 9.13 (Ishii-Pastur-Kotani). Suppose that V, is a bounded ergodic
process. Then

0,.(H,) = {E|y(E) = 0} . 9.21)
Moreover, the set {E|y(E) = 0} is the essential support of E%*(H,,).

Ishii [176] and Pastur [271] proved that o, . (H,,) = {E|y(E) = 0}°*. Kotani
[215] proved the converse for the continuous case. His method was adopted to
the discrete case by Simon [336). See Minami [247] for further information. The
Kotani part of the proof requires the use of theorems on H?-functions on the
unit disc. We will only give the Ishii-Pastur part.

Proof. We only prove a,.(H,) < {E|y(E)= 0} Suppose y(E)>0 for
Lebesgue-almost all E in the open interval (a, b). Thus, A; = {w|y(w, E) = 0} has
P-measure zero for almost any Ee(a, b).

Set 4 := {(w, E)|y* (w, E) # ™ (v, E) or limit does not exist or y(w, E) = 0;
Ee(a,b)}. Denote the Lebesgue measure by 4. Then

0= iP(AE)dE = (4 x P)(A) = (P x A)(A)

by Fubini’s theorem. Therefore, for P-a.e.
AMA,) = A({Ely* (w,E) # v~ (w,E) or limit does not exist or
7(w,E) =0; E€(a,b)}) =0,

i.e. for P-a.e. w, y(w, E) > 0 for all E outside a set of Lebesgue measure zero.
We know (see Chap. 2) that
S, := {E|H,u = Eu has a polynomially bounded solution} satisfies
Eps,(H,) =0 .

Moreover, since A(A4,) = 0, it follows that
E4(H,) =0 .

But for E¢ A, the only polynomially bounded solutions are exponentially
decreasing because of Theorem 9.12; hence, they are I2-eigenvectors. There are
only countably many of them, hence A(S, N ((a,b)\4,,)) = 0. Thus,

Ei5y(Hy,) = EiSiyns,(Hy) = Eifiyna (Hy) + Efliynsa,(Ho)

=0. O

Knowing whether y(E) is strictly positive or zero, we can answer the question for
the measure theoretic nature of the spectrum of H,, partially. However, in general,
y(E) cannot distinguish between point spectrum and singularly continuous spec-
trum, as we shall see in Chap. 10.
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Of course, to use Theorem 9.13 in concrete cases, we need a criterion to decide
whether y(E) = 0 or y(E) > 0. The first such criterion was given by Furstenberg
[125] for i.i.d. matrices 4,(w, E). Kotani [215] proved that in a very general case,
+(E) > 0. (See Simon [336] for the discrete case.)

An ergodic potential, V,(n) is called deterministic if V,(0) is a measurable
function of the random variables {V,(n)},<-, for all L. It is called non-
deterministic if it is not deterministic.

Thus, an ergodic process V,(n) is deterministic if the knowledge of V,(n)
arbitrary far to the left allows us to compute V,(0), and hence the whole process

V., (n).

Theorem 9.14 (Kotani [215]). If V,(n) is nondeterministic, then y(E) > 0 for
Lebesgue-almost all EeR. Thus, o, . (H,,) = &.

For the proof, see Kotani [215] and Simon [336].
Example 1. If the V,(u) are i.id., then o, . (H,) = &.

One might believe that Theorem 9.14 covers all interesting cases of random

potentials. However, as was pointed out in Kirsch [201] and Kirsch, Kotani and
Simon [203], there are interesting examples of stochastic potentials that are really
random in an intuitive sense, but deterministic in the above precise sense. In
[203], it is shown that V,,(x) = ) g,(w)f(x — i)—our introductory example—is
“typically” deterministic even for i.i.d. {q;} if f has noncompact support. Here is
a discrete example.
Example 2. Let ¢ be a bijection from Z to Z* = {neZ|n > 0}. Set f(n) = 37°",
Let g;(w) be i.i.d. random variables with P(q,(w) = 0) = p; P(q(w) =1)=1 — p.
Then for fixed 4 > 0: V,,(n) = 1), gm(@)f(n — m) is an ergodic potential, which
is random in an intuitive sense. However, g, is essentially the decimal expansion
of 271V,,(n) to the base 3, so the process V,, is clearly deterministic. Especially for
this example, the following theorem of Kotani [216] becomes useful.

To state Kotani’s theorem, we regard our probability measures as measures
on

Q = X [a,b] forsomea,b< oo .

We can view 2 as a compact space under the topology of pointwise convergence.
supp P can then be defined in the usual way.

Theoren! 9.15(Kotani). Suppose V,{"(n) and V! (n) are two bounded ergodic pro-
Cesses with corresponding probability measures P,, P,, corresponding spectra

51 1» £, and absolutely continuous spectra £ and X2 If supp P, < supp P,,
en

(i x, <X, and
(i) T3 < e,
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Part (i) follows essentially from Kirsch and Martinelli [204]. The more
interesting part (ii) uses heavily Kotani's carlier paper [215], usng again H>2.
function theory.

Kotani proves this theorem in the continuous case. Using Simon [336], it can
be carried over to the discrete case without difficulties.

Kirsch, Kotani and Simon [203] use Theorem 9.15 to prove the absence of
absolutely continuous spectrum for a large class of random, but deterministic
potentials.

Example 2 (continued). Taking g, =0 and g, = 1, we see that W, =0 and
W, = 34/2 are periodic potentials in supp P. Hence, the point measure P, and P,
on W, and W, respectively are ergodic measures with supp P, c supp P, i =0, 1.
By Theorem 9.15, we have a, . (Hy + W) =0, . (Hy) =[—2.2] o 0, . (H,) as.
and o, . (Hy + W))=[—-2+34/2,2 + 34i/2] o 0,.(H,) as. Thus, a, . (H,) =
Jas.if A >8/3. O

Deift and Simon [79] investigate those energies with y(E) = 0. Interesting
examples for y(E) = 0 on a set of positive Lebesgue measure occur in the context
of almost periodic potentials (see Chap. 10). Among other results, Deift and
Simon [79] show:

Theorem 9.16 (Deift-Simon). For a.e. pair (w, E))e R x {E|y(E) = 0} there are
linearly independent solutions u, of H,u = Eu such that

(i) u, =u_

N
) luy(n))2 < oo .
n=-N

. — 1
(i1) 0 < lim (2N 1

N-=x
Moreover, |u, (n, )| = |u. (0, T"w)|.

For a proof, see [79].

9.4 Subharmonicity of the Lyaponov Exponent and the Thouless
Formula

In this section, we establish an important connection of the Lyaponov exponent
and the density of states: the Thouless formula. For the proof of this formula, as
well as for other purposes, a certain regularity of the Lyaponov exponent—
namely its subharmonicity—is useful.

Before proving this property of y(E), we recall some definitions and basic facts
concerning subharmonic functions.

A function f on C with values in Ru { —oc} is called submean if

2=
fz0) < ZLn f f(zo + rei®)dO 9.22)
0
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for r > Oarbitrary. A function f is called uppersemicontinuous if, for any sequence
z, = 20, WE have lim f(z,) < f(2,). A function f is called subharmonic if it is both
submean and uppersemicontinuous. It is an immediate consequence of the

definitions that

1
feo)<lim— [ flaydz (9.23a)
” lz=z20lsr

if f is submean, and that

1
fizo) = lim — [ feaz, (9.23b)

|z==zolsr

if f is subharmonic.
Proposition 9.17. (i) If £, are submean functions with

sup | f4(z)] < oo forany R, and
|zI<R

Sfolz) = mﬁ.(z) s

n—x

then f, is submean.
(ii) If { f,} is a decreasing sequence of subharmonic functions, then

So(2) = inf £,(2)

is subharmonic.

Proof. (i) Forany nand any N < n

2x
1 .
Tzo) < 5- 6[ fi(zo + 1ei®)do

2r
1 )
< i0 .
<5 ;‘; glgf,,(zo + re*)do
Thus,

2x
. 1 .
Jo(zo) = inf sup fi(zo) < — ian' sup fj(zo + re®)do
N j>N 2n ° j2N

2z
1 .
= E J fo‘Zo + I'e'a)do
[}

by the monotone convergence theorem.
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(ii) follows from (i) since the inf of uppersemicontinuous functions is upper-
semicontinuous. [J

After these preliminaries, we come to the basic result of this paragraph, which
is due to Craig and Simon [70]. Craig and Simon were motivated by Herman
[162] who extensively used subharmonicity of y in various auxiliary parameters.

Theorem 9.18 (Craig and Simon). (i) 7 (w, E) is submean.
(ii) y(E) is subharmonic.

Proof. (i) The matrix-valued function @y(w, E) is obviously analytic in E for any
N. Thus, In||®y(w, E)| is subharmonic [see e.g. Katznelson [199], Chapter III,
Equation (3.2)]. Thus, by Proposition 9.17(i),

— 1
7*(w,E) = lim —In|®y(w, E)|
N-=two N
is submean.
(ii) By the subadditive ergodic theorem (Theorem 9.11)

1
7(E) = inf S E(In | @y(w, E)I) -

By Fubini’s theorem and Fatou’s lemma, E(In | ®y(w, E)||) is subharmonic.
By 9.17(ii), y(E) is subharmonic. [J

We come to a first application of Theorem 9.18:

Theorem 9.19 (Craig and Simon [70]). For P-almost all w and all E
7*(w,E) < y(E) .

Proof. From the very definition of 3* (w, E) and y(E), it is obvious that for fixed
E: 3*(w, E) = y(E) P-a.s. By use of Fubini’s theorem, we conclude from this that
7(w, E) = y(E) for P-almost all w and Lebesgue-almost all E. Thus,

{ 7*(Ewd*’E= | yE)d*E P-as.
|E-Eql<r |E-Eol<r
(d*E indicates that we integrate over a complex domain). Thus, using Theorem
9.18 by (9.23), we know (P-a.s.)

1
7 (Epw) slim— [ F*(Ew)d’E
r=o |E-Eo|<r

—tim [ WBAE=y(E) . D

-0 r

b

|E-Eo|sP

Finally, we discuss an important connection between the Lyaponov exponent
y and the density of states k: The Thouless formula. It is named after Thouless,
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who gave a not completely rigorous proof of it [355]). The Thouless formula was
discovered independently by Herbert and Jones [153]. Thouless’ proof was made
rigorous by Avron and Simon [31]). We follow Craig and Simon [70], who
simplified the proof of [31] by using the subharmonicity of y. In the continuous
case, Johnson and Moser [186] have an alternative proof.

Theorem 9.20 (Thouless Formula).
7(E) = [In|E — E'|dk(E) . (9.24)

Proof. We first prove (9.24) for E€C\R. For those E, the function f(E’):=
In|E — E’| is continuous on supp(dk) = R. By the definition of @, (E) [see (9.16)],
it is easy to see that @ (E) is of the form

P (w,E) Q. (o, E))

d)L‘w, E) N (PL-l(w¢ E) QL-Z(w¢ E)

where P, and Q, are polynomials in E of degree | with leading coefficient 1.
Moreover,

P(w,E)=0,

if and only if H,u = Eu has a solution u satisfying u(0) = 0, u(/ + 1) = 0 and
0O/(w, E) = 0, if and only if there exists a solution with u(1) = 0and u(/ + 2) = 0.
Thus,

1 1

P(E)=[](E - EM, Q(E)=[](E-EM,

J=1 J=1

where E{" (resp. E{") are the eigenvalues of H,, restricted to {1,...,1} (resp.
{2....,1+1}) with boundary condition u(0)=u(l +1)=0 [resp. u(l)=
u(l + 2) = 0]. Thus, we conclude that [see (9.14)]

In|P,(E)| = fIn|E — E'|dp, . (E') and

In|Q(E)| = [In|E - E'|dp; 1.1\ (E) .

By (9.14), we conclude that
1
[ InIPL(E)| = [In|E - E'\dk(E)

and the same for Q, (E) if E € C\R. Thus, (9.24) follows for those values of E.
Now let E be arbitrary. We need

Lf’mma. The function f(E) = {In|E — E’|dk(E’) (with f(E) = — oo if the integral
diverges to — o0) is subharmonic.
Before we prove this lemma, we continue the proof of Theorem 9.20: Since
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we know (9.24) for E e C\R, we have
1 ap_ ! 2
o | BPE=_5 [ JEBdE
|E-E|sr |E-E|<r

[f(E) as in the lemma].
Taking the limit r — 0 on both sides of the above equation, we obtain

¥(E) = f(E) = {In|E — E'|dk(E) ,

since both y and f are subharmonic. [J

Proof of the Lemma. The function ¢(E) =In|E — E’| is subharmonic [see
Katznelson [199] 111, Equation (3.2)]. Thus, f is submean by Fubini. Define for
M>0

Su(E) = fmax{In|E — E’|, — M} dk(E') .
Here f,, is obviously continuous. By the monotone convergence theorem,

J(E) = inf fo(E) .
M>0

Thus, f is uppersemicontinuous. []

Craig and Simon [70] use the Thouless formula to prove that k(E) is log-
Holder continuous in the one-dimensional case. In [69], these authors prove a
version of the Thouless formula for strips in arbitrary dimension. From this
result, they obtain the log-Holder continuity of k in the multidimensional case.

9.5 Point Spectrum for the Anderson Model

In this section, we show that the Anderson model has pure point spectrum.

We first prove a criterion for point spectrum of H,, that allows us to reduce
the problem to uniform estimates for H™ := H!%™ [see (9.13)].

We set

a(n,m) := E(suple‘""%n,m)l) .

[If A is a bounded operator on [2(Z*), we denote by A(n,m) = {é,, Ad,,> with
0,(i) = 0 for i # n, 8,(n) = 1 the matrix elements of A.]

We say that physical localization holds if ¥, . z|a(n,m)| < oo for m = 0 and
m=1.

Theorem 9.21 (Kunz-Souillard [221]). Physical localization implies mathe-
matical localization (i.e. o.(H,,) = ¢).
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proof. By the RAGE theorem (Sect. 5.4), in particular, formula (9.10) in Sect. 9.1,
we conclude:

|P(H oI = lim hm— j Y e itg, 8312 dt .
J-=wo 1‘-0:0 ST izs

Thus. if Y. nez1a(n,0)|* < oo, we have (since |exp(—itH,)(m,n)| < 1)

E(1P(Ha)do %) < lim Y 1ati.0) =

24

Hence d, is P-a.s. orthogonal to the continuous subspace. A similar argument
shows that PS(H,,)0, = 0 almost surely. It is easy to see that any J; can be written as

N
5= 3 2@ HLS + T B)HIS,
n=0

n=0

(e.g. 0, = H,6, — V,6, — 8,). Hence, P°(H,)é; = O as. for any j. Thus, 6.(H,,) =
gas. O

Remark. In terms of a direct physical interpretation, it would be better to define
awith a square inside E; the statement and proof of Theorem 9.21 still go through.
Since it is easier to estimate a as we define it, we have used that definition.

The next result shows that a(n, m) even determines the decay of the eigen-
functions:

Theorem 9.22. If, form = 0and m = 1,

la(n,m)| < Ce™2" | 9.25)
then P-a.s. any eigenfunction ¢, of H,, satisfies

lo,(n)| < C, e~ P-elnl
forany ¢ > 0.

Remark. The constant C,.. may depend on the eigenvalue. We say that the
eigenfunction ¢, is exponennally localized.

Proof. Set

B(w,n,m) := sup |e""Ho(n,m)| .
1

We first prove that (9.25) implies
Bw,n,m) < C,, ,e~P-aM 9.26)

form=0andm=1 P-as.
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Equation (9.26) holds if we show that
P(B(w,n,m) > e~®~9M" for infinitely many n) = 0 .

This, in turn, follows by the Borel-Cantelli Lemma (see any book on probability
theory, e.g. Breiman [53]) if we show that

Y P(B(w,n,m) > e P9y < oo 9.27)

form=0andm=1.
Since, by Tschebychefl’s inequality

P(B(w,n,m) > e~ P9y < e+@-allE( (e n, m))
= e~ *h[ePrlg(n,m)] < Ce~*i" ,

(9.27) follows. Thus, we have proven (9.26).
Now we use the formula

T-w

T
ol
Pigy(H) = s — lim [ e#e i ds . (9.28)
T
[}
This follows from continuity of the functional calculus and the fact that functions
1 T
— — [ eisEa-isx
Jr(%) T;‘; ete™ ds

obey | fr(x)] < 1 and f7(x) — O (resp. 1) as T — oo for x # E (resp. x = E).

Suppose now that E is an eigenvalue of H,,. Since v = 1, any eigenvalue is
simple. Denote by ¢, ; the normalized eigenfunction corresponding to E. Then
(9.28) implies

|90, EO) 190, £(1)] = <00, Vs, £) (P, £+ On )|

= <80, Pg)(H,)8,)| < Bl,n,0) < €, e~ P~

by (9.26). This proves the theorem if ¢, £(0) # 0. If ¢, £(0) = 0, we have ¢, g(1) #
0, and obtain the above estimate form=1. [

Now we consider H,, restricted to I2(—L, ..., L). As usual, we denote the
corresponding operator by H [see (9.13)]. We define

a,(n,m) = E(suplexp[—itHi,“’](n, m)l) .

Proposition 9.23: a(n, m) < lim, . a,(n, m).
Remark. By Proposition 9.23 and Theorems 9.21 and 9.22, we can conclude that



9.5 Point Spectrum for the Anderson Model 189

4., has pure point spectrum with exponentially localized eigenfunctions if we
0 .
have an estimate :

ay(n,m) < Ce™®" form=0andm =1
uniformly in L.

Proof. HY converges strongly to H,, (with the understanding that H(’(n,m) = 0
for |n| > L or |m| > L). Hence,

exp[ —itH®) (n,m) — exp(—itH,,)(n, m)
(cf. Reed and Simon 1, VII1.20 [292]), and thus by Fatou’s lemma

E (suplexp( —itH,)(n, m)l) <limE (sup lexp[ —itH](n, m)l) .. O

We denote by { EL*} the eigenvalues of H' in increasing order. ¢L* denotes
“the” normalized eigenfunction corresponding to EL*.
Finally, we define for any (Borel) set 4 c R:

pu(n,m, A) := IE(;I¢£"(n)lIwﬁ"(m)m(E.?;")) . 9-29)

Note that the sum over k goes only over 2L + 1 terms since H: is a 2L + 1) x
(2L + 1)-matrix.
It is immediately clear that

a;(n,m) < p,(n,m,R) , since

exp(—itHg)(n,m) = Y exp(—itEgG*) s (m)eit(m) .
k

Note that p,(n,m, R) = p,(n,m,[ — M, M]) for M large enough since the opera-
tors H,, are uniformly bounded.

Thgorem 9.24 (Kunz-Souillard). Suppose the V,(n) are independent random
variables with a common distribution r(x)dx. If re L® and r has compact
support, then

H,u(n) = u(n + 1) + u(n — 1) + V,(n)u(n)

has pure point spectrum (P-a.s.). The eigenfunctions of H, are P-a.s. exponen-
tially localized.

Remark. The above theorem was conjectured by theoretical physicists since the
early sixties. A continuous analog, where the potential V,(x) is a rather compli-
Cated diffusion process, was proven by Goldsheid, Molchanov and Pastur [138],
and Molchanov [248] (see also Carmona [59]). The above theorem is due to Kunz
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and Souillard [221]. Delyon Kunz and Souillard [81] simplified this proof and
extended the theorem to other types of disorder. We mainly follow their proof.
Their proof has some elements in common with an earlier approach of Wegner
[365].

