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Hi Zair, please forward to the students.

Thanks!

Svetlana

Dear all,

Here are some reading materials for those of you who are acUvely listening:

1. The  2022 ICM proceedings paper of my plenary talk, for moUvaUon (I
am trying to make the video available, but it may, unfortunately, take a
few days)

2. my 2018 lecture notes that we will parUally follow (not today
though); they also briefly menUon most of the necessary background
(some of which we will go over in detail today/tomorrow)

3. my 2019 CDM lecture notes that also contain some further
background/moUvaUon

3. Barry Simon's 1996 Wonderland paper, over most of which we will go
over today hdps://nam10.safelinks.protecUon.outlook.com/?
url=hdps%3A%2F%2Furldefense.com%2Fv3%2F__hdp%3A%2F%2Fwww.math.caltech.edu%2FSimonPapers%2F234.p
df__%3B!!GF3VTAzAMGBM8A!y4Y04rUQsKELeYx0skNzfeKSf9LL8pGmjRynLWGWPH5Mf4sOf9HUfIReMTXF8JUINIrv3J
ChU0rKVW8lFoK8SPnEwp1i%24&amp;data=05%7C01%7Czibragimov%40fullerton.edu%7Caa33e7b3ca484279987c0
8da6ebe7bd3%7C82c0b871335f4b5c9ed0a4a23565a79b%7C0%7C0%7C637944062160855171%7CUnknown%7CTW
FpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&a
mp;sdata=lk6xJOvT1RtDIiSNN3Cjj2wtLVfAqvCLhN1twB9lnqc%3D&amp;reserved=0

4. Two parts of Cycon, Froese, Kirsch, Simon, from which some material
will be taken today and tomorrow, and an extra one that will be menUoned

5. My 1999 paper and Avila's 2010 paper that we plan to discuss to some
extent

hdps://nam10.safelinks.protecUon.outlook.com/?
url=hdps%3A%2F%2Furldefense.com%2Fv3%2F__hdps%3A%2F%2Fwww.jstor.org%2Fstable%2F121066__%3B!!GF3
VTAzAMGBM8A!y4Y04rUQsKELeYx0skNzfeKSf9LL8pGmjRynLWGWPH5Mf4sOf9HUfIReMTXF8JUINIrv3JChU0rKVW8lF
oK8SONBRRtz%24&amp;data=05%7C01%7Czibragimov%40fullerton.edu%7Caa33e7b3ca484279987c08da6ebe7bd3
%7C82c0b871335f4b5c9ed0a4a23565a79b%7C0%7C0%7C637944062160855171%7CUnknown%7CTWFpbGZsb3d8e
yJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&amp;sdata=xVPl
tFZn%2Fgw0ej3TZ%2F4MUX%2BSVcQ%2B%2BBoNxBDOXDcNX4E%3D&amp;reserved=0
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Technically, all that is necessary will be said in the lectures, but I
do understand it is too fast for those who are seeing it for the first
Ume. Don't forget that Simon (and also Alberto and Omar) are providing
the tutorial today. It is best to be on top of the previous lecture
material for beder understanding going forward, especially the
yesterday's lecture which contained the key preliminaries.

Finally, if anyone needs an access to Reed-Simon, please let me know

See you this awernoon!

Lana

https://nam10.safelinks.protection.outlook.com/?url=https%3A%2F%2Furldefense.com%2Fv3%2F__https%3A%2F%2Fprojecteuclid.org%2Fjournals%2Facta-mathematica%2Fvolume-215%2Fissue-1%2FGlobal-theory-of-one-frequency-Schr**Adinger-operators%2F10.1007%2Fs11511-015-0128-7.full__%3Bw7Y!!GF3VTAzAMGBM8A!y4Y04rUQsKELeYx0skNzfeKSf9LL8pGmjRynLWGWPH5Mf4sOf9HUfIReMTXF8JUINIrv3JChU0rKVW8lFoK8SCzg84VJ%24&amp;data=05%7C01%7Czibragimov%40fullerton.edu%7Caa33e7b3ca484279987c08da6ebe7bd3%7C82c0b871335f4b5c9ed0a4a23565a79b%7C0%7C0%7C637944062160855171%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&amp;sdata=QlRnP6UelbkwU56n7i9yic%2BpbAJdPWmJECKQNdIfrOY%3D&amp;reserved=0


One-dimensional
quasiperiodic
operators: global
theory, duality,
and sharp analysis
of small denominators
Svetlana Jitomirskaya

Abstract

Spectral theory of one-dimensional discrete one-frequency Schrödinger operators is a field
with the origins in and strong ongoing ties to physics. It features a fascinating competi-
tion between randomness (ergodicity) and order (periodicity), which is often resolved on
a deep arithmetic level. This leads to an especially rich spectrum of phenomena, many of
which we are only beginning to understand. The corresponding analysis involves, in partic-
ular, dealing with small denominator problems. It has led to the development of non-KAM
methods in this traditionally KAM domain, and to results completely unattainable by the
old techniques, also in a number of other settings. This article accompanies the author’s
lecture at the International Congress of Mathematicians 2022. It covers several related
recent developments.
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One-dimensional discrete one-frequency Schrödinger operators

.HV;˛;xu/n WD un�1 C unC1 C V.x C n˛/un;

u 2 `2.Z/; ˛ 2 T WD RnQ; x 2 T ; V W T ! R; (0.1)

and related questions of the dynamics of quasiperiodic cocycles have not been under-
represented at the ICMs. As I remember, roughly within the last 25 years, there were sectional
lectures by H. Eliasson in 1998, myself in 2002, B. Fayad, R. Krikorian, and J. You in 2018,
as well as plenary lectures by A. Avila in 2010 and 2014, devoted either in part or in full to
this topic.

The field itself is not at all new. It may be seen as having been originated in physics
when Peierls [103] and later his student Harper [61] studied the tight-binding two-dimensional
electron in a uniform perpendicular magnetic field (also known as the Harper model) and
derived the by now iconic family H2� cos;˛;x that we now, following Barry Simon [105], call
the almost Mathieu operator. It remains hugely popular in physics, being directly linked to
several remarkable experimental discoveries and Nobel prizes, providing, in particular, the
theoretical underpinning of the Quantum Hall Effect, as proposed by D. J. Thouless in 1983
(see, e.g. [18,19]). A Google search for “Harper’s model physics” leads to many thousands of
hits.

The field may also be seen as having been originated in a numerical experiment,
as the interest was picked after Douglas Hofstadter came up with what we now call the
Hofstadter’s butterfly [64]—a beautiful numerically produced fractal (Figure 1), discovered
even before the word “fractal” was coined by Benoit Mandelbrot. Finally, the field may be
seen as having been originated from the first application of KAM in the spectral theory—a
pioneering work of Dinaburg and Sinai [37], that preceded Hofstadter. The field has consis-
tently attracted top mathematical physicists (e.g., Bellissard, Deift, Simon, Sinai, Spencer),
dynamicists (e.g., Avila, Eliasson, Herman, Krikorian, You), and analysts (e.g., Bourgain,
Eliott, Sarnak, Schlag). Indeed, it turned out to be a fantastic ever-expanding playground
for the analysts and dynamicists alike, leading to strong cross-fertilization of ideas that have
a tendency to later expand to other subjects. Jean Bourgain wrote a book [28] devoted to
analytic, mostly one-dimensional, quasiperiodic operators that summarized significant new
understanding achieved around the turn of the century, where the work of Jean and collabo-
rators was central.

It is therefore all the more surprising that as of the time of this writing it seems that
the field is on the verge of further significant breakthroughs, with our current understanding
covering just the tip of an exciting iceberg. Given the remarkable current momentum, we
will refrain from making an attempt at an overview of the vast past literature, neither even
very recent nor a number of important milestones, and will concentrate instead only on two
selected topics that enjoyed significant recent advances and hold a particular promise to
shape some of the future discourse.

For the review up to about five years ago, see [82], and for various fine issues related
to continuity of the Lyapunov exponents, featuring, in particular, very important work by
M. Goldstein and W. Schlag, see the recent book by P. Duarte and S. Klein [38]. The 2018
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Figure 1

Hofstadter’s butterfly.

ICM proceedings by J. You [117] summarize, among other things, the quantitative reducibility
breakthrough developed in his group, that has led to a number of powerful consequences.
There are also recent expositions [68, 80] that include some further remarkable results of
roughly the last decade that could not make it into this article.

1. Spectral theory meets (dual) dynamics

Quasiperiodic operators (0.1) are, of course, a particular case of one-dimensional
discrete ergodic Schrödinger operators

.Hxu/n WD un�1 C unC1 C V.T nx/un; u 2 `2.Z/; (1.1)

where x 2 X , and .X;�; T / is an ergodic dynamical system. Operators with ergodic poten-
tials (also in the continuum or in a more general multidimensional/covariant setting) always
have spectra and closures of the other spectral components constant for �-a.e. x [95,102]. In
case of the minimal underlying dynamics, such as, e.g., the irrational rotation of the circle in
(0.1), the spectra [21] and absolutely continuous spectra in the one-dimensional case [97] are
constant for all x. In contrast, the point and singular continuous parts (that are constant a.e.)
can depend sensitively on x. It is an interesting problem, usually attributed to B. Simon, and
open even in the setting of (0.1) whether this still holds when they are combined together
(see Problem 6 in [67]).

The spectral theory of one-dimensional ergodic Schrödinger operators (1.1) is
deeply connected to the study of linear cocycles over corresponding underlying dynam-
ics. By an SL.2;R/ cocycle, we mean a pair .T; A/, where T W X ! X is ergodic, A is a
measurable 2 � 2 matrix-valued function on X and detA D 1.
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We can regard it as a dynamical system on X � R2 with

.T; A/ W .x; f / 7!
�
T x;A.x/f

�
; .x; f / 2 X � R2:

A one-parameter family of Schrödinger cocycles over .X; �; T /, indexed by the energy
E 2 C, is given by .T; A/ W .X;R2/ 7! .X;R2/ where .T; A/ W .x; y/ 7! .T x; A.x; E/y/,
and A 2 SL.2;C/ is the transfer-matrix

A.x;E/ WD

 
E � v.x/ �1

1 0

!
;

with x 2 X , y 2 R2, and E 2 C. The eigenvalue equation Hu D Eu can be rewritten
dynamically as  

unC1

un

!
D A

�
T nx;E

�  un

un�1

!
:

The (top) Lyapunov exponent is then defined as L.E/ WD limn!1

R
1
n

ln kAn.x; E/k d�,
where

An.x;E/ WD

0Y
iDn�1

A.T ix;E/: (1.2)

Two classical results link dynamics/Lyapunov exponents to the spectral theory of ergodic
operators:

• (Johnson’s theorem [91]) For minimal .X; �; T /, the spectrum �.H/ (which is
constant in x 2 X ) is given by the set ofE 2 R such that the Schrödinger cocycle
.T; A.�; E// is not uniformly hyperbolic.

• (Kotani theory [94]) The absolutely continuous spectrum �ac.H/ (�- a.e. constant
for any ergodic .X; �; T / and constant for minimal systems [97]) is given by the
essential closure of the set ¹E W L.E/ D 0º.

Therefore, for minimal, and in particular quasiperiodic, underlying dynamics, spec-
trum and absolutely continuous spectrum of Hx are encoded by the dynamics of the one-
parameter family A.x;E/ of transfer-matrix cocycles, indexed by the energy E; but, for the
spectrum, not by any explicit quantity. One recent surprising development is that for analytic
one-frequency quasiperiodic Schrodinger operators, the spectrum (and therefore absence of
uniform hyperbolicity of the corresponding cocycles) can be characterized more directly. In
[47] we introduce a new object, dual Lyapunov exponent OL.E/, and prove

Theorem 1.1 ([47]). For quasiperiodic operators (0.1) with analytic V ,

�.H/ D
®
E W L.E/ OL.E/ D 0

¯
: (1.3)

Exponent OL.E/ is defined as the limit of lowest Lyapunov exponents of dual high-
dimensional cocycles (see Sections 2 and 4) which is proved to exist. There are interesting
questions of varying levels of difficulty on whether this can be appropriately extended to
higher-dimensional analytic one-frequency quasiperiodic Schrodinger cocycles, correspond-
ing to operators on the strips, to multifrequency analytic cocycles, to nonanalytic potentials,
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or even other underlying dynamics. Perhaps the most natural question is whether one can
find an analytic characterization of the absence of uniform hyperbolicity for all analytic one-
frequency quasiperiodic cocycles. For the latter, there is a topological obstruction, but one
can reduce the question, say, to cocycles homotopic to the identity.

2. Aubry duality and higher-dimensional cocycles

The early work of Dinaburg–Sinai [37] notwithstanding, it is fair to say that the study
of the spectral theory of quasiperiodic operators has been largely shaped around and driven
by several explicit models, all coming from physics. The most prominent of those is the
almost Mathieu family H2� cos;˛;x , which can be argued to be the tight-binding analogue of
a harmonic oscillator. Besides being the main model in the related physics studies and that
featured in the Hofstadter’s butterfly, it is also the simplest, in many ways, analytic case,
yet it seems to represent most of the nontrivial properties expected to be encountered in the
more general situation. In some sense, it plays the same role in the theory of quasiperiodic
operators that the Ising model plays in statistical mechanics, and similarly to the latter, it
does have an important additional symmetry.

Namely, we define the Aubry dual of the one-frequency Schrödinger operator (0.1)
as

. OHV;˛;�u/n D

1X
kD�1

VkunCk C 2 cos 2�.� C n˛/un; n 2 Z; (2.1)

where Vk is the kth Fourier coefficient of V .1 It can be useful to view this as a transformation
of the entire family indexed by x for fixed V; ˛. In this regard, this transform can be viewed
as a unitary conjugation on H D L2.T � Z/, via

U .x; n/ D O .n; x C ˛n/; (2.2)

where O W L2.Z � T / ! L2.T � Z/ is the Fourier transform. The almost Mathieu family
is self-dual with respect to this transformation OH2� cos;˛;x D H 2

�
cos;˛;� , and, in particular,

H2 cos;˛;x , that is, H2� cos;˛;x with � D 1; is the self-dual (also called critical) point.
Aubry duality can be explained by the magnetic nature and corresponding gauge

invariance of two-dimensional magnetic Laplacians that lead to HV;˛;x [101]. In particular,
spectra and integrated densities of states of HV;˛;x and OHV;˛;x coincide. However, it is not
the case for the spectral type, and indeed it is natural to expect that a Fourier-type trans-
form would take localized eigenfunctions (point spectrum!) into extended ones (absolutely
continuous spectrum!), and vice versa. That was the basis for several predictions by physi-
cists Aubry and Andre [1] about the almost Mathieu family with irrational ˛, namely that the
spectrum ofH2� cos;˛;x is absolutely continuous for � < 1 (called subcritical) and pure point
for � > 1 (called supercritical). This was described in the paper where transformation (2.1)

1 There is a more general, multidimensional definition, but we stick to the one-dimensional
case for this exposition.
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was introduced in the context of the almost Mathieu family, leading to the name Aubry dual-
ity. This problem, along with a few others related to this family, was heavily popularized by
Barry Simon in [106,108], fueling an increased interest in the mathematics community.

Aubry duality has been formulated and explored on different levels, e.g., [10,55,101].
It has consistently played a central role in the analysis of quasiperiodic operators, in proving
absolutely continuous spectrum and reducibility [10,31], point spectrum [17,24,50,57,70],2 or
its absence [11,69].

In general, operator (2.1) is long-range. If V is a trigonometric polynomial of
degree d , the transfer-matrix A.x; E/ of the eigenvalue equation OHV;˛;x‰ D E‰ gives
rise to a 2d -dimensional cocycle, which has a complex-symplectic structure [60], so we will
view it as an Sp.2d;C/ cocycle .˛; A/; A 2 Sp.2d;C/, a linear skew product

.˛; A/ W

´
T � C2d ! T � C2d

.x; v/ 7! .x C ˛;A.x;E/ � v/

µ
:

The Lyapunov exponentsL1.˛;A/�L2.˛;A/� � � � �L2d .˛;A/, repeated accord-
ing to their multiplicity, are defined by

Lk.˛; A/ D lim
n!1

1

n

Z
T

ln
�
�k

�
An.x/

��
dx;

where for a matrix B 2 Mm.C/, �1.B/ � � � � � �m.B/ denote its singular values (eigen-
values of

p
B�B). Since for real E the transfer-matrix A.x; E/ of the eigenvalue equa-

tion OHV;˛;x‰ D E‰ is symplectic, its Lyapunov exponents come in the opposite pairs
¹˙Li .˛; A/º

d
iD1. We will now denote

OLi D Ld�i .˛; A/; (2.3)

so that 0 � OL1 � OL2 � � � � � OLd .
In general, Lyapunov exponents are not nicely behaved with respect to parameter

changes. They can be (and most likely, typically are) discontinuous in ˛ at ˛ 2 Q (the almost
Mathieu cocycle is one example), are generally discontinuous in A in C 0, and can be dis-
continuous in A even in C1 [35, 81, 113, 114]. It is a remarkable fact, enabling much of the
related theory, that Lyapunov exponents are continuous in the analytic category.

Theorem 2.1 ([12, 29, 31, 73]). The functions R � C!.T ; Mm.C// 3 .˛; A/ 7! Lk.˛; A/ 2

Œ�1;1/ are continuous at any .˛0; A0/ with ˛0 2 RnQ.3

For the almost Mathieu operator, it leads to the exact formula for the Lyapunov expo-
nent for energies E in the spectrum of H2� cos;˛;x . We have L�;˛.E/ D max¹ln j�j; 0º [30].

For Diophantine ˛, this continuity extends to sufficiently smooth Gevrey spaces
[35,92], and it is a remarkable recent result [48] that for certain ˛ the transition in the topology

2 Made possible with the development of recent powerful methods [7,14,65,118] to establish
nonperturbative reducibility directly and independently of localization for the dual model.

3 In dimension one, it extends to the Lyapunov exponents of multifrequency cocycles
R � C!.Tb ;SL2.C// 3 .˛; A/ 7! L.˛;A/ 2 Œ0;1/.
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for continuity of L occurs sharply at the Gevrey space G2. It should be noted that both
the original spectacular counterexample [113] and its refinements [48, 114] require ˛ to be a
fixed irrational of bounded type, i.e., having a continued fraction expansion with bounded
coefficients. This set includes the golden mean but forms a set of zero Lebesgue measure. The
authors of all these papers also vary the cocycle, i.e., the potential. This still leaves open the
question whether continuous behavior of the Lyapunov exponents at least for Schrödinger
cocycles with regularity lower than G2 is possible if ˛ is not of bounded type. Another
open question is whether it is true that for a fixed potential of lower than G2 regularity, the
Lyapunov exponent is necessarily a continuous function of energy.

3. Avila’s global theory and classification of analytic

one-frequency cocycles

While many results exist in lower regularity, the analyticity of V in (0.1) brings
on board powerful ideas related to subharmonicity (leading, in particular, to the crucially
important for other developments continuity results) and the technique of semialgebraic sets
introduced to the field by J. Bourgain [28]. As a result, a lot more can be said about analytic
quasiperiodic operators. Particularly, while Kotani theory based its characterization of the
absolutely continuous spectrum on compexifying the energy, for analytic quasiperiodic oper-
ators there is one more natural parameter to complexify, namely the phase. This idea goes
back to M. Herman [63], and has been fruitfully used to prove positivity (and later continuity)
of the Lyapunov exponent in [29,63,110]. Avila [5] discovered a remarkable related structure
that has served as a foundation of his global theory (later extended to the high-dimensional
cocycles in [12]). Define

L�.E/ WD lim
n!1

Z
1

n
ln






 0Y
j Dn�1

Aj .x C j˛ C i�; E/






 d�:
Avila observed that, for a given cocycle, L� is a convex function of �, and proved that it has
quantized derivative in �.

Theorem 3.1 ([5]). For any complex-analytic one-frequency cocycle,

!.A/ D lim
�!0C

L�.A/ � L0.A/

2��
2 Z:

This was enabled through approximation by the rationals due to the continuity of the
Lyapunov exponent in the analytic category [32]. The fact that such continuity does not hold
even for higher Gevrey cocycles [48,113,114] complicates potential nonanalytic extensions.

Theorem 3.1 already enables full analytic computation of the Lyapunov exponents
forE in the spectrum, as well as of their complexificationsL� and further analysis for several
models originating and relevant in physics: the almost Mathieu operator [5], the extended
Harper’s model [81], recently discovered models with mobility edges [112] and unitary almost
Mathieu operator [34], models arising in the study of the quantum graph graphene [23], and
others.
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Avila classified analytic cocycles A.x/ depending on the behavior of the Lyapunov
exponent L� of the complexified cocycle A.x C i�/. Namely, he distinguishes three cases,
with the terminology inspired by the almost Mathieu family:

(Subcritical) L� D 0; � < ı; ı > 0, or, alternatively, L0 D !.A/ D 0.

(Critical) L0 D 0;L� > 0; � > 0, or, alternatively, L0 D 0; !.A/ > 0.

(Supercritical) L0 > 0.

For the almost Mathieu family, these three regimes are uniform over the spectrum,
corresponding to the supercritical (� > 1), subcritical (� < 1), and critical .� D 1) values
of the coupling constant. Spectrally, there is purely absolutely continuous spectrum for all x
and all ˛ 2 RnQ in the subcritical case [3], purely singular continuous spectrum for all x and
all ˛ 2 RnQ in the critical case [69], and pure point spectrum for a.e. x; ˛ with sharp spec-
tral transitions depending on the arithmetics of both ˛ and x between pure point spectrum
and singular continuous spectrum in the supercritical case (see Section 5). Remarkably, the
critical almost Mathieu operators appear at the boundary of the two other regimes.

For general quasiperiodic operators, this classification leads to the corresponding
division of energies in the spectrum, depending on (sub/super)criticality of the cocycle
A.�; E/. For convenience we will call the energy in the spectrum (super/sub)critical accord-
ing to whether the corresponding transfer-matrix cocycle is such. It is expected that the key
spectral properties of spectra in the three above regimes follow those of the corresponding
almost Mathieu operators.

Indeed, pure point spectrum for a.e. x;˛ holds through the supercritical set of ener-
gies, for any analytic potential [30]. It is an important open problem to make this result
arithmetic, and it is expected that certain universal features of the transitions and structure
of the eigenfunctions discovered in [77, 78] will hold globally, throughout the supercritical
regime, see Section 6.3.

The subcritical regime is subject to the almost reducibility conjecture (ARC) which
claims that subcritical cocycles are almost reducible, that is, have constant cocycles in the
closure of their analytic conjugacy class (note that since almost reducibility implies subex-
ponential growth of the iterates of the cocycle that is uniform in the (complexified) phase,
the converse is obviously true). The idea of reducing nonperturbative (global) to perturbative
(local) results originated from an earlier work by Avila and Krikorian [14]. ARC was first for-
mulated in [10], and first established for the almost Mathieu operator [3,10]. It was solved by
Avila for the Liouville case in [4], and the solution for the complementary Diophantine case
has been announced [5] to appear in [2]. Also, L. Ge has recently found a different proof [46].

Almost reducible (and therefore subcritical) cocycles enjoy all the dynamical and
spectral consequences of the Eliasson’s perturbative regime [39]. In particular, there is purely
absolutely continuous spectrum throughout the subcritical regime. Moreover, reducibility
can be made quantitative [117], and even arithmetically so [50], allowing for a wealth of
conclusions. However, it remains true that the absolutely continuous spectrum is fully char-
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acterized by the subcritical regime, with no delicate dependence, as far as the spectral decom-
position goes, on any other parameters.

The critical regime is expected (see [11, 82]) to support only singular continuous
spectrum (again, no dependence on the other parameters, as long as ˛ is irrational) but
fully establishing it even for the critical almost Mathieu operator took decades and was only
accomplished recently [69].

On the other hand, the key result of Avila’s global theory [5] is that operators with
critical energies throughout the spectrum, like the critical almost Mathieu operator, are an
anomaly, that does not happen typically. In fact, for prevalent (in a certain measure-theoretic
sense) potentials, there are no critical energies, and the spectrum is contained in finitely many
intervals, with either only subcritical or only supercritical regime within each.4 Moreover,
the set of potentials and energies .V; E/ such that E is critical is contained in a countable
union of codimension-one analytic submanifolds of C!.T I R/ � R. Another remarkable
related fact is that Lyapunov exponent enjoys even much stronger regularity when restricted
to potentials and energies with a fixed value of acceleration: it becomes real-analytic on this
(typically rather irregular) set, in both the energy E and any parameter � ranging in a real
analytic manifold ƒ, if V� in C!.T I R/ is a family real-analytic in parameter �.

From the point of view of the global theory, it becomes particularly important to
study the universal features of the two prevalent regimes, subcritical and supercritical. As
mentioned above, the absolutely continuous spectrum is fully characterized by the subcritical
regime, with no delicate dependence, as far as the spectral decomposition goes, on any other
parameters. The picture for the supercritical regime is a lot more interesting, and is in a
certain sense at the beginning of its development.

Going back to the complexified cocycle L� , quantizatization of acceleration means
that as a function of � > 0, L� is convex, piecewise affine, and thus is fully characterized
by LD L0 and monotone increasing sequences of turning points bi and slopes ni 2 2�ZC,
so that the slope of L� between bi and biC1 is ni . Clearly, sequences bi and ni present a
very important intrinsic characterization of the cocycle and the corresponding Schrödinger
operator. What information do they give us?

4. Dual Lyapunov exponents or global theory demystified

It turns out that Aubry duality not only provides a new proof of quantization of
acceleration, but holds key to the mystery of the global theory. We have

Theorem 4.1 ([47]). Assume ˛ 2 RnQ and V 2 C!.T ;R/. Then there exist nonnegative
¹ OLi .E/º such that for any E 2 R,

OLi .E/ D lim
d!1

OLd
i .E/;

4 A part of this picture was previously established in the semiclassical regime in the con-
tinuum in [40].
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Figure 2

The complexified Lyapunov exponent.

where OLd
i .E/; i D 1; : : : ;d , are the Lyapunov exponents, as defined in (2.3), of the Sp.2d;C/

transfer-matrix cocycle of the dual eigenvalue equation OHV d ;˛;x‰ D E‰, with
V d .x/ D Dd ? V and Dd being the Dirichlet kernel. Moreover,

L�.E/ D L0.E/ �

X
¹i W OLi .E/<2�j�jº

OLi .E/C 2�
�
#
®
i W OLi .E/ < 2�j�j

¯�
j�j

In fact, the theorem also holds for V 2 C!
h
.T ;R/ and j�j < h, where C!

h
.T ;R/

is the space of bounded analytic functions f defined on a strip ¹j=zj < hº with the norm
kf kh D supj=zj<h jf .z/j. See Fig. 2 for an illustration of the three possible scenarios.

This means that for the trigonometric polynomials V the turning points bi are given
precisely by the Lyapunov exponents OLi .E/ of the dual cocycle, and increases in the slopes
are given by the 2� times their multiplicities; for analytic V , these objects are given by
the limits of those quantities for successive trigonometric polynomial cutoffs of V . We call
OLi .E/ the dual Lyapunov exponents, the objects that play a role similar to that of zeros of
an analytic function in the Jensen’s formula. In particular, the acceleration !.E/ turns out to
be precisely the number of vanishing dual Lyapunov exponents (an analogue of the winding
number for an analytic function on T ).
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Besides unraveling the mystery of the behavior of complexified Lyapunov expo-
nents, this leads to a new understanding of the key statement of Avila’s global theory, namely
that for prevalent operators (0.1), almost all pairs of potentials and energies are acritical.
Indeed, it immediately follows that

Theorem 4.2 ([47]). Assume ˛ 2 RnQ and V is analytic, then the energy E 2 R is

(1) outside the spectrum if L.E/ > 0 and OL1.E/ > 0,

(2) supercritical if L.E/ > 0 and OL1.E/ D 0,

(3) critical if L.E/ D 0 and OL1.E/ D 0,

(4) subcritical if L.E/ D 0 and OL1.E/ > 0.

Thus, in the regimeL.E/D 0, criticality is in the locus of vanishing of an additional
continuous [12] function OL1.E/, implying the prevalence of the acriticality claim. Theo-
rem 4.2, of course, also contains the statement of Theorem 1.1, with OL WD OL1, as well as the
fact that Schrödinger cocycle is subcritical if and only if its dual Lyapunov exponents are all
positive. It also leads to a number of other powerful spectral corollaries, both for the general
analytic case and several particular models [47]. It also has exciting physics applications [100].

5. Precise analysis of small denominators

One of the most fascinating features of the spectral theory of one-frequency quasi-
periodic operators in the supercritical regime is its delicate dependence on the arithmetics,
that can be analyzed to a remarkable depth, and in some cases completely. There were many
exciting recent developments where the arithmetics has played a crucial role (e.g., [9,15,89])
but here we focus only on the analysis of small denominators in the proofs of point spectrum
and related study of the eigenfunctions.

The main difficulty in proving point spectrum (or the phenomenon of Anderson
localization, that is, pure point spectrum with exponentially decaying eigenfunctions) and
analyzing the corresponding eigenfunctions of ergodic operators is in the fact that the eigen-
values are dense in the spectrum. Formal perturbative expansions of eigenfunctions and
eigenvalues include the .V .T nx/ � V.Tmx//�1 terms that, of course, get arbitrarily large.
More generally, when we have resonances, that is, restrictions to boxes that are not too far
away from each other that have eigenvalues that are too close (something that is bound to
happen for ergodic operators), small denominators are created. Thus localization for ergodic
and, in particular, quasiperiodic operators can be viewed as a small denominator problem.

Indeed, it has been traditionally approached in a perturbative way: through KAM-
type schemes for large couplings [39,44,109], which all required Diophantine conditions on
the frequency ˛. Small denominators are not simply a nuisance, but lead to actual change in
the spectral behavior, since in the opposite regime of very Liouville frequencies (too small
denominators), there is no localization even with the positivity of the Lyapunov exponent;
and delocalization (which in this case means singular continuous spectrum) can be proved by
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perturbation of nearby periodic operators [20,54]. At the same time, for exponentially approx-
imated frequencies that are neither far from nor close enough to rationals, there is nothing
left to perturb about or to remove. Tackling those cannot be approached perturbatively, but
requires a precise analysis, giving the problem a strong number-theoretic flavor.

It should be noted that the topology of the one-dimensional line is such that even
occasional barriers make it difficult to pass through, strongly favoring localization in the
presence of even small irregularities. For example, in the one-dimensional random case,
localization holds for all couplings �, when considering a family of potentials �V , and
the same is expected but is apparently difficult to prove even for the underlying dynam-
ics .X; �; T / with very weak chaotic properties, such as a skew shift. It has even been
conjectured by Kotani and Last that absolutely continuous spectrum is impossible for one-
dimensional operators that are not almost periodic, but it has been disproved [6,111], and with
a particularly simple construction in [119]. Those examples notwithstanding, the presence
of metal–insulator transitions (that roughly correspond to transitions between the spectral
types) as couplings change remains a distinctive feature of quasiperiodic operators.

The transitions in coupling between absolutely continuous and singular spectrum
are fully determined by the vanishing/nonvanishing of the Lyapunov exponent. In the super-
critical regime, absolutely continuous spectrum is impossible, but whether the spectrum is
point or singular continuous is resolved in the competition between the depth of the small
denominators—the strength of the resonances—and the Lyapunov growth.

Two types of resonances have played a special role in the spectral theory of quasi-
periodic operators. Frequency resonances, when jV.x/�V.xC k˛/j is small simply because
k.x C k˛/ � x/kR=Z D kk˛kR=Z is small, where kxkR=Z D inf`2Z jx � `j, were first
exploited in [21] based on [54] to prove the absence of eigenvalues (and therefore singular
continuous spectrum in the hyperbolic regime) for quasiperiodic operators with Liouville
frequencies. Their strength is measured by the arithmetic parameter

ˇ.˛/ D lim sup
k!1

�
ln kk˛kR=Z

jkj
(5.1)

that is equal to zero for Diophantine (thus a.e.) ˛. Frequency resonances are ubiquitous for
all quasiperiodic potentials.

Another class of resonances, appearing for all even potentials, was discovered in [83],
where it was shown that the arithmetic properties of the phase also play a role and may
lead to singular continuous spectrum even for the Diophantine frequencies. Indeed, for even
potentials, phases with almost symmetries, when jV.x/� V.xC k˛j is small because k.xC

k˛/ � .�x/kR=Z is small, lead to resonances, regardless of the values of other parameters.
The strength of phase resonances is measured by the arithmetic parameter

ı.˛; �/ D lim sup
k!1

�
ln k2� C k˛kR=Z

jkj
: (5.2)

Phase resonances are symmetry based and exist for all even functions V .
It was conjectured in [66] that for the almost Mathieu family no other resonances

appear and the competition between the Lyapunov growth and combined exponential res-
onance strength resolves in a sharp way: there is a pure point spectrum for L.E/ >
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ˇ.˛/C ı.˛; x/ and a singular continuous spectrum in the regime L.E/ < ˇ.˛/C ı.˛; x/.
We note that for the special case of ˛-rational x, that is, such that 2x 2 Z˛ C Z, we
have ı.˛; x/ D ˇ.˛/ so the resonances “double up” and the conjectured threshold becomes
2ˇ.˛/.

An early nonperturbative localization method was first developed in the 1990s for
the almost Mathieu operator [84] and represented perhaps the first case of solving a tradition-
ally KAM problem in a direct way, without an inductive procedure. It presented a (simple, but
not sharp) technique to treat the nonresonant case, ˇ.˛/D ı.˛/D 0. Further breakthroughs
came in [85] where the role of the Lyapunov exponents and corresponding deviations was
first understood, allowing to achieve the nonresonant result up to the actual Lyapunov transi-
tion, and then in the work of Bourgain and collaborators [28,30] where robust nonperturbative
methods were developed for general analytic potentials and more, leading to the proofs of
localization for a.e. frequency throughout the supercritical regime. The ideas of [85] hold
more generally, and have, in particular, led to very simple proofs of localization for the one-
dimensional Anderson model [90]. Most importantly, however, their arithmetic nature has
been crucial for further developments. For example, the fact that localization holds for ˛-
rational x,5 enabled Puig’s proof [104] of the ten martini problem (that the spectrum is a
Cantor set) for Diophantine ˛. The solution of the full ten martini problem [8,9] required, in
particular, dealing with intermediate frequencies that are neither Diophantine nor Liouville,
thus with the frequency resonances. A method to treat those has been devised in [9] leading
to the proof of localization for L.E/ > 16

9
ˇ, but failing in the neighborhood of the actual

transition. A sharp method to treat pure frequency resonances was developed in [77], and a
sharp method to treat pure phase resonances in [78].

Therefore, the sharp arithmetic spectral transition conjecture of [66] has been estab-
lished for single-type-resonances: for pure frequency resonances (that is, for the so-called
˛-Diophantine phases for which ı.˛; x/ D 0 so there are no exponential phase resonances)
in [17,52,77],6 and for pure phase resonances (that is, for Diophantine frequencies for which
ˇ.˛/ D 0 so there are no exponential frequency resonances) in [78].

The methods to treat pure frequency and phase resonances in [77,78] are robust in a
sense that weak exponential resonances of the other type can be added easily, but it is still an
open problem to treat combined frequency and phase resonances in a sharp way. However,
there were two very recent breakthroughs.

Namely, W. Liu has developed a way to sharply treat doubled resonances for the
almost Mathieu operator, proving localization up to the conjectured threshold:

5 This was, in fact, established in [72].
6 In [17] the pure frequency part of the conjecture of [66] has been proved by a completely

different method, namely through quantitative reducibility [117] and duality, but in a
measure-theoretic in x sense, i.e., losing the control over the arithmetics of x. A recent
breakthrough by Ge–You [50] where an arithmetic version of quantitative reducibility was
developed has lead to a way to obtain sharp arithmetic in phase results through duality as
well, enabling, in particular, an arithmetic duality-based proof of the frequency part of the
conjecture [52], that works also for all Aubry duals (2.1) of operators (0.1).
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Theorem 5.1 ([99]). OperatorH2� cos;˛;x with˛-rational x has Anderson localization when-
ever L.E/ > 2ˇ.˛/ (or equivalently, � > e2ˇ.˛/).

In Liu’s earlier work, this was established for L.E/ > 3ˇ.˛/ [98], but a significant
new understanding of treatment of doubled resonances was necessary to go sharp, and it
was achieved in [99]. Also ˛-rational phases x hold special importance for various ques-
tions because eigenvalues for such x are located at gap edges [104]. Puig’s proof of the ten
martini problem for the Diophantine case [104] was based precisely on localization for ˛-
rational x. The original plan to prove the full ten martini problem was to establish localization
for ˛-rational x and L.E/ > ˇ.˛/ [8]. Not surprisingly, it failed, prompting the resonance
doubling-up conjecture in [9] that is now solved [99]. It should be noted that the singular-
continuous part of the conjecture, namely singular-continuous spectrum for ˛-rational x and
L.E/ < 2ˇ.˛/, is still open.

In a different direction, R. Han, F. Yang, and I [58] developed a sharp method to treat
the third type of resonances: high barriers (that effectively play the role of antiresonances),
and, moreover, combinations of frequency resonances and high barriers, in another popular
quasiperiodic family originating in physics, the Maryland model.

Maryland model is a family

.M�;˛;�u/n D unC1 C un�1 C � tan
�
�.� C n˛/

�
un; (5.3)

where � > 0 is the coupling constant, irrational ˛ 2 T D Œ0; 1� is the frequency, and � 2 T

is the phase with � … ‚ D ¹
1
2

C ˛Z C Zº.
It was originally proposed by Grempel, Fishman, and Prange [56] as a linear version

of the quantum kicked rotor and has attracted continuing interest from the physics commu-
nity, see, e.g., [26, 42, 45], due to its exactly solvable nature. It has explicit expression for
the Lyapunov exponent, integrated density of states, and even (a little less explicit) for the
eigenvalues and eigenfunctions. In particular, the Lyapunov exponent L�.E/ is an explicit
function of �; E not dependent on ˛. However, the implicit expressions for the eigenfunc-
tions do not allow for easy conclusions about their behavior, which is expected to be quite
interesting, with transfer matrices satisfying certain exact renormalization [41].

Phase resonances do not exist for the Maryland model, and as a result, for Dio-
phantine (i.e., nonresonant) frequencies it has localization for all phases [87,107]. However,
it does have barriers, when the trajectory of a given phase approaches the singularity too
early. Barriers compensate for the resonances, and therefore serve as what we call in [58]

the antiresonances, providing the reason why for the Maryland model there are phases with
localization even for the most Liouville frequencies [76]. Thus Maryland model features a
combination of frequency resonances and phase antiresonances.

Maryland model was the first one where the spectral decomposition has been
resolved completely, for all values of the parameters [76].7 Let pn=qn be the continued frac-
tion approximants of ˛. We note that the frequency resonance index ˇ.˛/ defined in (5.1)

7 It also remains the only one with spectral transitions where this could be claimed.
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also satisfies ˇ.˛/ D lim supn!1
ln qnC1

qn
. A new index, ıM .˛; �/, was introduced in [76] as

ıM .˛; �/ WD lim sup
n!1

ln qnC1 C ln kqn.� �
1
2
/kT

qn

: (5.4)

We have

Theorem 5.2 ([76]). H�;˛;� has purely singular continuous spectrum on ¹E W L�.E/ <

ıM .˛; �/º, and pure point spectrum on ¹E W L�.E/ > ı
M .˛; �/º.8

This provides complete spectral analysis, for all ˛; � , but was established implic-
itly: through the combination of Cayley and Fourier transforms and the study of a resulting
explicit cohomological equation, making sharp the previous work in [56,107]. The extension
of the analysis from a.e. � in [107] to all � in [76] required accounting for the effect of the
barriers, and Cayley transform allowed to do it, albeit in a highly implicit way. In particular,
this proof did not allow the analysis of the structure of eigenfunctions.

The method of [85] was adapted to the Maryland model in [87] where the nonresonant
situation was treated and localization for Diophantine ˛ was shown, developing the initial
framework to study the eigenfunctions in the much more difficult resonant situation.

In [58] we show that ı.˛; �/ can be interpreted as the exponential strength of fre-
quency resonances, ˇ.˛/, combined with the (negative) exponential strength of phase anti-
resonances, defined as the positions of exponential smallness of the cos.�.� C k˛//,9 and
develop the approach to sharply treat the “resonance tamed by an antiresonance” situation.
In particular, we give a constructive proof of the localization part of Theorem 5.2 and obtain

Theorem 5.3 ([58]). For any ˛ 2 RnQ and any � , the spectrum on ¹E WL�.E/� ıM .˛; �/º

is pure point and for any eigenvalueE 2 ¹L�.E/> ı
M .˛;�/º and any � > 0, the correspond-

ing eigenfunction �E satisfies j�E .k/j < e
�.L�.E/�ıM .˛;�/��/jkj for sufficiently large jkj.

Theorem 5.3 provides the sharp upper envelope, and develops the key tools to study
the fine behavior of the eigenfunctions, see Section 6.2. In fact, such a study is the most
exciting outcome of the proofs of localization based on sharp analysis of resonances.

There are several other models where sharp arithmetic spectral transitions have been
conjectured and partially established, most notably the extended Harper’s model, where for
the complete analysis one would need to develop tools to study the simultaneous presence
of three different types of resonances: frequency, phase, and singularity-induced antireso-
nances. However, for a.e. phase we expect the arithmetic frequency transition to be universal
in the class of general analytic potentials. As for the arithmetic transitions in phase, we expect
the same results to hold for general even analytic potentials for a.e. frequency. We note that
the singular continuous part up to the conjectured transition is already established, even in a
far greater generality, in [17,71,78].

8 It follows from the explicit formula for L�.E/ that the equality can only happen for two
values of E.

9 So exponential largeness of the tan.
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Finally, there is a question of arithmetic interfaces, e.g., what happens for the almost
Mathieu operators with L.E/D ˇ.˛/C ı.˛; �/? It turns out that (in the pure resonance sit-
uations) both pure point and singular continuous spectra are possible depending on the finer
arithmetic properties of parameters [13, 86, 88]. So far we do not even have a good conjec-
ture on where the arithmetic thresholds within the transition lines lie. Making a significant
progress on this problem would require a development of polynomial (as contrasted with cur-
rent exponential) methods to tackle resonances, a very important problem in its own right,
as it could lead to universal hierarchical structures (see Section 6) on polynomial scales.

6. Exact asymptotics and universal hierarchical

structure of eigenfunctions

A very captivating question and a longstanding theoretical challenge is to explain
the self-similar hierarchical structure visually obvious in the Hofstadter’s butterfly, as well as
the hierarchical structure of eigenfunctions, as related to the arithmetics of parameters. Such
structure was first predicted for the almost Mathieu operator in the work of Azbel in 1964
[22], some 12 years before Hofstadter [64], and before numerical experimentation was possi-
ble. Such self-similar behavior is present for spectra and eigenfunctions of all quasiperiodic
operators.

While this does not describe or explain the self-similarity, a step in the right direc-
tion is to prove that the spectrum is a Cantor set. Mark Kac offered ten martinis in 1982 for
the proof of the Cantor set part of Azbel’s 1964 conjecture. It was dubbed the Ten Martini
problem by Barry Simon, who advertised it in his lists of 15 mathematical physics problems
[106] and later, mathematical physics problems for the XXI century [108]. Most substantial
partial solutions were made by Bellissard, Simon, Sinai, Helffer, Sjöstrand, Choi, Eliott, Yui,
and Last [25,36,62,96,109], between 1983 and 1993. J. Puig [104] solved it for Diophantine ˛
by noticing that localization at � D 0 [73,85] leads to gaps at corresponding (dense) eigen-
values. The final solution was given in [9]. Cantor spectrum is also prevalent for general
one-frequency operators with analytic potential: in the subcritical regime [10], and, by very
different methods, in the supercritical regime [53] (and it is conjectured [11] also in the crit-
ical regime, which is nongeneric in itself [5]). Moreover, even all gaps predicted by the gap
labeling are open in the noncritical almost Mathieu case [10, 16], the statement that is also
expected to be true in the critical case, and recently claimed in the physics literature [27] to
follow directly from [69].

As for the understanding the hierarchical behavior of the eigenfunctions, despite
significant numerical studies and even a discovery of Bethe Ansatz solutions [116], it has
remained an important open challenge even at the physics level, although some indications
existed in the perturbative regime [33,62,109,120].

Sharp analysis of resonances and small denominators has led to the discovery of
universal self-similar structures of eigenfunctions defined by the type of resonance. The uni-
versal nature of these structures manifests in two ways: there is the same universal function
that depends only on the type of the resonance, that governs the behavior around each expo-

17 Quasiperiodic operators



nential frequency or phase resonance (upon (possibly) reflection and renormalization), and
it is the same structure for all the parameters involved: any (Diophantine) frequency ˛, (any
˛-Diophantine phase �/ with ˇ.˛/ < L .ı.˛; �/ < L/, and any eigenvalue E. It has been
discovered and proved for the almost Mathieu operator [77,78] but is expected to be univer-
sal also throughout the class of analytic potentials, and more,10 that is to hold in the regime
of pure resonances. For example, the same universal structure for frequency resonances has
already been proved for the Maryland model [59], for a.e. phase, namely, phases without the
exponential antiresonances, see also a result on the hierarchical structure in the semiclassical
regime [93]. However, for phases whose trajectories approach the barrier too fast, the hierar-
chical structure of the eigenfunctions is very different, and the complete analysis is extremely
delicate.

Generally, one can identify four types of (anti)resonances that lead to different uni-
versal structures:

• frequency

• phase (only even potentials)

• barriers (antiresonance)

• singularity (antiresonance for Jacobi matrices)

We describe the universal structures for phase and frequency resonances [77, 78] in
the following subsections, and the one for the barrier antiresonances will appear in [59].

We expect that when different types of resonances are present, there will be further
different self-similar structures, universal for all corresponding parameters and different res-
onance positions. Describing these structures for different combinations of resonances is
very challenging but seems to be potentially within reach. In particular, in [58] we developed
the tools to fully describe the universal structures for the Maryland model for all parameters,
that is for combinations of frequency resonances and barrier antiresonances. We expect it to
be done in [59]. We also expect the latter structures to be universal in the class of monotone
potentials with a simple pole.

To give a glimpse into the universality results, we present two of them in more detail.

6.1. Frequency resonances
In [77] we find explicit universal functions f .k/ and g.k/, depending only on the

Lyapunov exponent and the position of k in the hierarchy defined by the denominators
qn of the continued fraction approximants of the flux ˛, that completely define the expo-
nential behavior of, correspondingly, eigenfunctions and norms of the transfer matrices of
the almost Mathieu operators, for all eigenvalues corresponding to ˛-Diophantine phase,
see Theorem 6.1. This result holds for all frequency and coupling pairs in the frequency-

10 For example, C 2 cos-type potentials have been a popular object of study [43, 49, 51, 109,

115] and there are reasons to believe that they will feature the same structure, at least in the
perturbative regime.
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resonance localization regime. Since the behavior is fully determined by the frequency and
does not depend on the phase, it is the same, eventually, around any starting point, so is also
seen unfolding at different scales when magnified around local eigenfunction maxima, thus
describing the exponential universality in the hierarchical structure.

Since we are interested in exponential growth/decay, the behavior of f and g
becomes most interesting in case of frequencies with exponential rate of approximation
by the rationals.

These functions allow describing precise asymptotics of arbitrary solutions of
H�;˛;�' D E' where E is an eigenvalue. The precise asymptotics of the norms of the
transfer-matrices provides the first example of this sort for nonuniformly hyperbolic dynam-
ics. Since those norms sometimes differ significantly from the reciprocals of the eigenfunc-
tions, this leads to further interesting and unusual consequences, for example, exponential
tangencies between contracted and expanded directions at the resonant sites.

Given ˛ 2 RnQ; we define functions f;g W ZC ! RC in the following way. Let pn

qn

be the continued fraction approximants to ˛. For any qn

2
� k <

qnC1

2
, define f .k/; g.k/ as

follows:

Case 1. q
8
9

nC1 �
qn

2
or k � qn.

If `qn � k < .`C 1/qn with ` � 1, set

f .k/ D e�jk�`qnj ln j�j
Nrn
` C e�jk�.`C1/qnj ln j�j

Nrn
`C1; (6.1)

and
g.k/ D e�jk�`qnj ln j�j qnC1

Nrn
`

C e�jk�.`C1/qnj ln j�j qnC1

Nrn
`C1

; (6.2)

where for ` � 1,
Nrn
` D e

�.ln j�j�
ln qnC1

qn
C ln `

qn
/`qn :

Set also Nrn
0 D 1 for convenience.

If qn

2
� k < qn, set

f .k/ D e�k ln j�j
C e�jk�qnj ln j�j

Nrn
1 ; (6.3)

and
g.k/ D ek ln j�j: (6.4)

Case 2. q
8
9
nC1 <

qn

2
and qn

2
� k � min¹qn;

qnC1

2
º.

Set
f .k/ D e�k ln j�j; (6.5)

and
g.k/ D ek ln j�j: (6.6)

Notice that f; g only depend on ˛ and �, but not on � or E; f .k/ decays and g.k/
grows exponentially, globally, at varying rates that depend on the position of k in the hierar-
chy defined by the continued fraction expansion of ˛, see Figures 3 and 4.
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Figure 3

The universal behavior of eigenfunctions at scale n:

qnC1

Nrn
`
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Nrn
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`qn .`C 1/qn .`C 2/qn .`C 3/qn .`C 4/qn kqnC1

2
qn

2

g.k/

Figure 4

The universal behavior of transfer matrix norms at scale n:

It turns out that, in the entire regime L.E/ > ˇ, the exponential asymptotics of the
eigenfunctions and norms of transfer matrices at the eigenvalues are completely determined
by f .k/; g.k/.

Theorem 6.1. Let ˛ 2 RnQ be such that j�j> eˇ.˛/. Suppose � is Diophantine with respect
to ˛, E is an eigenvalue of H�;˛;� , and � is the eigenfunction. Let U.k/ D

�
�.k/

�.k�1/

�
. Then

for any " > 0, there existsK (depending on �; ˛; OC ; ") such that for any jkj � K, U.k/ and
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Ak
11 satisfy

f .jkj/e�"jkj
� kU.k/k � f .jkj/e"jkj (6.7)

and
g.jkj/e�"jkj

� kAkk � g.jkj/e"jkj: (6.8)

In fact, the theorem is formulated in [77] for generalized eigenfunctions, thus can also
be used to establish pure point spectrum throughout the indicated regime. Certainly, there
is nothing special about k D 0, so the behavior described in Theorem 6.1 happens around
an arbitrary point k D k0. This implies the self-similar nature of the eigenfunctions: U.k/
behave as described at scale qn but, when looked at in windows of size qk ; qk � qn�1, will
demonstrate the same universal behavior around appropriate local maxima/minima.

To further illustrate the above, let � be an eigenfunction and U.k/ D
�

�.k/
�.k�1/

�
.

An immediate corollary of Theorem 6.1 is the universality of behavior at all appropriately
defined nonresonant local maxima. We will say k0 is a local j -maximum of � if kU.k0/k �

kU.k/k for jk � k0j � qj . Then, with an appropriate notion of nonresonance (see [77]), we
have

Theorem 6.2 ([77]). Given " > 0, there exists j."/ < 1 such that if k0 is a nonresonant
local j -maximum for j > j.�/, then

f .jsj/e�"jsj
�

kU.k0 C s/k

kU.k0/k
� f .jsj/e"jsj; (6.9)

for js � koj � qj .

In case ˇ.˛/ > 0, Theorem 6.1 also guarantees an abundance (and a hierarchical
structure) of local maxima of each eigenfunction.

Let k0 be a global maximum. The self-similar hierarchical structure of local maxima
can be described in the following way. We will say that a scalenj0 is exponential if lnqnj0

C1>

cqnj0
. Then there is a constant scale On0, thus a constant C WD q On0C1, such that for any

exponential scale nj and any eigenfunction there are local nj -maxima within distance C
of k0 C sqnj0

for each 0 < jsj < e
cqnj0 . Moreover, these are all the local nj0 -maxima in

Œk0 � e
cqnj0 ; k0 C e

cqnj0 �.
The exponential behavior of the eigenfunction in the local neighborhood (of size of

order qnj0
) of each such local maximum, normalized by the value at the local maximum is

given by f . Note that only exponential behavior at the corresponding scale is determined by
f and fluctuations of much smaller size are invisible.

Now, let nj1 < nj0 be another exponential scale. Denoting “depth 1” local maxi-
mum located near k0 C anj0

qnj0
by banj0

, we then have a similar picture around banj0
: there

are local nj1 -maxima in the vicinity of banj0
C sqnj1

for each 0 < jsj < e
cqnj1 . Again, this

describes all the local qnj1
-maxima within an exponentially large interval. And again, the

exponential (for the nj1 scale) behavior in the local neighborhood (of size of order qnj1
) of

each such local maximum, normalized by the value at the local maximum, is given by f .

11 Products Ak are defined in (1.2).
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Universal hierarchical structure of an eigenfunction

b1 b2b�1b�2 k0

Local maximum of depth 1Local maximum of depth 1

Global maximum

b2;2b2;1

b1;�1

b1;1

b1;2

Window I

Figure 5

Universal self-similar structure of eigenfunctions

Denoting those “depth 2” local maxima located near banj0
C anj1

qnj1
by banj0

;anj1
,

we then get the same picture taking the magnifying glass another level deeper, and so on.
At the end we obtain a complete hierarchical structure of local maxima that we denote by
banj0

;anj1
;:::;anjs

with each “depth s C 1” local maximum banj0
;anj1

;:::;anjs
being in the cor-

responding vicinity of the “depth s” local maximum banj0
;anj1

;:::;anjs�1
, and with universal

behavior at the corresponding scale around each. The quality of the approximation of the
position of the next maximum gets lower with each level of depth, yet the depth of the hierar-
chy that can be so achieved is at least j=2�C , Figure 5 schematically illustrates the structure
of local maxima of depth one and two, and Figure 6 illustrates that the neighborhood of a
local maximum appropriately magnified looks like a picture of the global maximum. See
[77] for the exact statement.

6.2. Phase resonances
In [78] we found another universal structure, this time for phase resonances. Once

again, we found (different) functions f that determine universal asymptotics of the eigen-
functions, also locally around the resonances, which features a self-similar hierarchical struc-
ture. In particular, we have Theorem just like Theorem 6.1 but with new f and for ˇ.˛/D 0

and L > ı.˛; �/ [78]. The behavior described in this theorem happens around an arbitrary
point. This, coupled with effective control of parameters at the local maxima, allows uncover-
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Figure 6

Universal self-similar structure of eigenfunctions, zoomed in

ing the self-similar nature of the eigenfunctions, but this time one needs not only the rescaling
but also alternating reflections, leading to what we call the reflective-hierarchical structure.

Assume phase � satisfies 0 < ı.˛; �/ < ln�. Fix 0 < & < ı.˛; �/. Let k0 be a global
maximum of eigenfunction �. LetKi be the positions of exponential resonances of the phase
� 0 D � C k0˛ defined by

k2� C .2k0 CKi /˛kR=Z � e�& jKi j: (6.10)

This means that jv.� 0 C `˛/� v.� 0 C .Ki � `/˛/j � Ce�& jKi j, uniformly in `, or,
in other words, the potential vn D v.� C n˛/ is e�& jKi j-almost symmetric with respect to
.k0 CKi /=2.

Since ˛ is Diophantine, we have

jKi j � cecjKi�1j; (6.11)

where c depends on & and ˛ through the Diophantine constants �; � . On the other hand, Ki

is necessarily an infinite sequence. Let � be an eigenfunction, and U.k/D
�

�.k/
�.k�1/

�
. We say

k is a local K-maximum if kU.k/k � kU.k C s/k for all s � k 2 Œ�K;K�.
The informal description of the reflective-hierarchical structure of local maxima is

the following. There exists a constant OK such that there is a local cKj -maximum bj within
distance OK of each resonanceKj . The exponential behavior of the eigenfunction in the local
cKj -neighborhood of each such local maximum, normalized by the value at the local maxi-
mum, is given by the reflection of f .
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reflective self-similarity of an eigenfunction

I II

II0 I0

Global maximum

Kj1

bj1

Kj0

bj0

bj0;j1

0

Kj1

Figure 7

Reflective self-similarity of an eigenfunction.

Moreover, this describes the entire collection of local maxima of depth 1, that is, all
K such thatK is a cK-maximum. Then we have a similar picture in the vicinity of bj : there
are local cKi -maxima bj;i ; i < j , within distance OK2 of eachKj �Ki . The exponential (on
theKi scale) behavior of the eigenfunction in the local cKi -neighborhood of each such local
maximum, normalized by the value at the local maximum, is given by f .

Then we get the next level maxima bj;i;s; s < i in the OK3-neighborhood of
Kj �Ki CKs and reflected behavior around each, and so on, with reflections alternat-
ing with steps. At the end we obtain a complete hierarchical structure of local maxima that
we denote by bj0;j1;:::;js , with each “depth sC 1” local maximum bj0;j1;:::;js being in the cor-
responding vicinity of the “depth s” local maximum bj0;j1;:::;js�1 � k0 C

Ps�1
iD0.�1/

iKji

and with universal behavior at the corresponding scale around each. The quality of the
approximation of the position of the next maximum gets lower with each level of depth, with
bj0;j1;:::;js�1 determined with OKs precision, thus it presents an accurate picture as long as
Kjs � OKs .

Thus the behavior of �.x/ is described by the same universal f in each � Kjs

window around the corresponding local maximum bj0;j1;:::;js after alternating reflections.
The positions of the local maxima in the hierarchy are determined up to errors that at all but
possibly the last step are superlogarithmically small inKjs . We call such a structure reflective
hierarchy.