Proof. We will give a uniform (in L) estimate on p, (n,m) := p,(n, m, R) of the form
pu(n,m) < Ce™®' m=0,1. 9.30)

This implies the theorem by Proposition 9.23 and Theorems 9.21 and 9.22.

The proof of (9.30) is broken into three steps. First, we rewrite p,(n,m) as a
multiple product of integral operators T, and T,. This will be done by changing
variables from V(—L),..., V(L)to 4, x_, ..., X_4, Xy, ..., X, where 4 is the
eigenvalue and the x; are simple expressions in terms of the eigenfunctions. Note
that the expectation E in (9.29) is nothing but an integral in the variables V(k);
|kl < L.

In the second step (Proposition 9.25), we explore some properties of the
operators Ty, T,. This investigation allows us to estimate p, in the last step.

We start with

pr(n,m) = p;(n,m,R)

2L+1 L

= _[ Y. lekrmligkrm) [ rvena®y
k=0

n=-L

where V = (V(—L), ..., V(L)) and the ¢%* denote the eigenfunctions for the
potential V. For definiteness, we now assume m = 0, n > 0. The other cases
are similar. After interchanging sum and integrals, we change variables from
(Vi) _pto {x_p,..., x_1, 4 X,,..., X} Where

A=Ep*, 9.31a)
Lk(p
Xy = ?l—,‘(’:l—l) form>0 ,and (9.31b)
oy (m)
L.k
L= <o, 9.31¢)
oy (m)

The Schrédinger equation u(n + 1) + u(n — 1) + V(n)u(n) = Eu(n) then yields

A—xpti— Xm m>0
Vimy=, A—x{'=xI}, m=0 9.32)
]).—x;,'_,—x,,,, m<0

with the understanding that x;}, = xZ}_, = 0. Equation (9.32) allows us to
compute the Jacobian J with respect to the change of variables Vi (x, 4). It is
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straightforward to see that
detJ =1+ x72{1 + xz2[1 +...x22,(1 + x7?)...1}
+x22{0+ x23 + ... x22,,0 + x23)...1)
=orM0)7?,

where we used that ¢} * is normalized. Moreover,

lpE O g )] = Ixyt - xzt o xt
Hence.
L
[ lot*onetml [| rviyazry
QL1 w= L
= (di| |x,"x§'-...~x;'||:n r(A— x4 — x,,,)]-r(}. —xi'=xIY
5, R m>0
® [ I1r—xt, - x,,)]dx_L...dx_, dx,...dx, ,
m<0

where 2o =[-2—|IV|.,2+ IVl.] and [[V|, =sup{|A;Aesuppr}. The
possible eigenvalues that occur always lie in this range, so we can restrict the 4
integration to this region.

Now we fix 4 for awhile and consider

pL0,n;4) = “:I IX.-_I|[ ” r(A—x;k, — x,,,)]
i=1

m>0
x [ H r(A—x,t, — x,,,)]r(). —x7'—xI)d*x . 9.33)
m<0
We introduce the integral operators T,, T, by
Tof(x):=[r(A — x =y V)f(y)dy , (9.34a)
LX) :=fr(i—x—y ™)yl f(y)dy . (9.34b)

Set ¢(x):=r(i — x) and Uof(x):= |x|"'f(x"!). Note that U, is a unitary
Operator on L?(R). From these definitions and (9.33), we see that

pLOm, 3) = | TE(x) x, 7 TP T oo(x, ) dx,
R

=<' Ty "o, UTy'9) . 9.35)

Observe that both To and T, depend on the parameter 2. We now investigate
7;) = To(;.) and Tl = ’rl(;')'
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Proposition 9.25:

@ IS, < IS,
) IS NIz = I1To(Af 2 < Cll 1, uniformly in 4

© ISl 1SNz
(d) T is a compact operator
@© IT3l,<qlfll, withagq < 1 uniformlyin 4 .

Before demonstrating Proposition 9.25, we show how this proposition yields
the exponential estimate of p(0, n, 4).

Proof of Theorem 9.24 (continued). We note that ||¢||, = 1. From (9.35) and the
unitarity of U, we see

p0,n,2) < | Tl I T Ty "0l

S ITollpn e N e N TR ez 2l Tolls, e 1T ™" Ml 1

1
< CH[ T a0 < 22 = éexp( —Enllnql) :

Hence, p,(0,n, A) decays exponentially in n. Moreover, Proposition 9.25 gives
uniformity in 4 on compact sets. This finishes the proof of Theorem 9.24, since
Zoisbounded. (O

Proof (Proposition 9.25):

@ IS, < [fr(d—x—y™)If(y)ldydx = [r(x)dx[|f(yIdy = | fIl,
®) IS5 < [fr(d —x—y™)IfWIdy-fr(d — x —27"):|f(2)| dzdx
S rll ey 0113
(c) Defining Kf(x):= [r(2 — x + y)f(y)dy = ry» f(x) where r;(x) = r(4 — x)
and Of(x) := |x|™' f(—x""), we can write T, as T, = KU, so

ITyf N2 = KOSl = lIre Of lly < el - 0Of N2 = Nl - 1SN -

(d) Let F denote the Fourier transformation. We set K := FKF ' and 0 :=
FOF™. Since 0 —and hence U—is unitary, we have to show that ROR is
compact. Since K is a convolution operator, we have Kf(p) = f‘(p)f(p) where
f.(p) = [ exp(—ixp)ry(x)dx. Formally we have

Of(k) = {a(k,p)f(p)dp with
1 ) . .dx
a(k,p) = ﬁ-jexp[—l(kx + px ')]m .

However, the integral is not absolutely convergent, so a(k, p) requires a careful
interpretation: Let g, be a C-function which is 1 near 0, g, :=1 —g,. Set
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Up(x) = 9:(x)0¢(x). Then U¢ = U, ¢ + U, ¢. Define furthermore

de

1 .
k) = 55 JexpL—itkx + px 115D

For fixed p, ayk,p) is the Fourier transform of f, := 2n)™
exp(—ipx~")|x|7!g2(x), which is an L?-function whose L2-norm is independent
ofp. HenCC,

sup [laz(k,p)I*dk < o . (9.36a)
p

Moreover, for fixed k

exp[—i(kx + px")]g%dx

|x|>(1/n)

gn(x-l)d
x|

’

= J' exp[—i(kx™! + px)]

[x|<m

which is convergent in the L2-sense to the Fourier transform of the L2-function

-1
exp(—ikx")gM .
x|
Hence,
sup j la,(k,p)*dp < oo . (9.36b)
k

Define 4; by (4;9)(k) = | a;(k, p)o(p) dp. Now we show 0, = A,. We will handle
freely integrals—such as [exp(—ikx)f(x)dx for feL?—that exist only in an
L?-sense. The reader can easily verify those manipulations. We have

g:1(x)

(U,(p)A(k):Iexp(—ikx) x| o(—x"")dx
-1
=J‘exp(—ikx“)g%l)<p(—x)dx

1 -1
= ﬁIe"p(-ik"-l)%ICXP(—ixpM(p)dpdx

_L s _ gl(x—l)
=5 [[expl—itkx L+ ) dx g(p)dp
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9:()
B

1 ,
=5 ﬂexp[—l(kx + px™")]15-—dx ¢(p)dp

= [a,(k,p)@(p)dp .

Thus, 0, = A,. The proof of U, = A, is similar (and even simplier). Therefore,
(KOK) ~ has an integral kernel b(k,p) = f,(k)a,(k, p)fi(p) + fi(k)a,(k, p)f,(p)
since re L' n L and hence re L?, we have fe L2 L™, so

bk, p)Ii L2(dk) x L2(dp)

< |IFll, s‘:P llay(k, Pl L2¢apy I Fll

+ Il sup llaz(k, Pl L2any I Fll 2 -
p

Thus, (KOK) ~ is Hilbert Schmidt and consequently T, is compact.

(e) Since | T?| is positive and compact, || T2 || is an eigenvalue of | T;?|. Since
|f;(k)| < 1 for k # 0, we have | T, f|| < || f|l for any fe L2. Therefore, 1 is not an
eigenvalue for |T|. So || T?|| < 1. Moreover, since f,(k) = exp(—iik)f,(k), the
norm || T?2| is independent of A. [

By a refinement of the methods of the above proof, one can prove the
following results:

Theorem 9.26 (Delyon, Kunz and Souillard [81]). Suppose that V,(n) satisfies
the assumptions of Theorem 9.24. Let V,(n) be a bounded function on Z. Then

Hy,:=Hy+ Vo + V,

has P-a.s. dense point spectrum with exponentially decaying eigenfunctions, and
possibly in addition, isolated eigenvalues.

Theorem 9.27 (Simon [333]). Suppose V,,(n) satisfies the assumptions of Theorem
9.24. Let a, be a sequence with |a,| > C|n|”"?*% and set W, (n) := a,V,,(n). Then

H,:= Hy, + W,(n)
has only dense point spectrum.

Remark. (1) Observe that the potentials ¥, + V,, and W, are not stationary. So,
the corresponding H,, will have a random spectrum in general. The proofs of
these theorems can be found in [81] and [333] respectively.

(2) More recently, Delyon, Simon and Souillard [84] and Delyon [80] have
studied the operators of Theorem 9.27, but with different a,. If |a,| < C |n|~ V270,
then H_, has no point spectrum [84], and if a, ~ An~"? with A small, the operator
has some singular continuous spectrum [80]!
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In the above proof, the assumption that the distribution P, of V(0) has a
density r(4) was necessary. For example, if V(0) = 0 with probability p, and
¥(0) = 1 with probability 1 — p, the above proof does not apply but a recent
paper of R. Carmona, A. Klein and F. Martinelli shows there is also only point
spectrum in this case.

We now survey briefly some further results on random potentials.

Brossard [ 56] proves pure point spectrum (in the continuous case) for certain
potentials of the form V,,(x) = Vy(x) + W,,(x), xeR'; where V, is a periodic
potential and W, is a certain random one.

Carmona [60] considers random, but not stationary, potentials (continuous
case). For example, suppose V!!"(x), xeR! is a random potential such that
—(d*/dx?) + V!V has pure point spectrum, and suppose V‘(x) is periodic.
Consider

Vix) = ViV(x) forx<0
o =1Dx) forx>0.

Carmona [60] proves that

d2 dz d2
—_ - —_— 2) ) = —_ (2)
al.c.< dxz + Vw) ol.c.( dxz + V ) 0( dxz + V ) ’

dz
_— V =
as.c.< dxz + w) ¢ and

d? 42 ’E
Up.p,(—‘w + V“’) = ap.p.<_p + V,_,‘,“)\o‘(—‘? + V‘z’) .

There has been large interest in operators with constant electric field and
stochastic potential. Suppose g, are i.i.d. random variables, f a C2-function with
support in (—4,4)and f <0, (f # 0).

d2
H, = — gt Fx+ Z gu(@)f(x —n) .
nel

We have seen, using Mourre-estimates, that the spectrum of H,, is absolutely
continuous if F # 0 (see Chap. 4 and [45]). Bentosela et al. prove that for F = 0,
ﬂ_le operator H, has as. pure point spectrum (with exponentially decaying
eigenfunctions) provided the distribution P, of g, has continuous density with
compact support.

If f is the 8-function, then H,, has a.s. pure point spectrum even for F # 0,
but |F| small. However, in this case the eigenfunctions are only polynomially
localized (but they are exponentially localized for F = 0). For |F| large, the
Spectrum of H,, is continuous (Delyon, Simon and Souillard [84]).

. For the case v > 1, much less is known than for v = 1. The physicists’ belief
Is that the nature of the spectrum depends on the magnitude of disorder. For
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small disorder, one expects that the spectrum is pure point at the boundaries of
the spectrum, while it should be continuous (absolutely continuous?) away from
the boundary, at least if v > 3. Those values where the nature of the spectrum
changes are called mobility edges. If the disorder is increased, the continuous
spectrum is supposed to shrink in favor of the pure point one. Finally, at a certain
degree of disorder, the spectrum should become a pure point one.

Recently, Fréhlich and Spencer [119] proved that for the multidimensional
Anderson model (with absolutely continuous distribution p,), the kernel
G(E + ig; 0,n) of the resolvent [H,, — (E + ie)]™! decays P-a.s. exponentially in
n uniformly as ¢ —» 0, provided that either E —» + oo (this corresponds to the
boundary of the spectrum) or the disorder is large enough.

Martinelli and Scoppola [239] observed that the estimates of Fréhlich and
Spencer [119] actually suffice to prove the absence of absolutely continuous
spectrum for |E| large or for large disorder. Corresponding results for a con-
tinuous model are contained in Martinelliand Holden [167]. Fréhlich, Martinelli,
Scoppola and Spencer [118] have proven that in the same regime, H,, has only
pure point spectrum, and Goldsheid [ 137] has announced a similar result.

New insight on localized has come from work of Kotani [217, 218], Delyon,
Levy and Souillard [82, 83], Simon and Wolf [345] and Simon [343] which has
its roots in the work of Carmona [60]. The key remark is that the spectral measure
averaged over variations of the potential in a bounded region is absolutely
continuous with respect to Lebesgue measure, so the sets of measure zero where
the Osceledec theorem fails are with probability 1 irrelevant. In any event, the
reader should be aware that the state of our understanding of localization was
changing rapidly as this book was being completed.

Kunz and Souillard [222] have studied the case of random potentials on the
Bethe lattice.

For additional information, see [347].



10. Almost Periodic Jacobi Matrices

This chapter deals with almost periodic Hamiltonians. Those operators have
much in common with random Hamiltonians; consequently, Chaps. 9 and 10 are
intimately connected. Almost periodic Jacobi matrices, as well as their contin-
uous counterparts, have been the subject of intensive research in the last years.
They show surprising phenomena such as singular continuous spectrum, pure
point spectrum and absolutely continuous spectrum that is nowhere dense!
Despite much effort, almost periodic Hamiltonians are not well understood.
Virtually all the really interesting results concern a small class of examples.

10.1 Almost Periodic Sequences and Some General Results

We consider the space I® of bounded (real-valued) sequences {c(n)},cz- For
cel*, we define c,, to be the sequence {c(n — m)},.z-. A sequence c is called
almost periodic if the set £2, = {c,,/me Z"} has a compact closure in I*. The
closure of Q, is called the hull of c.

A convenient way to construct examples goes as follows: Take a continuous
periodic function F: R — R with period 1. We can think of F as a function on
the torus T = {exp(2nix)|x€[0, 1)}, i.e. F(x) = F(exp(2nix)). Now choose a real
number a and define F®(n) := F(an). F® as a function on Z will not be periodic
if x¢ Q. It is, however, an almost periodic sequence. To see this, define F®-(n) :=
F(an + 6). For « fixed, S:= {F®®}, 0.2+ is @ continuous image of the circle,
and is thus compact. The translates of F® lie in S, so their closure is compact. In
fact, if a is irrational, S is precisely the hull of F®.

Similarly, if F is a continuous periodic function on R then for ae R’
F™(n) := F(na) defines an almost periodic sequence on Z.

Let us define T?—the d-dimensional torus—to be the set {(exp(2mix,), ...,
eXp(2mixy))|(x,, ..., x,)€[0, 114}, i.e. T?is [0, 1]¢ with opposite surface identified.
W? say that(c,, ..., c,) are independent over the rationals Q, if, for y,€ Q: ¥ y,c; =
0 lmplies that y, =0 for all i. If (1,a,,a,,...,a,) are independent over the
fationals, then the set {[exp(2mia,n),exp(2mia,n), ..., exp(2nixgn)]lneZ} is
anSF in T% From this it is not difficult to see that the hull Q. of F® (F
Ontinuous periodic) is given by {F(an + 0)|0€ [0,2r]} ~ T4,if(1,x, ..., a,) are
Independent over the rationals.

‘ Now let ¢ be an arbitrary, almost periodic sequence on Z'. On Q, =
“m|/me Z*} we define an operation o by: ¢,, 0 Cpy: := Cp+m-- By density of £, in the
hull @, this operation can be extended to € in a unique way. The operation o
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makes 2 a compact topological group. It is well known that any compact
topological group Q carries a unique Baire measure u, which satisfies

[f(gg')du(g’) = | f(g)du(g’)

and u(£2) = 1. This invariant measure is called the Haar measure (see [260] or
[292] for details). We may (and will) look upon £, P as a probability space. We
define, for feQ: T, f = f,. The invariance property of the Haar measure yu tells
us that

w(T,A) = p(A) .

Thus, the T, are measure-preserving transformations. It is not difficult to see that
any set A with T, 4 = A for all A has Haar measure 0 or 1. Indeed, for such an
A, ji(B) = [px4du would define another Haar measure on £2. But up to a
constant, the Haar measure is unique. Hence { T, } are ergodic. We may therefore
apply Theorems 9.2 and 9.4 to almost periodic Jacobi matrices, i.e. to operators
H of the form H = H, + V where H, is the discretized Laplacian and V is an
almost periodic sequence.

Proposition 10.1. Suppose V is an almost periodic sequence.

(i) For all W in the hull Q of V, the spectrum o(H, + W) is the same. The
discrete spectrum is empty.

(ii) There is a subset £ of £ of full Haar measure, such that for all We & the
pure point spectrum (singular continuous, absolutely continuous spectrum) is
the same.

That (i) is true for all W rather than merely for a set of measure 1 comes from
an easy approximation argument. This argument is not applicable to (ii) since
the absolutely continuous spectrum, etc. may change discontinuously under a
perturbation.

The above consideration emphasizes some similarity between stochastic and
almost periodic Jacobi matrices. However, to get deeper results, more specific
methods are required.

Most of the rest of this chapter deals with examples of the type F®(n) = F(xn)
for a periodic function, F (with period 1). The spectral properties of H = Hy +
AF depend on the coupling constant 4, and on “Diophantine” properties of a
(an observation of Sarnak [306]). More precisely, (suppose v = 1) if a is rational,
F? is periodic and we have only absolutely continuous spectrum. If « is irrational
but “extremely well approximated™ by rational numbers, then H = H, + AF®
has a tendency to singular continuous spectrum for large 4 (see Sect. 10.2), while
for “typical” irrational « and 4 large, the operator should have pure point
spectrum (Sect. 10.3). This picture has not been generally proven, but rather for
specific examples. We will see such examples below. It is even less well understood
what happens in the range between “extremely well approximated” by rationals
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and “typical” a, and for small 2. Moreover, the spectrum has a tendency to be a
Cantor set, that is, a closed set without isolated points, but with empty interior.
we will discuss this phenomenon in Sect. 10.4.

We will be able to discuss only a few aspects of the theory in this chapter.
Our main goal is to show the flavor and the richness of the field. For further
reading, we recommend the survey [335] which has some more material. The
reader will, however, realize that some results discussed here were found after
the writing of [335], which shows the rapid development of the subject.

10.2 The Almost Mathieu Equation and the Occurrence
of Singular Continuous Spectrum

In what follows, we will examine the following one-dimensional example of an
almost periodic potential:

K
Vo(n) = Y. ajcos[2nk(an + 6)] (10.1)
k=1

with 0€[0, 1] =~ the hull of V.

For the case k = 1, the corresponding (discretized) Schrédinger equation is
called the “almost Mathieu equation.” It is actually the almost Mathieu equation
that we will investigate in detail.

Our first theorem in this section is due to Herman [162], and provides an
estimate of the Lyaponov exponent y of (10.1) from below.