Figure 7 depicts reflective self-similarity of an eigenfunction with global maximum
at 0. The self-similarity is seen as follows: I0 is obtained from I by scaling the x-axis propor-
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tional to the ratio of the heights of the maxima in I and I0; II0 is obtained from II by scaling
the x-axis proportional to the ratio of the heights of the maxima in II and II0. The behavior
in the regions I0, II0 mirrors the behavior in regions I, II upon reflection and corresponding
dilation.

6.3. Universality and extensions
The hierarchical structures of Sections 6.1 and 6.2 are expected to hold universally

for most in the appropriate sense (albeit not all, as for the almost Mathieu) local maxima for
general analytic potentials. Establishing this fully would require certain new ideas since so far
even an arithmetic version of localization for the Diophantine case has not been established
for the general analytic family, the current state-of-the-art result by Bourgain–Goldstein [30]

being measure-theoretic in ˛.
The universality of the hierarchical structures of Sections 6.1 and 6.2 is twofold:

not only it is the same universal function that governs the behavior around each exponential
frequency or phase resonance (upon reflection and renormalization), it is the same structure
for all the parameters involved: any (Diophantine) frequency ˛ (any ˛-Diophantine phase �/
with ˇ.˛/ < L .ı.˛; �/ < L/, and any eigenvalue E. The universal reflective-hierarchical
structure in Section 6.2 requires the evenness of the function defining the potential and,
moreover, resonances of other types may also be present in general. However, we conjectured
in [78] that for general even analytic potentials for a.e. frequency only finitely many other
exponentially strong resonances will appear, thus the structure described in Section 6.2 will
hold for the corresponding class.

The key elements of the technique developed for the treatment of arithmetic reso-
nances are robust and have made it possible to approach other questions and, in particular,
study delicate properties of the singular continuous regime. Among other things, it has
allowed obtaining upper bounds on fractal dimensions of the spectral measures and quan-
tum dynamics for the singular continuous almost Mathieu operator [79], as well as potentials
defined by general trigonometric analytic functions [75], and determining also the exact expo-
nent of the exponential decay rate in expectation for the two-point function [74], the first result
of this kind for any model. These methods are also expected to be applicable to many other
models.
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results on the almost Mathieu operator.
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1 Introduction

Consider a two-dimensional discrete Laplacian: an operator on `2(Z2) of the
form

(Hψ)m,n = ψm−1,n + ψm+1,n + ψm,n−1 + ψm,n+1 (1)

The Fourier transform makes it unitarily equivalent to multiplication by
2(cos 2πx+cos 2πy) on L2(T2) where T2 := R2/Z2. Thus its spectrum2 is the
segment [−4, 4].

In physics this is a tight binding model of a single electron confined to a
2D crystal layer. What happens if we put this crystal in a uniform magnetic
field with flux orthogonal to the lattice plane? Of course, we have a freedom
of gauge choice, but all the resulting operators are unitarily equivalent, so we
may as well choose one, the so called Landau gauge, leading to the discrete
magnetic Laplacian3 operator

(H(α)ψ)m,n = ψm−1,n + ψm+1,n + e−iαmψm,n−1 + eiαmψm,n+1 (2)

Even though incorporating those phase factors may seem innocent enough,
basic quantum mechanics teaches us that magnetic fields may have a pro-
found effect on allowed energies. In the continuum model, subjecting the
electron plane to a perpendicular magnetic field of flux α changes the stan-
dard Laplacian into a direct integral of shifted harmonic oscillators, and thus
the [0,∞) spectrum of the Laplacian turns into a discrete set of infinitely
degenerate Landau levels, at c|α|(n + 1/2), n ∈ N. It turns out that in the
discrete setting, the situation is even more dramatic and also much more
rich and interesting. For any irrational α, the spectrum of H(α) is a Cantor

2See Section 2 for a quick reminder on the basics of spectral theory and ergodic oper-
ators

3The name “discrete magnetic Laplacian” first appeared in [82]
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Figure 1: This picture is a plot of spectra of H(α) for 50 rational values of α
[48]. The fluxes α = p/q are listed on the vertical line, and the corresponding
horisontal sections are spectra of H(α).

set of measure zero, and the spectra for rational α, plotted together, form a
beautiful self-similar structure, shown on Fig.1, called Hofstadter’s butterfly.

The operator H(α), to the best of our knowledge, was introduced by
Peierls in [80], and later studied by his student Harper. The first predictions
of Cantor spectrum with arithmetic, continued-fraction based hierarchy of
both the spectrum and eigenfunctions was made by Mark Azbel [21], remark-
ably, before any numerics was even possible. Yet, the model got a particular
prominence only after Hofstadter’s numerical discovery [48].

It was noticed already by Peierls in [80] that, similarly to the described
above Landau gauge solutions for free electrons in a uniform magnetic field,
the Landau gauge in the discrete setting, as in (2), also makes the Hamilto-
nian separable and turns it into the direct integral in θ of operators Hα,θ :
l2(Z)→ l2(Z), of the form

(Hα,θφ)(n) = φ(n− 1) + φ(n+ 1) + 2 cos 2π(αn+ θ)φ(n). (3)

In this sense, Hα,θ can be viewed as the tight-binding analogue of the
harmonic oscillator. Here α is a magnetic flux per unit cell, and θ is a
phase parameter characterizing plane waves in the direction perpendicular
to the vector-potential, so has no meaning to the physics of the original 2D
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operators. Usually, one introduces also another parameter λ, characterizing
the anisotropy of the lattice: it is the the ratio between the length of a unit
cell in the direction of the vector potential and its length in the transversal
direction, leading to the 2D operator

(H(α, λ)ψ)m,n = ψm−1,n + ψm+1,n + λe−iαmψm,n−1 + λeiαmψm,n+1 (4)

and the family

(Hα,θ,λφ)(n) = φ(n− 1) + φ(n+ 1) + 2λ cos 2π(αn+ θ)φ(n). (5)

In physics literature, this family has appeared under the names Harper’s,
Azbel-Hofstadter, and Aubry-Andre model (with the first two names also
used for the discrete magnetic Laplacian H(α, λ)) and often restricted to the
isotropic case λ = 1. In mathematics, the name almost Mathieu operator is
used universally, so we also use it for these lectures. This name was originally
introduced by Barry Simon [83] in analogy with the Mathieu equation −f ′′+
2λ cosxf(x) = Ef(x). For α ∈ R\Q, Hα,θ,λ is an ergodic (and minimal)
family, so (see Sections 2.3,2.4) the spectra σ(Hα,θ,λ) do not depend on θ
and coincide with the spectrum σα,λ of the 2D operator H(α, λ). In general
(which is only relevant for rational α), we have σα,λ = ∪θσ(Hα,θ,λ), and this
is what the Hofstadter butterfly represents.

These lectures are devoted to some recent (roughly last 3 years) advances
on this model. They are by no means comprehensive, neither historically, as
we only mention past papers directly relevant to the presented results, nor
even in terms of very recent advances, as it is a fast developing field with
many exciting developments even in the last few years.

In physics, this model is the theoretical underpinning of the Quantum
Hall Effect (QHE), as proposed by D.J. Thouless in 1983, and is therefore
directly related to two Nobel prizes: von Klitzig (1998, for his experimental
discovery of the Integer QHE) and Thouless (2016, for the theory behind the
QHE and related topological insulators). Thouless theory is illustrated by
Fig. 2, where Chern numbers corresponding to each gap are produced using
the equations in [92], and color-coded, with warmer colors corresponding to
positive numbers, and colder colors to negative ones.

The model also has very strong relationship to the theory of graphene
(Geim and Novoselov, Nobel prize 2010), a robust 2D magnetic material
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Figure 2: This picture is produced by Avron-Osadchy-Seiler [19].

whose spectra also form similar butterflies, and quasicrystals (Schechtman,
Nobel prize 2011), as it is a standard model of a 1D quasicrystal. To make it
a total of five Nobel prizes, one can also argue a weak relationship to the An-
derson localization Nobel prize (Anderson, 1977), for Anderson localization
is one property of this family for certain parameters, and, more importantly,
it features the metal-insulator transition (something only seen, but promi-
nently yet mysteriously so, in 3D or higher, for the random model). Then,
one can also add a 2014 Fields medal and the 2020 Heineman prize to the
list!

One of the most interesting features of the almost Mathieu family is
sharp phase transitions in its several parameters, for various properties. The
system, in particular, has distinct behaviors for λ < 1 and λ > 1. These
two regimes have traditionally been approached perturbatively, by different
KAM-type schemes, and then non-perturbative methods have been devel-
oped [51, 53], allowing to obtain the a.e. results up to the phase transition
value λ = 1. Since then, even sharper localization [7, 60, 61] and reducibil-
ity [96] techniques have been developed, allowing to treat various delicate
questions on both λ > 1 and λ < 1 sides. None of these methods work
for the actual transition point λ = 1, and the operator at the critical value
remains least understood. Yet it corresponds to the isotropic model, so is
the most important operator in the one-parameter family from the physics
viewpoint. From the dynamical systems point of view, the critical case is
also special: the transfer-matrix cocycle for energies on the spectrum is crit-
ical in the sense of Avila’s global theory (see Sections 2.5, 2.7), and thus
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non-amenable to either supercritical (localization) or subcritical (reducibil-
ity) methods. The global theory tells us that critical cocycles are rare in
many ways, so it is almost tempting to ignore them in a large mathematical
picture. Yet, as models coming from physics tend to be entirely critical on
their spectra in this sense, one can actually argue that it is their study that
is the most important.

After the preliminaries, we start with two very recent results on the crit-
ical case: the singular-continuous nature of the spectrum and Hausdorff di-
mension of the spectrum as a set, both subject to long-standing conjectures.
Our solution of both conjectures is based on exploring certain hidden singu-
larity of the model. The developed technique allowed also to obtain sharp
estimate on the Hausdorff dimension of the spectrum for another interest-
ing model, quantum graph graphene, where singularity is also present. The
study of the Hausdorff dimension of course only makes sense once we know
the spectrum has measure zero. This was proved by Last [73] for a.e. irra-
tional α, but remarkably resisted treatment for the remaining zero measure
set, that included the golden mean, the most popular irrational number in
the physics community. Barry Simon listed the problem to obtain the result
for the remaining parameters in his list of mathematical problems for the
XXI century [86]. It was solved by Avila-Krikorian [10] who were able to
treat Diophantine α using deep dynamical methods (for λ 6= 1 the solution
was given in [57]). Our proof of the Hausdorff dimension estimate [58] (joint
with Igor Krasovsky) allows also to give a very simple proof of this theorem,
simultaneously for all irrational α.

Another very interesting feature of the almost Mathieu family is that,
while α is a parameter coming from physics, the system behaves differently
depending on whether α is rational or irrational. While this aspect was
well understood already in the 60s, and the metal-insulator transition at
λ = 1 was discovered by the physicists, Aubry and Andre [1], the physicists
missed further dependence on the arithmetics within the class of irrational
numbers. In mathematics, it was soon understood by Avron and Simon [17],
based on Gordon [40], that within the super-critical regime the arithmetics
of α plays a role, and later, in [67], that so does the arithmetics of θ. In
[50] we conjectured that there is the second sharp transition governed by the
arithmetics of the continued fraction expansion of α and the exponential rate
of phase-resonances. The recent proof of this conjecture, joint with Wencai
Liu, for both the frequency and phase cases, is discussed in Sec. 6.

A very captivating question and a longstanding theoretical challenge is
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to explain the self-similar hierarchical structure visually obvious in the Hof-
stadter’s butterfly, as well as the hierarchical structure of eigenfunctions, as
related to the continued fraction expansion of the magnetic flux. Such struc-
ture was first predicted in the work of Azbel in 1964 [21], some 12 years
before Hofstadter [48] and before numerical experimentation was possible.

The simplest mathematical feature of the spectrum for irrational α one
observes in the Hofstadter’s picture, is that it is a Cantor set. Mark Kac of-
fered ten martinis in 1982 for the proof of Azbel’s 1964 Cantor set conjecture.
It was dubbed the Ten Martini problem by Barry Simon, who advertised it
in his lists of 15 mathematical physics problems [85] and later, mathematical
physics problems for the XXI century [86]. Most substantial partial solu-
tions were made by Bellissard, Simon, Sinai, Helffer, Sjöstrand, Choi, Eliott,
Yui, and Last, between 1983-1994. J. Puig [81] solved it for Diophantine α by
noticing that localization at θ = 0 [53] leads to gaps at corresponding (dense)
energies. Final solution was given in [7]. Cantor spectrum is also generic for
general one-frequency operators with analytic potential: in the subcritical
regime [8], and, by very different methods, in the supercritical regime [39]
(and it is conjectured [9] also in the critical regime, which is actually non-
generic in itself [5]). Moreover, even all gaps predicted by the gap labeling
are open in the non-critical almost Mathieu case [8, 15]. Ten Martini and its
dry version were very important challenges in themselves, even though these
results, while strongly indicate, do not describe or explain the hierarchical
structure, and the problem of its description/explanation remains open, even
in physics. As for the understanding the hierarchical behavior of the eigen-
functions, despite significant numerical studies and even a discovery of Bethe
Ansatz solutions [94], it has also remained an important open challenge even
at the physics level. Certain results indicating the hierarchical structure
in the corresponding semi-classical/perturbative regimes were previously ob-
tained in the works of Sinai, Helffer-Sjostrand, and Buslaev-Fedotov (see
[30, 46, 88], and also [99] for a different model).

In Secs. 7,8 we present the solution of the latter problem in the expo-
nential regime. We describe the universal self-similar exponential structure
of eigenfunctions throughout the entire localization region. In particular, we
determine explicit universal functions f(k) and g(k), depending only on the
Lyapunov exponent and the position of k in the hierarchy defined by the
denominators qn of the continued fraction approximants of the flux α, that
completely define the exponential behavior of, correspondingly, eigenfunc-
tions and norms of the transfer matrices of the almost Mathieu operators,
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for all eigenvalues corresponding to a.e. phase, see Theorem 8.1. Our result
holds for all frequency and coupling pairs in the localization regime. Since
the behavior is fully determined by the frequency and does not depend on
the phase, it is the same, eventually, around any starting point, so is also
seen unfolding at different scales when magnified around local eigenfunc-
tion maxima, thus describing the exponential universality in the hierarchical
structure, see, for example, Theorems 7.2, 7.4.

Moreover, our proof of the phase part of the arithmetical spectral transi-
tion conjecture uncovers a universal structure of the eigenfunctions through-
out the corresponding pure point spectrum regime, Theorem 8.1, which,
in presence of exponentially strong resonances, demonstrates a new phe-
nomenon that we call a reflective hierarchy, when the eigenfunctions feature
self-similarity upon proper reflections (Theorem 8.2). This phenomenon was
not even previously described in the (vast) physics literature. This joint work
with Wencai Liu will also be presented in Sections 7,8.

In the next section we list the basic definitions/necessary facts. Sections
3-5 are devoted to the critical almost Mathieu operator, and Sections 6-8 to
sharp arithmetic spectral transitions and universal structure of eigenfunctions
in the (supercritical) regime of localization.

2 The basics

2.1 The spectrum

The spectrum of a bounded linear operator H on a Hilbert space H, denoted
σ(H), is the set of energies E for which H − E does not have a bounded
inverse. If H is finite-dimensional, it clearly coincides with the set of the
eigenvalues. For an infinite-dimensional space, however, there are more ways
not to be invertible than to have a kernel.
Example: Let (X,µ) be a measure space. Given bounded f : X → R,
define the multiplication operator Hf by

Hf : L2(X,µ)→ L2(X,µ), Hf (g) = fg.

Then the formal inverse of Hf −E is, of course, H 1
f−E

, and it is easy to show

that σ(Hf ) is the µ-essential range of f , that is {E : µ{x : |f(x)−E| < ε}) >
0, any ε > 0.}

8



Note that the specrum is a unitary invariant, and it turns out that the
example above is in this sense all there is:

Spectral theorem: Every self-adjoint A : H → H is unitarily equivalent
to Hf for some f,X, µ.

It should be noted that no uniqueness of either of f,X or µ is claimed
(or holds) here; in fact the more standard statement is with and f fixed as
x, X being a direct sum of copies of R.

Example 1: If A : Rn → Rn is a self-adjoint matrix with distinct eigen-
values λ1 < λ2 < . . . < λn, one can take X = R, µ any measure that lives on
∪ni=1λi and gives non-zero weight to each λi, and f = x. Then L2(X,µ) is just
Rn and the spectral theorem boils down to the diagonalization theorem for
self-adjont matrices. In case of higher dimensional eigenspaces, one can take
X equal to the union of k copies of R, with k equal to the largest multiplicity
of an eigenvalue, and modify the µ accordingly, keeping f = x.

Example 2: By Fourier transforming `2(Z2) into L2(T2) where T = R/Z,
the discrete 2D Laplacian

(Hψ)m,n = ψm−1,n + ψm+1,n + ψm,n−1 + ψm,n+1

is unitarily equivalent to H2 cosx+2 cos y on L2(T2), so σ(H) = [−4, 4].

2.2 Spectral measure of a self-adjoint operator

Let H be a self-adjoint operator on a Hilbert space H. The time evolution of
a wave function is described in the Schrödinger picture of quantum mechanics
by

i
∂ψ

∂t
= Hψ.

The solution with initial condition ψ(0) = ψ0 is then given by

ψ(t) = e−itHψ0.

Another version of the spectral theorem says that for any ψ0 ∈ H, there
is a unique finite measure µψ0 (called the spectral measure of ψ0 ∈ H) such
that

(e−itHψ0, ψ0) =

∫
R
e−itλdµψ0(λ). (6)
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2.3 Spectral decompositions

Every finite measure on R is uniquely decomposed into three mutually sin-
gular parts

µ = µpp + µsc + µac,

where pp stands for pure point, the atomic part of the measure, ac stands
for absoltely continuous with respect to Lebesgue measure, and sc stands
for singular continuous, that is all the rest: the part that is singular (with
respect to Lebesgue), yet continuous (has no atoms).
Define

Hγ = {φ ∈ H : µφ is γ}

where γ ∈ {pp, sc, ac}. Then we have H = Hpp

⊕
Hsc

⊕
Hac.

H preserves eachHγ, so we can define: σγ(H) = σ(H|Hγ ), γ ∈ {pp, sc, ac}.
The set σpp(H) admits a direct characterization as the closure of the set of
all eigenvalues

σpp(H) = σp(H),

where

σp(H) = {λ : there exists a nonzero vector ψ ∈ H such that Hψ = λψ}.

2.4 Ergodic operators

We are going to study Schrödinger operators with potentials related to dy-
namical systems. Let H = ∆ + V be defined by

(Hu)(n) = u(n+ 1) + u(n− 1) + V (n)u(n) (7)

on a Hilbert space H = `2(Z). Here V : Z → R is the potential. Let
(Ω, P ) be a probability space. A measure-preserving bijection T : Ω → Ω is
called ergodic, if any T -invariant measurable set A ⊂ Ω has either P (A) = 1
or P (A) = 0. By a dynamically defined potential we understand a family
Vω(n) = v(T nω), ω ∈ Ω, where v : Ω → R is a measurable function. The
corresponding family of operators Hω = ∆ + Vω is called an ergodic family.
More precisely,

(Hωu)(n) = u(n+ 1) + u(n− 1) + v(T nω)u(n). (8)
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Theorem 2.1 (Pastur [79]; Kunz-Souillard [72] ). There exists a full measure
set Ω0 and

∑
,
∑

pp,
∑

sc,
∑

ac ⊂ R such that for all ω ∈ Ω0, we have
σ(Hω) =

∑
, and σγ(Hω) =

∑
γ , γ = pp, sc, ac.

Theorem 2.2 (Avron-Simon [18], Last-Simon [76]). If T is minimal, then
σ(Hω) =

∑
, and σac(Hω) =

∑
ac for all ω ∈ Ω.

Theorem 2.2 does not hold for σγ(Hω) with γ ∈ {sc, pp} [67], but it is an
interesting and difficult open problem whether it holds for σsing(Hω).

2.5 Cocycles and Lyapunov exponents

By an SL(2,R) cocycle, we mean a pair (T,A), where T : Ω→ Ω is ergodic,
A is a measurable 2× 2 matrix valued function on Ω and detA = 1.

We can regard it as a dynamical system on Ω× R2 with

(T,A) : (x, f) 7−→ (Tx,A(x)f), (x, f) ∈ Ω× R2.

For k > 0, we define the k-step transfer matrix as

Ak(x) =
1∏
l=k

A(T l−1x). (9)

For k < 0, define
Ak(x) = A−1

−k(T
kx). (10)

Denote A0 = I, where I is the 2×2 identity matrix. Then fk(x) = ln ||Ak(x)||
is a subadditive ergodic process. The (non-negative) Lyapunov exponent for
the cocycle (α,A) is given by

L(T,A) = inf
n

∫
Ω

ln ‖An(x)‖dx
n

= lim
n

∫
Ω

ln ‖An(x)‖dx
n

a.e. x
===== lim

n→∞

ln ‖An(x)‖dx
n

.

(11)
with both the second and the third equality in (11) guaranteed by Kingman’s
subadditive ergodic theorem. Cocycles with positive Lyapunov exponent
are called hyperbolic. Here one should distinguish uniform hyperbolicity
where there exists a continuous splitting of R2 into expanding and contracting
directions, and nonuniform hyperbolicity, where L > 0 but such splitting does
not exist. Nevertheless, we have
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Theorem 2.3 (Oseledets). Suppose L(T,A) > 0. Then, for almost every
x ∈ Ω , there exist solutions v+, v− ∈ C2 such that ||Ak(x)v±|| decays ex-
ponentially at ±∞, respectively, at the rate −L(T,A). Moreover, for every
vector w which is linearly independent with v+ (resp., v−), ||Ak(x)w|| grows
exponentially at +∞ (resp., −∞) at the rate L(T,A).

Suppose u is an eigensolution of Hxu = Eu, where Hx is given by (8).
Then [

u(n+m)
u(n+m− 1)

]
= An(Tmx)

[
u(m)

u(m− 1)

]
, (12)

where An(x) is the n-step transfer matrix of (T,AE(x)) and

AE(x) =

[
TE − v(x) −1

1 0

]
.

Such (T,AE(x)) are called Schrödinger cocycles. Denote by L(E) the Lya-
punov exponent of a Schrödinger cocycle (we omit the dependence on T
and v). It turns out that (at least for uniquely ergodic dynamics) the re-
solvent set of Hx is precisely the set of E such that the Schrödinger cocycle
(T,AE(x)) is uniformly hyperbolic. The set σ ∩ {L(E) > 0} is therefore
the set of non-uniform hyperbolicity for the one-parameter family of cocycles
(T,AE(x))E∈R, and is our main interest. Then Oseledets theorem can be
reformulated as

Theorem 2.4. Suppose that L(E) > 0. Then, for every x ∈ ΩE (where
ΩE has full measure), there exist solutions φ+, φ− of Hxφ = Eφ such that φ±

decays exponentially at ±∞, respectively, at the rate −L(E). Moreover, every
solution which is linearly independent of φ+ (resp., φ−) grows exponentially
at +∞ (resp., −∞) at the rate L(E).

It turns out that the set where the Lyapunov exponent vanishes fully
determines the absolutely continuous spectrum.

Theorem 2.5 (Ishii-Pastur-Kotani). σac(Hx) = {E ∈ R : L(E) = 0}
ess

for
almost every x ∈ Ω.

The inclusion “⊆” was proved by Ishii and Pastur [49, 79]. The other, a
lot more difficult, inclusion was proved by Kotani [71, 84].
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2.6 Continuity of the Lyapunov exponent

Lyapunov exponent L(α,A) := L(Rα, A) is generally not a very nice function
of its parameters. It can be a discontinuous function of α at α ∈ Q (almost
Mathieu cocycle is one example), is generally discontinuous in A in C0 and
can be discontinuous in A even in C∞ [93]. It is a remarkable fact, enabling
much of the related theory, that it is continuous in the analytic category

Theorem 2.6. [29, 56] L(β + ., .) : T × Cω(T, SL(2,R)) → R is jointly
continuous at irrational β .

For the almost Mathieu operator, it leads to

Theorem 2.7. [29] For every α ∈ R\Q, λ ∈ R and E ∈ σ(Hλ,α,θ), one has
Lλ,α(E) = max{ln |λ|, 0}.

2.7 Implications of Avila’s global theory

Continuity of the Lyapunov exponent in the analytic category [29, 56] makes
it possible to make conclusions from the study of its behavior for complexified
cocycles, and Avila [5] discovered a remarkable related structure. Analytic
cocycles A(x) can be classified depending on the behavior of the Lyapunov
exponent Lε of the complexified cocycle A(x + iε). Namely, we distinguish
three cases:

Subcritical: Lε = 0, ε < δ, δ > 0.

Supercritical: L0 > 0

Critical: Otherwise, that is L0 = 0, Lε > 0, ε > 0.

Avila observed that, for a given cocycle, Lε is a convex function of ε,
and proved that it has quantized derivative in ε. This has enabled the global
theory [5], where Avila shows, in particular, that prevalent potentials are
acritical, that is have no critical transfer-matrix cocycles for energies in their
spectrum. The almost reducibility conjecture [5, 8] states that subcritical
cocycles are almost reducible, that is have constant cocycles in the closure of
their analytic conjugacy class. It was solved by Avila for the Liouville case in
[3] and the solution for the Diophantine case has been announced [4]. Both
almost reducible and supercritical cocycles are well studied and their basic
spectral theory is understood.
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For the almost Mathieu cocycle, quantization of acceleration allows to
exactly compute Lε(E) for E in the spectrum, leading to

Subcritical, i.e. λ < 1: In this case, Lε(E) = 0 for E ∈ σ(Hλ,α,θ) and
ε ≤ − lnλ

2π
. Hλ,α,θ has purely ac spectrum [8, 16].

Critical, i.e. λ = 1: In this case, for E ∈ σ(Hλ,α,θ) the cocycle is critical

Supercritical, i.e. λ > 1: L(E) = lnλ > 0 for E ∈ σ(Hλ,α,θ).

We now quickly review the basics of continued fraction approximations.

2.8 Continued fraction expansion

Define, as usual, for 0 ≤ α < 1,

a0 = 0, α0 = α,

and, inductively for k > 0,

ak = [α−1
k−1], αk = α−1

k−1 − ak.

We define

p0 = 0, q0 = 1,

p1 = 1, q1 = a1,

and inductively,

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.

Recall that {qn}n∈N is the sequence of denominators of best rational approx-
imants to irrational number α, since it satisifies

for any 1 ≤ k < qn+1, ‖kα‖R/Z ≥ ||qnα||R/Z. (13)

Moreover, we also have the following estimate,

1

2qn+1

≤ ∆n , ‖qnα‖R/Z ≤
1

qn+1

. (14)
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• α is called Diophantine if there exists κ, ν > 0 such that ||kα|| ≥ ν
|k|κ

for any k 6= 0, where ||x|| = min
k∈Z
|x− k|.

• α is called Liouville if

β(α) = lim sup
k→∞

− ln ||kα||R/Z
|k|

= lim sup
n→∞

ln qn+1

qn
> 0 (15)

• α is called weakly Diophantine if β(α) = 0.

Clearly, Diophantine implies weakly Diophantine. By Borel-Cantelli lemma,
Diophantine α form a set of full Lebesgue measure.

3 Do critical almost Mathieu operators ever

have eigenvalues?

The critical almost Mathieu operator Hα,θ given by

(Hα,θφ)(n) = φ(n− 1) + φ(n+ 1) + 2 cos 2π(αn+ θ)φ(n), (16)

has been long (albeit not from the very beginning [83]4) conjectured to have
purely singular continuous spectrum for every α ∈ R\Q and every θ. Since
the spectrum (which is θ-independent for α ∈ R\Q [18] ) has Lebesgue mea-
sure zero [10], the problem boils down to the proof of absence of eigenvalues,
see e.g. problem 7 in [52]. This simple question has a surprisingly rich (and
dramatic) history.

Aside from the results on topologically generic absence of point spectrum
[17, 67] that hold in a far greater generality, all the proofs were, in one way
or another, based on the Aubry duality [1], a Fourier-type transform for
which the family {Hα,θ}θ is a fixed point. One manifestation of the Aubry
duality is: if u ∈ `2(Z) solves the eigenvalue equation Hα,θu = Eu, then
vxn := e2πinθû(x+ nα) solves

Hα,xv
x = Evx (17)

for a.e. x, where û(x) =
∑
e2πinxun is the Fourier transform of u. This

led Delyon [35] to prove that there are no `1 solutions of Hα,θu = Eu, for

4It is the paper where the name almost Mathieu was introduced.
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otherwise (17) would hold also for x = θ, leading to a contradiction. Thus
any potential eigenfunctions must be decaying slowly. Chojnacki [32] used
duality-based C∗-algebraic methods to prove the existence of some continuous
component, but without ruling out the point spectrum. [41] gave a duality-
based argument for no point spectrum for a.e. θ, but it had a gap, as it was
based on the validity of Deift-Simon’s [33] theorem on a.e. mutual singularity
of singular spectral measures, which is only proved in [33] in the hyperbolic
case, and is still open in the regime of zero Lyapunov exponents. Avila
and Krikorian (see [6]) used convergence of renormalization [11] and non-
perturbative reducibility [29] to show that for every α ∈ R\Q, eigenvalues
may only occur for countably many θ. Then Avila [6] found a simple proof of
the latter fact, also characterizing this potentially exceptional set of phases
explicitly: these are phases θ that are α-rational, i.e. 2θ+kα ∈ Z, for some k.
The argument of [6] was incorporated in [9], where it was developed to prove
a.e. absence of point spectrum for the extended Harper’s model (EHM) in
the entire critical region (the EHM result was later further improved by Han
[42]). The proof in [6, 9] has as a starting point the dynamical formulation
of the Aubry duality: if vxn solves the eigenvalue equation Hα,xv = Ev,
then so does its complex conjugate v̄xn, and this can be used to construct
an L2-reducibility of the transfer-matrix cocycles to the rotation by θ, given
independence of v and v̄. Unfortunately those vectors are always linearly
dependent if θ is α-rational. Thus the argument hopelessly breaks down for
2θ + kα ∈ Z.

Moreover, it was noted in [9] that in the bulk of the critical region, for
α-rational phases θ, the extended Harper’s operator actually does have eigen-
values. Also, supercritical almost Mathieu with Diophantine α, has eigen-
values (with exponentially decaying eigenfunctions) for α-rational phases as
well [56]. All this increased the uncertainty about whether eigenvalues may
exist for the α-rational phases also for the critical almost Mathieu.

We will present the fully self-contained proof of

Theorem 3.1. [54] Hα,θ does not have eigenvalues for any α, θ (and thus
has purely singular-continuous spectrum for all α /∈ Q).

In our proof we replace the Aubry duality by a new transform, inspired
by the chiral gauge transform of [58].
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4 Proof of Theorem 3.1.

Given u ∈ `2(Z), set

u(x) =
∞∑

n=−∞

une
πin(θ+nα−2x) (18)

and
uxn = u(x+ nα)eπin(x+nα−3θ

2
) (19)

where uxn is defined for a.e. x.
Let H̃x

α : RZ → RZ, x ∈ R/2Z, be given by

(H̃x
αv)n = 2 cos π(x+ nα)vn−1 + 2 cosπ(x+ (n+ 1)α)vn+1 (20)

Lemma 4.1. If u ∈ `2(Z) solves Hα,θu = Eu, then ux ∈ RZ is a formal
solution of the difference equation

H̃
x+ θ−α

2
α ux = Eux (21)

for a.e. x.

Proof. If (Tu)n := un+1 + un−1, and (Su)n := cos 2π(θ + nα)un, we
obtain (Tu)(x) = u(x − α)eπi(θ+α−2x) + u(x + α)eπi(−θ+α+2x) and (Su)(x) =
u(x−α)e2πiθ +u(x+α)e−2πiθ, leading, by a straightforward computation, to

((T + S)u)x = H̃
x+ θ−α

2
α ux.

We note that the family {H̃x
α}x∈R/2Z is self-dual with respect to the Aubry-

type duality. Namely, the following holds. For x ∈ R/2Z, v ∈ `2(Z) for a.e.
β, we can define wβ ∈ RZ by

wβn = v̂(
β + nα

2
)eπin(x+α

2
). (22)

Lemma 4.2. If v ∈ `2(Z) solves H̃x
αv = Ev, then, for a.e. β, wβ ∈ RZ is a

formal solution of the difference equation

H̃
β−α

2
α wβ = Ewβ. (23)

Proof. A similar direct computation.
Let now u ∈ `2(Z) with ‖u‖2 = 1 be a solution of Hα,θu = Eu. By Lemma

4.1, (21) holds, which implies that we also have, for a.e. x,
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H̃
x+ θ−α

2
α ūx = Eūx (24)

thus the Wronskian of ux and ūx is constant in n. That is

cosπ(x+ nα)Im (u(x+ nα)ū(x+ (n− 1)α)eπi(x+nα+ia(α,θ))) = c(x) (25)

for some c(x), all n and a.e. x. Here and below a(α, θ) stands for (an ex-
plicit) real-valued function that does not depend on n, x. Its exact form is
not important. a(α, θ) may stand for different such functions in different
expressions.

By ergodicity, this implies that, for a.e. x and some constant c,

cos πx(u(x)ū(x− α)eπix+ia(α,θ) − u(x− α)ū(x)e−πix−ia(α,θ)) = c. (26)

It follows by Cauchy-Schwarz that u(x)ū(x − α)eπix+ia(α,θ) ∈ L1, which
implies that c = 0. We note that a similar argument was used by R. Han in
[42]. Thus we have

u(x)ū(x− α)eπix+ia(α,θ) − u(x− α)ū(x)e−πix−ia(α,θ) = 0 (27)

for a.e. x.

Lemma 4.3. For a.e. x, we have u(x) 6= 0.

Proof. Indeed, otherwise, by the ergodic theorem, there would exist
(in fact, a full measure of, but it is not important) x such that uxn solves
(21) and uxn = 0 for infinitely many n (in fact, only four such n suffice for
the argument). Let ni < ni+1 − 1, i ∈ Z, be the labeling of zeros of such
uxn. Clearly, if v ∈ RZ is a solution of (20) with vn = vm = 0, we have

that v[n,m] ∈ `2(Z) defined by (v[n,m])k =

{
vk, k ∈ [n+ 1,m− 1]

0, otherwise
is also a

solution of (21). Set vx,i := ux[ni,ni+1].

Clearly, for any I ⊂ Z the collection {vx,i}i∈I is linearly independent in
`2(Z) . This implies that the corresponding Aubry dual collection {wx,i,β}i∈I
constructed by (22) from {vx,i}i∈I , is linearly independent in RZ. Thus, by
Lemmas 4.1,4.2 we obtain, for a.e. β, infinitely many linearly independent
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wx,i,β ∈ RZ, that all solve (23). This is in contradiction with the fact that
the space of solutions of (23) is two-dimensional for a.e. β.

Therefore we can define for a.e. x, a unimodular measurable function on
R/2Z

φ(x) :=
u(x)

ū(x)
eπix+ia(α,θ) (28)

By (5.2), (28) we have that, for a.e. x,

φ(x) = φ(x− α)e−2πix+ia(α,θ), (29)

and expanding φ(x) into the Fourier series, φ(x) =
∑∞

k=−∞ ake
πikx, we obtain

|ak+2| = |ak|, a contradiction.

5 Thouless’ Hausdorff dimension conjecture

The spectrum of Hα,θ for irrational α is a θ-independent5 fractal, beautifully
depicted via the Hofstadter butterfly [48]. There have been many numerical
and heuristic studies of its fractal dimension in physics literature (e.g., [38,
69, 89, 95]). A conjecture attributed to Thouless (e.g., [95]), and appearing
already in the early 1980’s, is that the dimension is equal to 1/2. It has
been rethought after rigorous and numerical studies demonstrated that the
Hausdorff dimension can be less than 1/2 (and even be zero) for some α
[12, 75, 95], while packing/box counting dimension can be higher (even equal
to one) for some (in fact, of the same!) α [68]. However, all these are
Lebesgue measure zero sets of α, and the conjecture may still hold, in some
sense. There is also a conjecture attributed to J. Bellissard (e.g., [45, 75])
that the dimension of the spectrum is a property that only depends on the
tail in the continued fraction expansion of α and thus should be the same
for a.e. α (by the properties of the Gauss map). We discuss the history of
rigorous results on the dimension in more detail below.

In the past few years, there was an increased interest in the dimension of
the spectrum of the critical almost Mathieu operator, leading to a number
of other rigorous results mentioned above. Those include zero Hausdorff di-
mension for a subset of Liouville α by Last and Shamis [75], also extended
to all weakly Liouville6 α by Avila, Last, Shamis, Zhou [12]; the full pack-
ing (and therefore box counting) dimension for weakly Liouville α [68], and

5Also for any λ 6= 0.
6We say α is weakly Liouville if β(α) := − lim sup ln ‖nα‖

n > 0, where ‖θ‖ = dist (θ,Z).
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existence of a dense positive Hausdorff dimension set of Diophantine α with
positive Hausdorff dimension of the spectrum by Helffer, Liu, Qu, and Zhou
[45]. All those results, as well as heuristics by Wilkinson-Austin [95] and, of
course, numerics, hold for measure zero sets of α. Recently, B. Simon listed
the problem to determine the Hausdorff dimension of the spectrum of the
critical almost Mathieu on his new list of hard unsolved problems [87].

The equality in the original conjecture can be viewed as two inequalities.
In a joint work with Igor Krasovsky [58] we prove one of those for all irrational
α. This is also the first result on the fractal dimension that holds for more
than a measure zero set of α. Denote the spectrum of an operator K by
σ(K), the Lebesgue measure of a set A by |A|, and its Hausdorff dimension
by dimH(A). We have

Theorem 5.1. [58] For any irrational α and real θ, dimH(σ(Hα,θ)) ≤ 1/2.

Of course, it only makes sense to discuss upper bounds on the Hausdorff
dimension of a set on the real line once its Lebesgue measure is shown to be
zero. The Aubry-Andre conjecture stated that the measure of the spectrum
of Hα,θ,λ is equal to 4|1 − |λ||, so to 0 if λ = 1, for any irrational α. This
conjecture was popularized by B. Simon, first in his list of 15 problems in
mathematical physics [85] and then, after it was proved by Last for a.e.
α [73, 74], again as Problem 5 in [86], which was to prove this conjecture
for the remaining measure zero set of α, namely, for α of bounded type.7

The arguments of [73, 74] did not work for this set, and even though the
semi-classical analysis of Hellfer-Sjöstrand [46] applied to some of this set for
Hα,θ, it did not apply to other such α, including, most notably, the golden
mean — the subject of most numerical investigations. For the non-critical
case, the proof for all α of bounded type was given in [58], but the critical
“bounded-type” case remained difficult to crack. This remaining problem for
zero measure of the spectrum of Hα,θ was finally solved by Avila-Krikorian
[10], who employed a deep dynamical argument. We note that the argument
of [10] worked not for all α, but for a full measure subset of Diophantine α.
Here we give a very simple argument that recovers this theorem and thus
gives an elementary solution to Problem 5 of [86]. Moreover, our argument
works simultaneously for all irrational α.

Theorem 5.2. For any irrational α and real θ, |σ(Hα,θ)| = 0.

7That is α with all coefficients in the continued fraction expansion bounded by some
M .
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The proofs are based on two key ingredients. We introduce what we call
the chiral gauge transform and show that the direct sum in θ of operators
H2α,θ is isospectral with the direct sum in θ of Ĥα,θ given by

(Ĥα,θφ)(n) = 2 sin 2π(α(n− 1) + θ)φ(n− 1) + 2 sin 2π(αn+ θ)φ(n+ 1). (30)

This representation of the almost Mathieu operator corresponds to choos-
ing the chiral gauge for the perpendicular magnetic field applied to the elec-
tron on the square lattice,

1λ

1 λ

(m,n)

Cm,n

Dm,n

Figure 3

Any choice of gauge such that

Cm,n +Dm+1,n−1 − Cm+1,n−1 −Dm,n = 2π · 2α, (31)

leads to an operator on `2(Z2)

(HC,Dψ)m,n = eiCm,nψm+1,n−1+eiDm,nψm+1,n+1+e−iCm−1,n+1ψm−1,n+1+e−iDm−1,n−1ψm−1,n−1

(32)
which represents the Hamiltonian of an electron in a uniform perpendicular
magnetic field with flux 2πα. Here 4πα is the total flux through each doubled
cell.

The chiral gauge that corresponds to (30) is given by{
Cm,n ≡ 0

Dm,n = 4πmα
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It was previously discussed non-rigorously in [78, 94]. The advantage of (30)
is that it is a singular Jacobi matrix, that is one with off-diagonal elements
not bounded away from zero, so that the matrix quasi-separates into blocks.

This alone is already sufficient to conclude Theorem 5.2 because Ĥ is
represented by a matrix with off-diagonal terms nearly vanishing along a
subsequence. Singular Jacobi matrices are trace-class perturbations of di-
rect sums of finite blocks, thus never have absolutely continuous spectrum.
Therefore, by Kotani theory (that does extend to the singular case), and the
fact that the Lyapunov exponent is zero on the spectrum, as easily follows
from the formula for the invariance of the IDS under the gauge transform
and a Thouless-type formula for the Lyapunov exponent, the measure of the
spectrum must be zero.

The second key ingredient is a general result on almost Lipshitz conti-
nuity of spectra for singular quasiperiodic Jacobi matrices. The modulus of
continuity statements have, in fact, been central in previous literature. We
consider a general class of quasiperiodic C1 Jacobi matrices, that is operators
on `2(Z) given by

(Hv,b,α,θφ)(n) = b(θ+ (n− 1)α)φ(n− 1) + b(θ+nα)φ(n+ 1) + v(θ+nα)φ(n),
(33)

with b(x), v(x) ∈ C1(R), and periodic with period 1.
Let Mv,b,α be the direct sum of Hv,b,α,θ over θ ∈ [0, 1),

Mv,b,α = ⊕θ∈[0,1)Hv,b,α,θ. (34)

Continuity in α of σ(Mv,b,α) in the Hausdorff metric was proved in [18].
Continuity of the measure of the spectrum is a more delicate issue, since,
in particular, |σ(Mα)| can be (and is, for the almost Mathieu operator) dis-
continuous at rational α. Establishing continuity at irrational α requires
quantitative estimates on the Hausdorff continuity of the spectrum. In the
Schrödinger case, that is for b = 1, Avron, van Mouche, and Simon [20] ob-
tained a very general result on Hölder-1

2
continuity (for arbitrary v ∈ C1),

improving Hölder-1
3

continuity obtained earlier by Choi, Elliott, and Yui [31].
It was argued in [20] that Hölder continuity of any order larger than 1/2 would
imply the desired continuity property of the measure of the spectrum for all
α. Lipshitz continuity of gaps was proved by Bellissard [23] for a large class of
quasiperiodic operators, however without a uniform Lipshitz constant, thus
not allowing to conclude continuity of the measure of the spectrum. In [57]
(see also [63]) we showed a uniform almost Lipshitz continuity for Schrödinger
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operators with analytic potentials and Diophantine frequencies in the regime
of positive Lyapunov exponents, which, in particular, allowed us to complete
the proof of the Aubry-Andre conjecture for the non-critical case.

Namely, a Jacobi matrix (33) is called singular if for some θ0, b(θ0) = 0.
We assume that the number of zeros of b on its period is finite. In this case,
uniform almost Lipshitz continuity (with a logarithmic correction) holds [58]
which allows to conclude continuity of the measure of the spectrum for general
singular Jacobi matrices:

Theorem 5.3. For singular Hv,b,α,θ as above, for any irrational α there exists

a subsequence of canonical approximants
pnj
qnj

such that

|σ(Mv,b,α)| = lim
j→∞

∣∣∣∣σ(Mv,b,
pnj
qnj

)∣∣∣∣ . (35)

In the case of Schrödinger operators (i.e., for b = 1), the statement (35)
was previously established in various degrees of generality in the regime of
positive Lyapunov exponents [57, 66] and, in all regimes for analytic [64]
or sufficiently smooth [98] v. Typically, proofs that work for b = 1 extend
also to the case of non-vanishing b, that is non-singular Jacobi matrices, and
there is no reason to believe the results of [64, 98] should be an exception. On
the other hand, extending various Schrödinger results to the singular Jacobi
case is technically non-trivial and adds a significant degree of complexity
(e.g. [9, 44, 65]). Our proof however is based on showing that a singularity
can be exploited, rather than circumvented, to establish enhanced continuity
of spectra and therefore Theorem 5.3. Of course, Theorem 5.2 also follows
immediately from the chiral gauge representation, the bound (36) below, and
Theorem 5.3, providing a third proof of Problem 5 of [86].

Moreover, enhanced continuity combined with the chiral gauge represen-
tation allows to immediately prove Theorem 5.1 by an argument of [73].
Indeed, the original intuition behind Thouless’ conjecture on the Hausdorff
dimension 1/2 is based on another fascinating Thouless’ conjecture [90, 91]:
that for the critical almost Mathieu operator Hα,θ, in the limit pn/qn → α, we
have qn|σ(Mpn/qn)| → c where c = 32Cc/π, Cc being the Catalan constant.
Thouless argued that if σ(Mα) is “economically covered” by σ(Mpn/qn) and if
all bands are of about the same size then the spectrum, being covered by qn
intervals of size c

q2n
, has the box counting dimension 1/2. Clearly, the exact

value of c > 0 is not important for this argument. An upper bound of the

23



form
qn|σ(Mpn/qn)| < C, n = 1, 2, . . . , (36)

was proved by Last [73]8, which, combined with Hölder-1
2

continuity, led
him in [73] to the bound ≤ 1

2
for the Hausdorff dimension for irrational α

satisfying limn→∞ |α − pn/qn|q4
n = 0. Such α form a zero measure set. The

almost Lipschitz continuity and (36) allow us to obtain the result (Theorem
5.1) for all irrational α.

Since our proof of Theorem 5.1 only requires an estimate such as (36)
and the existence of isospectral family of singular Jacobi matrices, it applies
equally well to all other situations where the above two facts are present.
For example, Becker et al [24] recently introduced a model of graphene as a
quantum graph on the regular hexagonal lattice and studied it in the presence
of a magnetic field with a constant flux Φ, with the spectrum denoted σΦ.
Upon identification with the interval [0, 1], the differential operator acting on
each edge is then the maximal Schrödinger operator d2

dx2
+V (x) with domain

H2, where V is a Kato-Rellich potential symmetric with respect to 1/2. We
then have

Theorem 5.4. For any symmetric Kato-Rellich potential V ∈ L2, the Haus-
dorff dimension dimH(σΦ) ≤ 1/2, for all irrational Φ.

This result was proved in [24] for a topologically generic but measure zero
set of α.

The basic idea behind the proof that singularity leads to enhanced conti-
nuity is that creating approximate eigenfunctions by cutting at near-zeros of
the off-diagonal terms leads to smaller errors in the kinetic term. However,
without apriori estimates on the behavior of solutions (and it is in fact natu-
ral for solutions to be large around the singularity) this in itself is insufficient
to achieve an improvement over the Hölder exponent 1/2, so the argument
ends up being not entirely straightforward.

6 Small denominators and arithmetic spec-

tral transitions

In general, localization for quasiperiodic operators is a classical case of a
small denominator problem, and has been traditionally approached in a per-

8with C = 8e.
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turbative way: through KAM-type schemes for large couplings [36, 37, 88]
(which, being KAM-type schemes, all required Diophantine conditions on fre-
quencies). The opposite regime of very Liouville frequencies allowed proofs of
delocalization by perturbation of periodic operators. Unlike the random case,
where, in dimension one, localization holds for all couplings, a distinctive fea-
ture of quasiperiodic operators is the presence of metal-insulator transitions
as couplings increase. Even when non-perturbative methods, for the almost
Mathieu and then for general analytic potentials, were developed in the 90s
[27, 51, 53], allowing to obtain localization for a.e. frequency throughout
the regime of positive Lyapunov exponents, they still required Diophantine
conditions, and exponentially approximated frequencies that are neither far
from nor close enough to rationals remained a challenge, as for them there
was nothing left to perturb about or to remove. It has gradually become
clear that small denominators are not simply a nuisance, but lead to actual
change in the spectral behavior.

The transitions in coupling between absolutely continuous and singular
spectrum are governed by vanishing/non-vanishing of the Lyapunov expo-
nent. It turns out that in the regime of positive Lyapunov exponents (also
called supercritical in the analytic case, with the name inspired by the al-
most Mathieu operator) small denominators lead also to more delicate tran-
sitions: between localization (point spectrum with exponentially decaying
eigenfunctions) and singular continuous spectrum. They are governed by the
resonances: eigenvalues of box restrictions that are too close to each other
in relation to the distance between the boxes, leading to small denominators
in various expansions. All known proofs of localization, are based, in one
way or another, on avoiding resonances and removing resonance-producing
parameters, while all known proofs of singular continuous spectrum and even
some of the absolutely continuous one are based on showing their abundance.

For quasiperiodic operators, one category of resonances are the ones de-
termined entirely by the frequency. Indeed, for smooth potentials, large co-
efficients in the continued fraction expansion of the frequency lead to almost
repetitions and thus resonances, regardless of the values of other parameters.
Such resonances were first understood and exploited to show singular contin-
uous spectrum for Liouville frequencies in [17], based on [40] . The strength
of frequency resonances is measured by the arithmetic parameter

β(α) = lim sup
k→∞

−
ln ||kα||R/Z
|k|

(37)
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where ||x||R/Z = inf`∈Z |x− `|. Another class of resonances, appearing for all
even potentials, was discovered in [67], where it was shown for the first time
that the arithmetic properties of the phase also play a role and may lead to
singular continuous spectrum even for the Diophantine frequencies. Indeed,
for even potentials, phases with almost symmetries lead to resonances, re-
gardless of the values of other parameters. The strength of phase resonances
is measured by the arithmetic parameter

δ(α, θ) = lim sup
k→∞

−
ln ||2θ + kα||R/Z

|k|
(38)

In both these cases, the strength of the resonances is in competition with
the exponential growth controlled by the Lyapunov exponent. It was con-
jectured in 1994 [50] that for the almost Mathieu family- the prototypical
quasiperiodic operator - the two above types of resonances are the only ones
that appear, and the competition between the Lyapunov growth and reso-
nance strength resolves, in both cases, in a sharp way.

Recall that α is called weakly Diophantine if β(α) = 0, and θ is called
α-Diophantine if δ(α, θ) = 0. By a simple Borel-Cantelli argument, both
weakly Diophantine and α-Diophantine numbers form sets of full Lebesque
measure (for any α). Separating frequency and phase resonances, the fre-
quency conjecture was that for α-Diophantine phases, there is a transition
from singular continuous to pure point spectrum precisely at β(α) = L, where
L is the Lyapunov exponent. The phase conjecture was that for weakly Dio-
phantine frequencies, there is a transition from singular continuous to pure
point spectrum precisely at δ(α, θ) = L.

Operator H is said to have Anderson localization if it has pure point
spectrum with exponentially decaying eigenfunctions. We have

Theorem 6.1. [Phase,[61]] For weakly Diophantine α,

1. Hλ,α,θ has Anderson localization if |λ| > eδ(α,θ),

2. Hλ,α,θ has purely singular continuous spectrum if 1 < |λ| < eδ(α,θ).

3. Hλ,α,θ has purely absolutely continuous spectrum if |λ| < 1.

and

Theorem 6.2. [Frequency, [60]]
For α-Diophantine θ,
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1. Hλ,α,θ has Anderson localization if |λ| > eβ(α),

2. Hλ,α,θ has purely singular continuous spectrum if 1 < |λ| < eβ(α).

3. Hλ,α,θ has purely absolutely continuous spectrum if |λ| < 1.

Remark

1. Part 2 of Theorem 6.1 holds for all irrational α, and part 2 of Theorem
6.2 ([14], see also a footnote in [7]) holds for all θ. Both also hold for
general Lipshitz v replacing the cos .

2. Part 3 of both theorems is known for all α, θ [6] and is included here
for completeness.

3. Parts 1 and 2 of both Theorems put together verify the conjecture in
[50], as stated there. The frequency half was first proved in [14] in a
measure-theoretic sense (for a.e. θ).

For β = δ = 0 (which is a.e. α, θ) the result follows from [53]. Proofs of
the localization part of both theorems are based on the method developed in
[53]. However, since the arithmetic transitions happen within the excluded
measure zero set where the resonances are exponentially strong, new ideas
were needed to handle those. A progress towards the localization side of
the above conjecture in the frequency case was made in [7] (localization for

|λ| > e
16
9
β, as a step in solving the Ten Martini problem). The method

developed in [7] that allowed to approach exponentially small denominators
on the localization side was brought to its technical limits in [77], where the

result for |λ| > e
3
2
β was obtained.

There have been no previous results on the transition in phase for 0 < δ <
∞. Singular continuous spectrum was first established for 1 < |λ| < ecδ(α,θ)

(correspondingly, 1 < |λ| < ecβ(α) for sufficiently small c [18, 67]. One can see
that even with tight upper semicontinuity bounds the argument of [67] does
not work for c > 1/4, New ideas to remove the factor of 4 and approach the
actual threshold were required to prove Theorems 6.1, 6.2 in, correspondingly,
[60, 61] . The singular continuous spectrum up to the threshold for frequency
was established in [7, 14].
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7 Exact asymptotics and universal hierarchi-

cal structure for frequency resonances

In this section we describe the universal self-similar exponential structure of
eigenfunctions throughout the entire localization regime. We present explicit
universal functions f(k) and g(k), depending only on the Lyapunov exponent
and the position of k in the hierarchy defined by the denominators qn of
the continued fraction approximants of the flux α, that completely define
the exponential behavior of, correspondingly, eigenfunctions and norms of
the transfer matrices of the almost Mathieu operators, for all eigenvalues
corresponding to a.e. phase, see Theorem 8.1. This result holds for all
frequency and coupling pairs in the localization regime. Since the behavior
is fully determined by the frequency and does not depend on the phase, it
is the same, eventually, around any starting point, so is also seen unfolding
at different scales when magnified around local eigenfunction maxima, thus
describing the exponential universality in the hierarchical structure, see, for
example, Theorems 7.2,7.4.

Since we are interested in exponential growth/decay, the behavior of f
and g becomes most interesting in case of frequencies with exponential rate
of approximation by the rationals.

These functions allow to describe precise asymptotics of arbitrary solu-
tions of Hλ,α,θϕ = Eϕ where E is an eigenvalue. The precise asymptotics
of the norms of the transfer-matrices, provides the first example of this sort
for non-uniformly hyperbolic dynamics. Since those norms sometimes differ
significantly from the reciprocals of the eigenfunctions, this leads to further
interesting and unusual consequencies, for example exponential tangencies
between contracted and expanded directions at the resonant sites.

From this point of view, this analysis also provides the first study of
the dynamics of Lyapunov-Perron non-regular points, in a natural setting.
An artificial example of irregular dynamics can be found in [22], p.23, how-
ever it is not even a cocycle over an ergodic transformation, and we are not
aware of other such, even artificial, ergodic examples where the dynamics
has been studied. Loosely, for a cocycle A over a transformation f acting
on a space X (Lyapunov-Perron) non-regular points x ∈ X are the ones
at which Oseledets multiplicative ergodic theorem does not hold coherently
in both directions. They therefore form a measure zero set with respect to
any invariant measure on X. Yet, it is precisely the non-regular points that
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are of interest in the study of Schrödinger cocycles in the non-uniformly hy-
perbolic (positive Lyapunov exponent) regime, since spectral measures, for
every fixed phase, are always supported on energies where there exists a so-
lution polynomially bounded in both directions, so the (hyperbolic) cocycle
defined at such energies is always non-regular at precisely the relevant phases.
Thus the non-regular points capture the entire action from the point of view
of spectral theory, so become the most important ones to study. One can
also discuss stronger non-regularity notions: absence of forward regularity
and, even stronger, non-exactness of the Lyapunov exponent [22]. While
it is not difficult to see that energies in the support of singular continuous
spectral measure in the non-uniformly hyperbolic regime always provide ex-
amples of non-exactness, our analysis gave the first non-trivial example of
non-exactness with non-zero upper limit (Corollary 7.12). Finally, as we
understand, it also provided the first natural example of an even stronger
manifestation of the lack of regularity, the exponential tangencies (Corol-
lary 7.13). Tangencies between contracted and expanded directions are a
characteristic feature of nonuniform hyperbolicity (and, in particular, always
happen at the maxima of the eigenfunctions). They complicate proofs of
positivity of the Lyapunov exponents and are viewed as a difficulty to avoid
through e.g. the parameter exclusion [25, 97]. However, when the tangen-
cies are only subexponentially deep they do not in themselves lead to non-
exactness. Corollary 7.13 presents the first natural example of exponentially
strong tangencies (with the rate determined by the arithmetics of α and the
positions precisely along the sequence of resonances.)

For the almost Mathieu operator the k-step transfer matrix defined by
(9),(10), becomes

Ak(θ) =
0∏

j=k−1

A(θ + jα) = A(θ + (k − 1)α)A(θ + (k − 2)α) · · ·A(θ) (39)

and
A−k(θ) = A−1

k (θ − kα) (40)

for k ≥ 1, where A(θ) =

(
E − 2λ cos 2πθ −1

1 0

)
. As is clear from the

definition, Ak also depends on θ and E but since those parameters will be
usually fixed, we omit this from the notation.