Theorem 10.2 (Herman). If a ¢ @, then the Lyaponov exponent y corresponding
to (10.1) satisfies

. laxl
l(E)Zlﬂ( 2 ) .

Remarks (1) By Theorem 9.13, we conclude that H, := H,, + V, for almost all 0
has no absolutely continuous spectrum if « is irrational and |ag| > 2.

(2) Prior to Herman, another proof of the case K = 1 was given by Andre
and Aubry [15] (with points of rigor clarified by Avron and Simon [30]).

Proof. For notational convenience, we suppose K = 1, i.c.
Vo(n) = acos 2n(xn + 0)

(e2xizne2xi0 +e” inzne— Zliﬂ)

[ S JIR~

a . .
= i(eZmznz + e—2mznz—l) R
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where we set z := exp(2ni6). For a fixed value E the transfer matrices (see (9.16)
@, (2) are given by

D (2) = AL(2)AL-1(2):...- A5(2)A,(2) with

A,(2) =

E — ;(CZIiMZ + e—2:inz-l) -1 :l '
1 0

We define
Fi(2):=zt Dy (2) = ﬁ 2A,(2) .
n=1

The matrix-valued function F,(2) is obviously analytic in the whole complex
plane, and furthermore satisfies

IFL@)I = 2.

for all z of the form exp(if). Since F,(z) is analytic, the function In||F(z)| is
subharmonic (see e.g. Katznelson [199] 111.3.2), thus

j In||F,(e"*)] d0 > In[|F,(0)|| = LIn ('“') (10.2)

Because of a ¢ Q, the flow 7,(0) = (0 + an) mod 1 is ergodic (see Sect. 10.1); hence
the subadditive ergodic theorem [200] tells us that for almost all 6

do
= lim 7 In|@,e)] = lim j In || @ () >

L-wo

—hm—flﬂﬁkﬂw—

L-‘w

Therefore, we obtain the bound

. ln(ltzll)

because of (10.2). O

The next theorem will enable us to exclude also point spectrum for Hj for
special valués of a. For those values, H, has neither point spectrum nor abso-
lutely continuous spectrum; consequently, the spectrum of H, is purely singular
continuous!

The theorem we use to exclude eigenvalues is due to Gordon [139]. It
holds—with obvious modifications—in the continuous case [i.e. on L?(R)] as
well (for this case, see Simon [335]).
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Theorem 103 (Gordon). Let V(n) and V,,(n) for me N be bounded sequences on
Z (i.e. n€ Z). Furthermore, let

(i) Vm be periodic, with period T,, — oo.
(ii) SUPm!Vam(n)| < 0.
(iii) SUPI< 2T, | V(M) — V(M) < M~ T,

Then any solution u # 0 of
Hu=(Hy+ V)u=Eu
satisfies

- u(n+ 1) + um)® 1

aox WP +uOF —4°
Remark. The assumptions of the theorem roughly require that the potential V is
extremely well approximated by periodic potentials. The conclusion, in particu-
lar, implies that H = H, + V does not have (/2-) eigenfunction, i.e. the point
spectrum of H is empty.

Before we give a proof of Gordon’s theorem, we apply the theorem to the
almost Mathieu equation. We first need the definition:

Definition. A number a e R\Q is called a Liouville number if, for any ke N, there
exist py, g, € N such that

x— Px
9k

< k7,

Thus, a Liouville number is an irrational number that is extremely well approxi-
mated by rational ones. The set of Liouville numbers is small from an analyst’s
point of view: It has Lebesgue measure zero. However, from a topologist’s point
of view, it is rather big: It is a dense G,-set. (Recall that F is a Gy-set if it is a
countable intersection of open sets.)

Theorem 10.4 (Avron and Simon [30]). It a is a Liouville number, || > 2 and
Vo(n) := Acos[2n(an + 0)] ,

then H, = H, + V, has purely singular continuous spectrum for almost all 6.

Proof. By Theorem 10.2, we know that H, does not have absolutely continuous
Spectrum for a.e. 6. Assume that « is well approximated by p,/q, in the sense of
the above Definition. By choosing a subsequence p,./q,- of p,/q,, we may assume

x— Px
9

< gtk .
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We set

Vi(n) := i.cos[Zn (ﬁn + 0)] .
ax

Then T; = g, is a period for V,.
We estimate:

cos (21: P n) — cos(2ran)

sup |Vi(n) — V(n)| = sup

In| < 2q;- n| < 2q, U
< sup 2m|n| ’i—a
l"‘quk* qk'
<4nk™ ™,

Thus, V satisfies the assumptions of Gordon’s theorem. [J

Now we turn to the proof of Gordon’s theorem. We start with an elementary
lemma:

Lemma. Let 4 be an invertible 2 x 2 matrix, and x a vector of norm 1. Then
max (|| x|, | A2x|l, | A7 x|, |A72x]) = § .

Proof. The matrix A obeys its characteristic equation
a,A*+a,A+a;=0. (10.3)

We may assume that @, = 1 for some i€ {1,2,3} and |a;| < 1 for all j # i.
Let us suppose a, = 1 and that |a, |, |a;| < 1, the other cases are similar. Then
(10.3) gives

xX=—a,Ax —a;A 'x

Since x has norm one and |a, |, |a;| < 1, it follows that | Ax| =4 or |A™'x|| 2
. 0O
2-

Proof of Theorem 10.3. Let u be the solution of (Hy + V)u = Eu with a particular
initial condition. Let u,, be the solution of (Hy + V,,)u = Eu with the same initial
condition. Define

b(n) = <u(n + l))‘ boin) = (u,,(n + l))

u(n) Up(n)

and

E—Vm) -1 w_ (E—Valm) —1
A"=< +1 0)’ A:')_< +1 0)’
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Then
sup  [|@m(n) — g(n)ll

MS2Tm

< sup ”AnAn—l "'Al — A:'"'A‘,"l’l"'A‘,""”
n<2T,,

u(l)
u(0)
< sup |n|e"Mm Tm = 2T, e3CTmm™Tm .

In|<2Tp,

Thus,

max |¢(aT,) — ¢a(aT,)| -0 asm— oo .
a=*1,%2

By the above lemma, we have

max Igm(@T)ll = 318m0) = 3(1u(0)1* + [u(1)|*)"?

a=*1,%

Thus

2 2 2
o [+ Ju(n + DI o maXsoyy.4a l¢(aT)ll > 1

WO + () > 16012 - U

i

10.3 Pure Point Spectrum and the Maryland Model

We now turn to an almost periodic (discretized) Schrodinger operator that, to a
certain extent, admits an explicit solution. We call this operator the Maryland
model, after the place of its creation by Grempel, Prange and Fishman at the
University of Maryland. The potential in this model is given by

V(n)=V,q :(n):= Atan[n(a-n) + 0] (10.4)

for neZ'. Here a = (xy,...,a,)€Z" a-n denotes the scalar product, and fe
[0,27]. To have V(n) finite for all ne Z*, we require 0 # n(a-n) + n/2mod x.
Then, V(n) will be unbounded (unless all components of « are rational). Therefore
V'is not an almost periodic function in the sense of Sect. 10.1. We will think of
_V as a “singular almost periodic function.” Since H, is a bounded operator, there
1s no difficulty to define H = Hy + V properly.

Recently the potential (10.4) was studied extensively by Fishman, Grempel
and Prange [111,112], Grempel, Fishman and Prange [142], Prange, Grempel
and Fishman [288], Figotin and Pastur [110,272] and Simon [338,340]. We
Note that Figotin and Pastur even obtain an explicit formula for the Green’s
function.

There is an explicit expression for the density of states k,(E) of H. It is not
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difficult to compute ko(E), i.e. the density of states for H,. In momentum space,
H, is nothing but multiplication by ¢(k) = 23 _, cos k;; hence, its spectral resolu-
tion P_, g is multiplication by x,_, r)(#(k)). Using this and the definition of the
density of states, one learns

1

ko(E) = (21()'

I{ke[0,2n]"|4(k) < E}| , (10.5)
where || denotes the Lebesgue measure.
Let us now give the explicit expression for k;:

Theorem 10.5. Suppose that {1,a,,..., a,} are independent over the rationals.
Then

1 A e
ki(E) = — I Epyr s o EVE (10.6)
Corollary. Suppose v=1. Then the Lyaponov exponent y,(E) of H, +
Atan(nan + 0), a¢ Q is given by

7(E) = Tz %(E)dE', (10.6')

1 J‘ A
nJ(E - E)?
where y,(E) is the Lyaponov exponent of H,.

Remarks. (1) As long as (1,a,, ..., a,) are independent over the rationals, k,(E)
[and for v = 1: y,(E)] is independent of «, 6.

(2) pa(x) := 1/n(A/(x?® + A?))is the density of a probability measure known as
the Cauchy-distribution or the Lorentz-distribution among probabilists and
theoretical physicists respectively. Equation (10.6) tells us that k,(E) is just the
convolution p, » ko(E). From this, we see that k; is a strictly monotone function
in E from (— o0, + o0) onto (0, 1). Thus, o(H) = supp k;(dE) = (— o0, o0)(4 # 0).

(3) For v =1, y,(E) is strictly positive since y,(E’) is positive outside the
spectrum of H,. Thus, H has no absolutely continuous spectrum (for v = 1).

Proof of the Corollary. The Thouless formula (see Chap. 9) tells us that y,(E) is
the convolution of f(E) = In(E) with dk,(E)/dE. Thus,

dk dk
)’A=f‘d—EA‘=f“P1‘d—Eo‘=Pa‘Vo- (]

To prove the theorem, we will make use of the following lemma:

Lemma. Fix arbitrary reals «,, ..., a, and positive numbers ¥, ..., ¥, with
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Z§=1 y=1

k 2x
1
o:=§ tan(x; + 0). Then — | e**®df =eM .
Let ¢(0) p y;tan(a; + ) henzntj;e dd=e

The proof of the lemma is left to the reader as an exercise in complex
integration (for a proof see Simon [338]).

Proof of Theorem 10.5. We prove that the Fourier transform k(1) of k; is
given by exp(— lltl)ﬁo(t) which implies the theorem.

The operators H, + V restricted to a finite box are just finite matrices. Thus,
we have (for the restricted matrices)

explit(Ho + V) = exp(itV) + i J' explis(Ho + V)1Hyexp[it — s)V]ds .
0

Iterating this formula, we obtain a series

explit(Ho + V)
= explitV) + i J' explis, V)Hopexp[i(t — s,)V1ds
o

ts,

+i? I I exp(is, V)Hy expli(s; — s;)VIHyexp[i(t — s,)V]ds, ds,,
00

+ e

which is easily seen to be convergent.

Taking expectation of the matrix element exp[it(H, + V)](n, m), we see that
exp(it(Ho + V)] is a series of integrals of the type evaluated in the lemma.
Therefore,

lE(e"‘"O”"(n, m)) = e-AIlleirHo(n’ m). O

Remark. The argument shows that k;(e) is the density of states for a large variety
of models; for example, in the Anderson model with a potential distribution p,.
This model is known as the Lloyd model, after work of Lloyd [235], who com-
puted k; in this model. Grempel, Fishman and Prange [142] obtained Theorem
10.5 for their model by rather different means. Our proof follows Simon [340],
who investigated the question of why the two models had the same k(e).

We suppose from now on that (1,a,, ..., a,) are independent over Q. While
the density of states k,(E) of H, + AV, ¢ does not depend on a, the spectral
Properties do, at least in dimension v = 1. We saw already that no absolutely
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continuous spectrum occurs. If « is a Liouville number, one can apply Gordon’s
theorem to prove that no (/2-) eigenfunctions of H, o ; = Hy + AV, 4 Occur, thus
showing that the spectrum is singular continuous in this case. We show now
(even in higher dimension) that pure point spectrum occurs for certain other
choices of a.

To prove that H, , ; has pure point spectrum for certain values of x, we will
transform the eigenvalue equation in a number of steps. Finally, we will arrive
at an equation that will make the dependence of the solution on « rather explicit,
or more precisely, a sequence , that determines the solution of our eigenvalue
equation will be given by

Yo = (" =17,

where {, is a known sequence exponentially decaying in |n|. To prevent i, from
blowing up, the denominator must approach zero more slowly than {,. This is
a typical small divisor problem. Indeed, methods to overcome those problems
(KAM-methods) dominate many proofs concerning almost periodic operators.
In our case, it is natural to demand the following condition on a.

Definition. We say that a has typical Diophantine properties if there exist constants
C, k > 0 such that

v -k/2
> C(z m,?) (10.7)
i=1

v
z m,-ai —n
i=1

holds for alln, m,, ..., m e Z.
As the name suggests, {a|a has typical Diophantine properties} has a comple-
ment of Lebesgue measure zero in R*. We will show

Theorem 10.6. If « has typical Diophantine properties, then H, , ; has pure point
spectrum for all 2 > 0 and all . Moreover, the eigenvalues are precisely the
solutions of

kA(E)=(a-m+1—g) ,
2 S

n

where (x), means the fractional part of x, and m runs through Z*. All eigenfunc-
tions decay exponentially.
Theorem 2.9 and 2.10 in Chap. 2 tell us to seek polynomially bounded

solutions u of
A"YE — Hy)u(n) = tan[n(a-n) + 6Ju(n) . (10.8)

Let us introduce the shorthand notations A:= i '(E — H,) and B:=
tan[n(x- n) + 0]. Then formally, (10.8) implies, for ¢ = (1 + iB)u
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(1-id) —iB)
(Tmc =0+ iB)c . (10.9)

The advantage of (10.9) lies in the following simple expression of its right-
hand side:

(1 — iB)

(1 +iB) = exp(—2nian — 2i6) .

Before we continue, we convince ourselves that the above formal calculation can
be justified. Denote by # the space of all polynomially bounded sequences, i.e.
2 = {um)} ezl lu(n)] < A(1 + |n|)* for some A, k}.

Proposition 10.7. If Au = Bu has a solution ue 2, then ¢ = (1 + iB)Jue # and

l—iAC_l—ch
1+i4 1 +4iB

Conversely, if

1 —iA 1-iB

1+iA° " 1+iB

C .

has a solution c e 2, then c is of the form ¢ = (1 + iB)u for a ue 2, and u solves
Au = Bu.

Remarks. (1) The above equations are a priori to be read pointwise as relations
between numbers u(n) rather than as equations in a certain space of sequences.
The operator (1 + i4)~! is well defined on [2(Z"). It has a kernel K(n — m) there
with K decaying faster than any polynomial, as can be seen by Fourier transform.
So (1 +iA)™! can be defined on # as well as via its kernel K.

(2) If we consider B as a self-adjoint operator on [(Z") with domain D(B),
andzA as an everywhere defined bounded operator, then above ue D(B) if
cel?(z).

Proof. Observe first that both (1 + id)and (1 + i4)™! map 2 into 2. Thus, ue 2
and Au = Bu implies ¢ := (1 + B)u = (1 + A)ue ? and

1—id 1-iB

l+id " 1+iB "

Suppose now that

1 —iA4 1 -iB

- = 2.
|+1Ac l_HBcI'orace

Here y = (1 + iB)"'c makes perfectly good sense as a (pointwise) equation
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between sequences (although we do not know ue# a priori). Therefore, we
obtain

1-i4 . .
l+iA(l+1B)u—(l—1B)u,

thus Au = Bu. This, in turn, implies that
u=(1+iB)'c=(1+id)'ce?. O

Now that we know that (10.8) is equivalent to (10.9), we apply a Fourier
transform to (10.9). Let us define

fik):= sz(n)e“"‘ ,

where f is well defined if }' | f(n)| < co. Moreover, for a continuous function ¢
on T = [0,2n]", we define

= c— L ink Jv
@(n) = o i[(p(k)e d*k .

If the sequence f is merely in 2, we define f to be the distribution
o)=Y f(nén)

for ¢ € C*(T"). Here T" is the v-dimensional torus. Applying the Fourier trans-
form to (10.9), we obtain in the distribution sense

q(k)é(k) = e 2°¢(k + 2ma) with (10.10a)

2Y) 1. cosk;— E—il

- . 10.10b
2) 1., cosk,— E + ik ( )

q(k) :=

Here q(k) is an analytic function of z; = exp(ik;) near |z,| = 1, |q(k)| = 1 and q
does not take the value — 1. Thus, g(k) = exp[ —i{(k)] for a function {(k) analytic
in z; = exp(ik;) near |z,| = 1 satisfying —n < {(k) < 7.

Summarizing, we have shown that if the equation (H, + V)u = Eu has a
polynomially bounded solution, then

e k®ak) = e~ 219 (k + 2na) (10.11)

has a distributional solution é.

We will now concentrate on continuous solutions of (10.11) for a while. Since
2an(mod 2n) is dense in T", we read off from (10.11) that |¢| is constant. We may
suppose that |é(k)| = 1. Thus, é(k) has the form é(k) = exp[ —im- k — iy (k)] for
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a continuous periodic function y(k). So (10.11) implies
Y(k + 2na) — Y(k) = {(k) — 20 — 2r(m- ) + 2nm, (10.12)

for suitably chosen mye Z.
Applying the Fourier transform to equation (10.12), we get

(e-ina-n _ l)qﬁ,, = C'. forn #0 (10.13a)
{0 =20 + 2n(m-a) — 2am, . (10.13b)

To solve (10.13b), we observe

Proposition 10.8. {, = 2nk,(E) — , k,(E) being the integrated density of states.

Proof

¢ . 2

1 ) o 1 ,
ZE %0 - @y !,a_EC(k)d k_(Zn)" 1(2zcosk,.—5)2 Ttk

[the formula for 6{/0E can be obtained by differentiating (10.10b)]. On the other
hand, from (10.6) we know
ok, 1 A ok,
E‘nf(y—s)uzzﬁmdy :
From (10.5) we can read off that (dk,/dE)(y) is 1/(2n)’ times the surface measure
of the surface {k|2) cosk; = y}. Thus,

ki 1( 1 z
JE ;((Zn)" I(2Zcosk,~ —E)+ A% dk)

_ 1
T 2ndE

Therefore the assertion follows from { - —n as E — —oo while k; = 0. [

Proposition 10.8 tells us that (10.13b) is equivalent to

kA(E)=(a-m+9+1)
T 2/,

[(x) is the fractional part of x].
Equation (10.13a) is solved, of course, by

!/;,, - (e-inan _ l)—lfu . (10.14)
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Since { is an analytic function, {, decays exponentially. Moreover, since a has
typical Diophantine properties, we have

v -k/2
|e~2%ia" _ 1| = 2|sinma- n| > C(Z mf) .
i=1

This follows from the estimate
|sinx| > é |x|

for |x| < m/2. Therefore, i, decays exponentially. Th_is, in turn, implies that, for
any solution y, of (10.13a, b), the function y (k) = Y Y. exp(—ink) is analytic and
solves (10.12). Thus, we have shown

Proposition 10.9. The equation
e"ibe(k) = e 29¢(k + 2na) (10.15)

has a continuous solution ¢ if and only if

kA(E)=(a-m+g+1>
n 2),.

Any continuous solution ¢ of (10.15) is analytic and of the form é(k) =
exp[ —ik-m — iy(k)], and the Fourier coeflicients yJ, of i decay exponentially.
Now we show that the above solutions are the only ones of interest:

Proposition 10.10. Suppose the sequence c is polynomially bounded, and ¢ fulfills
(10.15); then é is analytic, and ¢ decays exponentially.

Proof. We choose 6, such that

1 6
k,(E) = (E + f) )
S

From our considerations above, it follows that there is an analytic function d(k)
such that Ic?(k)l =1 and

d(k + 2na) = exp[ —i(k) + 2i0]od(k) .

Suppose now ¢ is a distributional solution of (10.15). Then | = é/& is also a
distribution and satisfies

I(k + 2na) = e2i®~%)|(k) ; hence,

e—Zulan” = e2i(0—00)1n :

thus, [, = 0 for all but one n. Therefore, I(k) = exp(—ingk) for some ny, i.e.
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e(k) = €"ord(k) ;
thus. ¢ is analytic and c(n) = d(n + n,) decays exponentially. [
We now complete the proof of Theorem 10.6:
proof (Theorem 10.6). Suppose u is a polynomially bounded solution of
(Ho + AV, 9)u = Eu .
Thus ¢ = (1 + iB)u is a polynomially bounded solution of
1-iA 1-iB

AT (10.16)

with 4 = A"Y(E — Hy) and B = tan[2n(x-n) + 6].

We have shown that any polynomially bounded solution of (10.16) is ex-
ponentially decaying. Thus,

u=(1+iB)tc=(1 —id)'c

is exponentially decaying.

From Theorem 2.10 in Chap. 2 we know that the spectral measures are
supported by S = { E|Hu = Eu has a polynomially bounded solution}. Since any
polynomially bounded solution of Hu = Eu is exponentially decaying, S is a
countable set; thus, H has pure point spectrum. [J

Besides various cleverly chosen transformations of the problem, the very
heart of the proof of Theorem 10.6 is the solution of (10.13a), i.e. to control the
behavior of

!/ln = (e—ZIia-n _ l)—lc'n .

This is a typical problem of small divisors. Above we ensured that i, decays
exponentially by requiring « to have typical Diophantine properties. Virtually
all proofs for pure point spectrum of almost periodic Hamiltonians rely upon
handling such small divisor problems. We can only mention some of those works:
Sarnak [306), Craig [68], Bellissard, Lima and Scoppola [40], Péschel [286].
Th‘ose authors construct examples of almost periodic Hamiltonians with dense
Point spectrum. They use Kolmogoroff-Arnold-Moser (KAM)-type methods to
Overcome the small divisor problem. Among their examples are, for any A€ [0, 1],
almost periodic Vs so that H, + V has only dense point spectrum and (H, + V)
has Hausdorff dimension A.

The first use of KAM-methods in the present context was made by Dinaburg
and Sinai [87). They proved that absolutely continuous spectrum occurs for
Certain almost periodic Schrédinger operators, and moreover, that certain solu-
tions of their Schrédinger equation have Floquet-type structure. Their work was
€xtended considerably by Russmann [304] and Moser and Péschel [253).
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Bellissard, Lima and Testard [41] applied KAM-ideas to the almost Mathiey
equation (see Sect. 10.2). They proved, for typical Diophantine « and smal|
coupling constant there is some absolutely continuous spectrum. Moreover, for
typical Diophantine a and large coupling they found point spectrum of positive
Lebesgue measure for almost all values of 6. In neither case could they exclude
additional spectrum of other types.

10.4 Cantor Sets and Recurrent Absolutely Continuous Spectrum

General wisdom used to say that Schrodinger operators should have absolutely
continuous spectrum plus some discrete point spectrum, while singular contin-
uous spectrum is a pathology that should not occur in examples with V bounded.
This general picture was proven to be wrong by Pearson [275,276], who con-
structed a potential V such that H = H, + V has singular continuous spectrum.
His potential V consists of bumps further and further apart with the height of
the bumps possibly decreasing. Furthermore, we have seen the occurrence of
singular continuous spectrum in the innocent-looking almost Mathieu equation
(Sect. 10.2).

Another correction to the “general picture” is that point spectrum may be
dense in some region of the spectrum rather than being a discrete set. We have
seen this phenomenon in Chap. 9 as well as in Sect. 10.3. Thus, so far we have
four types of spectra: “thick” point spectrum and singular continuous spectrum,
which are the types one would put in the waste basket if they did not occur in
natural examples, and “thin” point spectrum and absolutely continuous spec-
trum, the two types that are expected according to the above picture.

It was Avron and Simon [28] who proposed a further splitting of the abso-
lutely continuous spectrum into two parts: The transient a.c. spectrum, which is
the “expected” one, and the recurrent a.c. spectrum, which is the “surprising” one
usually coming along with Cantor sets.

To motivate their analysis, we construct some examples, at the same time
fixing notations.

A subset C of the real line is called a Cantor set if it is closed, has no isolated
points (i.e. is a perfect set), and furthermore, is nowhere dense (i.e. C = C has an
empty interior). “The” Cantor set is an example for this: Remove from [0, 1] the
middle third. From what remains, remove the middle third in any piece, and so
on. What finally remains is a perfect set with empty interior. This set is well
known to have Lebesgue measure zero.

The construction of “removing the middle third” can be generalized easily.
Choose a sequence n; of real numbers, n; > 1. From S, = [0, 1] remove the open
interval of size 1/n, about the point 4. The new set is called

R 1 1 3 !
5,18, = [0.1]\(5— 3n,°2 +m)=[°'§(' _n_.)]u[i(' - Z)’l] '
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Having constructed §;, a disjoint union of 2/ closed intervals of size a;, remove
from each of these intervals the open interval of size a;n;), about the center of
the interval. The union of the remaining 2/*! intervals is called §;,,. We define

s=S({n}) =15 -
Jj=0

1t is not difficult to see that S is a Cantor set (in the above defined sense; see
Avron and Simon [28]). Moreover, since

=2 {10 - am]

the Lebesgue measure of the set S; is given by
5= 10 - m)

Hence
st= [0 - /m

The infinite product is zero if and only if Y i, (1/n,) = co. Thus, the above
procedure allows us to construct Cantor sets of arbitrary Lebesgue measure (< 1).
The “middle third” Cantor set, our starting example, has n, = 3 for all k, and
thus zero Lebesgue measure. It can be used to construct a singular continuous
measure carried by it (see e.g. Reed and Simon 1 [292)).

Suppose now S is a Cantor set with 0 < |S| < o0. Let x5 be its characteristic
function [xg(x) = 1 if x€ S, and zero otherwise]. Then ug := ys(x)dx defines an
absolutely continuous measure (with respect to Lebesgue measure). So ug is an
absolutely continuous measure with nowhere dense support!

The idea of Avron and Simon was to single out measures like ug by looking
at their Fourier transform.

It is well known that the Fourier transform F, (1) = Iexp(itx)du(x) goes to
Zero as |t| — oo if u is an absolutely continuous measure. F,(t) goes to zero at least
in the averaged sense that 12T [T, F,(1)dt - 0as T — oo lfp is a continuous (a.c.
or s.c.) measure. We will now dlstmgunsh two types of a.c. measures by the fall-off
of their Fourier transform. We call two measures, u and v, equivalent if they are
Mutually absolutely continuous, that is to say, there exists functions fe L'(u)
and ge L'(v) such that dv = fdu and u = gdv.

Proposition 10.11. (1) Suppose u is an absolutely continuous measure supported
by a Cantor set S, then F,(t) is not in L',
(2) Consider the measure v = X,dx where 04 has Lebesgue measure zero.
hen there exists a measure v equivalent to v such that F;(t) = O(t~") for all
Nen.
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Proof. (1) u = f(x)dx for a function f supported by S. Since S is a Cantor set, f
cannot be continuous. But if F,(t) = j'exp(itx)f(x)dx were in L, then f would
be continuous.

(2) There exists a function f e S(R), the Schwartz functions, with supp f = 4
and f > 0 on the interior A™ of A4, such that ¥ := f(x)dx is equivalent to v. Then
F;(t) = | f(x)exp(itx)dx = O(t~"), which can be seen by integration by parts. [

The above considerations motivate the following definition:

Definition. Let H be a self-adjoint operator on a separable Hilbert space H. The
quantity ¢ € H is called a transient vector for H if

(p,e ™Mp>=0@"") forall NeN .

The closure of the set of transient vectors is called H,,. (transient absolutely
continuous subspace). Thus, ¢ is a transient vector if the spectral u, measure
associated with ¢ has rapidly decaying Fourier transform. Proposition 10.11
would equally well suggest to define ¢ as a transient vector if the Fourier
transform of its spectral measure is L'. Fortunately, this leads to the same set
Hlnc'

Proposition 10.12:

(i) H, is a subspace of H,

(i) H,. <H,

(iii) H, = {o|F, eL'}.

For a proof, see Avron and Simon [28].

Definition. We define H,,. = H.. n H,.. H,,. is called the recurrent absolutely
continuous subspace. Both H,,. and H,,. are invariant subspaces under H. We
can therefore define o,,.(H) = a(H|y, ) and o,,.(H) = o(H|y_ ).

As the reader might expect, the occurrence of g,,, and Cantor sets are
intimately related:

Proposition 10.13. Suppose that H has nowhere dense spectrum. Then
0,..(H) = ¢.

This is actually a corollary to Proposition 10.11. It is, of course, easy to
construct operators with a,,. # ¢. Take H = L%(R) and consider the operator
T, = xy ,(x) where Ae B(R). We have o(T,) = A. If A is an interval [a.b).
(@ < b), then the spectrum is purely transient absolutely continuous. There
are, however, vectors ¢ with bad behavior of |exp(itx)du,(x). For example,
take ¢ = xs, S a Cantor set of positive Lebesgue measure in [a, b]. This shows
clearly that not all ¢ € H,,. show fast decay of fexp(itx)du,(x), but rather 3
dense subset of ¢'s does. If 4 is a Cantor set of positive Lebesgue measure,
then the spectrum is recurrent absolutely continuous.

One might think that o,,. is always a nowhere dense set. This is wrong!
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Acron and Simon [28] constructed a set A such that ¢,,.(T,) = (-0, +00).
This means, in particular, that (—oo,o0) is the support of an absolutely
continuous measure du = f(x)dx, supp f = R, but dx is not absolutely con-
tinuous with respect to du.

So far, we worked in a quite abstract setting, and one might think that
Cantor sets and recurrent absolutely continuous spectrum do not occur for
schrodinger operators. However, there is some evidence that Cantor sets as
spectra of one-dimensional almost periodic operators are very common,
although recurrent absolutely continuous spectrum might be less generic.

Chulaevsky [64], Moser [252] and Avron and Simon [29] have constructed
examples of limit periodic potentials whose spectra are Cantor sets. A se-
quence {c,}nez is called limit periodic if it is a uniform limit (i.e. a limit in I*)
of periodic sequences. For example,

- 2nn
V(n) = z 01005(7> s (10.17)
j=-—o
for ¥ |a;l < oo is such a sequence.

We denote by L the space of all limit periodic sequences, and by L, the
space of all sequences as in (10.17). Limit periodic sequences are particular
examples of almost periodic ones as one easily verifies. The definition can be
carried over to higher dimensions, but we consider only sequences indexed by
Z! here.

L and L, are closed subspaces of the Banach space I, so that topological
notions like dense, closed and G, (countable intersection of open sets) make
sense.

Theorem 10.14 (SCAM).

() For a dense G, in L, the spectrum o(H, + V) is a Cantor set.
(i) The same is true for a dense G, in L,.

Remark. The name SCAM-theorem is a (linguistic) permutation of initials:
Avron and Simon [29), Chulaevsky [64] and Moser [252]). Those authors
acztually worked in the continuous case, i.e. with Schrédinger operators on
LY(R).

Avron and Simon [29] and Chulaevsky [64] proved—for a perhaps smaller
set —the occurrence of recurrent absolutely continuous spectrum:

Theorem 10.15 (Avron and Simon, Chulaevsky). For a dense subset of L, the
Spectrum o(H, + V) is both a Cantor set and absolutely continuous. The same
is true for Lo.

Notice that the above theorem does not claim that the dense set in question
is a G,. We do not even believe that this is true.
We learn from Theorem 10.15 and Proposition 10.13 that the spectrum of
o + Vis recurrent absolutely continuous.
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There is another result by Bellissard-Simon [42] establishing Cantor spec-
trum, this time for the almost Mathieu equation:

Theorem 10.16 (Bellissard-Simon). The set of pair (4,«) for which
a(H, + Acos(2nan + 0)) is a Cantor set is a dense G, in R2.

The physical significance of the distinction between recurrent and tran-
sient absolutely continuous spectrum comes from the intuitive connection of
the long-time behavior of exp(—itH) and transport phenomena in the almost
periodic structure. Fast decay of {¢,exp(—itH)¢) means that the wave packet
¢ will spread out rapidly, while slow decay means that it will have anomalous
long-time behavior. Hence, fast decay of F(t) = [exp(—itx)dp, for the spec-
tral measure pu,, indicates good transport properties of the medium (think of
electric transport via electrons moving in an imperfect crystal), slow or no
decay of F(t) indicates bad transport.

In this respect, recurrent absolutely continuous spectrum behaves much
more like singular continuous spectrum than like a transient absolutely con-
tinuous one.



11. Witten’s Proof of the Morse Inequalities

Thus far, we have described the study of Schrédinger operators for their own
sake. In this chapter and the next, we will discuss some rather striking
applications of the Schrédinger operators to analysis on manifolds. In a
remarkable paper, Witten [370] showed that one can obtain the strong Morse
inequalities from the semiclassical analysis of the eigenvalues of some appro-
priately chosen Schrodinger operators on a compact manifold M. The semi-
classical eigenvalues theorems are discussed in Sect. 11.1, and Witten’s choice
of operators in Sect. 11.4. The Morse inequalities are stated in Sect. 11.2 and
proven in Sect. 11.5. Some background from Hodge theory is described in
Sect. 11.3.

Supersymmetric ideas play a role in the proof of the Morse index theorem,
and played an even more significant role in Witten’s motivation.

11.1 The Quasiclassical Eigenvalue Limit

We begin by discussing the quasiclassical eigenvalue limit for Schrédinger
operators acting in L%(R"). We will consider self-adjoint operators of the form

H(i)= —4 + %h + ig

defined as the closure of the differential operator acting on CP(R"). Here h,
geC*(R"), g is bounded, h >0 and h > const > 0 outside a compact set.
Furthermore, we assume that h vanishes at only finitely many points {x®}_,,
and that the Hessian

1[ o%h
(4 =—[ (X"")]
! 2| 0x,0x;

IS strictly positive definite for every a. The goal is to estimate the eigenvalues
Of H(Z) for large 4. The idea is that for large A the potential 22h + Ag should
look like finitely many harmonic oscillator wells centered at the zeros of h and
S€parated by large barriers. Thus, one expects that for large 4 the spectrum of
H(%) should 100k like the spectrum of a direct sum of operators of the form

HO%) = —4 4 225 AP(x — x),(x — x@), + dg(x@) .

ij
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for @ € Dy, a dense set in L2(R"). Consequently, the wave operators 27 exist, and
Cook’s estimate (5.5) holds.

Proof. We take Dy = {g(Ho)P - .o ¥|ge CZ(R), suppg < [a2, %] for some a,
p>0aeR ye L*(R")}, P,- ., being the spectral projections corresponding to
A.For e Dy, ie. ¢ = g(Ho)Pi—p 0¥,

|Ve™*Hop|| < [IV(Ho + 1)T'F(Ix| > 80)] (Ho + Dol
+ [IV(Ho + D) IF(Ix| < dt)e™"Ho(Hq + Dol . (5.13)
The first term is integrable by Lemma 5.4. The second one can be estimated by
CIIF(Ix| < ot)e™""o(Hy + 1)g(Ho)Pi— o¥ll < C'(1 + |t])72
by Perry’s estimate (Theorem 5.3); hence it is integrable. [

The following rather technical looking result will be a key to our proof of
asymptotic completeness in Sect.5.6.

Proposition 5.6. Let ¢, be a sequence of vectors converging weakly to zero, with
ll@all = 1. Then

127 — Dg(Ho) P, @l =0 .
As usual, g denotes a Cy-function with support on the (strictly) positive half-axis.

Proof. By Cook’s estimate (5.5), we have
€27 — D)g(Ho)P, o, < (]; | Ve~*Hog(H,) P, ,|| dt

IVe™"Hog(Ho)P, @yl = |IV(Ho + 1)™'e™"o(Hy + 1)g(Ho)P. ¢,

goes to zero since @, — 0, and by our short-range assumption, V(H, + 1)™! is
compact. By (5.13), the integrand is bounded by an L!-function. Therefore the
assertion of the proposition follows from Lebesgue’s theorem on dominated
convergence. []

Proposition 5.6 says that (2~ — 1)g(H,)P, is compact. From this fact, one
can prove asymptotic completeness fairly quickly (Mourre [255], Perry [277]).
We will give a longer proof which is more intuitive, and which will serve as an
introduction to the work of Enss on the three-body problem. We require two
detours before returning to Proposition 5.6 in Sect. 5.6.

5.4 RAGE Theorems

In this section, we will prove three versions of the celebrated RAGE theorem.
The theorem was originally proven by Ruelle [300], and extended by Amrein and
Georgescu [14] and Enss [95] (hence the name “RAGE"” theorem). The RAGE
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theorem states that the time mean of certain observables will tend to zero on the
continuous subspace H,,,.

The theorems are based on the following result on time mean of Fourier
transforms:

Theorem 5.7 (Wiener’s Theorem). Let u be a finite (signed) measure on R, and let
F(t) = fe™ ™ du(x)
be its Fourier transform. Then

1
lim i IFORde= Y u({x)i® .

T=x xeR

We remark that the sum Y |u({x})|? is finite, since u is finite. Since we will,
in essence, give the proof of Wiener’s theorem while proving Theorem 5.8 below,
we do not give it now.

Theorem 5.8 (RAGE). Let A be a self-adjoint operator.

(1) If C is a compact operator and ¢ eH_,,,,, then
N
= [ ICe pi2dt -0 asT— oo .
T o
(2) If C is bounded and C(A4 + i)™! is compact, and ¢ € H,,,, then still
1 T
_ —itA 2
TJ' ICe~ g2 dt =0 .
o
(3) If C is compact, then

T
1 .
N _'fJ‘ e*i'CP, (A)e " dt|| -0 asT — o0 .

0

The integral in (3) is meant in the strong sense.

If we take C = F(|x| < R) [in (2)], then the RAGE theorem tells us that any
state in H,,, will “infinitely often leave” the ball of radius R. This is indeed what
we expect physically.

Proof. We first prove that (1) and (2) follow from (3). Let ¢ € H.,,,. Then

T T

1 1

7 [ ICe Mol di = = [ Cp.etcrCeg) de
(] o
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T
J' e HACsCP, (A)e i dup>
0

~5l -

(o

T
1 . .
< ” T I e MC*CP,,(A)e™"dt | |lI2 >0
o

by (3), since C*C is compact. For ¢ € D(4) N H,n,(A4), we write ¢ = (4 + i)'y
[V € Hconi(A)]. Therefore,

T T
1 -itA 2 — l a—-1,-it4 2
Ti ICe ]| d'_?l IC(A + i) e "y |2 de

converges to zero, given (1). This implies (2), since C is bounded and D(4) N
H_on(A) is dense in H,,,(A).