Given α ∈ R\Q we define functions f, g : Z+ → R+ in the following way.
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Let pn
qn

be the continued fraction approximants to α. For any qn
2
≤ k < qn+1

2
,

define f(k), g(k) as follows:

Case 1 q
8
9
n+1 ≥

qn
2

or k ≥ qn.

If `qn ≤ k < (`+ 1)qn with ` ≥ 1, set

f(k) = e−|k−`qn| ln |λ|r̄n` + e−|k−(`+1)qn| ln |λ|r̄n`+1, (41)

and
g(k) = e−|k−`qn| ln |λ|

qn+1

r̄n`
+ e−|k−(`+1)qn| ln |λ| qn+1

r̄n`+1

, (42)

where for ` ≥ 1,

r̄n` = e−(ln |λ|− ln qn+1
qn

+ ln `
qn

)`qn .

Set also r̄n0 = 1 for convenience.
If qn

2
≤ k < qn, set

f(k) = e−k ln |λ| + e−|k−qn| ln |λ|r̄n1 , (43)

and
g(k) = ek ln |λ|. (44)

Case 2 q
8
9
n+1 <

qn
2

and qn
2
≤ k ≤ min{qn, qn+1

2
}.

Set

f(k) = e−k ln |λ|, (45)

and

g(k) = ek ln |λ|. (46)

Notice that f, g only depend on α and λ but not on θ or E. f(k) decays
and g(k) grows exponentially, globally, at varying rates that depend on the
position of k in the hierarchy defined by the continued fraction expansion of
α, see Fig.4 and Fig.5.

We say that φ is a generalized eigenfunction of H with generalized eigen-
value E, if

Hφ = Eφ, and |φ(k)| ≤ Ĉ(1 + |k|). (47)
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It turns out that in the entire regime |λ| > eβ, the exponential asymptotics
of the generalized eigenfunctions and norms of transfer matrices at the gen-
eralized eigenvalues are completely determined by f(k), g(k).

Theorem 7.1. Let α ∈ R\Q be such that |λ| > eβ(α). Suppose θ is Diophan-
tine with respect to α, E is a generalized eigenvalue of Hλ,α,θ and φ is the

generalized eigenfunction. Let U(k) =

(
φ(k)

φ(k − 1)

)
. Then for any ε > 0,

there exists K (depending on λ, α, Ĉ, ε) such that for any |k| ≥ K, U(k) and
Ak satisfy

f(|k|)e−ε|k| ≤ ||U(k)|| ≤ f(|k|)eε|k|, (48)

and
g(|k|)e−ε|k| ≤ ||Ak|| ≤ g(|k|)eε|k|. (49)

r̄n`

r̄n`+2

r̄n`+4

`qn (`+ 1)qn(`+ 2)qn(`+ 3)qn(`+ 4)qn kqn+1

2
qn
2

f(k)

Figure 4
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qn+1

r̄n`

qn+1

r̄n`+2

qn+1

r̄n`+4

`qn (`+ 1)qn(`+ 2)qn(`+ 3)qn(`+ 4)qn kqn+1

2
qn
2

g(k)

Figure 5

Certainly, there is nothing special about k = 0, so the behavior described
in Theorem 8.1 happens around arbitrary point k = k0. This implies the
self-similar nature of the eigenfunctions): U(k) behave as described at scale
qn but when looked at in windows of size qk, qk ≤ qn−1 will demonstrate the
same universal behavior around appropriate local maxima/minima.

To make the above precise, let φ be an eigenfunction, and U(k) =

(
φ(k)

φ(k − 1)

)
.

Let Ijς1,ς2 = [−ς1qj, ς2qj], for some 0 < ς1, ς2 ≤ 1. We will say k0 is a local j-
maximum of φ if ||U(k0)|| ≥ ||U(k)|| for k− k0 ∈ Ijς1,ς2 . Occasionally, we will
also use terminology (j, ς)-maximum for a local j-maximum on an interval
Ijς,ς .

Fix κ <∞, ν > 1. We will say a local j-maximum k0 is nonresonant if

||2θ + (2k0 + k)α||R/Z >
κ

qj−1
ν
,

for all |k| ≤ 2qj−1 and

||2θ + (2k0 + k)α||R/Z >
κ

|k|ν
, (50)

for all 2qj−1 < |k| ≤ 2qj.
We will say a local j-maximum is strongly nonresonant if

||2θ + (2k0 + k)α||R/Z >
κ

|k|ν
, (51)
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for all 0 < |k| ≤ 2qj.
An immediate corollary of Theorem 8.1 is the universality of behavior at

all (strongly) nonresonant local maxima.

Theorem 7.2. Given ε > 0, there exists j(ε) <∞ such that if k0 is a local
j-maximum for j > j(ε), then the following two statements hold:

If k0 is nonresonant, then

f(|s|)e−ε|s| ≤ ||U(k0 + s)||
||U(k0)||

≤ f(|s|)eε|s|, (52)

for all 2s ∈ Ijς1,ς2 , |s| >
qj−1

2
.

If k0 is strongly nonresonant, then

f(|s|)e−ε|s| ≤ ||U(k0 + s)||
||U(k0)||

≤ f(|s|)eε|s|, (53)

for all 2s ∈ Ijς1,ς2 .

Remark 7.3. 1. For the neighborhood of a local j-maximum described
in the Theorem 7.2 only the behavior of f(s) for qj−1/2 < |s| ≤ qj/2
is relevant. Thus f implicitly depends on j but through the scale-
independent mechanism described in (41),(43) and (45).

2. Actually, one can formulate (52) in Theorem 7.2 with non-resonant
condition (50) only required for 2qj−1 < |k| ≤ qj rather than for 2qj−1 <
|k| ≤ 2qj.

In case β(α) > 0, Theorem 8.1 also guarantees an abundance (and a
hierarchical structure) of local maxima of each eigenfunction. Let k0 be a
global maximum9 .

9If there are several, what follows is true for each.
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Universal hierarchical structure of an eigenfunction

b1 b2b−1b−2 k0

Local maximum of depth 1Local maximum of depth 1

Global maximum

Figure 6

b2,2b2,1

b1,−1

b1,1
b1,2

Window I
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Window I

b1,1 b1,2b1,−1b1,−2 b1

Local maximum of depth 2Local maximum of depth 2

Local maximum of depth 1

Figure 7

b1,2,2b1,2,1

b1,1,−1

b1,1,1
b1,1,2

We first describe the hierarchical structure of local maxima informally. We
will say that a scale nj0 is exponential if ln qnj0+1 > cqnj0 . Then there is a
constant scale n̂0 thus a constant C := qn̂0+1, such that for any exponential
scale nj and any eigenfunction there are local nj-maxima within distance
C of k0 + sqnj0 for each 0 < |s| < e

cqnj0 . Moreover, these are all the lo-
cal nj0-maxima in [k0 − ecqnj0 , k0 + e

cqnj0 ]. The exponential behavior of the
eigenfunction in the local neighborhood (of size of order qnj0 ) of each such
local maximum, normalized by the value at the local maximum is given by
f . Note that only exponential behavior at the corresponding scale is de-
termined by f and fluctuations of much smaller size are invisible. Now, let
nj1 < nj0 be another exponential scale. Denoting “depth 1” local maximum
located near k0 + anj0qnj0 by banj0

we then have a similar picture around

banj0
: there are local nj1-maxima in the vicinity of banj0

+ sqnj1 for each
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0 < |s| < ecqnj1 . Again, this describes all the local qnj1 -maxima within an
exponentially large interval. And again, the exponential (for the nj1 scale)
behavior in the local neighborhood (of size of order qnj1 ) of each such lo-
cal maximum, normalized by the value at the local maximum is given by
f . Denoting those “depth 2” local maxima located near banj0

+ anj1qnj1 ,

by banj0 ,anj1
we then get the same picture taking the magnifying glass an-

other level deeper, and so on. At the end we obtain a complete hierarchical
structure of local maxima that we denote by banj0 ,anj1 ,...,anjs

with each “depth

s + 1” local maximum banj0 ,anj1 ,...,anjs
being in the corresponding vicinity of

the “depth s” local maximum banj0 ,anj1 ,...,anjs−1
, and with universal behavior

at the corresponding scale around each. The quality of the approximation
of the position of the next maximum gets lower with each level of depth, yet
the depth of the hierarchy that can be so achieved is at least j/2 − C, see
Corollary 7.7. Fig. 6 schematically illustrates the structure of local max-
ima of depth one and two, and Fig. 7 illustrates that the neighborhood of
a local maximum appropriately magnified looks like a picture of the global
maximum.

We now describe the hierarchical structure precisely. Suppose

||2(θ + k0α) + kα||R/Z >
κ

|k|ν
, (54)

for any k ∈ Z\{0}. Fix 0 < ς, ε, with ς + 2ε < 1. Let nj → ∞ be such that
ln qnj+1 ≥ (ς + 2ε) ln |λ|qnj . Let cj = (ln qnj+1 − ln |anj |)/ ln |λ|qnj − ε. We

have cj > ε for 0 < anj < eς ln |λ|qnj . Then we have

Theorem 7.4. There exists n̂0(α, λ, κ, ν, ε) <∞ such that for any j0 > j1 >

· · · > jk, njk ≥ n̂0 + k, and 0 < anji < e
ς ln |λ|qnji , i = 0, 1, . . . , k, for all

0 ≤ s ≤ k there exists a local njs-maximum banj0 ,anj1 ,...,anjs
on the interval

banj0 ,anj1 ,...,anjs
+ I

njs
cjs ,1

for all 0 ≤ s ≤ k such that the following holds:

I |banj0 − (k0 + anj0qnj0 )| ≤ qn̂0+1,

II For any 1 ≤ s ≤ k, |banj0 ,anj1 ,...,anjs − (banj0 ,anj1 ,...,anjs−1
+ anjsqnjs )| ≤

qn̂0+s+1.

III if 2(x − banj0 ,anj1 ,...,anjk
) ∈ I

njk
cjk ,1

and |x − banj0 ,anj1 ,...,anjk
| ≥ qn̂0+k, then

for each s = 0, 1, ..., k,
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f(xs)e
−ε|xs| ≤ ||U(x)||

||U(banj0 ,anj1 ,...,anjs
)||
≤ f(xs)e

ε|xs|, (55)

where xs = |x− banj0 ,anj1 ,...,anjs | is large enough.

Moreover, every local njs-maximum on the interval banj ,anj1 ,...,anjs−1
+[−eε lnλqnjs , eε lnλqnjs ]

is of the form banj0 ,anj1 ,...,anjs
for some anjs .

Remark 7.5. By I of Theorem 7.4, the local maximum can be determined
up to a constant K0 = qn̂0+1. Actually, if k0 is only a local nj + 1-maximum,
we can still make sure that I, II and III of Theorem 7.4 hold. This is the
local version of Theorem 7.4

Remark 7.6. qn̂0+1 is the scale at which phase resonances of θ+k0α still can
appear. Notably, it determines the precision of pinpointing local nj0-maxima
in a (exponentially large in qnj0 ) neighborhood of k0, for any j0. When
we go down the hierarchy, the precision decreases, but note that except for
the very last scale it stays at least iterated logarithmically 10 small in the
corresponding scale qnjs

Thus for x ∈ banj0 ,anj1 ,...,anjs + [− cjs
2
qnjs ,

1
2
qnjs ], the behavior of φ(x) is de-

scribed by the same universal f in each qnjs -window around the correspond-
ing local maximum banj0 ,anj1 ,...,anjs

,s = 0, 1, ..., k. We call such a structure

hierarchical, and we will say that a local j-maximum is k-hierarchical if the
complete hierarchy goes down at least k levels. We then have an immediate
corollary

Corollary 7.7. There exists C = C(α, λ, κ, ν, ε) such that every local nj-

maximum in [k0 − eς ln |λ|qnj , k0 + eς ln |λ|qnj ] is at least (j/2− C)-hierarchical.

Remark 7.8. The estimate on the depth of the hierarchy in the corollary
assumes the worst case scenario when all scales after n̂0 are Liouville. Oth-
erwise the hierarchical structure will go even much deeper. Note that a local
nj-maximum that is not an nj+1-maximum cannot be k-hierarchical for k > j.

Another interesting corollary of Theorem 8.1 is

10for most scales even much less
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Theorem 7.9. Let α ∈ R\Q be such that |λ| > eβ(α) and θ is Diophantine
with respect to α. Then Hλ,α,θ has Anderson localization, with eigenfunctions
decaying at the rate ln |λ| − β.

This solves the arithmetic version of the second transition conjecture in
that it establishes localization throughout the entire regime of (α, λ) where
localization may hold for any θ (see the discussion in Section 6), for an
arithmetically defined full measure set of θ.

Also, it could be added that, for all θ, Hλ,α,θ has no localization (i.e., no
exponentially decaying eigenfunctions) if |λ| = eβ

Let ψ(k) denote any solution toHλ,α,θψ = Eψ that is linearly independent

with respect to φ(k). Let Ũ(k) =

(
ψ(k)

ψ(k − 1)

)
. An immediate counterpart

of (49) is the following

Corollary 7.10. Under the conditions of Theorem 8.1 for large k vectors
Ũ(k) satisfy

g(|k|)e−ε|k| ≤ ||Ũ(k)|| ≤ g(|k|)eε|k|. (56)

Thus every solution is exponentially expanding at the rate g(k) except
for one that is exponentially decaying at the rate f(k).

It is well known that for E in the spectrum the dynamics of the transfer-
matrix cocycle Ak is nonuniformly hyperbolic. Moreover, E being a gener-
alized eigenvalue of Hλ,α,θ already implies that the behavior of Ak is non-
regular. Theorem 8.1 provides precise information on how the non-regular
behavior unfolds in this case. We are not aware of other non-artificially con-
structed examples of non-uniformly hyperbolic systems where non-regular
behavior can be described with similar precision.

The information provided by Theorem 8.1 leads to many interesting corol-
laries. Here we only want to list a few immediate sharp consequences.

Corollary 7.11. Under the condition of Theorem 8.1, we have

i)

lim sup
k→∞

ln ||Ak||
k

= lim sup
k→∞

ln ||Ũ(k)||
k

= ln |λ|,

ii)

lim inf
k→∞

ln ||Ak||
k

= lim inf
k→∞

ln ||Ũ(k)||
k

= ln |λ| − β.
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iii) Outside an explicit sequence of lower density zero, 11

lim
k→∞

ln ||Ak||
k

= lim
k→∞

ln ||Ũ(k)||
k

= ln |λ|.

Therefore the Lyapunov behavior for the norm fails to hold only along a
sequence of density zero. It is interesting that the situation is different for
the eigenfunctions. While, just like the overall growth of ‖Ak‖ is ln |λ| − β,
the overall rate of decay of the eigenfunctions is also ln |λ| −β, they however
decay at the Lyapunov rate only outside a sequence of positive upper density.
That is

Corollary 7.12. Under the condition of Theorem 8.1, we have

i)

lim sup
k→∞

− ln ||U(k)||
k

= ln |λ|,

ii)

lim inf
k→∞

− ln ||U(k)||
k

= ln |λ| − β.

iii) There is an explicit sequence of upper density 1− 1
2

β
ln |λ| ,

12, along which

lim
k→∞

− ln ||U(k)||
k

= ln |λ|.

iv) There is an explicit sequence of upper density 1
2

β
ln |λ| ,

13along which

lim sup
k→∞

− ln ||U(k)||
k

< ln |λ|.

The fact that g is not always the reciprocal of f leads also to another
interesting phenomenon.

Let 0 ≤ δk ≤ π
2

be the angle between vectors U(k) and Ũ(k).

11The sequence with convergence to the Lyapunov exponent contains qn, n = 1, · · · .
12The sequence contains b qn2 c, n = 1, · · · .
13This sequence can have lower density ranging from 0 to 1

2
β

ln |λ| depending on finer

continued fraction properties of α.
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Corollary 7.13. We have

lim sup
k→∞

ln δk
k

= 0, (57)

and

lim inf
k→∞

ln δk
k

= −β. (58)

Thus neighborhoods of resonances qn are the places of exponential tangen-
cies between contracted and expanded directions, with the rate approaching
−β along a subsequence.14 This means, in particular, that Ak with k ∼ qn
is exponentially close to a matrix with the trace e(ln |λ|−β)k. Exponential tan-
gencies also happen around points of the form jqn but at lower strength.

8 Asymptotics of eigenfunctions and univer-

sal hierarchical structure for phase reso-

nances

Our proof of localization is, again, based on determining the exact asymp-
totics of the generalized eigenfunctions in the regime |λ| > eδ(α,θ). However,
the asymptotics (and the methods required) are very different in the case of
phase resonances.

For any `, let x0 (we can choose any one if x0 is not unique) be such that

| sin π(2θ + x0α)| = min
|x|≤2|`|

| sin π(2θ + xα)|.

Let η = 0 if 2θ+ x0α ∈ Z, otherwise let η ∈ (0,∞) be given by the following
equation,

| sin π(2θ + x0α)| = e−η|`|. (59)

Define f : Z→ R+ as follows.
Case 1: x0 · ` ≤ 0. Set f(`) = e−|`| ln |λ|.
Case 2. x0 · ` > 0. Set f(`) = e−(|x0|+|`−x0|) ln |λ|eη|`| + e−|`| ln |λ|.
We say that φ is a generalized eigenfunction of H with generalized eigen-

value E, if
Hφ = Eφ, and |φ(k)| ≤ Ĉ(1 + |k|). (60)

14In fact, the rate is close to − ln qn+1

qn
for any large n.
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For a fixed generalized eigenvalue E and corresponding generalized eigen-

function φ of Hλ,α,θ, let U(`) =

(
φ(`)

φ(`− 1)

)
. We have

Theorem 8.1. Assume ln |λ| > δ(α, θ). Then for any ε > 0, there exists K
such that for any |`| ≥ K, U(`) satisfies

f(`)e−ε|`| ≤ ||U(`)|| ≤ f(`)eε|`|. (61)

In particular, the eigenfunctions decay at the rate ln |λ| − δ(α, θ).

Remark

• For δ = 0 we have that for any ε > 0,

e−(ln |λ|+ε)|`| ≤ f(`) ≤ e−(ln |λ|−ε)|`|.

This implies that the eigenfunctions decay precisely at the rate of Lya-
punov exponent ln |λ|.

• For δ > 0, by the definition of δ and f , we have for any ε > 0,

f(`) ≤ e−(ln |λ|−δ−ε)|`|. (62)

• By the definition of δ again, there exists a subsequence {`i} such that

| sin π(2θ + `iα)| ≤ e−(δ−ε)|`i|.

By the DC on α, one has that

| sin π(2θ + `iα)| = min
|x|≤2|`i|

| sin π(2θ + xα)|.

Then
f(`i) ≥ e−(ln |λ|−δ+ε)|`i|. (63)

This implies the eigenfunctions decay precisely at the rate ln |λ| −
δ(α, θ).

• If x0 is not unique, by the DC on α, η is necessarily arbitrarily small.
Then

e−(ln |λ|+ε)|`| ≤ ||U(`)|| ≤ e−(ln |λ|−ε)|`|.
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The behavior described in Theorem 8.1 happens around arbitrary point.
This, coupled with effective control of parameters at the local maxima, allows
to uncover the self-similar nature of the eigenfunctions. Hierarchical behav-
ior of solutions, despite significant numerical studies and even a discovery of
Bethe Ansatz solutions [94] has remained an important open challenge even
at the physics level. In the previous section we described universal hierar-
chical structure of the eigenfunctions for all frequencies α and phases with
δ(α, θ) = 0. In studying the eigenfunctions of Hλ,α,θ for δ(α, θ) > 0 Wencai
Liu and I [61] obtained a different kind of universality throughout the pure
point spectrum regime, which features a self-similar hierarchical structure
upon proper reflections.

Assume phase θ satisfies 0 < δ(α, θ) < lnλ. Fix 0 < ς < δ(α, θ).
Let k0 be a global maximum of eigenfunction φ.15 Let Ki be the positions

of exponential resonances of the phase θ′ = θ + k0α defined by

||2θ + (2k0 +Ki)α||R/Z ≤ e−ς|Ki|, (64)

This means that |v(θ′+`α)−v(θ′+(Ki−`)α)| ≤ Ce−ς|Ki|, uniformly in `,
or, in other words, the potential vn = v(θ + nα) is e−ς|Ki|-almost symmetric
with respect to (k0 +Ki)/2.

Since α is Diophantine, we have

|Ki| ≥ cec|Ki−1|, (65)

where c depends on ς and α through the Diophantine constants κ, τ. On the
other hand, Ki is necessarily an infinite sequence.

Let φ be an eigenfunction, and U(k) =

(
φ(k)

φ(k − 1)

)
. We say k is a local

K-maximum if ||U(k)|| ≥ ||U(k + s)|| for all s− k ∈ [−K,K].
We first describe the hierarchical structure of local maxima informally.

There exists a constant K̂ such that there is a local cKj-maximum bj within

distance K̂ of each resonance Kj. The exponential behavior of the eigenfunc-
tion in the local cKj-neighborhood of each such local maximum, normalized
by the value at the local maximum is given by the reflection of f . More-
over, this describes the entire collection of local maxima of depth 1, that is
K such that K is a cK-maximum. Then we have a similar picture in the

15Can take any one if there are several.
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vicinity of bj : there are local cKi-maxima bj,i, i < j, within distance K̂2 of
each Kj −Ki. The exponential (on the Ki scale) behavior of the eigenfunc-
tion in the local cKi-neighborhood of each such local maximum, normalized
by the value at the local maximum is given by f . Then we get the next
level maxima bj,i,s, s < i in the K̂3-neighborhood of Kj − Ki + Ks and re-
flected behavior around each, and so on, with reflections alternating with
steps. At the end we obtain a complete hierarchical structure of local max-
ima that we denote by bj0,j1,...,js , with each “depth s + 1” local maximum
bj0,j1,...,js being in the corresponding vicinity of the “depth s” local maximum
bj0,j1,...,js−1 ≈ k0 +

∑s−1
i=0 (−1)iKji and with universal behavior at the corre-

sponding scale around each. The quality of the approximation of the position
of the next maximum gets lower with each level of depth, with bj0,j1,...,js−1

determined with K̂s precision, thus it presents an accurate picture as long
as Kjs � K̂s.

We now describe the hierarchical structure precisely.

Theorem 8.2. [61] Assume sequence Ki satisfies (64) for some ς > 0. Then
there exists K̂(α, λ, θ, ς) < ∞16 such that for any j0 > j1 > · · · > jk ≥ 0
with Kjk ≥ K̂k+1, for each 0 ≤ s ≤ k there exists a local ς

2 lnλ
Kjs-maximum17

bj0,j1,...,js such that the following holds:

I |bj0,j1,...,js − k0 −
∑s

i=0(−1)iKji | ≤ K̂s+1.

II For any ε > 0, if CK̂k+1 ≤ |x− bj0,j1,...,jk | ≤ ς
4 lnλ
|Kjk |, where C is a large

constant depending on α, λ, θ, ς and ε, then for each s = 0, 1, ..., k,

f((−1)s+1xs)e
−ε|xs| ≤ ||U(x)||

||U(bj0,j1,...,js)||
≤ f((−1)s+1xs)e

ε|xs|, (66)

where xs = x− bj0,j1,...,js.

Thus the behavior of φ(x) is described by the same universal f in each
ς

2 lnλ
Kjs window around the corresponding local maximum bj0,j1,...,js after al-

ternating reflections. The positions of the local maxima in the hierarchy are
determined up to errors that at all but possibly the last step are superloga-
rithmically small in Kjs . We call such a structure reflective hierarchy.

16K̂ depends on θ through 2θ + kα, see (38).
17Actually, it can be a local ( ς

lnλ − ε)Kjs-maximum for any ε > 0.
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reflective self-similarity of an eigenfunction

I II

II′ I′

Global maximum

Kj1

bj1

Kj0

bj0

bj0,j1

0

Kj1

Figure 8: This depicts reflective self-similarity of an eigenfunction with
global maximum at 0. The self-similarity: I′ is obtained from I by scaling
the x-axis proportional to the ratio of the heights of the maxima in I and I′.
II′ is obtained from II by scaling the x-axis proportional to the ratio of the
heights of the maxima in II and II′. The behavior in the regions I′, II′ mirrors
the behavior in regions I, II upon reflection and corresponding dilation.

Finally, as in the frequency resonance case, we discuss the asymptotics of
the transfer matrices. Let, as before, A0 = I and for k ≥ 1,

Ak(θ) =
0∏

j=k−1

A(θ + jα) = A(θ + (k − 1)α)A(θ + (k − 2)α) · · ·A(θ)

and
A−k(θ) = A−1

k (θ − kα),
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where A(θ) =

(
E − 2λ cos 2πθ −1

1 0

)
. Thus Ak is the (k-step) transfer

matrix. It also depends on α and E but since those parameters will be fixed,
we omit them from the notation.

We define a new function g : Z→ R+ as follows.
Case 1: If x0 · ` ≤ 0 or |x0| > |`|, set

g(`) = e|`| ln |λ|.

Case 2: If x0 · ` ≥ 0 and |x0| ≤ |`| ≤ 2|x0|, set

g(`) = e(lnλ−η)|`| + e|2x0−`| ln |λ|.

Case 3: If x0 · ` ≥ 0 and |`| > 2|x0|, set

g(`) = e(lnλ−η)|`|.

We have

Theorem 8.3. Under the conditions of Theorem 8.1, we have

g(`)e−ε|`| ≤ ||A`|| ≤ g(`)eε|`|. (67)

Let ψ(`) denote any solution to Hλ,α,θψ = Eψ that is linearly independent

with φ(`). Let Ũ(`) =

(
ψ(`)

ψ(`− 1)

)
. An immediate counterpart of (67) is

the following

Corollary 8.4. Under the conditions of Theorem 8.1, vectors Ũ(`) satisfy

g(`)e−ε|`| ≤ ||Ũ(`)|| ≤ g(`)eε|`|. (68)

Our analysis also gives

Corollary 8.5. Under the conditions of Theorem 8.1, we have,

i)

lim sup
k→∞

ln ||Ak||
k

= lim sup
k→∞

− ln ||U(k)||
k

= ln |λ|,

ii)

lim inf
k→∞

ln ||Ak||
k

= lim inf
k→∞

− ln ||U(k)||
k

= ln |λ| − δ.
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iii) outside a sequence of lower density 1/2,

lim
k→∞

− ln ||U(k)||
|k|

= ln |λ|, (69)

iv) outside a sequence of lower density 0,

lim
k→∞

ln ||Ak||
|k|

= ln |λ|. (70)

Note that (70) also holds throughout the pure point regime of [60]. As in
the previous section, the fact that g is not always the reciprocal of f leads
to exponential tangencies between contracted and expanded directions with
the rate approaching −δ along a subsequence. Tangencies are an attribute
of nonuniform hyperbolicity and are usually viewed as a difficulty to avoid
through e.g. the parameter exclusion. Our analysis allows to study them
in detail and uncovers the hierarchical structure of exponential tangencies
positioned precisely at phase resonances. The methods developed to prove
these theorems have made it possible to determine also the exact exponent
of the exponential decay rate in expectation for the two-point function [59],
the first result of this kind for any model.

9 Further extensions

While the almost Mathieu family is precisely the one of main interest in
physics literature, it also presents the simplest case of analytic quasiperiodic
operator, so a natural question is which features discovered for the almost
Mathieu would hold for this more general class. Not all do, in particular,
the ones that exploit the self-dual nature of the family Hλ,α,θ often cannot
be expected to hold in general. In case of Theorems 6.2 and 7.1, we conjec-
ture that they should in fact hold for general analytic (or even more general)
potentials, for a.e. phase and with ln |λ| replaced by the Lyapunov expo-
nent L(E), but with otherwise the same or very similar statements. The
hierarchical structure theorems 7.2 and 7.4 are also expected to hold uni-
versally for most (albeit not all, as in the present paper) appropriate local
maxima. Some of our qualitative corollaries may hold in even higher gen-
erality. Establishing this fully would require certain new ideas since so far
even an arithmetic version of localization for the Diophantine case has not
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been established for the general analytic family, the current state-of-the-art
result by Bourgain-Goldstein [27] being measure theoretic in α. However,
some ideas of our method can already be transferred to general trigonomet-
ric polynomials [63]. Moreover, our method was used recently in [43] to show
that the same f and g govern the asymptotics of eigenfunctions and uni-
versality around the local maxima throughout the a.e. localization regime
in another popular object, the Maryland model, as well as in several other
scenarios (work in progress).

So we expect the same arithmetic frequency transition for general analytic
potentials, but as far as the arithmetic phase transitions, we expect the same
results to hold for general even analytic potentials for a.e. frequency, see
more detail below. We note that the singular continuous part up to the
conjectured transition is already established, even in a far greater generality,
in [14, 61].