We now come to the proof of (3). Since the compact operator C can be
approximated in norm by finite rank operators, it suffices to prove (3) for those
operators. Since any operator of finite rank is a (finite) sum of rank 1 operators,
we may restrict ourselves to rank 1 operators. Thus, let Co = {p, ¢ >y (the most
general operator of rank 1). Then C*¢ = (y, ¢)p. Define

T

QT) = o [ € 4CP )™
[}

T
1 . .
= 7 [ <" Pun)p, de My dr |
o

we have
l T
o(T)* = —7-,_" &8y, - Yel'1P.  (A)pdt ,
0

and therefore

T
QNIQTI¢ = 2 [ (P A, QTI pde 4y dt
[\]
TT
. itA isA isA itA
=77 of(j: (" P oy, €4 P p) €Y, e Y ds dr .
Therefore,
T

| l . 2
” T [ e ce P (i
o
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= 1Q(T)II? = 1Q(T)Q(T)*|

TT
< j j <" p,€**P.qu(A)p> | dsdt 4]

< |||//||2< l,

Let u denote the spectral measure for P, p. Then

i

T
j [{Peomp. € -m-s)APcomp>|2 ds d‘)”2 .
o

o~—,.,

<Pconlp9cxp[ —I(t - S)A]Pconlp>l2 dsdt

ot—x._,

2
j exp[—i(t — s)A]du(4)| dsdt

Q-

O oy O
Oty O—

j f exp[ —i(t — s)(4 — x)]du(A) du(x)ds dt

—

T
[% j exp[ —it(4 — x)]dt

0
T
x lr j exp[ +is(A — x)] ds]du(}.)du(x) (by Fubini) .
0

Computing

T

e 1 .
?bf exp[i(4 — k)s] ds?bf exp[—i(4 — k)t] dt

1 . .
=m{exp['(l —k)T] = 1} {exp[—i(A — x)T] — 1}

1
ST r? {exp[i(2 — x)T/2] — exp[—i(4 — x)T/2]}

{exp[ —i(4 — k) T/2] — exp[i(4 — x)T/2]}

_4sin?{(A — ¥)T/2}
T T} —w)?

with the convention that sin0/0 = 1. Since

4sin?{(A — k) T/2}

1
TG —w?

(5.19)
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[which is in L?(du)], and since furthermore
4sin?(i — x)T/2
T34 — k)?

tends to zero for 4 # «, and to one for A = k as T — oo, we have that (5.14) tends to
fu({x})du(x) = ZRM({K})2

by Lebesgue’s theorem on dominated convergence. Since the measure u (the
spectral measure for P, p) is continuous, i.e. does not have atoms, we know that

ZKER”({K’})Z =0. O3

We will make use of the RAGE theorem in Sect.5.5, as well as in the chapter
on random Jacobi matrices.

5.5 Asymptotics of Observables

In this section, we are concerned with recent developments of time-dependent
scattering theory due to Enss [98, 100]. These new ideas present, in the two-body
case, more physical insight and simplify the proof of asymptotic completeness
for long-range forces. Furthermore, they are an essential ingredient for Enss’
three-body proof.

The main result of this section states that some observables, B(t) =
exp(iHt) Bexp(—iHt), behave on H_,,, asymptotically in time in a similar way as
they would under the free time evolution, more precisely: (x(t)/t)> ~ 2H, A(t)/t ~
2H, Hy(t) ~ H.

Theorem 5.9. For fe C(R) and any ¢ e H_,,(H):

2
(i f((%") )w ~ fCH)p

(i) f(@)q»»mm«p
(i) f(Ho())@ - f(H)p ast - +oo.

Remark. The only assumptions on V we need for the proof below are D(H) =
D(H,), and [A, V] is a compact operator from H, , to H_,. For a proof under
very weak assumptions allowing long-range forces, see [98]. Before proving the
theorem, we first state and prove two of its consequences.

Corollary 1. For o€ H,,,,

|P_e"™p| -0 ast— oo and

|P,e”™p| >0 ast— —o0 .
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2 Arithmetic spectral transitions

1. Introduction

Unlike random, one-dimensional quasiperiodic operators feature spectral tran-
sitions with changes of parameters. The transitions between absolutely contin-
uous and singular spectra are governed by vanishing/non-vanishing of the Lya-
punov exponent. In the regime of positive Lyapunov exponents there are also
more delicate transitions: between localization (point spectrum with exponen-
tially decaying eigenfunctions) and singular continuous spectrum, and dimen-
sional/quantum dynamics transitions within the regime of singular continuous
spectrum, governed by the arithmetics. Delicate dependence of spectral proper-
ties on the arithmetics is perhaps the most mathematically fascinating feature of
quasiperiodic operators, made particularly prominent by Douglas Hofstadter’s
famous plot of spectra of the almost Mathieu operators, the Hofstadter’s but-
terfly [21], see Figure 1.0.1, demonstrating their self-similarity governed by the
continued fraction expansion of the magnetic flux.

Ficure 1.0.1. Hofstadter’s butterfly

This self-similarity is even more remarkable because it appears even in various
experimental and quantum computing contexts, see e.g. Figure 1.0.2.

Ficure 1.0.2. Photon spectrum simulated using a chain of 9
super-conducting quantum qubits [42]
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Remarkably, such self-similarity of both spectra and eigenfunctions were pre-
dicted a dozen years before Hofstadter in the work of Mark Azbel [11], which,
according to Hofstadter, was way ahead of its time. The self-similar behavior
of eigenfunctions reflects the self-similar nature of resonances that are in com-
petition with hyperbolicity provided by the Lyapunov growth. This competition
also leads to the sharp transition between pure point (hyperbolicity wins) and
singular continuous (resonances win) spectra in the positive Lyapunov exponent
regime.

In the first three lectures we will outline a method to prove 1D Anderson lo-
calization in the regime of positive Lyapunov exponents that has allowed to solve
the sharp arithmetic spectral transition problem (from absolutely continuous to
singular continuous to pure point spectrum) for the almost Mathieu operator, in
coupling, frequency and phase, and to describe the self-similar structure of local-
ized eigenfunctions. The method is an adaptation of [24,30], but has its roots in
[34] and even [32], with an important development in [4]. The last lecture will be
devoted to the opposite goal: a method to prove certain delocalization within the
regime of singular continuous spectrum (after [27]), that allowed to obtain a sharp
arithmetic spectral transition result for the entire class of analytic quasiperiodic
potentials.

2. The basics

2.1. Spectral measure of a selfadjoint operator Let H be a selfadjoint operator
on a Hilbert space . The time evolution of a wave function is described in the
Schrodinger picture of quantum mechanics by

0P
la—Hll).

The solution with initial condition 1 (0) = g is given by
P(t) = e .

By the spectral theorem, for any 1y € H, there is a unique spectral measure
typ, such that

@.11) (€ o, o) = [ e gy (A,
R

2.2. Spectral decompositions Let I = Ipp @ Hsc P Hac, where
Hy ={be€H:uypisvy}

and v € {pp, sc,ac}. Here pp (sc, ac) are abbreviations for pure point (singular
continuous, absolutely continuous).

The operator H preserves each (., where y € {pp, sc, ac}. We may then define:
oy(H) = o(Hlsc, ), v € {pp,sc, ac}. The set opp(H) admits a direct characteriza-
tion as the closure of the set of all eigenvalues

Gpp(H) = Gp(H)/
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where

op(H) = {A: there exists a nonzero vector \ € J such that H{ = Ap}.

2.3. Ergodic operators We are going to study discrete one-dimensional Schro-
dinger operators with potentials related to dynamical systems. Let H = A+ V be
defined by

(2.3.1) (Huym)=un+1)+un—1)+Vmn)un)

on a Hilbert space H = 2(Z). Here V : Z — R is the potential. Let (Q),P) be
a probability space. A measure-preserving bijection T : O — Q is called ergodic,
if any T-invariant measurable set A C Q has either P(A) =1 or P(A) =0. By a
dynamically defined potential we understand a family V,(n) = v(TMw), w € Q,
where v : QO — Ris a measurable function. The corresponding family of operators
Hy = A+Vy, is called an ergodic family. More precisely,

(2.3.2) (Houw)(n)=umn+1)+un—1)+v(T"w)u(n).

Theorem 2.3.3 (Pastur [41]; Kunz-Souillard [36]). There exists a full measure set
Qpand 3, 3 opr 2 scr 2_ac Such that for all w € Qp, we have o(Hy) = 3, and

oy(Hw) =2, , ¥ =pp, sc ac

Theorem 2.3.4. [Avron-Simon [10],Last-Simon [38]] If T is minimal, then o(Hy) = 3,
and 0qc(Hw) =) gc forall w € Q.

Theorem 2.3.4 does not hold for o (Hy) with v € {sc,pp} [26], but whether
it holds for osing(Hw) = 0pp(Hw) U 0sc(Hw) is an interesting and difficult open
problem.

2.4. Schnol’s theorem Let H = A4V be a Schrodinger operator on 2(Z). We
say u is a generalized eigenfunction and E is the corresponding generalized eigen-
value if Hu = Eu and [u(n)| < C(1 + \nl)%+€ for some C,e > 0.

Theorem 2.4.1 (Schnol’s theorem). Let S be the set of all generalized eigenvalues. For
any P € 2(Z), the spectral measure ., gives full weight to S and o(A+V) = S.

Here we modify the definition a little bit to avoid unnecessary notations. We
will say that ¢ is a generalized eigenfunction of H with generalized eigenvalue E,
if
(2.4.2) H¢p = Ed, and [$p (k)| < C(1 + [k]).

In the following, we usually normalize ¢ (k) so that
(2.4.3) $2(0) + ¢p*(—1) =1.

2.5. Anderson Localization We say a self-adjoint operator H on ¢?(Z) satisfies
Anderson localization if H only has pure point spectrum and all the eigenfunc-
tions decay exponentially. By Schnol’s theorem, in order to show the Anderson
localization of H, it suffices to prove that all polynomially bounded eigensolutions
are exponentially decaying.
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This can be done by establishing exponential off-diagonal decay of Green'’s
functions. Block-resolvent expansion, a form of which we are about to see, is
the backbone of Frohlich-Spencer’s multi-scale analysis, allowing to pass from
smaller to larger scales and from local to global decay. The form we present,
first developed for the almost Mathieu operator [32,34], includes an important
modification of multi-scale analysis type arguments, in simultaneously consid-
ering shifted boxes. This is the central ingredient in nonperturbative proofs for
deterministic potentials [12].

For an interval I C Z, let G = (Ry(Hyx — I)Ry) ! if well defined (G is called
the Green’s function).

Definition 2.5.1. Fix T > 0,0 < 6 < 1/2. A point y € Z will be called (7,k, )
regular if there exists an interval [x1, x2] containing y, where x; = x; +k—1, such
that

|Gt (U ) < eV and Jy — x| > 8k for i =1,2.

This definition can be easily made multi-dimensional, with obvious modifica-
tions. The following argument is also multi-dimensional but we present a 1D
version for simplicity.

First note that for Hp = E¢d, we have ¢ = Gl where I7 is the decoupling
operator at the boundary of 1. In one dimensional case this reads

(25.2) G(x) = =Gy xo)] (X1, X)P(x1 = 1) — Gy x,p1 (X, X2) (X2 + 1),

where x € I = [x1,%] C Z.

Theorem 2.5.3. Let h(k) — oo as k — oo. Suppose Hp = Ed and ¢ satisfies (2.4.2).
Suppose for any large k € Z, k is (1,y,d) regular for some h(k) <y < k. Then H
satisfies Anderson localization. Moreover for any eigenfunction,

1
lim sup M < -—T.
n n
Proof. : Under the assumptions, there is some k>6 miny VR 2K] h(y) such that
for any y € [Vk,2kl, there exists an interval I(y) = [x1,xa] C [—4k,4k] with

y € I(y) such that

(2.5.4) dist(y, d1(y)) > k
and
(2.5.5) Grpy) (Y, x) < e ™yl i=1,2,

Denote by 0I(y) the boundary of the interval I(y). For z € 0I(y), let z’ be the
neighbor of z, (i.e., [z—z| = 1) not belonging to I(y).

If x;+1 < 2k or x; — 1 > vk, we can expand ¢(xz + 1) or ¢(x; — 1) as (2.5.2).
We can continue this process until we arrive to zsuch thatz+1 > 2korz—1 < Vk,
or the iterating number reaches [2X] where [t] denotes the greatest integer less

k
than or equal to t.
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By (2.5.2),

(2.5.6) ’ ‘ = ’ > ) GI(k)(k,Zﬂ f[(Guzfl)(Z/irli+1J>¢(Z/s+1) /

S zi€0I(z i=1

where in each term of the summation we have vk +1<z; <2k—1,i=1,---,s,
and either zs 11 ¢ [Vk+2,2k—2], s +1 < [B]; or s + 1 = [3E].

If zg11 ¢ Wk+2,2k—2], s+1 < [%L by (2.5.5) and noting that we have

bz} 1)l < (1412} 1) C <k, one has

S

’ Z Gl(k)(k,zljH(GI(ZQ)(Z/i/ZiH))d)(Z/sH)‘

zi41€01(2]) i=1
(2.5.7) < e~ Tlk—z1+ X3 1z{—zi41]) | C
< e*T(Ik*ZS+1|7(S+1)) kC

T(k—vEK—4-2K) KC e—T(zk—k—4—%) KC1.

If s+1 = [2K], using (2.5.4) and (2.5.5), we obtain
(258)  IG1()(k,21)Gy (2 (21, 22) - Gz (26, 2s11) (25 1) < kCe

Finally, notice that the total number of terms in ( 2.5.6) is at most 2[%]. Com-

bining with (2.5.7) and (2.5.8), since k/k = o(k), we obtain for any € >0,
k)] < e Tk

for large enough k . For k < 0, the proof is similar. Thus one has
(2.5.9) (k) <e —(r=ellkl jf [k| is large enough. O

Therefore we only need to prove that large k € Z, are (7, h(k), ) regular for
some T, h, 6.
Lemma 2.5.10. Suppose Ho = Ed and ¢ satisfies (2.4.2) and (2.4.3). Then 0is (7, k, )
singular for any t,8 > 0.
Proof. It follows from (2.5.2) immediately. O

Thus it suffices to show that (7, k, 8) singular points are sufficiently far apart.

2.6. Cocycles and Lyapunov exponents By a cocycle, we mean a pair (T,A),
where an invertible T : QO — Q is ergodic, A is a measurable 2 x 2 matrix valued
function on Q and detA = 1. This is what is usually called an SL,(IR) cocycle, but
we will simply say “a cocycle”.
We can regard it as a dynamical system on Q x IR? with
(T,A): (x, ) — (Tx, A(X)f), (x,f) € Q x R%.

For k > 0, we define the k-step transfer matrix as

1
= H A(TVx)
1=k
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For k < 0, define Ay (x) = A:]l((Tkx). Denote Ag = I, where I is the 2 x 2
identity matrix. Then fy(x) = In||[Ay(x)|| is a subadditive ergodic process. The
(non-negative) Lyapunov exponent (LE) for the cocycle («, A) is given by

X

1 1
(2.6.1) L(T,A) :inffJ‘ In[An(x)||dx === lim —In|A,(x)|dx,
nn Q n—oon

with both the existence and the second equality in (2.6.1) guaranteed by King-
man’s subadditive ergodic theorem. Cocycles with positive Lyapunov exponents
are called hyperbolic. Here one should distinguish uniform hyperbolicity where
there exists a continuous splitting of R? into expanding and contracting direc-
tions, and nonuniform, where L > 0 but such splitting does not exist. Neverthe-
less,

Theorem 2.6.2 (Oseledec). Suppose L(T,A) > 0. Then, for almost every x € Q ,
there exist solutions vt,v— € C2 such that ||Ay(x)vE]| decays exponentially at +oo,
respectively, at the rate —L(T, A). Moreover, for every vector w which is linearly inde-
pendent with vt (resp., v7), |Ax (x)wl| grows exponentially at +oo (resp., —oo) at the
rate L(T,A).

Suppose u is an eigensolution of Hyu = Eu. Then

u(n+m)
u

2.6.3
( ) Mm+m-—1)

=An(T™x) l u(m) 1 ,

um-—1)

where Ay, (x) is the transfer matrix of A(x) and

Alx) = < E—v(x) —1 )
1 0

Such (T, A(x)) is called the Schrodinger cocycle. Denote by L(E) the Lyapunov
exponent of the Schrodinger cocycle (we omit the dependence on T and v). It
turns out that (at least for uniquely ergodic dynamics) the resolvent set of H is
precisely the set of uniform hyperbolicity of the Schrodinger cocycle. The set
oN{L(E) > 0} is therefore the set of non-uniform hyperbolicity, and is our main
interest. Then Oseledec theorem can be reformulated as

Theorem 2.6.4. Suppose that L(E) > 0. Then, for every x € Qg (Qf has full measure),
there exist solutions ¢+, of Hxyd = Ed such that ¢+ decays exponentially at oo,
respectively, at the rate —L(E). Moreover, every solution which is linearly independent of
o (resp., &) grows exponentially at oo (resp., —oo) at the rate L(E).

It turns out that the set where the Lyapunov exponent vanishes fully deter-
mines the absolutely continuous spectrum.

Theorem 2.6.5 (Ishii-Pastur-Kotani). oqc(Hx) = {E€ R:L(E) = O}cSS for almost
every x € Q.

The inclusion “C” was proved by Ishii and Pastur [22,41]. The other inclusion
was proved by Kotani [35,43]. Here we give a proof of the Ishii-Pastur part.
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Proof. Denote Z ={E € R: L(E) =0} If L(E) > 0, Oseledec’ Theorem says that
for almost every x, the eigensolution u(x, E) of Hyu = Eu is either exponentially
decaying or exponentially growing. Applying Fubini’s theorem, we see that for
almost every x (with respect to P), the set of E € R\ Z for which the property
just described fails, has zero Lebesgue measure. In other words, let S; C R\ Z be
the set with the non-Oseledec behavior. Then S; has zero Lebesgue measure. It
implies that S; has zero weight with respect to the absolutely continuous part of
any spectral measure. Let S, C R\ Z be the set with the Oseledec behavior. To
prove the Theorem, it suffices to show S, has zero weight with respect to any ac
spectral measure. Indeed, if the solution of Hyu = Eu is exponentially growing
at oo or —oo, by Schnol’s theorem, such E does not make any contribution to the
spectral measure. If the solution of Hyu = Eu is exponentially decaying at both oo
and —oo, then E is an eigenvalue. The collection of eigenvalues must be countable,
which also gives zero weight with respect to the ac spectral measure. O

It may seem that positive Lyapunov exponent should imply pure point spec-
trum with exponentially localized eigenfunctions, since, as above, for every E
and a.e. phase a solution, if polynomially bounded, must decay exponentially
on both sides. However, this is a flawed argument because, for a given phase,
spectral measures may potentially be supported on the zero measure set of E,
excluded by the Fubini theorem, for which there may be no such behavior. It
turns out this is not a nuisance to disprove in relevant situations, but actually
does happen in some of the prominent examples.

2.7. Example: The Almost Mathieu Operator The almost Mathieu operator
(AMO) is the (discrete) quasi-periodic Schrodinger operator on (%(Z):

(2.7.1) (Ha,xow)(n) =umn+1)+u(n—1) +2A cos 27(6 + noju(n),

where A is the coupling, « is the frequency, and 0 is the phase.

For the AMO, L(E) can be computed exactly for E on the spectrum, but for now
we will just need an estimate L(E) > InA for all « ¢ Q, E (See Theorem 3.0.2 for
details). Thus, for A > 1, Lyapunov exponent is strictly positive on the spectrum.
In fact, we will later see that it does not even feel the arithmetics and is constant
in the spectrum in both E and «.

We now quickly review the basics of continued fraction approximations.

2.8. Continued fraction expansion Define, as usual, for 0 < o < 1,
ap=0,00 = o,
and, inductively for k > 0,
ay = L(X;llJ, oKy = ngll — ag.
We define
Po = 0, qo = 1,

=1 q1=aq
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and inductively,
Pk = akPk—1 + Pk—2,
dk = Axgdk—1 + qk—2-

Recall that {qn}nen is the sequence of denominators of best rational approxi-
mants to irrational number «, since it satisfies

(2.8.1) forany 1 <k < qny1, [[k&|lr/z = lqnallR /z-

Moreover, we also have the following estimate,

1 R 1
T ATy
Here, we give several arithmetic conditions on «:
o « is called Diophantine if there exists k, v > 0 such that ||kl > “2" = for

any k # 0, where ||x|| = min |x —k|.
o « is called Liouville if
—In ke
kiR ,/z — limsup Ingni1 50

|k| n—o00 qu

(2.8.3) B (o) = limsup

k—o0
o «is called weakly Diophantine if (o) = 0.

Clearly, Diophantine implies weakly Diophantine. By Borel-Cantelli lemma, Dio-
phantine & form a set of full Lebesgue measure.

Lemma 2.8.4 (Gordon [18], Avron-Simon [9]). Suppose v € CY(T). There is some
constant C such that if 3(«) > C, then opp(Hy,«0) = 0.

Remark: The constant in Lemma 2.8.4 can be estimated in a sharp way [4,8].
Lemma 2.8.4 is the first indication of the role of arithmetics in the spectral
theory of quasiperiodic operators in the regime of positive LE, as it demonstrates
the necessity of imposing an arithmetic condition.
Let us now denote
Pi(x) = det(Rygc—1) (Hx = E)Rpg c—1)-
It is easy to check by induction that
P (x —Py_1(Tx
(2.8.5) Ak(x)_< k() k1) )
Pr—1(x) —Pr—2(Tx)
Thus in the regime of positive L(E), Py “typically” behaves as e*L(E).
By Cramer’s rule, for given x; and x; = x; +k—1, withy € I = [x1,x2] C Z,

one has
Px,— (TerlX)
2.8. — | X2yt 7 A
(2.8.6) G1(x1, Yl Py (T51%)
and
B Py—x, (T*1x)
(2.8.7) IG1(y, x2)| = W
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Thus if Py indeed hadn’t deviated much from e*L(E) we would immediately
have exponential decay of both terms. It turns out that for uniquely ergodic T
there are no bad deviations for the numerator.

Lemma 2.8.8 ([15]). Suppose T is uniquely ergodic, continuous and A is continuous.
Then

1
(2.8.9) L(T,A) = lim sup —In||An(x)|.

n—oo xeQ n

Under the assumptions of Lemma 2.8.8, we have for ¢ > 0,
(2.8.10) [Py (0)], Ak (x)]] < elbHe)k fork large enough.

Thus all deviations can only happen on the lower side. We denote the large
deviation set by Ay c = {x : [Py (x)| < exp((k+1)(L—¢))}

Lemma 2.8.11. Assume x is (L —¢,Xk, }I)—singular. Then, for large k, we can choose
: j+k—1
j € Iix = [x —3k/4,x —k/4] so that T +k"1x ¢ Al dere for any €1 > 0.

Thus, two (L — €Kk, %)—singular points xq,% such that Iy x, and Iy x, do not
intersect, produce two long strings of consecutive iterations that fall into the large
deviation set.

3. Basics for the Almost Mathieu Operators

It is easy to see that Py () is an even function of 8 + %(k —1)x and can be
written as a polynomial of degree k in cos 27(6 + %(k —1D«):

Kk
Pr(0) = j;)cj cos) 27t(0 + %(k— 1)) £ Qy(cos27(0 + %(k— 1)),

where Qy is an algebraic polynomial of degree k.
For the almost Mathieu operator, the transfer matrix is given by

0
301) Ak = J] A(O+j0) =A(0+ (k—1)a)A(0+ (k—2)a) -~ A(6)
j=k—1

E—2Acos2m0 —1
and A(0) = ) 0 )

By Herman'’s trick [12,20], we get the following lower bound estimate for A > 1,
Theorem 3.0.2.
(3.0.3) J (In [Py [)dO > kln)\;J (In[[Ax[)dO > kInA.
T T

For the AMO, the Lyapunov exponent on the spectrum actually can be ob-
tained explicitly.

Theorem 3.0.4 ([13]). For every &« € R\Q, A € R and E € o(Hj «,0), one has
La «(E) = max{InA, 0}.
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Moreover, one can even compute the Lyapunov exponent L€ of a complexified
cocycle A(x +ie). It leads to the following three cases (see [2,3] for more general
definitions).

Subcritical: A < 1. In this case, we have L¢(E) = 0 for E € o(Hj «,) and

€< ’212)‘. Hj, «,0 has purely ac spectrum [1,5].

Critical: A = 1. In this case, it can be shown that L(E) =0 for E € o(Hj «,0),
but L¢(E) > 0 for E € 0(Hj,«,0) and € > 0. H, 4,0 has purely sc spectrum
[6,7,23,37].

Supercritical: A > 1. L(E) =InA > 0 for E € o(H),«,0)-

In these lectures, we are interested only in the supercritical regime, A > 1. In
the following we always assume E € o(H) «,0).

The fact that Px(0) = Qx (cos 27t(9 + %(k — 1)a)), hence is a polynomial in
cos27(0 + 1 (k—1)a) allows the use of the following Lagrange interpolation trick.
Note that by Lagrange interpolation, Qy(x) = Z};l [Tiz Qul(x) X=Xi Thus if

Xj—=xq "

0;,i=1,..,k+1, are in the large deviation set, we must have for some 1i,
k+1
+ Ix — cos 2705 ke
max | | >e
xel-11], * . |cos2mB; — cos 270;|
i=1j#i

This motivates

Definition 3.0.5. We say that the set {01, - ,0y1} is e-uniform if

k+1
[x — cos 2705 e

3.0.6 max max <
( ) xe[—1,1]i=1,-- k+1 jll_j[# | cos 270 — cos 2705 |

This is a convenient way of stating that the 8; have low discrepancy since
JInfa—cos2nx|dx = —In2 for any a € [-1,1].
We have the following Lemma.

Lemma 3.0.7. Suppose {01, - ,0x 1} is e1-uniform. Then there exists a 0; in the set
{01, -+, 01} such that 0; — %cx ¢ Ay e, if € > €1 and K is sufficiently large.

We also have

Lemma 3.0.8. [4, Lemma 9.7] Let «« € R\Q, x € Rand 0 < g < qn — 1 be such that
|sin7t(x + €& = infoc o< g1 sin7t(x 4 )|, then for some absolute constant C > 0,
qn—1
(3.0.9) ~Clngn < Y In|sinm(x+ &)+ (qn —1)In2 < Clngn.
0=0,05£L

4. First transition line for Diophantine frequencies and phases

We already know that non-Diophantine frequencies are trouble for localization,
so let’s fix a Diophantine o. It turns out, somewhat surprisingly, that the phase 6
matters as well.
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e 0 is called Diophantine with respect to « (or just e—Diophantine) if there
exists k, v > 0 such that ||20 + k| > ﬁ for any k # 0.

e 0 is called Liouville with respect to « if

—In20 + kallr /z -

0
Ik

5(x, 0) = limsup
k—o00

e 0 is called weakly Diophantine with respect to « if 5(ct, 0) = 0.

By Borel-Cantelli lemma, for fixed «, the set of «—Diophantine has full Lebesgue
measure. We have

Lemma 4.0.1 (J.-Simon [26]). For even functions v € CL(T), there exists some constant
C > 0 such that if 5(x,0) > C, then opp(Hy, «,0) = 0.

Thus we need Diophantine-type conditions on both « and 0. In this section,
we will prove

Theorem 4.0.2. Suppose « is Diophantine and 0 is Diophantine with respect to o.. Then
the almost Mathieu operator Hj, « ¢ satisfies Anderson localization.

Remark 4.0.3. e Theorem 4.0.2 was proved in [34]. Here the frame of the
proof follows [34], with some modifications from [30,39,40].
o Actually, the proof of Theorem 4.0.2 holds also for weakly Diophantine
frequencies and phases.

Let E be a generalized eigenvalue with generalized eigenfunction ¢. Without
loss of generality, assume ¢(0) = 1 (sometimes we assume ¢%(0) + d%(1) = 1).
Take k > 0. Let n be such that qn < % < Qn1- Set I; and I as follows:

(4.0.4) I =[—qn, qn — 1]
and
(4.0.5) L =k—qn k+qn—1].

The set {05}jc1,u1, consists of 4qn elements, where 6; = 0 +jx and j ranges
through I; U I,.
Since « is Diophantine, one has

Theorem 4.0.6. For any ¢ > 0, the set {0;}je1,ur1, s e-uniform if n is sufficiently large.
Proof. We first estimate the numerator in (3.0.6). In (3.0.6), let x = cos2ma and

take the logarithm. One has

Z In | cos 27ta — cos 2705 |
JELUIpj#1
4.07) = Z In|sin7t(a+ 6;) + Z In|sin7t(a —0;)[ + (4qn —1)In2
JehUlyj#i JeLUIyj#1

= ., + Y +(4qn —1)In2,
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where, in the final line, ) | and } _ are the corresponding sums from the second
line. Both 3 | and } _ consist of 4 terms of the form of (3.0.9), plus 4 terms of
the form

(4.0.8) In min [sin7t(x +jo)l,
j=0,1, - ,qn—1

minus In|sin7t(a £ 08;)]. There exists an interval of length g containing i, in

both sums. By the minimality, the minimum over this interval is not more than
In|sin7t(a £ 64)] (). Thus, using (3.0.9) 4 times for each of ) | and ) _, one has
(4.0.9) Z In|cos 2ma — cos 270;| < —4qn In2+ Cln gqn.

JELUL j#i
The estimate of the denominator of (3.0.6) requires a bit more work. Without loss

of generality, assume i € I;.
In (4.0.7), let a = 6;. We obtain
Z In | cos 270; — cos 270
jehul j#i

(40100 = ) In|sinm(0;+0;)[+ ) In|sinm(6; —6;)|+ (4qn —1)In2
jeliulj#l JeELUIyj#1

=) . +y +(4qn —1)In2,

where now
(4.0.11) > . = > In[sinm(20 + (i+j)a)],
JELUILj#1
and
(4.0.12) > = ) In|sinn(i—j)al.
JELUL j#1
We first estimate Z+. First Iy U I, can be represented as a disjoint union of
four segments Bj, each of length . Applying (3.0.9) to each Bj, we obtain
(4013) ) > —4qnln2+ ) In|sinnbj| — Clnqn —In|sin27(0 + ix)),
j€J1iv]2
where

(4.0.14) | sin néjl = gni}sn |sin7t(20 + (£ +1)x)|.
€B;

By the fact that 0 is Diophantine with respect to «, we have
(4.0.15) In|sin7d;| > —Cln k| > —Cln gn.
Putting (4.0.13)—(4.0.15) together, we have
(4.0.16) Z+ > —4qnIn2—-Clnqgn.
Now let us estimate Z_. By the fact that « is Diophantine , we have for 1 # j,
and 1,5 € 1 UIy,
(4.0.17) In|sin7t(6; — 0;)| > In[kI~ > —Clngn.
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Replacing (4.0.15) with (4.0.17) and using the same argument as for Z+, we get
a similar estimate,

(4.0.18) 27 > —4qnIn2— Clngn.
From (4.0.10), (4.0.16) and (4.0.18), we have for any ¢ > 0,

(4.0.19) max I |cos2ma —cos 276;| | (aqn-1)e
ielUl, \ | .. | cos 2m0; — cos 27t0;|
jeliuly,j#i

for n large enough. O

Theorem 4.0.20. Fix any ¢ > 0. For any large k € Z, kis (InA—¢,y, %) regular for
some k% <y<k

Proof. Define I and I, as in (4.0.4) and (4.0.5). Take y = 4qn. Then, 3¢ <y <k

By Lemma 3.0.7, there exists some jo with jg € I; U I, such that

o 4qn -1

Jo 2

By Lemma 2.8.11, for all j € Iy, 65 — 43'3—71“ Z A4qn—1,e- Thus we have jg € Ip.
Set I =[jo —2qn +1,jo +2qn — 1] = [x1,%2]. By (2.8.6), (2.8.7) and (2.8.10), it is

easy to verify

IG1(k, i) < exp{(InA+¢)(4qn —1 =k —xi[) —4qn(InA —¢)}.

0 o & Agqn—1e-

Notice that [k — x| = qn, so we obtain
(4.0.21) IG1(k, xi)| < exp{—(InA — )k — x[}. O

Proof of Theorem 4.0.2. This Theorem now follows by combining Theorems 2.5.3
and 4.0.20. O

5. Asymptotics of the eigenfunctions and proof of the second spectral
transition line conjecture

By Theorem 2.6.5, H) «,¢ does not have ac spectrum for A > 1. Lemmas 2.8.4
and 4.0.1 imply that Hj « ¢ has purely singular continuous spectrum if 5(«x, 6) or
B(x) is large, and we proved that there is Anderson localization if = & = 0.
Is there a sharp transition? The reason large (3 or 6 are trouble is because they
lead to resonances: eigenvalues of box restrictions that are too close to each other
in relation to the distance between the boxes, leading to small denominators in
various expansions. Indeed, large (3 leads to almost repetitions of the potential,
and large b to almost reflections.

In both these cases, the strength of the resonances is in competition with the
exponential growth controlled by the Lyapunov exponent. It was conjectured by
the author in 1994 [33] that for the almost Mathieu family the two types of reso-
nances discussed above are the only ones that appear, and that the competition
between the Lyapunov growth and resonance strength resolves, in both cases, in
a sharp way.
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Conjecture 1:

1a: (Diophantine phase) Hj ¢ satisfies Anderson localization if A > eP ()
and (e, 0) = 0, and H), «,¢ has purely singular continuous spectrum for
all 0if 1 <A < eP().

1b: (Diophantine frequency) Suppose (x) = 0. Then H), ¢ satisfies An-

(0

derson localization if A > e ), and has purely singular continuous

spectrum if 1 < A < e3(0),

Conjecture 1a says that without phase resonances, if the Lyapunov exponent
beats the frequency resonance, Anderson localization follows. . Conjecture 1b
says that without frequency resonances, if the Lyapunov exponent beats the phase
resonance, then Anderson localization follows. Otherwise, in both cases, Hj «,¢
has purely singular continuous spectrum.

In order to simplify the presentation, we assume

(5.0.1) T LSS YR

n—oo qn
Given « € R\Q we define functions f,g: Z" — R™ in the following way. Let
E’—‘; be the continued fraction approximants to «. For any 4 < k < 3%, define
f(k), g(k) as follows: for € > 1, let

Indn41 | Ine
= INA g e tan,

Set also 7} =1 for convenience. If {q, <k < (£ +1)qn with £ >0, set
=N

(5.0.2) (k) = (e~ lertaninA ) (=l (ErDaniind )
and
(. —Ik—Lqgn dn+1 —k—(¢+1)gn|In A\ 9n+1
(5.0.3) g(k) = (e~ taniinAl) 202 4 (e sl
( ) r? ( )T?_'_l

The graphs of these functions are shown in Figures 5.0.4 and 5.0.5.

=N
Toto

T
Teta

)qn (£+2)

&

o~
Q0
3
~

+

L

dn (L +3)qn (£ +4)qn q112+1 k

F1Gure 5.0.4. Graph of f(k).
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G lgn (0+1D)gn (64+2)gn (E4+3)qn (E+4)qn A3 K
Ficure 5.0.5. Graph of g(k).

Theorem 5.0.6. [30] Let o« € R\Q be such that A > eP (%), Suppose 0 is Diophan-
tine with respect to «, E is a generalized eigenvalue of Hy « ¢ and ¢ is the generalized
eigenfunction. Let U(k) = ( ¢‘1(’]£E)1)) Then for any € > 0, there exists K (depending on
Ao, C,eand Diophantine constants ,v) such that for any |k| > K, U(k) and Ay satisfy

(5.0.7) f([ke <% < Ukl < f(lk))es!™,
and
(5.0.8) g(lkhe e < JALl < gllkl)es! .

By (2.8.3), Theorem 5.0.6 implies the following Theorem.

Theorem 5.0.9. [30]Suppose 0 is Diophantine with respect to «. Then
1. Hj «,0 has Anderson localization if A > eP (o),
2. Ha 0 has purely singular continuous spectrum if 1 < A < eP(®),
3. Ha,«,0 has purely absolutely continuous spectrum if A < 1.

Remark 5.0.10. (1) Part 1 of Theorem 5.0.6 holds for &(«x,0) = 0.
(2) Part 2 is known for all «, 0 [1] and is included here for completeness.
(3) Part 3 is known for all «, 0 [8] and is included here for completeness.
(4) Parts 1 and 2 of Theorem 5.0.6 verify the frequency half of the conjecture
in [33]. The measure theoretic version was proved in [8,28].

Corollary 5.0.11. Under the conditions of Theorem 5.0.6, we have

(I) limsup In Il =InA.

k—o0

(1 Timing AR .
k—o0

(II) limsup ZInflutill InA.
k—o00 k

(1V) liminf U003 g,
k—o0
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Now let us move to the Diophantine frequency case.

Theorem 5.0.12. [24] Suppose « is Diophantine. We have
1. Hy «,0 has Anderson localization if A > ed(0),
2. Ha o0 has purely singular continuous spectrum if 1 < A < e®(%0),

3. Ha,«,0 has purely absolutely continuous spectrum if A < 1.

Remark

(1) Parts 1 and 2 of Theorem 5.0.12 hold for weakly Diophantine o.

(2) We can prove part 2 for all irrational o, and general Lipschitz v.

(3) Parts 1 and 2 of Theorem 5.0.12 verify the phase half of the conjecture

stated in [33].

For the Diophantine frequencies case, we can also get the asymptotics of the
eigenfunctions and transfer matrices. For simplicity, we only give the asymptotics
of eigenfunctions. For any £, let xy (we can choose any one if xg is not unique) be
such that

|sin7t(20 + xpx)| = min |sin7t(20 + x«)|.

x|<2/¢]
Let n = 0 if 20 +xgox € Z, otherwise let n € (0,00) be given by the following
equation,
(5.0.13) |sin 7(20 + xgot)| = el

Define f: Z — R as follows.
Case 1: If xo- £ < 0, set f(£) = e~ t/InA
Case 2: If xo-£ > 0, set f({) = e*((lXoIHfoO\)ln)\) enltl | g—1tlinA

Theorem 5.0.14. [24] Suppose « is Diophantine. Assume InA > 8(«,0). If Eisa
generalized eigenvalue and & is the corresponding generalized eigenfunction of Hy 0,
then for any € > 0, there exists K such that for any |€| > K, U({) satisfies

(5.0.15) floe s < u) < f(eest.

6. Universal hierarchical structure for Diophantine phases and
universal reflective-hierarchical structure for Diophantine
frequencies

In this section, we will describe the universal hierarchical structure of the eigen-
functions in the Diophantine phase case. For Diophantine frequencies there is
another, also universal, structure, conjectured to hold, for a.e. phase for all even
functions, that features reflective-hierarchy. We refer the readers to [24] for the
description of universal relective-hierarchical structure.