The universality of the hierarchical structure described in Sections 7, 8 is
twofold: not only it is the same universal function that governs the behavior
around each exponential frequency or phase resonance (upon reflection and
renormalization), it is the same structure for all the parameters involved: any
(Diophantine) frequency α, (any α-Diophantine phase θ) with β(α) < L,
(δ(α, θ) < L), and any eigenvalue E. The universal reflective-hierarchical
structure requires evenness of the function defining the potential, and more-
over, in general, resonances of other types may also be present. However,
we conjectured in [61] that for general even analytic potentials for a.e. fre-
quency only finitely many other exponentially strong resonances will appear,
thus the structure described here will hold for the corresponding class, with
the lnλ replaced by the Lyapunov exponent L(E) throughout.

The key elements of the technique developed for the treatment of arith-
metic resonances are robust and have made it possible to approach other
scenarios, and in particular, study delicate properties of the singular contin-
uous regime, obtaining upper bounds on fractal dimensions of the spectral
measure and quantum dynamics for the almost Mathieu operator [62], as
well as potentials defined by general trigonometric analytic functions [63].

Finally, we briefly comment that for Schrödinger operators with analytic
periodic potentials, almost Lipshitz continuity of gaps holds for Diophantine
α for all non-critical (in the sense of Avila’s global theory [5]) energies [64].
For critical energies, we do not have anything better than Hölder-1

2
regularity

that holds universally. For the prototypical critical potential, the critical
almost Mathieu, almost Lipshitz continuity of spectra also holds, because of
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the hidden singularity. This leads to two potentially related questions for
analytic quasiperiodic Schrödinger operators:

1. Does some form of uniform almost Lipshitz continuity always hold?

2. Is there always a singularity hidden behind the criticality?

A positive answer to the second question would lead to a statement that
critical operators never have eigenvalues and that Hausdorff dimension of the
critical part of the spectrum is always bounded by 1/2.
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2 Arithmetic spectral transitions

1. Introduction

Unlike random, one-dimensional quasiperiodic operators feature spectral tran-
sitions with changes of parameters. The transitions between absolutely contin-
uous and singular spectra are governed by vanishing/non-vanishing of the Lya-
punov exponent. In the regime of positive Lyapunov exponents there are also
more delicate transitions: between localization (point spectrum with exponen-
tially decaying eigenfunctions) and singular continuous spectrum, and dimen-
sional/quantum dynamics transitions within the regime of singular continuous
spectrum, governed by the arithmetics. Delicate dependence of spectral proper-
ties on the arithmetics is perhaps the most mathematically fascinating feature of
quasiperiodic operators, made particularly prominent by Douglas Hofstadter’s
famous plot of spectra of the almost Mathieu operators, the Hofstadter’s but-
terfly [21], see Figure 1.0.1, demonstrating their self-similarity governed by the
continued fraction expansion of the magnetic flux.

Figure 1.0.1. Hofstadter’s butterfly

This self-similarity is even more remarkable because it appears even in various
experimental and quantum computing contexts, see e.g. Figure 1.0.2.

Figure 1.0.2. Photon spectrum simulated using a chain of 9
super-conducting quantum qubits [42]
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Remarkably, such self-similarity of both spectra and eigenfunctions were pre-
dicted a dozen years before Hofstadter in the work of Mark Azbel [11], which,
according to Hofstadter, was way ahead of its time. The self-similar behavior
of eigenfunctions reflects the self-similar nature of resonances that are in com-
petition with hyperbolicity provided by the Lyapunov growth. This competition
also leads to the sharp transition between pure point (hyperbolicity wins) and
singular continuous (resonances win) spectra in the positive Lyapunov exponent
regime.

In the first three lectures we will outline a method to prove 1D Anderson lo-
calization in the regime of positive Lyapunov exponents that has allowed to solve
the sharp arithmetic spectral transition problem (from absolutely continuous to
singular continuous to pure point spectrum) for the almost Mathieu operator, in
coupling, frequency and phase, and to describe the self-similar structure of local-
ized eigenfunctions. The method is an adaptation of [24, 30], but has its roots in
[34] and even [32], with an important development in [4]. The last lecture will be
devoted to the opposite goal: a method to prove certain delocalization within the
regime of singular continuous spectrum (after [27]), that allowed to obtain a sharp
arithmetic spectral transition result for the entire class of analytic quasiperiodic
potentials.

2. The basics

2.1. Spectral measure of a selfadjoint operator Let H be a selfadjoint operator
on a Hilbert space H. The time evolution of a wave function is described in the
Schrödinger picture of quantum mechanics by

i
∂ψ

∂t
= Hψ.

The solution with initial condition ψ(0) = ψ0 is given by

ψ(t) = e−itHψ0.

By the spectral theorem, for any ψ0 ∈ H, there is a unique spectral measure
µψ0 such that

(2.1.1) (e−itHψ0,ψ0) =

∫
R

e−itλdµψ0(λ).

2.2. Spectral decompositions Let H = Hpp
⊕

Hsc
⊕

Hac, where

Hγ = {φ ∈ H : µφ is γ}

and γ ∈ {pp, sc,ac}. Here pp (sc, ac) are abbreviations for pure point (singular
continuous, absolutely continuous).

The operator H preserves each Hγ, where γ ∈ {pp, sc,ac}. We may then define:
σγ(H) = σ(H|Hγ

), γ ∈ {pp, sc,ac}. The set σpp(H) admits a direct characteriza-
tion as the closure of the set of all eigenvalues

σpp(H) = σp(H),
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where

σp(H) = {λ : there exists a nonzero vector ψ ∈ H such that Hψ = λψ}.

2.3. Ergodic operators We are going to study discrete one-dimensional Schrö-
dinger operators with potentials related to dynamical systems. Let H = ∆+V be
defined by

(Hu)(n) = u(n+ 1) + u(n− 1) + V(n)u(n)(2.3.1)

on a Hilbert space H = `2(Z). Here V : Z → R is the potential. Let (Ω,P) be
a probability space. A measure-preserving bijection T : Ω → Ω is called ergodic,
if any T -invariant measurable set A ⊂ Ω has either P(A) = 1 or P(A) = 0. By a
dynamically defined potential we understand a family Vω(n) = v(Tnω),ω ∈ Ω,
where v : Ω→ R is a measurable function. The corresponding family of operators
Hω = ∆+ Vω is called an ergodic family. More precisely,

(2.3.2) (Hωu)(n) = u(n+ 1) + u(n− 1) + v(Tnω)u(n).

Theorem 2.3.3 (Pastur [41]; Kunz-Souillard [36]). There exists a full measure set
Ω0 and

∑
,
∑
pp,
∑
sc,
∑
ac such that for all ω ∈ Ω0, we have σ(Hω) =

∑
, and

σγ(Hω) =
∑
γ , γ = pp, sc,ac.

Theorem 2.3.4. [Avron-Simon [10],Last-Simon [38]] If T is minimal, then σ(Hω) =
∑

,
and σac(Hω) =

∑
ac for all ω ∈ Ω.

Theorem 2.3.4 does not hold for σγ(Hω) with γ ∈ {sc,pp} [26], but whether
it holds for σsing(Hω) = σpp(Hω) ∪ σsc(Hω) is an interesting and difficult open
problem.

2.4. Schnol’s theorem Let H = ∆+ V be a Schrödinger operator on `2(Z). We
say u is a generalized eigenfunction and E is the corresponding generalized eigen-
value if Hu = Eu and |u(n)| 6 C(1 + |n|)

1
2+ε for some C, ε > 0.

Theorem 2.4.1 (Schnol’s theorem). Let S be the set of all generalized eigenvalues. For
any ψ ∈ `2(Z), the spectral measure µψ gives full weight to S and σ(∆+ V) = S.

Here we modify the definition a little bit to avoid unnecessary notations. We
will say that φ is a generalized eigenfunction of H with generalized eigenvalue E,
if

(2.4.2) Hφ = Eφ, and |φ(k)| 6 Ĉ(1 + |k|).

In the following, we usually normalize φ(k) so that

(2.4.3) φ2(0) +φ2(−1) = 1.

2.5. Anderson Localization We say a self-adjoint operator H on `2(Z) satisfies
Anderson localization if H only has pure point spectrum and all the eigenfunc-
tions decay exponentially. By Schnol’s theorem, in order to show the Anderson
localization ofH, it suffices to prove that all polynomially bounded eigensolutions
are exponentially decaying.
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This can be done by establishing exponential off-diagonal decay of Green’s
functions. Block-resolvent expansion, a form of which we are about to see, is
the backbone of Fröhlich-Spencer’s multi-scale analysis, allowing to pass from
smaller to larger scales and from local to global decay. The form we present,
first developed for the almost Mathieu operator [32, 34], includes an important
modification of multi-scale analysis type arguments, in simultaneously consid-
ering shifted boxes. This is the central ingredient in nonperturbative proofs for
deterministic potentials [12].

For an interval I ⊂ Z, let GI = (RI(Hx − I)RI)
−1 if well defined (GI is called

the Green’s function).

Definition 2.5.1. Fix τ > 0, 0 < δ < 1/2. A point y ∈ Z will be called (τ,k, δ)
regular if there exists an interval [x1, x2] containing y, where x2 = x1 + k− 1, such
that

|G[x1,x2](y, xi)| 6 e−τ|y−xi| and |y− xi| > δk for i = 1, 2.

This definition can be easily made multi-dimensional, with obvious modifica-
tions. The following argument is also multi-dimensional but we present a 1D
version for simplicity.

First note that for Hφ = Eφ, we have φ = GIΓIφ where ΓI is the decoupling
operator at the boundary of I. In one dimensional case this reads

(2.5.2) φ(x) = −G[x1,x2](x1, x)φ(x1 − 1) −G[x1,x2](x, x2)φ(x2 + 1),

where x ∈ I = [x1, x2] ⊂ Z.

Theorem 2.5.3. Let h(k) → ∞ as k → ∞. Suppose Hφ = Eφ and φ satisfies (2.4.2).
Suppose for any large k ∈ Z, k is (τ,y, δ) regular for some h(k) 6 y 6 k. Then H
satisfies Anderson localization. Moreover for any eigenfunction,

lim sup
n

ln |φ(n)|

n
6 −τ .

Proof. : Under the assumptions, there is some k̂ > δmin
y∈[
√
k,2k] h(y) such that

for any y ∈ [
√
k, 2k], there exists an interval I(y) = [x1, x2] ⊂ [−4k, 4k] with

y ∈ I(y) such that

(2.5.4) dist(y,∂I(y)) > k̂

and

(2.5.5) |GI(y)(y, xi)| 6 e−τ|y−xi|, i = 1, 2.

Denote by ∂I(y) the boundary of the interval I(y). For z ∈ ∂I(y), let z ′ be the
neighbor of z, (i.e., |z− z ′| = 1) not belonging to I(y).

If x2 + 1 < 2k or x1 − 1 >
√
k, we can expand φ(x2 + 1) or φ(x1 − 1) as (2.5.2).

We can continue this process until we arrive to z such that z+1 > 2k or z−1 6
√
k,

or the iterating number reaches [ 2k
k̂
], where [t] denotes the greatest integer less

than or equal to t.
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By (2.5.2),

(2.5.6)
∣∣∣φ(k)∣∣∣ = ∣∣∣∑

s

∑
zi+1∈∂I(z′i)

GI(k)(k, z1)

s∏
i=1

(
GI(z′i)

(z′i, zi+1)
)
φ(z′s+1)

∣∣∣,
where in each term of the summation we have

√
k+ 1 < zi < 2k− 1, i = 1, · · · , s,

and either zs+1 /∈ [
√
k+ 2, 2k− 2], s+ 1 < [ 2k

k̂
]; or s+ 1 = [ 2k

k̂
].

If zs+1 /∈ [
√
k + 2, 2k − 2], s + 1 < [ 2k

k̂
], by (2.5.5) and noting that we have

|φ(z′s+1)| 6 (1 + |z′s+1|)
C 6 kC, one has∣∣∣ ∑

zi+1∈∂I(z′i)

GI(k)(k, z1)

s∏
i=1

(
GI(z′i)

(z′i, zi+1)
)
φ(z′s+1)

∣∣∣
6 e−τ(|k−z1|+

∑s
i=1 |z

′
i−zi+1|) kC

6 e−τ(|k−zs+1|−(s+1)) kC

6 max{e−τ(k−
√
k−4− 2k

k̂
)
kC, e−τ(2k−k−4− 2k

k̂
)
kC}.

(2.5.7)

If s+ 1 = [ 2k
k̂
], using (2.5.4) and (2.5.5), we obtain

(2.5.8) |GI(k)(k, z1)GI(z′1)
(z′1, z2) · · ·GI(z′s)(z

′
s, zs+1)φ(z

′
s+1)| 6 k

Ce
−τk̂[ 2k

k̂
].

Finally, notice that the total number of terms in ( 2.5.6) is at most 2[
2k
k̂
]. Com-

bining with (2.5.7) and (2.5.8), since k/k̂ = o(k), we obtain for any ε > 0,

|φ(k)| 6 e−(τ−ε)k

for large enough k . For k < 0, the proof is similar. Thus one has

�(2.5.9) |φ(k)| 6 e−(τ−ε)|k| if |k| is large enough.

Therefore we only need to prove that large k ∈ Z, are (τ,h(k), δ) regular for
some τ,h, δ.

Lemma 2.5.10. Suppose Hφ = Eφ and φ satisfies (2.4.2) and (2.4.3). Then 0 is (τ,k, δ)
singular for any τ, δ > 0.

Proof. It follows from (2.5.2) immediately. �

Thus it suffices to show that (τ,k, δ) singular points are sufficiently far apart.

2.6. Cocycles and Lyapunov exponents By a cocycle, we mean a pair (T ,A),
where an invertible T : Ω → Ω is ergodic, A is a measurable 2× 2 matrix valued
function on Ω and detA = 1. This is what is usually called an SL2(R) cocycle, but
we will simply say “a cocycle”.

We can regard it as a dynamical system on Ω×R2 with

(T ,A) : (x, f) 7−→ (Tx,A(x)f), (x, f) ∈ Ω×R2.

For k > 0, we define the k-step transfer matrix as

Ak(x) =

1∏
l=k

A(T l−1x).
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For k < 0, define Ak(x) = A−1
−k(T

kx). Denote A0 = I, where I is the 2 × 2
identity matrix. Then fk(x) = ln ||Ak(x)|| is a subadditive ergodic process. The
(non-negative) Lyapunov exponent (LE) for the cocycle (α,A) is given by

(2.6.1) L(T ,A) = inf
n

1
n

∫
Ω

ln ‖An(x)‖dx
a.e. x
===== lim

n→∞ 1
n

ln ‖An(x)‖dx,

with both the existence and the second equality in (2.6.1) guaranteed by King-
man’s subadditive ergodic theorem. Cocycles with positive Lyapunov exponents
are called hyperbolic. Here one should distinguish uniform hyperbolicity where
there exists a continuous splitting of R2 into expanding and contracting direc-
tions, and nonuniform, where L > 0 but such splitting does not exist. Neverthe-
less,

Theorem 2.6.2 (Oseledec). Suppose L(T ,A) > 0. Then, for almost every x ∈ Ω ,
there exist solutions v+, v− ∈ C2 such that ||Ak(x)v

±|| decays exponentially at ±∞,
respectively, at the rate −L(T ,A). Moreover, for every vector w which is linearly inde-
pendent with v+ (resp., v−), ||Ak(x)w|| grows exponentially at +∞ (resp., −∞) at the
rate L(T ,A).

Suppose u is an eigensolution of Hxu = Eu. Then

(2.6.3)

[
u(n+m)

u(n+m− 1)

]
= An(T

mx)

[
u(m)

u(m− 1)

]
,

where An(x) is the transfer matrix of A(x) and

A(x) =

(
E− v(x) −1

1 0

)
.

Such (T ,A(x)) is called the Schrödinger cocycle. Denote by L(E) the Lyapunov
exponent of the Schrödinger cocycle (we omit the dependence on T and v). It
turns out that (at least for uniquely ergodic dynamics) the resolvent set of H is
precisely the set of uniform hyperbolicity of the Schrödinger cocycle. The set
σ ∩ {L(E) > 0} is therefore the set of non-uniform hyperbolicity, and is our main
interest. Then Oseledec theorem can be reformulated as

Theorem 2.6.4. Suppose that L(E) > 0. Then, for every x ∈ ΩE (ΩE has full measure),
there exist solutions φ+,φ− of Hxφ = Eφ such that φ± decays exponentially at ±∞,
respectively, at the rate −L(E). Moreover, every solution which is linearly independent of
φ+ (resp., φ−) grows exponentially at +∞ (resp., −∞) at the rate L(E).

It turns out that the set where the Lyapunov exponent vanishes fully deter-
mines the absolutely continuous spectrum.

Theorem 2.6.5 (Ishii-Pastur-Kotani). σac(Hx) = {E ∈ R : L(E) = 0}
ess

for almost
every x ∈ Ω.

The inclusion “⊆” was proved by Ishii and Pastur [22, 41]. The other inclusion
was proved by Kotani [35, 43]. Here we give a proof of the Ishii-Pastur part.
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Proof. Denote Z = {E ∈ R : L(E) = 0}. If L(E) > 0, Oseledec’ Theorem says that
for almost every x, the eigensolution u(x,E) of Hxu = Eu is either exponentially
decaying or exponentially growing. Applying Fubini’s theorem, we see that for
almost every x (with respect to P), the set of E ∈ R \ Z for which the property
just described fails, has zero Lebesgue measure. In other words, let S1 ⊂ R \ Z be
the set with the non-Oseledec behavior. Then S1 has zero Lebesgue measure. It
implies that S1 has zero weight with respect to the absolutely continuous part of
any spectral measure. Let S2 ⊂ R \ Z be the set with the Oseledec behavior. To
prove the Theorem, it suffices to show S2 has zero weight with respect to any ac
spectral measure. Indeed, if the solution of Hxu = Eu is exponentially growing
at ∞ or −∞, by Schnol’s theorem, such E does not make any contribution to the
spectral measure. If the solution ofHxu = Eu is exponentially decaying at both∞
and −∞, then E is an eigenvalue. The collection of eigenvalues must be countable,
which also gives zero weight with respect to the ac spectral measure. �

It may seem that positive Lyapunov exponent should imply pure point spec-
trum with exponentially localized eigenfunctions, since, as above, for every E
and a.e. phase a solution, if polynomially bounded, must decay exponentially
on both sides. However, this is a flawed argument because, for a given phase,
spectral measures may potentially be supported on the zero measure set of E,
excluded by the Fubini theorem, for which there may be no such behavior. It
turns out this is not a nuisance to disprove in relevant situations, but actually
does happen in some of the prominent examples.

2.7. Example: The Almost Mathieu Operator The almost Mathieu operator
(AMO) is the (discrete) quasi-periodic Schrödinger operator on `2(Z):

(2.7.1) (Hλ,α,θu)(n) = u(n+ 1) + u(n− 1) + 2λ cos 2π(θ+nα)u(n),

where λ is the coupling, α is the frequency, and θ is the phase.
For the AMO, L(E) can be computed exactly for E on the spectrum, but for now

we will just need an estimate L(E) > ln λ for all α /∈ Q,E (See Theorem 3.0.2 for
details). Thus, for λ > 1, Lyapunov exponent is strictly positive on the spectrum.
In fact, we will later see that it does not even feel the arithmetics and is constant
in the spectrum in both E and α.

We now quickly review the basics of continued fraction approximations.

2.8. Continued fraction expansion Define, as usual, for 0 6 α < 1,

a0 = 0,α0 = α,

and, inductively for k > 0,

ak = bα−1
k−1c,αk = α−1

k−1 − ak.

We define

p0 = 0, q0 = 1,

p1 = 1, q1 = a1,
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and inductively,

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.

Recall that {qn}n∈N is the sequence of denominators of best rational approxi-
mants to irrational number α, since it satisfies

(2.8.1) for any 1 6 k < qn+1, ‖kα‖R/Z > ||qnα||R/Z.

Moreover, we also have the following estimate,

(2.8.2)
1

2qn+1
6 ∆n , ‖qnα‖R/Z 6

1
qn+1

.

Here, we give several arithmetic conditions on α:

• α is called Diophantine if there exists κ,ν > 0 such that ||kα|| > ν
|k|κ

for
any k 6= 0, where ||x|| = min

k∈Z
|x− k|.

• α is called Liouville if

(2.8.3) β(α) = lim sup
k→∞

− ln ||kα||R/Z

|k|
= lim sup

n→∞
lnqn+1

qn
> 0

• α is called weakly Diophantine if β(α) = 0.

Clearly, Diophantine implies weakly Diophantine. By Borel-Cantelli lemma, Dio-
phantine α form a set of full Lebesgue measure.

Lemma 2.8.4 (Gordon [18], Avron-Simon [9]). Suppose v ∈ C1(T). There is some
constant C such that if β(α) > C, then σpp(Hv,α,θ) = ∅.

Remark: The constant in Lemma 2.8.4 can be estimated in a sharp way [4, 8].
Lemma 2.8.4 is the first indication of the role of arithmetics in the spectral

theory of quasiperiodic operators in the regime of positive LE, as it demonstrates
the necessity of imposing an arithmetic condition.

Let us now denote

Pk(x) = det(R[0,k−1](Hx − E)R[0,k−1]).

It is easy to check by induction that

(2.8.5) Ak(x) =

(
Pk(x) −Pk−1(Tx)

Pk−1(x) −Pk−2(Tx)

)
.

Thus in the regime of positive L(E), Pk “typically” behaves as ekL(E).
By Cramer’s rule, for given x1 and x2 = x1 + k− 1, with y ∈ I = [x1, x2] ⊂ Z,

one has

(2.8.6) |GI(x1,y)| =

∣∣∣∣∣Px2−y(T
y+1x)

Pk(Tx1x)

∣∣∣∣∣
and

(2.8.7) |GI(y, x2)| =

∣∣∣∣Py−x1(T
x1x)

Pk(Tx1x)

∣∣∣∣ .
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Thus if Pk indeed hadn’t deviated much from ekL(E), we would immediately
have exponential decay of both terms. It turns out that for uniquely ergodic T
there are no bad deviations for the numerator.

Lemma 2.8.8 ([15]). Suppose T is uniquely ergodic, continuous and A is continuous.
Then

(2.8.9) L(T ,A) = lim
n→∞ sup

x∈Ω

1
n

ln ‖An(x)‖.

Under the assumptions of Lemma 2.8.8, we have for ε > 0,

(2.8.10) |Pk(θ)|, ‖Ak(x)‖ 6 e(L+ε)k, for k large enough.

Thus all deviations can only happen on the lower side. We denote the large
deviation set by Ak,ε = {x : |Pk(x)| < exp

(
(k+ 1)(L− ε)

)
}.

Lemma 2.8.11. Assume x is (L − ε,k, 1
4 )-singular. Then, for large k, we can choose

j ∈ Ik,x = [x− 3k/4, x− k/4] so that T j+k−1x /∈ A
k, 1

4ε+ε1
for any ε1 > 0.

Thus, two (L − ε,k, 1
4 )-singular points x1, x2 such that Ik,x1 and Ik,x2 do not

intersect, produce two long strings of consecutive iterations that fall into the large
deviation set.

3. Basics for the Almost Mathieu Operators

It is easy to see that Pk(θ) is an even function of θ + 1
2 (k − 1)α and can be

written as a polynomial of degree k in cos 2π(θ+ 1
2 (k− 1)α) :

Pk(θ) =

k∑
j=0

cj cosj 2π(θ+
1
2
(k− 1)α) , Qk(cos 2π(θ+

1
2
(k− 1)α)),

where Qk is an algebraic polynomial of degree k.
For the almost Mathieu operator, the transfer matrix is given by

(3.0.1) Ak(θ) =

0∏
j=k−1

A(θ+ jα) = A(θ+ (k− 1)α)A(θ+ (k− 2)α) · · ·A(θ)

and A(θ) =

(
E− 2λ cos 2πθ −1

1 0

)
.

By Herman’s trick [12,20], we get the following lower bound estimate for λ > 1,

Theorem 3.0.2.

(3.0.3)
∫

T

(ln |Pk|)dθ > k ln λ;
∫

T

(ln ||Ak||)dθ > k ln λ.

For the AMO, the Lyapunov exponent on the spectrum actually can be ob-
tained explicitly.

Theorem 3.0.4 ([13]). For every α ∈ R\Q, λ ∈ R and E ∈ σ(Hλ,α,θ), one has
Lλ,α(E) = max{ln λ, 0}.
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Moreover, one can even compute the Lyapunov exponent Lε of a complexified
cocycle A(x+ iε). It leads to the following three cases (see [2, 3] for more general
definitions).

Subcritical: λ < 1. In this case, we have Lε(E) = 0 for E ∈ σ(Hλ,α,θ) and
ε 6 − lnλ

2π . Hλ,α,θ has purely ac spectrum [1, 5].
Critical: λ = 1. In this case, it can be shown that L(E) = 0 for E ∈ σ(Hλ,α,θ),

but Lε(E) > 0 for E ∈ σ(Hλ,α,θ) and ε > 0. Hλ,α,θ has purely sc spectrum
[6, 7, 23, 37].

Supercritical: λ > 1. L(E) = ln λ > 0 for E ∈ σ(Hλ,α,θ).

In these lectures, we are interested only in the supercritical regime, λ > 1. In
the following we always assume E ∈ σ(Hλ,α,θ).

The fact that Pk(θ) = Qk

(
cos 2π

(
θ + 1

2 (k − 1)α
))

, hence is a polynomial in
cos 2π

(
θ+ 1

2 (k− 1)α
)

allows the use of the following Lagrange interpolation trick.
Note that by Lagrange interpolation, Qk(x) =

∑k
j=1
∏
i 6=jQk(xj)

x−xi
xj−xi

. Thus if
θi, i = 1, ...,k+ 1, are in the large deviation set, we must have for some i,

max
x∈[−1,1]

k+1∏
j=1,j6=i

|x− cos 2πθj|
| cos 2πθi − cos 2πθj|

> ekε.

This motivates

Definition 3.0.5. We say that the set {θ1, · · · , θk+1} is ε-uniform if

(3.0.6) max
x∈[−1,1]

max
i=1,··· ,k+1

k+1∏
j=1,j 6=i

|x− cos 2πθj|
| cos 2πθi − cos 2πθj|

6 ekε.

This is a convenient way of stating that the θi have low discrepancy since∫
ln |a− cos 2πx|dx = − ln 2 for any a ∈ [−1, 1].
We have the following Lemma.

Lemma 3.0.7. Suppose {θ1, · · · , θk+1} is ε1-uniform. Then there exists a θi in the set
{θ1, · · · , θk+1} such that θi − k−1

2 α /∈ Ak,ε, if ε > ε1 and k is sufficiently large.

We also have

Lemma 3.0.8. [4, Lemma 9.7] Let α ∈ R\Q, x ∈ R and 0 6 `0 6 qn − 1 be such that
| sinπ(x+ `0α)| = inf06`6qn−1 | sinπ(x+ `α)|, then for some absolute constant C > 0,

(3.0.9) −C lnqn 6
qn−1∑
`=0,` 6=`0

ln | sinπ(x+ `α)|+ (qn − 1) ln 2 6 C lnqn.

4. First transition line for Diophantine frequencies and phases

We already know that non-Diophantine frequencies are trouble for localization,
so let’s fix a Diophantine α. It turns out, somewhat surprisingly, that the phase θ
matters as well.
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• θ is called Diophantine with respect to α (or just α−Diophantine) if there
exists κ,ν > 0 such that ||2θ+ kα|| > ν

|k|κ
for any k 6= 0.

• θ is called Liouville with respect to α if

δ(α, θ) = lim sup
k→∞

− ln ||2θ+ kα||R/Z

|k|
> 0

• θ is called weakly Diophantine with respect to α if δ(α, θ) = 0.

By Borel-Cantelli lemma, for fixed α, the set of α−Diophantine has full Lebesgue
measure. We have

Lemma 4.0.1 (J.-Simon [26]). For even functions v ∈ C1(T), there exists some constant
C > 0 such that if δ(α, θ) > C, then σpp(Hv,α,θ) = ∅.

Thus we need Diophantine-type conditions on both α and θ. In this section,
we will prove

Theorem 4.0.2. Suppose α is Diophantine and θ is Diophantine with respect to α. Then
the almost Mathieu operator Hλ,α,θ satisfies Anderson localization.

Remark 4.0.3. • Theorem 4.0.2 was proved in [34]. Here the frame of the
proof follows [34], with some modifications from [30, 39, 40].
• Actually, the proof of Theorem 4.0.2 holds also for weakly Diophantine

frequencies and phases.

Let E be a generalized eigenvalue with generalized eigenfunction φ. Without
loss of generality, assume φ(0) = 1 (sometimes we assume φ2(0) + φ2(1) = 1).
Take k > 0. Let n be such that qn 6 k

4 < qn+1. Set I1 and I2 as follows:

(4.0.4) I1 = [−qn,qn − 1]

and

(4.0.5) I2 = [k− qn,k+ qn − 1].

The set {θj}j∈I1∪I2 consists of 4qn elements, where θj = θ+ jα and j ranges
through I1 ∪ I2.

Since α is Diophantine, one has

qn+1 6 k
C, k 6 qCn .