Note that Theorem 5.0.6 holds around arbitrary point k = kg. This implies
the self-similar nature of the eigenfunctions: U(k) behaves as described at scale
gn but when seen in windows of size qy, qx < qn—1 will demonstrate the same
universal behavior around appropriate local maxima/minima.
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To. make the above precise, let ¢ be an eigenfunction, and U(k) = ( ¢d()1£]i)1))

Let IJGL(j2 = [~014qj,02q;], for some 0 < 01,00 < 1. We will say kg is a local

j-maximum of ¢ if |[U(kg)l| = [[U(k)|| for k —ko € I);TI/O_Z' Occasionally, we will

also use terminology (j, o)-maximum for a local j-maximum on an interval Ij(,,g.
We will say a local j-maximum kg is nonresonant if

K
126 + (2ko + k)l /z > 9
i

v 7
for all [k| < 2q;j—1 and

for all qufl < |k| < Zq]

We will say a local j-maximum is strongly nonresommt if

(602) 126 + (Zk() + k)(XH]R/Z > ‘k|v ,

for all 0 < [k| < 2g;.
An immediate corollary of (the proof of) Theorem 5.0.6 is the universality of
behavior at all (strongly) nonresonant local maxima.

Theorem 6.0.3. Given € > 0, there exists j(e) < oo such that if kg is a local j-maximum
forj >j(e€), then the following two statements hold:
If kg is nonresonant, then

- U(ko +s)l
6.0.4 elsl ¢ | fllshes's!
(6.0.4 #(lshe e < s
forall 2s € Uy, o,, Is| > T5-L.
If kg is strongly nonresonant, then

_ U(ko + )l
6.0.5 elsl  MUGko+8)Il oo celsl
(605) fllshe e < flshe

for all 2s € 11,1/02.

Theorem 5.0.6 also guarantees an abundance (and a hierarchical structure) of
local maxima of each eigenfunction. Let kg be a global maximum .

We first describe the hierarchical structure of local maxima informally. We
will say that a scale nj, is exponential if In Anj,+1 > cqnjo.l Then there is a
constant scale fip thus a constant C := qq,41, such that for any exponential scale
n; and any eigenfunction there are local nj-maxima within distance no more
than C of kg + Sqn;, for each 0 < |s| < MM, Moreover these are the only local
nj,-maxima in the mterval ko — e“ Mo , ko + e’ 10}. The exponential behavior
of the eigenfunction in the local neighborhood (of size qn; ) of each such local
maximum, normalized by the value at the local maximum is given by f. Note
that only exponential behavior at the corresponding scale is determined by f and
fluctuations of much smaller size are invisible.

INote that per our simplifying assumption (5.0.1) all scales n are exponential.
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Global nllaximum
: by 1

b1\1 b1y

by1b22

7z

Local maximum of depth 1

by, by, by b1 b2
F1GURE 6.0.6. Universal hierarchical structure of an eigenfunction.
Above, a view centered on a global maximum with a window
centered on a local maximum of depth 1. Below, a magnified
view of this local window looks very much like the global view.

Now, let nj, < nj, be another exponential scale. Denote the “depth 1” local
maximum located near kg + Qnj Anj, by b(1nj . Near it, we then have a simi-
lar picture: there are local n; -maxima in the vicinity of ba“jo + $qn;, for each
0<ls| < e“Imin Again, this describes all the local qn;, -maxima within an expo-

nentially large interval. And again, the exponential (for the n;, scale) behavior
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in the local neighborhood (of size q“h) of each such local maximum, normal-
ized by the value at the local maximum is given by f. Denoting those “depth 2”
local maxima located near ba“jo + anj, qny,, by banjoranj we then get the same
picture taking the magnifying glass another level deeper and so on. At the end
we obtain a complete hierarchical structure of local maxima that we denote by

ban. ,an. i with each “depth s + 1" local maximum banj R being
s 0 s

in tfl{)e cc])i‘responding vicinity of the “depth s" local maximum ban]jl ng elng
and with universal behavior at the corresponding scale around each. The accu-
racy of thge approximations gets lower with each level, yet the depth of the hier-
archy that can be so achieved is at least j/2— C. The upper half of Figure 6.0.6
schematically illustrates the structure of local maxima of depth one and two; the
lower half shows that the view around a local maximum appropriately magnified
looks like a view of the global maximum.

We now describe the hierarchical structure precisely. Suppose

(6.0.7) 1206 + ko) + kel 7 > ﬁ

for any k € Z\{0}. Fix 0 < o,e with 0 +2e < 1. Let n; — oo be such that
Ingn;1+1 > (0+2€) InAqn;. Let

=57 InAgn; —€

o-ln?\qnj

We have ¢; > € for 0 < an; <e . Then we have

Theorem 6.0.8. There exists fig(x, A, K, v, €) < oo such that for any jo > j1 > -+ > jy,

n olnAqn, . .
ny, = fg+k and 0 < an; <e qn’i,l =0,1,...,k, forall 0 < s < k there exists
a local n; -maximum b(1nj RS

on the interval banj n an;, T I:jsl for all
0 1 s 57/
0 < s < k such that the following holds:

I: ‘banj[) - (k'O + anjoqnj[)” < qﬁ.()Jrl/
Il: Forany1<s <Kk,

‘banjo,an. e T (ban. Qg elng + anj, qnl-s)| < dag+s+1-

)1 )s Jo )1 Js—

n’ik
) e ICij and |X_banj0,anj1,---,an- | > qny+x, then

o e, Qs
e ML ik

IIL: If2(x—Yaq,. ,a.
Jo )1 Tk
foreach s =0,1,...k,
Ul

6.0.9 f(xs)e <Xl < < flxs e,
(609 xe) U, an, a0

where xs =[x —ba,. ,an. ,..an. |5 large enough.
)0 )1 s

Moreover, every local n; -maximum on the interval
elnAgqn. elnAqn.
banjranjl,u-ranj 1 + [76 anS/e anS}
.

is of the form ba,, ,an. ,.,an, forsome an; .
J0 )1 Js
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7. Proof of Theorem 5.0.6

Define by, = qf, with g <t <1 (t will be defined later). For any k > 0, we will
distinguish two cases with respect to n:

(i) [k —€qn| < by for some £ > 1, called n—resonance.

(ii) [k — €qn| > by for all £ > 0, called n—nonresonance.

Let s be the largest integer such that 4sq,, 1 < dist(y, qnZ).

Theorem 7.0.1. Assume A > eP (%) and that @ is Diophantine with respect to x. Suppose
that either

(1) bn <yl < Cbpyy1, where C > 1 s a fixed constant, or,

(2) 0< Iyl < gn.
Then for any € > 0 and n large enough, if y is n—nonresonant, we have y is (InA +
8In(sqn_1/9n)/dn-1—¢&,4sqn_1—1, %) regular.
Proof. We again assume for simplicity lim lngli‘;“ = B(«) > 0. Then we have s > 0
for large n. For an n-nonresonant y in the Theorem, one has

(7.0.2) min In|sin7t(20 + (j +1)x)| > —Clnqn.
j,iEI]UIZ

and

(7.0.3) min  In|sinn(j —1i)«)| = —Clnqn.

iAjijenul,
The idea modeled on the proof of Theorem 4.0.6 so we use the same notations.
The upper bound of } jcy,u1, i1 Inlcos2ma — cos 270;] is the same as (4.0.9).
(4.0.10)-(4.0.12) also hold. However the estimate of Zje] . lnlsinﬂéj\ is much
more difficult in the non-Diophantine case. Here we sketch the argument.
Assume that 0;,1 = 0j + qno for every j,j+1 € J;. Applying the Stirling
formula and (7.0.2), one has

S o
Z 1n|sin27téj| > 2Zln]AfTl —Clnqn
(7.0.4) i€N j=1
> 2sn

—Cslnqgn.
qn+1 n

In the other cases, decompose J; in maximal intervals Ty such that forj,j+1 €
T« we have éjH = éj + gno. Notice that the boundary points of an interval Ti
are either boundary points of J; or satisfy ||é)~ IR/z +An > A‘;l. This follows
from the fact that if 0 < |z| < qn, then [|0; + qna|r/z < [10;]|R/z + An, and [|0; +
(z+dn)alr/z > llzallr/z — 18; + anetllr/z = An-—1— [65llR/z — An. Assuming
Tk # J1, then there exists j € Ty such that ||éj IR,z = % —An.

If T, contains some j with [|6;|r 1z < Ancl then

10
A A
‘TK‘> 21_An_ 101
(7.0.5) A An
>-tnel 1>,

T4 A,
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where [T¢| = b—a+1 for T¢ = [a,b]. For such Ty, a similar estimate to (7.0.4)

gives
Z lnlsinnéjl > [Te|In q|TK| —Cslngn
(7.0.6) JET e
> [Te|In S _ Cslngn.
qn+1

If T does not contain any j with ||6; IRz < %, then by (2.8.2)

> In|sinnb;| > —|Ty|In qn — C[Ty|

(7.0.7) JeT« .
> [T¢lIn — C|Tgl.
n+1
By (7.0.6) and (7.0.7), one has

(7.0.8) Z lnlsinﬂé)-l > 2sln S Cslngn.
. dn+1
i€h

Similarly,

(7.0.9) Z ln|sin7'ré)-| > 2sln S _ Cslnqgn.
i€, dn+1

We now turn to estimating the quantities Z+ and Z_ defined in (4.0.11)

and (4.0.12). Putting (4.0.13), (7.0.8) and (7.0.9) together, we have

S

(7.0.10) Z+ > —4sqn In2 +6sIn T Cslnqn.
n+1
Replacing (7.0.2) with (7.0.3) and proceeding as for Z+, we have the similar
estimate,
(7.0.11) Y > —4sqnin2+4slh —— —Cslngn.

dn+41
From (4.0.10), (7.0.10) and (7.0.11), it follows that

(7.0.12) Z In | cos 27t0; — cos 270;| > —4sqn In2+8sln
jelUlj#1
Combining with (4.0.9), we have for any ¢ > 0,
| cos 27ta — cos 270; |

max
ie1Ul, . .
e ul, i

81n(29n-1
< exp ((élsqTL —-1) (1n?\+ M — s))

| cos 2703 — cos 270;|

n—1

Remark 7.0.13. In the nonresonant case, for any & > 0,% <

—Cslnqgn.

dn+1

O

t < 1, one has

InA +8In(sqn_1/qn)/qn-1 = InA—8(1 —t)p —e > 0. In addition, we have

InA+8In(sqn_1/qn)/qn_1 = InA —2¢ if t is close to 1.

Remark 7.0.14. Here, we only use Theorem 7.0.1 with C = 50C,, where C, is

given by (7.0.15) (see below).
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Clearly, it is enough to consider k > 0. In this section we study the resonant
case. Suppose there exists some k € [by, by 1] such that k is n—resonant. For
any ¢ > 0, choose 1 = &, where C is a large constant (depending on A, ).

Let

(7.0.15) C, =2(14 DA

InA—p D
where | m] denotes the smallest integer not exceeding m.
For an arbitrary solution ¢ satisfying Hp = Eq, let

r?"P: sup [@(jqn +7qn)l,

IT|<10n
where [j| < 50C. 221
Let ¢ be the generalized eigenfunction. Denote by
=,

U
Since we keep n fixed in this section we omit the dependence on n from the
notation and write Tj“’, R, and ;.

Note that below we always assume n is large enough.

Lemma 7.0.16. Let k € [jqn, (j + 1)qn] with dist(k, qnZ) > 10nqn, and suppose
further that [j| < 48C*%. Then for sufficiently large n,

[@(K)] < max{r¥ exp(—(InA—2n)(d; —3ndn)),

1 exp(—(InA—2n)(d; 11 —3naw)) },

where dj = [k —jqnland dj 1 = [k —jqn — qnl.

(7.0.17)

Proof. The proof builds on the ideas akin to those used in the proof of Theorem
2.5.3. However it requires a more careful approach.

For any y € [jqn +nqn, (j +1)qn —nqnl, apply (i) of Theorem 7.0.1 taking
C = 50C,. Notice that in this case, we have

InA+8In(sqn_1/qn)/qn-1—n = InA—-2n.

Thus y is regular with T = InA —2n. Therefore there can choose an interval
I(y) = [x1,x2] C [jqn, (j +1)qn] such that y € I(y),

. 1
(7.0.18) dist(y,31(y)) > 711Y)| > dn1
and
(7019) |GI(y)(y/XL)| < e*(lﬂ)\*ZT\)‘y*Xil, 1 = 1/ 2/

where 0I(y) is the boundary of the interval I(y) (i.e. {x1,%2}), and [I(y)] is the size
of I(y)NZ (i.e., |I(y)l = x —x1 +1). For z € 91(y), let z’ be the neighbor of z, (i.e.,
|z—z’| = 1) not belonging to I(y).

Ifxo+1<(+1)qn —Mmqn or x; —1 > jqn +Ngn, we can expand @(x + 1) or
@(x1 —1) using (2.5.2). We can continue this process until we arrive to z such that
z+1>(G+1)qn —MQgn or z—1 < jqn +1qn, or we have iterated L%}_%J times.
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Thus, by (2.5.2)
(70200 lo(K)=| >  Grulkz)Gy( (21,22) Gy (26, 25 41) 0 (26 41) |,

sizi+1€01(2})

where we have jqn +1qn +1 < z; < +1)qgn—mgn—1,1=1,---,s, in each
term of the summation and e1ther Zsi1 ¢ qn +nan +1,(G + 1)qn nqn — 11,

s+1< LLJ ors+1= Lqij We should mention that z5 {1 € [jqn, (j +1)qnl.

Ifzg11 € [an,an +nqnl, s +1< LLJ this implies
lp(zg )l < 1.
By (7.0.19), we have
IG1(k)(k, 21) Gy g)(Zi/ZZJ"'Gl(zg)(Z'S/Zs+1)<P(Z's+1)|

® o~ (InA=2n) (\kle\JrZiS:l ‘Z272i+1‘)

N
3

(7.0.21)
<rpenA-2n) (k=24 11l—(s+1)

—(InA—2n) (dj—2ngn—4— L)

< rPe dn-1

)

Ifzgi 1 €l+1)gn—mgn, G+ 1)gnl, s+1< L%J, by the same arguments, we
have
G (K, 21) Gz (21, 22) - Gy (26, 2511 @(25 41|

(lnx—zm(dm “man—d- i)

(7.0.22)

0]
< T‘)Jrl

Ifs+1= L%J, using (7.0.18) and (7.0.19), we obtain

G (K, 21) Gz (21, 22) - Gz (26, 25 11) @(2 1)

(7.0.23) Ty
< e( (InA=2n)qn1lg " 1J) lp(zg -

2qn_
Notice that the total number of terms in (7.0.20) is at most Zan . and that d;

and dj 1 are both at least 10nqn. By (7.0.21)-(7.0.23), we have

o (k)| <max{r)¢’ —((na~ Zﬂ)(dr?mqn)),

(mxfzm(d-ﬂfanm)
(7.0.24) 9, e ( (]nJA 2
max e~ INA=21)dn | (p)] }
[jan(j+1)qn]{ olp }

Now we will show that p € [jqn, (j + 1)qn] implies |@(p)| < max{r‘p,r)ﬂ}
Then (7.0.24) implies case (i) of Lemma 7.0.16. Otherwise, by the definition of

®, if |o(p’)| is maximum over z € [jqn +10nqn + 1, + 1)gn — 10ngn — 1] of
I(p( )|, then |@(p’)] > max{r)fp,rlfp+1}. Applying (7.0.24) to ¢(p’) and noticing that
dist(p’, qnZ) > 10nqn, we get

o(p')] < e(TIA2MMaN) max (10 10l (p)]}.

This is impossible because |@(p’)| > max{r] /T LEARp
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By the properties of continued fractions and since 6 is a-Diophantine, one can
obtain the following estimates:

Lemma 7.0.25. For any [il, j| < 50C.by, 1, the following estimate holds,
(7.0.26) In|sinm(20 + (j +1)o)| > —ClIn gn.

Lemma 7.0.27. Assume |i|, |j| < 50Cyby 1, and i—j # qnZ. Then
(7.0.28) In|sint(j —i)af > —Cln gn.

We then have

Theorem 7.0.29. For 1 <j < 46C, bg]‘;” , the following holds
(7.0.30) ¥ < max{r, an+1 exp{—(InA — Cn)qn}}-

Proof. Fix j with 1 <j < 46C., bgf and || < 10nqn.

Next, define subsets 11, I, C Z as follows
1 1
I = [*I_Ean/ qn — I_Ean —1],

b = — Lyanl, (+ Dan — Lyan] ~ 1.
Let O = 0 + ma for m € I; UI,. The set {Om}mer,ut, Will thus consist of 2qn
elements.
By Lemmas 7.0.25 and 7.0.27, and following the proof of Theorem 4.0.6, one
obtains that {6, }is lnq%iln*lnj + ¢ uniform for any &€ > 0. Combining with Lemma
3.0.7, there exists some jy with jy € I3 U I, such that

%0 £ A g1, ana— o)
First, we assume jy € Ip. Set I = [jo — qn + 1,jo + gn — 1] = [x1, x2]. In (2.8.10),
let ¢ = 1. Combining with (2.8.6) and (2.8.7), it is easy to verify

IG1(an +1,%¢)l
< exp((InA+1) (24n —1 = fign +7—xil)

Inq —Inj
— (2qn —1)(InA— %—n))-

Using (2.5.2), we obtain

(7.0.31) plian +1l < Y Intlednan o)) e Hantr—xilin,
i=1,2

where x] =x; —1and x5 =xp+ 1.

Let d} =[xi —jqnl, 1 =1,2. It is easy to check that
(7.0.32) [ian +1—xil + b, lign +1—xi+ diey > qn— I,
and

(7.0.33) lidn +1—xil+djyy > 2qn —Irl.
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If dist(xi, qnZ) > 10nqn, then we bound ¢(x;) in (7.0.31) using (7.0.17). If
dist(xi, qnZ) < 10nqn, then we bound @(x;) in (7.0.31) by some proper r;. Com-
bining with (7.0.32), (7.0.33), we have

P < max{r]“’il an ]H exp{—(InA — Cn)qn},

Tj(p % exp{—(lnA - Cﬂ)qn}r

% q“]H exp{—2(InA — Cn)qn}} )

However, we cannot have
P <P T expl—(inA— Cn)an)

< r]fp exp{—(InA—p —Cn)qn}

so we must have

P < max{r]‘pil An+1 exp{—(InA — Cn)qn},
(7.0.34) J

%0 qT;H exp{—2(InA — Cn) qn}}.

In particular,

(7.0.35) Tlf" < exp{—(InA—p — Cn)qn}max{r]il r)ﬂ}

If jo € Iy, then (7.0.35) holds for j = 0. Let ¢ = ¢ in (7.0.35). We get
(0], Ip(—1)] < exp{—(InA—f — Cn)qn},

which is in contradiction with | (0)]> + [p(—1)[> = 1. Therefore jy € I, so (7.0.34)
holds for any ¢.
By (2.6.3) and (2.8.10), we have

(7.0.36) ||< (k1) >|| —(InA+e)lks— k2||< ¢ (ka) >||-
olka—1) ok —1)

This implies
%, < 1% exp{(InA + Cn)qn},

thus (7.0.34) becomes

(7.0.37) r)“’ < max{r]il q

1 exp{—(InA — Cn)gnl},

for any 1 <j < 46C, ““ O

We now show that by Theorem 2.4.1 exponential growth is not allowed, ;
must actually decay.