Theorem 4.0.6. For any ε > 0, the set {θj}j∈I1∪I2 is ε-uniform if n is sufficiently large.

Proof. We first estimate the numerator in (3.0.6). In (3.0.6), let x = cos 2πa and
take the logarithm. One has∑

j∈I1∪I2,j6=i
ln | cos 2πa− cos 2πθj|

=
∑

j∈I1∪I2,j 6=i
ln | sinπ(a+ θj)|+

∑
j∈I1∪I2,j6=i

ln | sinπ(a− θj)|+ (4qn − 1) ln 2

=
∑

+
+

∑
−

+ (4qn − 1) ln 2,

(4.0.7)
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where, in the final line,
∑

+ and
∑

− are the corresponding sums from the second
line. Both

∑
+ and

∑
− consist of 4 terms of the form of (3.0.9), plus 4 terms of

the form

(4.0.8) ln min
j=0,1,··· ,qn−1

| sinπ(x+ jα)|,

minus ln | sinπ(a ± θi)|. There exists an interval of length qn containing i, in
both sums. By the minimality, the minimum over this interval is not more than
ln | sinπ(a± θi)| (). Thus, using (3.0.9) 4 times for each of

∑
+ and

∑
−, one has

(4.0.9)
∑

j∈I1∪I2,j 6=i
ln | cos 2πa− cos 2πθj| 6 −4qn ln 2 +C lnqn.

The estimate of the denominator of (3.0.6) requires a bit more work. Without loss
of generality, assume i ∈ I1.

In (4.0.7), let a = θi. We obtain∑
j∈I1∪I2,j 6=i

ln | cos 2πθi − cos 2πθj|

=
∑

j∈I1∪I2,j6=i
ln | sinπ(θi + θj)|+

∑
j∈I1∪I2,j6=i

ln | sinπ(θi − θj)|+ (4qn − 1) ln 2

=
∑

+
+
∑

−
+ (4qn − 1) ln 2,

(4.0.10)

where now

(4.0.11)
∑

+
=

∑
j∈I1∪I2,j6=i

ln | sinπ(2θ+ (i+ j)α)|,

and

(4.0.12)
∑

−
=

∑
j∈I1∪I2,j6=i

ln | sinπ(i− j)α|.

We first estimate
∑

+
. First I1 ∪ I2 can be represented as a disjoint union of

four segments Bj, each of length qn. Applying (3.0.9) to each Bj, we obtain

(4.0.13)
∑

+
> −4qn ln 2 +

∑
j∈J1∪J2

ln | sinπθ̂j|−C lnqn − ln | sin 2π(θ+ iα)|,

where

(4.0.14) | sinπθ̂j| = min
`∈Bj

| sinπ(2θ+ (`+ i)α)|.

By the fact that θ is Diophantine with respect to α, we have

(4.0.15) ln | sinπθ̂j| > −C ln |k| > −C lnqn.

Putting (4.0.13)–(4.0.15) together, we have

(4.0.16)
∑

+
> −4qn ln 2 −C lnqn.

Now let us estimate
∑

−
. By the fact that α is Diophantine , we have for i 6= j,

and i, j ∈ I1 ∪ I2,

(4.0.17) ln | sinπ(θi − θj)| > ln |k|−C > −C lnqn.
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Replacing (4.0.15) with (4.0.17) and using the same argument as for
∑

+
, we get

a similar estimate,

(4.0.18)
∑

−
> −4qn ln 2 −C lnqn.

From (4.0.10), (4.0.16) and (4.0.18), we have for any ε > 0,

(4.0.19) max
i∈I1∪I2

( ∏
j∈I1∪I2,j 6=i

| cos 2πa− cos 2πθj|
| cos 2πθi − cos 2πθj|

)
< e(4qn−1)ε,

for n large enough. �

Theorem 4.0.20. Fix any ε > 0. For any large k ∈ Z, k is (ln λ− ε,y, 1
4 ) regular for

some k
1
C 6 y 6 k.

Proof. Define I1 and I2 as in (4.0.4) and (4.0.5). Take y = 4qn. Then, k
1
C 6 y 6 k.

By Lemma 3.0.7, there exists some j0 with j0 ∈ I1 ∪ I2 such that

θj0 −
4qn − 1

2
α /∈ A4qn−1,ε.

By Lemma 2.8.11, for all j ∈ I1, θj −
4qn−1

2 α /∈ A4qn−1,ε. Thus we have j0 ∈ I2.
Set I = [j0 − 2qn + 1, j0 + 2qn − 1] = [x1, x2]. By (2.8.6), (2.8.7) and (2.8.10), it is

easy to verify

|GI(k, xi)| 6 exp{(ln λ+ ε)(4qn − 1 − |k− xi|) − 4qn(ln λ− ε)}.

Notice that |k− xi| > qn, so we obtain

�(4.0.21) |GI(k, xi)| 6 exp{−(ln λ− ε)|k− xi|}.

Proof of Theorem 4.0.2. This Theorem now follows by combining Theorems 2.5.3
and 4.0.20. �

5. Asymptotics of the eigenfunctions and proof of the second spectral
transition line conjecture

By Theorem 2.6.5, Hλ,α,θ does not have ac spectrum for λ > 1. Lemmas 2.8.4
and 4.0.1 imply that Hλ,α,θ has purely singular continuous spectrum if δ(α, θ) or
β(α) is large, and we proved that there is Anderson localization if β = δ = 0.
Is there a sharp transition? The reason large β or δ are trouble is because they
lead to resonances: eigenvalues of box restrictions that are too close to each other
in relation to the distance between the boxes, leading to small denominators in
various expansions. Indeed, large β leads to almost repetitions of the potential,
and large δ to almost reflections.

In both these cases, the strength of the resonances is in competition with the
exponential growth controlled by the Lyapunov exponent. It was conjectured by
the author in 1994 [33] that for the almost Mathieu family the two types of reso-
nances discussed above are the only ones that appear, and that the competition
between the Lyapunov growth and resonance strength resolves, in both cases, in
a sharp way.
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Conjecture 1:

1a: (Diophantine phase) Hλ,α,θ satisfies Anderson localization if λ > eβ(α)

and δ(α, θ) = 0, and Hλ,α,θ has purely singular continuous spectrum for
all θ if 1 < λ < eβ(α).

1b: (Diophantine frequency) Suppose β(α) = 0. Then Hλ,α,θ satisfies An-
derson localization if λ > eδ(α,θ), and has purely singular continuous
spectrum if 1 < λ < eδ(α,θ).

Conjecture 1a says that without phase resonances, if the Lyapunov exponent
beats the frequency resonance, Anderson localization follows. . Conjecture 1b
says that without frequency resonances, if the Lyapunov exponent beats the phase
resonance, then Anderson localization follows. Otherwise, in both cases, Hλ,α,θ

has purely singular continuous spectrum.
In order to simplify the presentation, we assume

(5.0.1) lim
n→∞ lnqn+1

qn
= β(α).

Given α ∈ R\Q we define functions f,g : Z+ → R+ in the following way. Let
pn
qn

be the continued fraction approximants to α. For any qn
2 6 k <

qn+1
2 , define

f(k),g(k) as follows: for ` > 1, let

r̄n` = e−(lnλ−
lnqn+1
qn

+ ln `
qn

)`qn .

Set also r̄n0 = 1 for convenience. If `qn 6 k < (`+ 1)qn with ` > 0, set

(5.0.2) f(k) =
(
e−|k−`qn| lnλ

)
r̄n` +

(
e−|k−(`+1)qn| lnλ

)
r̄n`+1,

and

(5.0.3) g(k) =
(
e−|k−`qn| lnλ|

)qn+1

r̄n`
+
(
e−|k−(`+1)qn| lnλ|

)qn+1

r̄n`+1
.

The graphs of these functions are shown in Figures 5.0.4 and 5.0.5.

r̄n`

r̄n`+2

r̄n`+4

`qn (`+ 1)qn (`+ 2)qn (`+ 3)qn (`+ 4)qn kqn+1
2

qn

2

f(k)

Figure 5.0.4. Graph of f(k).
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qn+1
r̄n`

qn+1
r̄n`+2

qn+1
r̄n`+4

`qn (`+ 1)qn (`+ 2)qn (`+ 3)qn (`+ 4)qn kqn+1
2

qn

2

g(k)

Figure 5.0.5. Graph of g(k).

Theorem 5.0.6. [30] Let α ∈ R\Q be such that λ > eβ(α). Suppose θ is Diophan-
tine with respect to α, E is a generalized eigenvalue of Hλ,α,θ and φ is the generalized
eigenfunction. Let U(k) =

( φ(k)
φ(k−1)

)
. Then for any ε > 0, there exists K (depending on

λ,α, Ĉ, ε and Diophantine constants κ,ν) such that for any |k| > K, U(k) and Ak satisfy

(5.0.7) f(|k|)e−ε|k| 6 ||U(k)|| 6 f(|k|)eε|k|,

and

(5.0.8) g(|k|)e−ε|k| 6 ||Ak|| 6 g(|k|)e
ε|k|.

By (2.8.3), Theorem 5.0.6 implies the following Theorem.

Theorem 5.0.9. [30]Suppose θ is Diophantine with respect to α. Then

1. Hλ,α,θ has Anderson localization if λ > eβ(α).
2. Hλ,α,θ has purely singular continuous spectrum if 1 < λ < eβ(α).
3. Hλ,α,θ has purely absolutely continuous spectrum if λ < 1.

Remark 5.0.10. (1) Part 1 of Theorem 5.0.6 holds for δ(α, θ) = 0.
(2) Part 2 is known for all α, θ [1] and is included here for completeness.
(3) Part 3 is known for all α, θ [8] and is included here for completeness.
(4) Parts 1 and 2 of Theorem 5.0.6 verify the frequency half of the conjecture

in [33]. The measure theoretic version was proved in [8, 28].

Corollary 5.0.11. Under the conditions of Theorem 5.0.6, we have

(I) lim sup
k→∞

ln ||Ak||

k
= ln λ.

(II) lim inf
k→∞ ln ||Ak||

k
= ln λ−β.

(III) lim sup
k→∞

− ln ||U(k)||

k
= ln λ.

(IV) lim inf
k→∞ − ln ||U(k)||

k
= ln λ−β.
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Now let us move to the Diophantine frequency case.

Theorem 5.0.12. [24] Suppose α is Diophantine. We have

1. Hλ,α,θ has Anderson localization if λ > eδ(α,θ).
2. Hλ,α,θ has purely singular continuous spectrum if 1 < λ < eδ(α,θ).
3. Hλ,α,θ has purely absolutely continuous spectrum if λ < 1.

Remark

(1) Parts 1 and 2 of Theorem 5.0.12 hold for weakly Diophantine α.
(2) We can prove part 2 for all irrational α, and general Lipschitz v.
(3) Parts 1 and 2 of Theorem 5.0.12 verify the phase half of the conjecture

stated in [33].

For the Diophantine frequencies case, we can also get the asymptotics of the
eigenfunctions and transfer matrices. For simplicity, we only give the asymptotics
of eigenfunctions. For any `, let x0 (we can choose any one if x0 is not unique) be
such that

| sinπ(2θ+ x0α)| = min
|x|62|`|

| sinπ(2θ+ xα)|.

Let η = 0 if 2θ+ x0α ∈ Z, otherwise let η ∈ (0,∞) be given by the following
equation,

(5.0.13) | sinπ(2θ+ x0α)| = e
−η|`|.

Define f̂ : Z→ R+ as follows.

Case 1: If x0 · ` 6 0, set f̂(`) = e−|`| lnλ.
Case 2: If x0 · ` > 0, set f̂(`) = e−

(
(|x0|+|`−x0|) lnλ

)
eη|`| + e−|`| lnλ.

Theorem 5.0.14. [24] Suppose α is Diophantine. Assume ln λ > δ(α, θ). If E is a
generalized eigenvalue and φ is the corresponding generalized eigenfunction of Hλ,α,θ,
then for any ε > 0, there exists K such that for any |`| > K, U(`) satisfies

(5.0.15) f̂(`)e−ε|`| 6 ||U(`)|| 6 f̂(`)eε|`|.

6. Universal hierarchical structure for Diophantine phases and
universal reflective-hierarchical structure for Diophantine

frequencies

In this section, we will describe the universal hierarchical structure of the eigen-
functions in the Diophantine phase case. For Diophantine frequencies there is
another, also universal, structure, conjectured to hold, for a.e. phase for all even
functions, that features reflective-hierarchy. We refer the readers to [24] for the
description of universal relective-hierarchical structure.

Note that Theorem 5.0.6 holds around arbitrary point k = k0. This implies
the self-similar nature of the eigenfunctions: U(k) behaves as described at scale
qn but when seen in windows of size qk,qk < qn−1 will demonstrate the same
universal behavior around appropriate local maxima/minima.
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To make the above precise, let φ be an eigenfunction, and U(k) =
( φ(k)
φ(k−1)

)
.

Let Ijσ1,σ2 = [−σ1qj,σ2qj], for some 0 < σ1,σ2 6 1. We will say k0 is a local
j-maximum of φ if ||U(k0)|| > ||U(k)|| for k− k0 ∈ Ijσ1,σ2 . Occasionally, we will
also use terminology (j,σ)-maximum for a local j-maximum on an interval Ijσ,σ.

We will say a local j-maximum k0 is nonresonant if

||2θ+ (2k0 + k)α||R/Z >
κ

qj−1
ν

,

for all |k| 6 2qj−1 and

(6.0.1) ||2θ+ (2k0 + k)α||R/Z >
κ

|k|ν
,

for all 2qj−1 < |k| 6 2qj.
We will say a local j-maximum is strongly nonresonant if

(6.0.2) ||2θ+ (2k0 + k)α||R/Z >
κ

|k|ν
,

for all 0 < |k| 6 2qj.
An immediate corollary of (the proof of) Theorem 5.0.6 is the universality of

behavior at all (strongly) nonresonant local maxima.

Theorem 6.0.3. Given ε > 0, there exists j(ε) <∞ such that if k0 is a local j-maximum
for j > j(ε), then the following two statements hold:

If k0 is nonresonant, then

(6.0.4) f(|s|)e−ε|s| 6
||U(k0 + s)||

||U(k0)||
6 f(|s|)eε|s|,

for all 2s ∈ Ijσ1,σ2 , |s| >
qj−1

2 .
If k0 is strongly nonresonant, then

(6.0.5) f(|s|)e−ε|s| 6
||U(k0 + s)||

||U(k0)||
6 f(|s|)eε|s|,

for all 2s ∈ Ijσ1,σ2 .

Theorem 5.0.6 also guarantees an abundance (and a hierarchical structure) of
local maxima of each eigenfunction. Let k0 be a global maximum .

We first describe the hierarchical structure of local maxima informally. We
will say that a scale nj0 is exponential if lnqnj0+1 > cqnj0

.1 Then there is a
constant scale n̂0 thus a constant C := qn̂0+1, such that for any exponential scale
nj and any eigenfunction there are local nj-maxima within distance no more
than C of k0 + sqnj0

for each 0 < |s| < e
cqnj0 . Moreover, these are the only local

nj0 -maxima in the interval [k0 − e
cqnj0 ,k0 + e

cqnj0 ]. The exponential behavior
of the eigenfunction in the local neighborhood (of size qnj0 ) of each such local
maximum, normalized by the value at the local maximum is given by f. Note
that only exponential behavior at the corresponding scale is determined by f and
fluctuations of much smaller size are invisible.
1Note that per our simplifying assumption (5.0.1) all scales n are exponential.
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b1 b2b−1b−2 k0

Global maximum

b2,2b2,1

b1,−1
b1,1
b1,2

b1,1 b1,2b1,−1b1,−2 b1

Local maximum of depth 1

b1,2,2b1,2,1

b1,1,−1
b1,1,1
b1,1,2

Figure 6.0.6. Universal hierarchical structure of an eigenfunction.
Above, a view centered on a global maximum with a window
centered on a local maximum of depth 1. Below, a magnified
view of this local window looks very much like the global view.

Now, let nj1 < nj0 be another exponential scale. Denote the “depth 1” local
maximum located near k0 + anj0

qnj0
by banj0

. Near it, we then have a simi-
lar picture: there are local nj1 -maxima in the vicinity of banj0

+ sqnj1
for each

0 < |s| < e
cqnj1 . Again, this describes all the local qnj1 -maxima within an expo-

nentially large interval. And again, the exponential (for the nj1 scale) behavior
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in the local neighborhood (of size qnj1 ) of each such local maximum, normal-
ized by the value at the local maximum is given by f. Denoting those “depth 2”
local maxima located near banj0

+ anj1
qnj1

, by banj0 ,anj1
we then get the same

picture taking the magnifying glass another level deeper and so on. At the end
we obtain a complete hierarchical structure of local maxima that we denote by
banj0

,anj1
,...,anjs

with each “depth s+ 1" local maximum banj0
,anj1

,...,anjs
being

in the corresponding vicinity of the “depth s" local maximum banj0
,anj1

,...,anjs−1
and with universal behavior at the corresponding scale around each. The accu-
racy of thge approximations gets lower with each level, yet the depth of the hier-
archy that can be so achieved is at least j/2 − C. The upper half of Figure 6.0.6
schematically illustrates the structure of local maxima of depth one and two; the
lower half shows that the view around a local maximum appropriately magnified
looks like a view of the global maximum.

We now describe the hierarchical structure precisely. Suppose

(6.0.7) ||2(θ+ k0α) + kα||R/Z >
κ

|k|ν
,

for any k ∈ Z\{0}. Fix 0 < σ, ε with σ + 2ε < 1. Let nj → ∞ be such that
lnqnj+1 > (σ+ 2ε) ln λqnj . Let

c = cj =
(lnqnj+1 − ln |anj |)

ln λqnj
− ε .

We have cj > ε for 0 < anj < e
σ lnλqnj . Then we have

Theorem 6.0.8. There exists n̂0(α, λ, κ,ν, ε) <∞ such that for any j0 > j1 > · · · > jk,
njk > n̂0 + k, and 0 < anji < e

σ lnλqnji , i = 0, 1, . . . , k, for all 0 6 s 6 k there exists
a local njs-maximum banj0

,anj1
,...,anjs

on the interval banj0 ,anj1
,...,anjs

+ I
njs
cjs ,1 for all

0 6 s 6 k such that the following holds:

I: |banj0
− (k0 + anj0

qnj0
)| 6 qn̂0+1,

II: For any 1 6 s 6 k,

|banj0
,anj1

,...,anjs
− (banj0

,anj1
,...,anjs−1

+ anjsqnjs )| 6 qn̂0+s+1.

III: If 2(x−banj0 ,anj1
,...,anjk

) ∈ I
njk
cjk ,1 and |x−banj0

,anj1
,...,anjk

| > qn̂0+k, then
for each s = 0, 1, ..., k,

(6.0.9) f(xs)e
−ε|xs| 6

||U(x)||

||U(banj0
,anj1

,...,anjs
)||
6 f(xs)e

ε|xs|,

where xs = |x− banj0
,anj1

,...,anjs
| is large enough.

Moreover, every local njs -maximum on the interval

banj ,anj1
,...,anjs−1

+ [−e
ε lnλqnjs , eε lnλqnjs ]

is of the form banj0
,anj1

,...,anjs
for some anjs .
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7. Proof of Theorem 5.0.6

Define bn = qtn with 8
9 6 t < 1 (t will be defined later). For any k > 0, we will

distinguish two cases with respect to n:
(i) |k− `qn| 6 bn for some ` > 1, called n−resonance.
(ii) |k− `qn| > bn for all ` > 0, called n−nonresonance.
Let s be the largest integer such that 4sqn−1 6 dist(y,qnZ).

Theorem 7.0.1. Assume λ > eβ(α) and that θ is Diophantine with respect to α. Suppose
that either

(1) bn 6 |y| < Cbn+1, where C > 1 is a fixed constant, or,
(2) 0 6 |y| < qn.

Then for any ε > 0 and n large enough, if y is n−nonresonant, we have y is (ln λ+
8 ln(sqn−1/qn)/qn−1 − ε, 4sqn−1 − 1, 1

4 ) regular.

Proof. We again assume for simplicity lim lnqn+1
qn

= β(α) > 0. Then we have s > 0
for large n. For an n-nonresonant y in the Theorem, one has

(7.0.2) min
j,i∈I1∪I2

ln | sinπ(2θ+ (j+ i)α)| > −C lnqn.

and

(7.0.3) min
i 6=j;i,j∈I1∪I2

ln | sinπ(j− i)α)| > −C lnqn.

The idea modeled on the proof of Theorem 4.0.6 so we use the same notations.
The upper bound of

∑
j∈I1∪I2,j6=i ln | cos 2πa− cos 2πθj| is the same as (4.0.9).

(4.0.10)-(4.0.12) also hold. However the estimate of
∑
j∈J1

ln | sinπθ̂j| is much
more difficult in the non-Diophantine case. Here we sketch the argument.

Assume that θ̂j+1 = θ̂j + qnα for every j, j + 1 ∈ J1. Applying the Stirling
formula and (7.0.2), one has∑

j∈J1

ln | sin 2πθ̂j| > 2
s∑
j=1

ln
j∆n

C
−C lnqn

> 2s ln
s

qn+1
−Cs lnqn.

(7.0.4)

In the other cases, decompose J1 in maximal intervals Tκ such that for j, j+ 1 ∈
Tκ we have θ̂j+1 = θ̂j + qnα. Notice that the boundary points of an interval Tκ
are either boundary points of J1 or satisfy ‖θ̂j‖R/Z + ∆n >

∆n−1
2 . This follows

from the fact that if 0 < |z| < qn, then ‖θ̂j+qnα‖R/Z 6 ‖θ̂j‖R/Z +∆n, and ‖θ̂j+
(z+ qn)α‖R/Z > ‖zα‖R/Z − ‖θ̂j + qnα‖R/Z > ∆n−1 − ‖θ̂j‖R/Z −∆n. Assuming
Tκ 6= J1, then there exists j ∈ Tκ such that ‖θ̂j‖R/Z >

∆n−1
2 −∆n.

If Tκ contains some j with ‖θ̂j‖R/Z <
∆n−1

10 , then

|Tκ| >
∆n−1

2 −∆n −
∆n−1

10
∆n

>
1
4
∆n−1

∆n
− 1 > s− 1,

(7.0.5)
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where |Tκ| = b− a+ 1 for Tκ = [a,b]. For such Tκ, a similar estimate to (7.0.4)
gives ∑

j∈Tκ

ln | sinπθ̂j| > |Tκ| ln
|Tκ|

qn+1
−Cs lnqn

> |Tκ| ln
s

qn+1
−Cs lnqn.

(7.0.6)

If Tκ does not contain any j with ‖θ̂j‖R/Z <
∆n−1

10 , then by (2.8.2)∑
j∈Tκ

ln | sinπθ̂j| > −|Tκ| lnqn −C|Tκ|

> |Tκ| ln
s

qn+1
−C|Tκ|.

(7.0.7)

By (7.0.6) and (7.0.7), one has

(7.0.8)
∑
j∈J1

ln | sinπθ̂j| > 2s ln
s

qn+1
−Cs lnqn.

Similarly,

(7.0.9)
∑
j∈J2

ln | sinπθ̂j| > 2s ln
s

qn+1
−Cs lnqn.

We now turn to estimating the quantities
∑

+
and

∑
−

defined in (4.0.11)
and (4.0.12). Putting (4.0.13), (7.0.8) and (7.0.9) together, we have

(7.0.10)
∑

+
> −4sqn ln 2 + 6s ln

s

qn+1
−Cs lnqn.

Replacing (7.0.2) with (7.0.3) and proceeding as for
∑

+
, we have the similar

estimate,

(7.0.11)
∑

−
> −4sqn ln 2 + 4s ln

s

qn+1
−Cs lnqn.

From (4.0.10), (7.0.10) and (7.0.11), it follows that

(7.0.12)
∑

j∈I1∪I2,j6=i
ln | cos 2πθi − cos 2πθj| > −4sqn ln 2 + 8s ln

s

qn+1
−Cs lnqn.

Combining with (4.0.9), we have for any ε > 0,

max
i∈I1∪I2

∏
j∈I1∪I2,j6=i

| cos 2πa− cos 2πθj|
| cos 2πθi − cos 2πθj|

6 exp

(
(4sqn − 1)

(
lnλ+

8 ln(sqn−1
qn

)

qn−1
− ε
))

. �

Remark 7.0.13. In the nonresonant case, for any ε > 0, 8
9 6 t < 1, one has

ln λ + 8 ln(sqn−1/qn)/qn−1 > ln λ − 8(1 − t)β − ε > 0. In addition, we have
ln λ+ 8 ln(sqn−1/qn)/qn−1 > ln λ− 2ε if t is close to 1.

Remark 7.0.14. Here, we only use Theorem 7.0.1 with C = 50C?, where C? is
given by (7.0.15) (see below).
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Clearly, it is enough to consider k > 0. In this section we study the resonant
case. Suppose there exists some k ∈ [bn,bn+1] such that k is n−resonant. For
any ε > 0, choose η = ε

C , where C is a large constant (depending on λ,α).
Let

(7.0.15) C∗ = 2(1 + b ln λ
ln λ−β

c),

where bmc denotes the smallest integer not exceeding m.
For an arbitrary solution ϕ satisfying Hϕ = Eϕ, let

rn,ϕ
j = sup

|r|610η
|ϕ(jqn + rqn)|,

where |j| 6 50C∗
bn+1
qn

.
Let φ be the generalized eigenfunction. Denote by

rnj = rn,φ
j .

Since we keep n fixed in this section we omit the dependence on n from the
notation and write rϕj ,Rj, and rj.

Note that below we always assume n is large enough.

Lemma 7.0.16. Let k ∈ [jqn, (j + 1)qn] with dist(k,qnZ) > 10ηqn, and suppose
further that |j| 6 48C∗

bn+1
qn

. Then for sufficiently large n,

|ϕ(k)| 6 max
{
rϕj exp

(
−(ln λ− 2η)(dj − 3ηqn)

)
,

rϕj+1 exp
(
−(ln λ− 2η)(dj+1 − 3ηqn)

)}
,

(7.0.17)

where dj = |k− jqn| and dj+1 = |k− jqn − qn|.

Proof. The proof builds on the ideas akin to those used in the proof of Theorem
2.5.3. However it requires a more careful approach.

For any y ∈ [jqn + ηqn, (j + 1)qn − ηqn], apply (i) of Theorem 7.0.1 taking
C = 50C?. Notice that in this case, we have

ln λ+ 8 ln(sqn−1/qn)/qn−1 − η > ln λ− 2η.

Thus y is regular with τ = ln λ − 2η. Therefore there can choose an interval
I(y) = [x1, x2] ⊂ [jqn, (j+ 1)qn] such that y ∈ I(y),

(7.0.18) dist(y,∂I(y)) >
1
4
|I(y)| > qn−1

and

(7.0.19) |GI(y)(y, xi)| 6 e−(lnλ−2η)|y−xi|, i = 1, 2,

where ∂I(y) is the boundary of the interval I(y) (i.e. {x1, x2}), and |I(y)| is the size
of I(y)∩Z (i.e., |I(y)| = x2 − x1 + 1). For z ∈ ∂I(y), let z ′ be the neighbor of z, (i.e.,
|z− z ′| = 1) not belonging to I(y).

If x2 + 1 6 (j+ 1)qn − ηqn or x1 − 1 > jqn + ηqn, we can expand ϕ(x2 + 1) or
ϕ(x1 − 1) using (2.5.2). We can continue this process until we arrive to z such that
z+ 1 > (j+ 1)qn − ηqn or z− 1 < jqn + ηqn, or we have iterated b 2qn

qn−1
c times.
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Thus, by (2.5.2)

(7.0.20) |ϕ(k)| =
∣∣ ∑

s;zi+1∈∂I(z′i)

GI(k)(k, z1)GI(z′1)
(z′1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z

′
s+1)

∣∣,
where we have jqn + ηqn + 1 6 zi 6 (j+ 1)qn − ηqn − 1, i = 1, · · · , s, in each
term of the summation and either zs+1 /∈ [jqn + ηqn + 1, (j + 1)qn − ηqn − 1],
s+ 1 < b 2qn

qn−1
c, or s+ 1 = b 2qn

qn−1
c. We should mention that zs+1 ∈ [jqn, (j+ 1)qn].

If zs+1 ∈ [jqn, jqn + ηqn], s+ 1 < b 2qn
qn−1

c, this implies

|ϕ(z′s+1)| 6 r
ϕ
j .

By (7.0.19), we have

|GI(k)(k, z1)GI(z′1)
(z′1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z

′
s+1)|

6 rϕj e
−(lnλ−2η)

(
|k−z1|+

∑s
i=1 |z

′
i−zi+1|

)
6 rϕj e

−(lnλ−2η)
(
|k−zs+1|−(s+1)

)
6 rϕj e

−(lnλ−2η)
(
dj−2ηqn−4− 2qn

qn−1

)
.

(7.0.21)

If zs+1 ∈ [(j+ 1)qn − ηqn, (j+ 1)qn], s+ 1 < b 2qn
qn−1

c, by the same arguments, we
have

|GI(k)(k, z1)GI(z′1)
(z′1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z

′
s+1)|

6 rϕj+1e
−(lnλ−2η)

(
dj+1−2ηqn−4− 2qn

qn−1

)
.

(7.0.22)

If s+ 1 = b 2qn
qn−1

c, using (7.0.18) and (7.0.19), we obtain

|GI(k)(k, z1)GI(z′1)
(z′1, z2) · · ·GI(z′s)(z

′
s, zs+1)ϕ(z

′
s+1)|

6 e

(
−(lnλ−2η)qn−1b 2qn

qn−1
c
)
|ϕ(z′s+1|.

(7.0.23)

Notice that the total number of terms in (7.0.20) is at most 2
b 2qn
qn−1

c
and that dj

and dj+1 are both at least 10ηqn. By (7.0.21)–(7.0.23), we have

|ϕ(k)| 6 max
{
rϕj e

−
(
(lnλ−2η)(dj−3ηqn)

)
,

rϕj+1e
−

(
(lnλ−2η)(dj+1−3ηqn)

)
,

max
p∈[jqn,(j+1)qn]

{
e−(lnλ−2η)qn |ϕ(p)|

}}
.

(7.0.24)

Now we will show that p ∈ [jqn, (j + 1)qn] implies |ϕ(p)| 6 max{rϕj , rϕj+1}.
Then (7.0.24) implies case (i) of Lemma 7.0.16. Otherwise, by the definition of
rϕj , if |ϕ(p′)| is maximum over z ∈ [jqn + 10ηqn + 1, (j + 1)qn − 10ηqn − 1] of
|ϕ(z)|, then |ϕ(p′)| > max{rϕj , rϕj+1}. Applying (7.0.24) to ϕ(p′) and noticing that
dist(p′,qnZ) > 10ηqn, we get

|ϕ(p′)| 6 e
(
−7(lnλ−2η)ηqn

)
max
{
rϕj , rϕj+1, |ϕ(p′)|

}
.

This is impossible because |ϕ(p′)| > max{rϕj , rϕj+1}. �
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By the properties of continued fractions and since θ is α-Diophantine, one can
obtain the following estimates:

Lemma 7.0.25. For any |i|, |j| 6 50C∗bn+1, the following estimate holds,

(7.0.26) ln | sinπ(2θ+ (j+ i)α)| > −C lnqn.

Lemma 7.0.27. Assume |i|, |j| 6 50C∗bn+1, and i− j 6= qnZ. Then

(7.0.28) ln | sinπ(j− i)α| > −C lnqn.

We then have

Theorem 7.0.29. For 1 6 j 6 46C?
bn+1
qn

, the following holds

(7.0.30) rϕj 6 max{rϕj±1
qn+1

j
exp{−(ln λ−Cη)qn}}.

Proof. Fix j with 1 6 j 6 46C∗
bn+1
qn

and |r| 6 10ηqn.
Next, define subsets I1, I2 ⊂ Z as follows

I1 = [−b1
2
qnc,qn − b1

2
qnc− 1],

I2 = [jqn − b1
2
qnc, (j+ 1)qn − b1

2
qnc− 1].

Let θm = θ+mα for m ∈ I1 ∪ I2. The set {θm}m∈I1∪I2 will thus consist of 2qn
elements.

By Lemmas 7.0.25 and 7.0.27, and following the proof of Theorem 4.0.6, one
obtains that {θm} is lnqn+1−ln j

2qn +ε uniform for any ε > 0. Combining with Lemma
3.0.7, there exists some j0 with j0 ∈ I1 ∪ I2 such that

θj0 /∈ A(2qn−1),(lnλ−
lnqn+1−ln j

2qn −η)
.

First, we assume j0 ∈ I2. Set I = [j0 − qn + 1, j0 + qn − 1] = [x1, x2]. In (2.8.10),
let ε = η. Combining with (2.8.6) and (2.8.7), it is easy to verify

|GI(jqn + r, xi)|

6 exp
(
(ln λ+ η)

(
2qn − 1 − |jqn + r− xi|

)
− (2qn − 1)

(
ln λ−

lnqn+1 − ln j
2qn

− η
))

.

Using (2.5.2), we obtain

(7.0.31) |ϕ(jqn + r)| 6
∑
i=1,2

qn+1

j
e5ηqn |ϕ(x′i)| e

−|jqn+r−xi| lnλ,

where x′1 = x1 − 1 and x′2 = x2 + 1.
Let dij = |xi − jqn|, i = 1, 2. It is easy to check that

(7.0.32) |jqn + r− xi|+ d
i
j, |jqn + r− xi|+ d

i
j±1 > qn − |r|,

and

(7.0.33) |jqn + r− xi|+ d
i
j±2 > 2qn − |r|.
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If dist(xi,qnZ) > 10ηqn, then we bound ϕ(xi) in (7.0.31) using (7.0.17). If
dist(xi,qnZ) 6 10ηqn, then we bound ϕ(xi) in (7.0.31) by some proper rj. Com-
bining with (7.0.32), (7.0.33), we have

rϕj 6 max
{
rϕj±1

qn+1

j
exp{−(ln λ−Cη)qn},

rϕj
qn+1

j
exp{−(ln λ−Cη)qn},

rϕj±2
qn+1

j
exp{−2(ln λ−Cη)qn}

}
.

However, we cannot have

rϕj 6 r
ϕ
j

qn+1

j
exp{−(ln λ−Cη)qn}

6 rϕj exp{−(ln λ−β−Cη)qn}

so we must have

rϕj 6 max
{
rϕj±1

qn+1

j
exp{−(ln λ−Cη)qn},

rϕj±2
qn+1

j
exp{−2(ln λ−Cη)qn}

}
.

(7.0.34)

In particular,

(7.0.35) rϕj 6 exp{−(ln λ−β−Cη)qn}max{rϕj±1 r
ϕ
j±2}.

If j0 ∈ I1, then (7.0.35) holds for j = 0. Let ϕ = φ in (7.0.35). We get

|φ(0)|, |φ(−1)| 6 exp{−(ln λ−β−Cη)qn},

which is in contradiction with |φ(0)|2 + |φ(−1)|2 = 1. Therefore j0 ∈ I2, so (7.0.34)
holds for any ϕ.

By (2.6.3) and (2.8.10), we have

(7.0.36) ||

(
ϕ(k1)

ϕ(k1 − 1)

)
|| > Ce−(lnλ+ε)|k1−k2|||

(
ϕ(k2)

ϕ(k2 − 1)

)
||.

This implies
rϕj±2 6 r

ϕ
j±1 exp{(ln λ+Cη)qn},

thus (7.0.34) becomes

(7.0.37) rϕj 6 max{rϕj±1
qn+1

j
exp{−(ln λ−Cη)qn}},

for any 1 6 j 6 46C∗
bn+1
qn

. �

We now show that by Theorem 2.4.1 exponential growth is not allowed, rj
must actually decay.

Theorem 7.0.38. For 1 6 j 6 10bn+1
qn

, the following holds

(7.0.39) rj 6 rj−1 exp{−(ln λ−Cη)qn}
qn+1

j
.

Proof. Let ϕ = φ in Lemma 7.0.29. We must have

(7.0.40) rj 6 max{rj±1
qn+1

j
exp{−(ln λ−Cη)qn}},
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for any 1 6 j 6 46C∗
bn+1
qn

.
Suppose for some 1 6 j 6 10bn+1

qn
, the following holds,

(7.0.41) rj 6 rj+1
qn+1

j
exp{−(ln λ−Cη)qn} 6 rj+1 exp{−(ln λ−β−Cη)qn}.

Applying (7.0.40) to j+ 1, we obtain

(7.0.42) rj+1 6 max{rj, rj+2}
qn+1

j+ 1
exp{−(ln λ−Cη)qn}.

Combining with (7.0.41), we must have

(7.0.43) rj+1 6 rj+2 exp{−(ln λ−β−Cη)qn}.

Generally, for any 0 < p 6 (C∗ + 1)j− 1, we obtain

(7.0.44) rj+p 6 rj+p+1 exp{−(ln λ−β−Cη)qn}.

Thus

(7.0.45) r(C∗+1)j > rj exp{(ln λ−β−Cη)C∗jqn}.

Clearly, by (7.0.36), one has

rj > exp{−(ln λ+Cη)jqn}.

Then

(7.0.46) r(C∗+1)j > exp{((C∗ − 1) ln λ−C∗β−Cη)jqn}.

By the definition of C∗, one has

(C∗ − 1) ln λ−C∗β > 0.

Thus (7.0.46) is in contradiction with the fact that |φ(k)| 6 1 + |k|.
Now that (7.0.41) can not happen, from (7.0.40), we must have

�(7.0.47) rj 6 rj−1
qn+1

j
exp{−(ln λ−Cη)qn}.

Theorem 7.0.48. For 1 6 j 6 10bn+1
qn

, the following holds

(7.0.49) rj > rj−1 exp{−(ln λ− ε)qn}
qn+1

j
.

Proof. See [30] for details. �

We are now ready to complete the proof of Theorem 5.0.6.

Proof of Theorem 5.0.6. Set t0 = 1− ε
8β . Let t = t0 in the definition of resonance,

i.e. bn = q
t0
n .

Case I: ` > qt0
n+1:

By case II of Theorem 7.0.1, we know that any y ∈ (εq
t0
n+1,qn+1 − εq

t0
n+1) is

(ln λ+ 8 ln(sqn/qn+1)/qn − ε, 4sqn − 1) regular with δ = 1
4 . Notice that

(s+ 1)qn > εq
t0
n+1 > εq

t0
n+1,

thus we have

ln λ+
8 ln(s qnqn+1

)

qn
> ln λ− 8(1 − t0)β− ε > ln λ− 2ε.
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Thus for any y ∈ (εq
t0
n+1,qn+1 − εq

t0
n+1), y is (ln λ− 2ε, 4sqn − 1) regular. Fol-

lowing the proof of Lemma 7.0.16, one has for `qn 6 k 6 (`+ 1)qn,

||U(k)|| 6 e−(lnλ−ε)|k|,

which implies Theorem 5.0.6 in this case.
Case II: 0 6 ` 6 qt0

n+1:
By Theorems 7.0.48 and 7.0.38, and Stirling’s formula,

r̄nj e
−εjqn 6 rj 6 r̄

n
j e
εjqn .

Now Theorem 5.0.6 follows from Lemma 7.0.16. �

8. Arithmetic criteria for spectral dimension

We know that in the regime of positive Lyapunov exponent the spectrum is
always singular. Now that we also know (Lemma 2.8.4) that large β implies con-
tinuous (and therefore singular continuous) spectrum, it’s natural to ask whether
even larger β implies increased continuity. “Continuity” of singular continuous
spectrum can be quantified through fractal dimensions. The most popular ob-
ject is Hausdorff dimension. However Hausdorff dimension is a poor tool for
characterizing the singular continuous spectral measures arising in the regime of
positive Lyapunov exponents, as it is always equal to zero (a very general theorem
of Simon that holds for general ergodic potentials and a.e. phase, see Theorem
8.2.6 [44] (and for every phase for the zero entropy dynamical systems [19] (see
also [29, 31]). It turns out that some other dimensions do present good tools to
finely distinguish between different kinds of singular continuous spectra appear-
ing in the supercritical regime. The main goal of this lecture is to briefly present
a simultaneous quantitative version of two well known statements

(1) Periodicity implies absolute continuity. We prove that a quantitative weak-
ening (near periodicity that holds sufficiently long) implies quantitative
continuity of the (fractal) spectral measure.

(2) Gordon condition (a single/double almost repetition) implies continuity of the
spectral measure. Indeed, we prove that a strengthening (with multiple al-
most repetitions) implies quantitative continuity of the spectral measure.

This will allow us to establish a sharp arithmetic criterion for certain dimension
of the spectral measure in terms of β, for general analytic potentials.

8.1. m-function and subordinacy theory Let µ be a finite Borel measure on R.
Define the Borel transform of µ to be:

m(z) :=

∫
1

E− z
dµ(E), z ∈ C.(8.1.1)

It is easy to check that for any finite Borel measure µ on R, its m-function is
holomorphic in the upper half plane and satisfies

m∗(z) = m(z∗), |m(z)| 6
µ(R)

Imz
z ∈ C+.
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Remark 8.1.2. Functions with this property are known as Herglotz, Pick or R
functions. They map the upper half-plane into itself, but are not necessarily
injective or surjective. Note that such an m is holomorphic in C\σ(µ), where
σ(µ) := {E ∈ R : µ(E− ε,E+ ε) > 0 for all ε > 0}.

The boundary behavior of m is linked to the Radon-Nikodym derivative Dµ
of µ, which in turn determines the decomposition of µ, see e.g. [45].

Theorem 8.1.3. Let µ be a finite Borel measure and m its Borel transform. Then the
limit

Im
(
m(E)

)
= lim
ε↓0

Im
(
m(E+ iε)

)
(8.1.4)

exists a.e. with respect to both µ and Lebesgue measure (finite or infinite) and

Dµ(E) =
1
π

Im
(
m(E)

)
(8.1.5)

whenever Dµ(E) exists. Moreover, the set {E|Im
(
m(E)

)
= ∞} is a support for the

singular continuous part and {E|Im
(
m(E)

)
<∞} is a minimal support for the absolutely

continuous part.

Fractal properties of µ can also be characterized through m. In the rest of
this subsection, we briefly review the power-law extension of the Gilbert-Pearson
subordinacy theory [16, 17], developed in [29].

For simplicity, consider the right half line operator (2.3.1) on `2(Z+) with
boundary condition u(1) = cosϕ,u(0) = sinϕ for some ϕ ∈ (−π/2,π/2]. Let
µ be the spectral measure. In this case, the Borel transform of µ is also called the
Weyl-Titchmarsh m-function.

For any function u : Z+ → C and ` ∈ R+, define

(8.1.6) ‖u‖` :=
[ [`]∑
n=1

|u(n)|2 + (`− [`])|u([`] + 1)|2
]1/2

.

Suppose u and v solve Hu = Eu with orthogonal boundary conditions(
u(1) v(1)

u(0) v(0)

)
= Rϕ,

where Rϕ is a matrix of rotation by ϕ. Now given any ε > 0, we define a length
`(ε) ∈ (0,∞) by requiring the equality

(8.1.7) ‖u‖`(ε) · ‖v‖`(ε) =
1
2ε

.

The function `(ε) is a well defined monotonically decreasing continuous function
which goes to infinity as ε goes to 0, and we also have 1

2ε >
1
2 ([`] − 1). It turns out

that the boundary behavior of m(E+ iε) is linked in a quantitative way to
‖u‖`(ε)
‖v‖`(ε)

,
thus to the power-law behavior of solutions.

Lemma 8.1.8 (J.-Last inequality, [29]). For E ∈ R and ε > 0,

(8.1.9)
5 −
√

24
|m(E+ iε)|

<
‖u‖`
‖v‖`

<
5 +
√

24
|m(E+ iε)|

.



30 Arithmetic spectral transitions

From Lemma 8.1.8, one can easily recover the results of Gilbert-Pearson [17]
with a simpler proof, while strengthening their theory. The above inequality
links the power-law behavior of the generalized eigenfunctions of Hu = Eu and
the boundary behavior of the Borel transform of the spectral measure µ in a
quantitative way. A particular consequence of Lemma 8.1.8 is

Lemma 8.1.10. For any E ∈ R and 0 < γ < 1, suppose there is a sequence of positive
numbers εk → 0 and an absolute constant C > 0 so that both u, v satisfy

(8.1.11) C−1`
γ
k 6 ‖u‖

2
`k
6 C`2−γk

where `k = `(εk) is given by (8.1.7). Then

lim inf
ε↓0

ε1−γ|m(E+ iε)| <∞.(8.1.12)

8.2. Spectral continuity Fix 0 < γ < 1. If (8.1.12) holds for µ a.e. E, we say mea-
sure µ is (upper) γ-spectral continuous. Define the (upper) spectral dimension of
µ to be

(8.2.1) s(µ) = sup
{
γ ∈ (0, 1) : µ is γ-spectral continuous

}
.

In this part, we focus on the quantitative spectral continuity and the lower
bound of the spectral dimension. Our spectral continuity result does not neces-
sarily require quasiperiodic structure of the potential and can be generalized to
wider contexts (so-called β-almost periodic potential, see [27], - a class, that in-
cludes, for example, some skew shift potentials). The general result of [27] only
goes in one direction. However, in the important context of analytic quasiperiodic
operators this leads to a sharp if-and-only-if result. Let H be defined as in (2.3.2)
with quasiperiodic potential:

(Hu)(n) = u(n+ 1) + u(n− 1) + v(θ+nα)u(n), θ,α ∈ T, v : T 7→ R.(8.2.2)

Theorem 8.2.3 ([27]). Let H be as in (8.2.2) with real analytic potential v and µ be the
spectral measure2. Assume L(E) > 0 for all E ∈ R. For any θ ∈ T, s(µ) = 1 if and only
if β(α) =∞.

Remark 8.2.4. The theorem also holds locally for any spectral projection onto the
subset where the Lyapunov exponent is positive.

Remark 8.2.5. The ‘if’ part will be a consequence of Theorem 8.2.7 which can
be viewed as a quantitative strengthening of the results of Gordon type (Lemma
2.8.4). The ‘only if’ part follows from the general analytic Theorem 8.3.1 which
can be viewed as a weakening/extension of localization type results for large β.

Spectral continuity captures the lim inf power-law behavior of m(E+ iε), while
the corresponding lim sup behavior is linked to the Hausdorff dimension [14].

2Discrete Schrödinger operators may have multiplicity two. However, δ0,δ1 always form a cyclic pair,
so it is enough to consider the so called maximal spectral measure given by µ = µδ0 +µδ1 , where
µδ0 and µδ1 are defined as in (2.1.1).
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One can easily check that dimH(µ) 6 s(µ) 6 dimP(µ), where dimH(µ)/dimP(µ)

denote the Hausdorff/packing dimension of a measure in the usual sense.

Theorem 8.2.6 (Simon, [44]). SupposeH is an ergodic Schrödinger operator as in (2.3.2)
with positive Lyapunov exponent. For a.e. phase ω, dimH(µ) = 0.

Let H be as in (8.2.2) and µ be the spectral measure. We have the following
quantitative lower bound of the spectral dimension.

Theorem 8.2.7. Suppose v is Lipschitz continuous. Let

Λ := sup
E∈σ(H),n,θ

1
n

ln ‖An(θ)‖.(8.2.8)

There exists an absolute constant C > 0 such that for any θ ∈ T,

s(µ) > 1 −
CΛ

β(α)
.

The general version of Theorem 8.2.7 is actually more robust and only requires
some regularity of v, which allows us to obtain new results for other popular
models, such as the critical almost Mathieu operator, Sturmian potentials, and
others. Lower bounds on spectral dimension also have immediate applications to
the lower bounds on packing/box counting dimensions and on quantum dynam-
ics(upper transport exponents). The method developed in [27] for the bounded
SL(2, R) case generalizes to the unbounded case (e.g. the Maryland model) and
the non-Schrödinger case (e.g. the extended Harper’s model) [46].

For simplicity, we only prove the right half line case and we also assume (5.0.1)
holds. According to Lemma 8.1.10, to prove spectral continuity, it is enough to
obtain power-law estimate (8.1.11) for half-line solution u of Hu = Eu with any
boundary condition ϕ.

First, for β large, the system can be approximated by a periodic one exponen-
tially fast, in the following sense.

Lemma 8.2.9. Let qn be given as in (5.0.1). For any β < β(α), any θ ∈ T, we have

‖Aqn(θ) −Aqn(θ+ qnα)‖ 6 e(−β+2Λ)qn .(8.2.10)

The ultimate goal is to estimate ‖ANqn‖ by the size of qn for N ∼ ecβqn . This
eventually leads to the desired power-law for u by (2.6.3). We will conclude this
in the end of this part. The standard rational approximation fails here since the
error terms may reach the size of eNΛ ∼ ee

cβqn . We need some quantitative
telescoping arguments.

Lemma 8.2.11. Suppose G is a two by two matrix satisfying

(8.2.12) ‖Gj‖ 6M <∞, for all 0 < j 6 N ∈N+,

where M > 1 only depends on N. Let Gj = G+∆j, j = 1, · · · ,N, be a sequence of two
by two matrices with

(8.2.13) δ = max
16j6N

‖∆j‖.
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If

(8.2.14) NMδ < 1/2,

then for any 1 6 n 6 N

(8.2.15) ‖
n∏
j=1

Gj −G
n‖ 6 2NM2δ.

Combining (8.2.10) with this lemma, one can show that ANqn is close to ANqn
up to the size of ‖ANqn‖. Now the question is reduced from the dynamical behav-
ior of ANqn to the algebraic properties of ANqn . We need some additional linear
algebraic facts about SL(2, R) matrices.

Lemma 8.2.16. Suppose G ∈ SL(2, R) with 2 < |TrG| 6 6. There exists an invertible
matrix B such that

(8.2.17) G = B

(
ρ 0

0 ρ−1

)
B−1

where ρ±1 are the two conjugate real eigenvalues of G, |detB| = 1 and

(8.2.18) ‖B‖ = ‖B−1‖ <
√
‖G‖√

|TrG|− 2
.

If |TrG| > 6, then ‖B‖ 6 2
√
‖G‖√

|TrG|−2
.

Lemma 8.2.19. Suppose G ∈ SL(2, R) has eigenvalues ρ±1, ρ > 1. For any k ∈ N, if
TrG 6= 2, then

(8.2.20) Gk =
ρk − ρ−k

ρ− ρ−1 ·
(
G−

TrG
2
· I
)
+
ρk + ρ−k

2
· I.

Otherwise, Gk = k(G− I) + I.
Assume further that

∣∣|TrG| − 2
∣∣ < τ < 1. Then there exist universal constants

1 < C1 <∞, c1 > 1/3 such that for 1 6 k 6 τ−1, we have

(8.2.21) c1 <
ρk + ρ−k

2
< C1 , c1k <

ρk − ρ−k

ρ− ρ−1 < C1k.

By Lemma 8.2.16, if the trace ofAqn is away from 2, we have the decomposition

(8.2.22) Aqn = B

(
ρ 0

0 ρ−1

)
B−1, ‖B‖ = ‖B−1‖ 6

2
√
‖Aqn‖√

|TrAqn |− 2

and the matrix product turns into a scalar product,

ANqn = B

(
ρN 0

0 ρ−N

)
B−1, ‖ANqn‖ 6 ‖B‖

2|ρ|N.(8.2.23)

By Lemma 8.2.19, when the trace of Aqn is close to 2, ANqn behaves almost
linearly in N:

ANqn ∼ N
(
Aqn −

1
2

TrAqn
)
+ I.(8.2.24)
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The above two asymptotic behaviors of ANqn allow us to study the spectral
measure of the following two sets:

S1 = lim sup
n→∞ {E : |TrAqn | > 2 + e−10Λqn },(8.2.25)

S2 = lim sup
n→∞ {E :

∣∣|TrAqn |− 2
∣∣ < e−10Λqn }.(8.2.26)

To estimate the spectral measure of S1, we use the idea of a Gordon-type argu-
ment to estimate the lower bound of the solution. Recall that the key step to
prove Lemma 2.8.4 is that for G ∈ SL(2, R) and X ∈ C2,

max{‖GX‖, ‖G−1X‖} > 1
2
|TrG| · ‖X‖.(8.2.27)

If E ∈ S1, roughly speaking, we have a sequence of scales qn such that the trace
of Aqn is large. Putting (8.2.10),(8.2.15),(8.2.22) and (8.2.27) together, we can show
that there are integer sequences xqn →∞ independent of E ∈ S1, such that

|u(xqn)| > e
qn ,(8.2.28)

where u solves the half-line problem Hu = Eu with any boundary condition.
The following extended Schnol’s Theorem shows that such E must have spectral
measure zero.

Lemma 8.2.29 (Extended Schnol’s Theorem, [27]). Fix any y > 1/2. For any fixed
sequence |xk|→∞, for spectrally a.e. E, there is a generalized eigenvector u of Hu = Eu,
such that

|u(xk)| < C(1 + |k|)y.

For S2, note that Aq(E) is a polynomial in E with degree at most q. If the trace
is close to 2, the following preimage estimate of a polynomial reduces the set in
S2 to several small intervals of width at most e−5Λqn .

Lemma 8.2.30 ([25]). Let p ∈ Pn;n(R) with y1 < · · · < yn−1 the local extrema of p.
Let

(8.2.31) ζ(p) := min
16j6n−1

|p(yj)|

and 0 6 a < b. Then,

|p−1(a,b)| 6 2diam(z(p− a))max
{ b− a

ζ(p) + a
,
( b− a

ζ(p) + a

) 1
2
}

(8.2.32)

where z(p) is the zero set of p and | · | denotes the Lebesgue measure.

The definition of m-function implies µ(E− ε,E+ ε) 6 2ε ImM(E+ iε), where
the right-hand side can be estimated again by subordinacy theory (Lemma 8.1.8)
with the help of (8.2.24). Together, these ideas can be used to show that for β
large enough, µ({E :

∣∣|TrAqn |− 2
∣∣ < e−10Λqn }) < e−Λqn . Then the Borel-Cantelli

lemma immediately implies µ(S2) = 0.
In conclusion, we have the following key estimate for the trace of the transfer

matrices.
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Theorem 8.2.33. For β > 40Λ and µ a.e. E, there is K(E) such that

(8.2.34) |TraceAqn(E)| < 2 − e−10Λqn , n > K(E).

Combining this trace estimate with previous algebraic facts (8.2.15) and (8.2.24),
one has

Lemma 8.2.35. There is a sequence of positive integersNk →∞ such that for 0 < γ < 1,
if

(8.2.36) β >
100Λ
1 − γ

,

then

(8.2.37)
Nk·qk∑
n=1

‖An(E)‖2 6 (Nk · qk)2−γ, k > K(E).

Now (8.1.11) follows from (2.6.3) for any boundary condition ϕ.

8.3. Arithmetic criteria In this part, we focus on the spectral singularity and
the quantitative upper bound of s(µ). For simplicity, we only state and prove
the following upper bound for the right half line AMO. The same result holds
for general analytic potentials with positive Lyapunov exponent, which together
with Theorem 8.2.7 will complete the proof of Theorem 8.2.3.

Theorem 8.3.1. Let H be the AMO given as in (2.7.1). Assume that λ > 1. There exists
ϕ ∈ (−π/2,π/2] and an absolute constant c > 0 such that for any θ ∈ T if β(α) < ∞
then for the associated half line spectral measure µ, we have that

(8.3.2) s(µ) 6
1

1 + c/β
< 1.

Lemma 8.3.3. For any E there is a n0 such that for any n > n0, there exists an interval
∆n ⊂ T satisfying

(8.3.4) Leb(∆n) >
1

8n
, inf
θ∈∆n

1
n

ln ‖An(θ)‖ >
1
4

ln λ.

Moreover, for all qn large (depending on n0), for any θ, and any N ∈ N, there is
jN ∈ [2Nqn, 2(N+ 1)qn) such that

(8.3.5) ‖AjN(θ,E)‖ > e
1

36qn lnλ.

Lemma 8.3.6. For any E ∈ R and β = β(α) <∞, there is a `0 = `0(E,β) such that for
` > `0, and any θ ∈ T, the following holds:

(8.3.7)
∑̀
k=1

‖Ak(θ,E)‖2 > `1+
2c
β .

Proof of Theorem 8.3.1: For any ϕ, we have

(8.3.8) ‖uϕ‖2
` + ‖v

ϕ‖2
` >

1
2

∑̀
k=1

‖Ak(θ)‖2.

Therefore, (8.3.7) implies that ‖uϕ‖2
` + ‖v

ϕ‖2
` > `

1+ 2c
β for ` large.
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On the other hand, Last and Simon showed in [38] that, for µ-a.e. E, there exist
ϕ and C = C(E) <∞, such that for large `,

(8.3.9) ‖uϕ‖` 6 C`1/2 ln `.

Combining (8.3.8) and (8.3.9), we have

(8.3.10) ‖vϕ‖` > `1/2+c/β

provided β < ∞ and ` > `0(E,β). For any ε > 0 (small), let ` = `(ε) be given as
in (8.1.7). By (8.1.9), one has for any γ ∈ (0, 1),

ε1−γ|mϕ(E+ iε)| >
1(

2‖uϕ‖`‖vϕ‖`
)1−γ · (5 −

√
24)
‖vϕ‖`
‖uϕ‖`

> cγ`
(1+c/β)γ−1 · ln−2 `

where cγ > 0 only depends on γ. Now let γ0 = 1
1+c/β < 1. We have for any

γ > γ0,

ε1−γ|mϕ(E+ iε)| > cγ`
γ/γ0−1 · ln−2 `→∞

as ε→ 0. Therefore, s(µ) 6 γ0, according to the definition (8.2.1). �
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