Theorem 7.0.38. For1 <j <10 bSI L, the following holds

(7.039) 1j < Tj—1exp{—(InA— Cn)qn}q“].“.
Proof. Let @ = ¢ in Lemma 7.0.29. We must have
(7.0.40) v < max{ry; T exp{—(InA— Cn)qnll,
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for any 1 <j < 46C, bail.
Suppose for some 1 < j < 108

n+1 :
q: , the following holds,

(7:041) 75 <310 T exp(—(In\ — Cn)an) < 141 exp{—(InA— B — Cr)n}
Applying (7.0.40) to j + 1, we obtain

(7.0.42) rj11 < max{rj,rj+2}% exp{—(InA — Cn)gn .
Combining with (7.0.41), we must have

(7.0.43) Tit1 < Tjp2exp{—(InA — B —Cn)qn}
Generally, for any 0 < p < (C, +1)j — 1, we obtain

(7.0.44) Titp < Tjppr1exp{—(InA -3 —Cn)gqn}
Thus

(7.0.45) T(c.+1)j = Tjexp{(InA — B — Cn)Cijgqn}

Clearly, by (7.0.36), one has
T = exp{—(InA + Cn)jqn}.
Then
(7.0.46) ric,+1); 2 exp{((Cs+ —1)InA— C.p — Cn)jqn}.
By the definition of C,, one has
(Cs—1)InA—C.p >0.

Thus (7.0.46) is in contradiction with the fact that |p (k)| < 1+ [/

Now that (7.0.41) can not happen, from (7.0.40), we must have
(7.0.47) T <11 Ant1 exp{—(InA — Cn)qn}. O

Theorem 7.0.48. For 1 <j < 10%, the following holds

(7.0.49) 1 = 1j_1 exp{—(InA — e)qn}thLl .

Proof. See [30] for details. O

We are now ready to complete the proof of Theorem 5.0.6.

Proof of Theorem 5.0.6. Setty) =1— %. Let t = tg in the definition of resonance,

ie. by =qo.
CaseI: { > q}fﬂz
By case II of Theorem 7.0.1, we know that any y € (5q:10+1,qn+1 — eq:{’H) is

(InA+8In(sqn/qn+1)/qn — €,4sqn — 1) regular with 6 = 411. Notice that
(s+1)qn = 5q:3+1 > Eq?ﬂf

thus we have
InA+ —2- >InA—8(1 —tg)p —e > InA—2¢.

dn
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Thus for any y € (eqf&rl, qnt1 — sq;‘fﬂ), y is (InA —2¢,4sqn — 1) regular. Fol-
lowing the proof of Lemma 7.0.16, one has for {qn <k < ({+1)qn,
U (k)| < e~ InA=e)lk]

which implies Theorem 5.0.6 in this case.

Case I 0 < ¢ < q;° ;:

By Theorems 7.0.48 and 7.0.38, and Stirling’s formula,
ijle*qun < T < ?;[1651"171'

Now Theorem 5.0.6 follows from Lemma 7.0.16. O

8. Arithmetic criteria for spectral dimension

We know that in the regime of positive Lyapunov exponent the spectrum is
always singular. Now that we also know (Lemma 2.8.4) that large 3 implies con-
tinuous (and therefore singular continuous) spectrum, it’s natural to ask whether
even larger (3 implies increased continuity. “Continuity” of singular continuous
spectrum can be quantified through fractal dimensions. The most popular ob-
ject is Hausdorff dimension. However Hausdorff dimension is a poor tool for
characterizing the singular continuous spectral measures arising in the regime of
positive Lyapunov exponents, as it is always equal to zero (a very general theorem
of Simon that holds for general ergodic potentials and a.e. phase, see Theorem
8.2.6 [44] (and for every phase for the zero entropy dynamical systems [19] (see
also [29,31]). It turns out that some other dimensions do present good tools to
finely distinguish between different kinds of singular continuous spectra appear-
ing in the supercritical regime. The main goal of this lecture is to briefly present
a simultaneous quantitative version of two well known statements

(1) Periodicity implies absolute continuity. We prove that a quantitative weak-
ening (near periodicity that holds sufficiently long) implies quantitative
continuity of the (fractal) spectral measure.

(2) Gordon condition (a single/double almost repetition) implies continuity of the
spectral measure. Indeed, we prove that a strengthening (with multiple al-
most repetitions) implies quantitative continuity of the spectral measure.

This will allow us to establish a sharp arithmetic criterion for certain dimension
of the spectral measure in terms of 3, for general analytic potentials.

8.1. m-function and subordinacy theory Let p be a finite Borel measure on RR.
Define the Borel transform of u to be:
(8.1.1) m(z) .= J Ldu(E), zeC.

E—z
It is easy to check that for any finite Borel measure u on R, its m-function is
holomorphic in the upper half plane and satisfies

m*(2) = m(z’), Im(z)< B0 zec,.
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Remark 8.1.2. Functions with this property are known as Herglotz, Pick or R
functions. They map the upper half-plane into itself, but are not necessarily
injective or surjective. Note that such an m is holomorphic in C\o(p), where
o(p)={E€R:pu(E—¢ E+¢) >0forall ¢ >0}

The boundary behavior of m is linked to the Radon-Nikodym derivative Du
of p, which in turn determines the decomposition of p, see e.g. [45].

Theorem 8.1.3. Let p be a finite Borel measure and m its Borel transform. Then the
limit

(8.1.4) Im(m(E)) = hfg Im (m(E +ie))
€
exists a.e. with respect to both w and Lebesgue measure (finite or infinite) and
1
(8.1.5) Du(E) = %Im(m(E))

whenever DU(E) exists. Moreover, the set {E\Im(m(E)) = oo} is a support for the
singular continuous part and {E|[Im(m(E)) < oo} is a minimal support for the absolutely
continuous part.

Fractal properties of pn can also be characterized through m. In the rest of
this subsection, we briefly review the power-law extension of the Gilbert-Pearson
subordinacy theory [16,17], developed in [29].

For simplicity, consider the right half line operator (2.3.1) on (*(Z*) with
boundary condition u(1) = cos @, u(0) = sin¢ for some ¢ € (—m/2,m/2]. Let
1 be the spectral measure. In this case, the Borel transform of u is also called the
Weyl-Titchmarsh m-function.

For any function u: Z" — C and ¢ € R", define

(€] 1/2
(8.1.6) Fulle = [ 3~ )P+ (0= @hu(ie + )R] .
n=1

Suppose u and v solve Hu = Eu with orthogonal boundary conditions

u(l) (1)
= R(p/
u(0) v(0)
where R, is a matrix of rotation by ¢. Now given any & > 0, we define a length
€(e) € (0, 00) by requiring the equality
1
(8.17) llece) - Vllece) = 5;-

The function {(¢) is a well defined monotonically decreasing continuous function

which goes to infinity as ¢ goes to 0, and we also have 5 > $([(] —1). It tul“‘ns out
tlece)

that the boundary behavior of m(E +ie) is linked in a quantitative way to Tl ”

thus to the power-law behavior of solutions.

Lemma 8.1.8 (J.-Last inequality, [29]). For E € Rand ¢ > 0,
524 _ Il _ 5424

m(E+ie)l ~ [lvle ~ Im(E+1ie)l

(8.1.9)
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From Lemma 8.1.8, one can easily recover the results of Gilbert-Pearson [17]
with a simpler proof, while strengthening their theory. The above inequality
links the power-law behavior of the generalized eigenfunctions of Hu = Eu and
the boundary behavior of the Borel transform of the spectral measure p in a
quantitative way. A particular consequence of Lemma 8.1.8 is

Lemma 8.1.10. For any E € R and 0 < vy < 1, suppose there is a sequence of positive
numbers ey — 0 and an absolute constant C > 0 so that both w,v satisfy

(8.1.11) cly < Julf, < ciY

where &y = {(ey) is given by (8.1.7). Then

(8.1.12) hmﬁﬁsPWMﬂE+idl<oa
€

8.2. Spectral continuity Fix 0 <y < 1. If (8.1.12) holds for p a.e. E, we say mea-
sure u is (upper) y-spectral continuous. Define the (upper) spectral dimension of
u to be

(8.2.1) s(u) =sup {y € (0,1) : pis y-spectral continuous}.

In this part, we focus on the quantitative spectral continuity and the lower
bound of the spectral dimension. Our spectral continuity result does not neces-
sarily require quasiperiodic structure of the potential and can be generalized to
wider contexts (so-called B-almost periodic potential, see [27], - a class, that in-
cludes, for example, some skew shift potentials). The general result of [27] only
goes in one direction. However, in the important context of analytic quasiperiodic
operators this leads to a sharp if-and-only-if result. Let H be defined as in (2.3.2)
with quasiperiodic potential:

822) (Hun)=um+1)+um—1)+vO@+n)un), 6,xecT, v:T— R.

Theorem 8.2.3 ([27]). Let H be as in (8.2.2) with real analytic potential v and p be the
spectral measure®. Assume L(E) > 0 for all E € R. Forany 0 € T, s(u) = 1 if and only

if B (o) = o0.

Remark 8.2.4. The theorem also holds locally for any spectral projection onto the
subset where the Lyapunov exponent is positive.

Remark 8.2.5. The ‘if’ part will be a consequence of Theorem 8.2.7 which can
be viewed as a quantitative strengthening of the results of Gordon type (Lemma
2.8.4). The ‘only if" part follows from the general analytic Theorem 8.3.1 which
can be viewed as a weakening/extension of localization type results for large (3.

Spectral continuity captures the lim inf power-law behavior of m(E + ie), while
the corresponding limsup behavior is linked to the Hausdorff dimension [14].
Discrete Schrédinger operators may have multiplicity two. However, 8¢, 51 always form a cyclic pair,

so it is enough to consider the so called maximal spectral measure given by p = s, + ps,, where
ks, and g, are defined as in (2.1.1).
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One can easily check that dimy(p) < s(p) < dimp(p), where dimyy(p)/dimp (1)
denote the Hausdorff/packing dimension of a measure in the usual sense.

Theorem 8.2.6 (Simon, [44]). Suppose H is an ergodic Schrodinger operator as in (2.3.2)
with positive Lyapunov exponent. For a.e. phase w, dimgy(p) = 0.

Let H be as in (8.2.2) and p be the spectral measure. We have the following
quantitative lower bound of the spectral dimension.

Theorem 8.2.7. Suppose v is Lipschitz continuous. Let
1
(8.2.8) A= sup —In[|An(0)].
Eco(H)ne

There exists an absolute constant C > 0 such that for any 6 € T,
CA
Bla)

The general version of Theorem 8.2.7 is actually more robust and only requires

s(u) >1—

some regularity of v, which allows us to obtain new results for other popular
models, such as the critical almost Mathieu operator, Sturmian potentials, and
others. Lower bounds on spectral dimension also have immediate applications to
the lower bounds on packing/box counting dimensions and on quantum dynam-
ics(upper transport exponents). The method developed in [27] for the bounded
SL(2,R) case generalizes to the unbounded case (e.g. the Maryland model) and
the non-Schroédinger case (e.g. the extended Harper’s model) [46].

For simplicity, we only prove the right half line case and we also assume (5.0.1)
holds. According to Lemma 8.1.10, to prove spectral continuity, it is enough to
obtain power-law estimate (8.1.11) for half-line solution u of Hu = Eu with any
boundary condition ¢.

First, for (3 large, the system can be approximated by a periodic one exponen-
tially fast, in the following sense.

Lemma 8.2.9. Let qn be given as in (5.0.1). For any < (), any 0 € T, we have
(8.2.10) [Agn(0) —Aq, (0 + qna)| < e(—B+2A)dn

The ultimate goal is to estimate ||Ang,, || by the size of qn, for N ~ eSPdn_ This
eventually leads to the desired power-law for u by (2.6.3). We will conclude this
in the end of this part. The standard rational approximation fails here since the

NA _ gecPan

error terms may reach the size of e . We need some quantitative

telescoping arguments.

Lemma 8.2.11. Suppose G is a two by two matrix satisfying

(8.2.12) |G| <M< oo, forall0<j<NeNT,

where M > 1 only depends on N. Let G; = G+ A;,j =1,---, N, be a sequence of two
by two matrices with

8.2.13 5= Al
( ) 1, 4]
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If
(8.2.14) NMS < 1/2,

then forany 1 <n < N

n
(8.2.15) IT] G — 6™ <2NM2.
j=1

Combining (8.2.10) with this lemma, one can show that An,, is close to AH‘H
up to the size of ||AE’n ||. Now the question is reduced from the dynamical behav-
ior of Ang, to the algebraic properties of A‘;’n. We need some additional linear
algebraic facts about SL(2, R) matrices.

Lemma 8.2.16. Suppose G € SL(2,R) with 2 < |Tr G| < 6. There exists an invertible
matrix B such that

p 0 1
(8.2.17) G=B B
0 p_1

where p*1 are the two conjugate real eigenvalues of G, |detB| = 1 and
Gl

8.2.18 B| =|B7!| <« .
( ) Bl =1l | T G| — 2
IfITt G| > 6, then |[B|| < —ISI
If |Tr G| > 6, then ||B]| < G2

Lemma 8.2.19. Suppose G € SL(2,R) has eigenvalues p*!, p > 1. For any k € N, if
Tr G #£ 2, then

k_ ~—k T k —k
fu.( rG )+w.1'

8.2.20 Gk = G——"1
( ) p—p1 2 2
Otherwise, G¥ = k(G —1) + L

Assume further that ]|Tr G| — 2| < 1 < 1. Then there exist universal constants

1< Cy < 00,¢1 > 1/3 such that for 1 < k < v, we have

ko o—k k_ ,—k
PP oy, ak< 2P c ok

2 —p

By Lemma 8.2.16, if the trace of A 4,, is away from 2, we have the decomposition

p 0 _ _ 2\/[[Aq, |l
(8.2.22) Ag, =B B Bl =BT s ==
0 p TrAq,|—2

(8.2.21) o <

and the matrix product turns into a scalar product,

N
(8.2.23) AN —g (P 0 ) B AN < BN
L. qn 0 p*N s qnll X .

By Lemma 8.2.19, when the trace of Agq, is close to 2, Ag’n behaves almost

linearly in N:

1

(8.2.24) A ~N(Aq, — STr Agn)+1L
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The above two asymptotic behaviors of A];n allow us to study the spectral
measure of the following two sets:

(8.2.25) S; =limsup{E: [TrAq,|>2+e 10Mdn),
n—oo

(8.2.26) Sp =limsup{E : |[TrAq, | —2| < e 107dn},
n—oo

To estimate the spectral measure of S;, we use the idea of a Gordon-type argu-
ment to estimate the lower bound of the solution. Recall that the key step to
prove Lemma 2.8.4 is that for G € SL(2,IR) and X € C?,

_ 1
(8.2.27) max{||GX]|,[|GTX[[} > S ITrGl - [|X]|

If E € Sy, roughly speaking, we have a sequence of scales qn, such that the trace
of Aq, is large. Putting (8.2.10),(8.2.15),(8.2.22) and (8.2.27) together, we can show
that there are integer sequences xq,, — oo independent of E € Sq, such that

(8.2.28) u(xq, )l > e,

where u solves the half-line problem Hu = Eu with any boundary condition.
The following extended Schnol’s Theorem shows that such E must have spectral
measure zero.

Lemma 8.2.29 (Extended Schnol’s Theorem, [27]). Fix anyy > 1/2. For any fixed
sequence |xy| — oo, for spectrally a.e. E, there is a generalized eigenvector u of Hu = Eu,
such that

ulxadl < C(1+ kDY,

For Sy, note that A4(E) is a polynomial in E with degree at most q. If the trace
is close to 2, the following preimage estimate of a polynomial reduces the set in

S, to several small intervals of width at most e >/\dn.

Lemma 8.2.30 ([25]). Let p € Pr;n(R) with y; < -+ < yn_1 the local extrema of p.
Let

( ) Clp) = min  [p(y;)l

and 0 < a < b. Then,

(8.2.32) b~ (a, b)| < 2diam(z(p — a)) max {

b—a ( b—a )%}
(p)+a’*¢(p)+a
where z(p) is the zero set of p and | - | denotes the Lebesgue measure.

The definition of m-function implies w(E —¢, E+¢) < 2e ImM(E + ie), where
the right-hand side can be estimated again by subordinacy theory (Lemma 8.1.8)
with the help of (8.2.24). Together, these ideas can be used to show that for 3
large enough, p({E : |\TrAqn| 72| < e 10Adn}) < e=Adn_ Then the Borel-Cantelli
lemma immediately implies p(S;) = 0.

In conclusion, we have the following key estimate for the trace of the transfer
matrices.
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Theorem 8.2.33. For 3 > 40A and wa.e. €, there is K(E) such that
(8.2.34) [TraceAq,, (E)] <2 —e 104 n > K(E).

Combining this trace estimate with previous algebraic facts (8.2.15) and (8.2.24),
one has

Lemma 8.2.35. There is a sequence of positive integers Ny — oo such that for 0 <y < 1,

if
100A
(8.2.36) B> m/
then
Ny qk
(8.2.37) > ARE) < (N qi)*™Y, k> K(E).
n=1

Now (8.1.11) follows from (2.6.3) for any boundary condition ¢.

8.3. Arithmetic criteria In this part, we focus on the spectral singularity and
the quantitative upper bound of s(u). For simplicity, we only state and prove
the following upper bound for the right half line AMO. The same result holds
for general analytic potentials with positive Lyapunov exponent, which together
with Theorem 8.2.7 will complete the proof of Theorem 8.2.3.

Theorem 8.3.1. Let H be the AMO given as in (2.7.1). Assume that A > 1. There exists
¢ € (—mn/2,7/2] and an absolute constant ¢ > 0 such that for any 6 € T if B(x) < oo
then for the associated half line spectral measure p, we have that
8.3.2 <— =<1
(83.2) st < 7 7B
Lemma 8.3.3. For any E there is a ng such that for any n > ny, there exists an interval
An C T satisfying

1 1 1
8.3.4 Leb(An) =2 —, iInf —In||An(O —InA.
(33.4) eb(An) > g, inf n|[An(8)] > 5 In
Moreover, for all qn large (depending on ny), for any 8, and any N € IN, there is
N € 2Ngn,2(N +1)qn ) such that
(8.3.5) 1A;, (6, E)|| > esdnin,

Lemma 8.3.6. Forany E € Rand 3 = () < oo, there is a Ly = £y(E, ) such that for
> Ly, and any © € T, the following holds:

[
83.7) S AR, E)? > O F,
k=1
Proof of Theorem 8.3.1: For any ¢, we have
¢
1
(8:38) WP+ 1velE > 5 3 AR @)
k=1

2c
Therefore, (8.3.7) implies that [[u®[? + [[v¢®|3 > ("% for ¢ large.
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On the other hand, Last and Simon showed in [38] that, for p-a.e. E, there exist
¢ and C = C(E) < oo, such that for large ¢,

(8.3.9) [u®]l¢ < CO/21Int.
Combining (8.3.8) and (8.3.9), we have
(8.3.10) V@] > 1/2+e/B

provided < oo and ¢ > {y(E, 3). For any ¢ > 0 (small), let { = {(¢) be given as
in (8.1.7). By (8.1.9), one has for any v € (0,1),

1 ®
el 7Y Img (E +1ie)| > . (5—V24) [ve]le
2lue|lellvele) " [[u®lle

> ¢y gUFe/BIy—1. 02

where ¢, > 0 only depends on y. Now let yg = ﬁ < 1. We have for any
Y > Yo,
slﬂ’lm(p(E +1ie)| > cﬂwyo*l In"% 10— o0

as ¢ — 0. Therefore, s(p) < yp, according to the definition (8.2.1). O
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