SINGULAR CODE FOR “THE TATE CONJECTURE FOR A FAMILY OF SURFACES
OF GENERAL TYPE WITH p,=¢g=1 AND K?=23”

CHRISTOPHER LYONS

ABSTRACT. We describe the calculation of certain local properties of the pencil Ji in [3], including the code
for implementing these calculations in the software package SINGULAR.

In what follows, we freely make use of the notions and notations from [3], specifically from the first three
sections.

COORDINATE CHARTS

Recall that one has the equations of Ishida [2] for a basis of the sections HO(P,®*L)%:

U, = fZ3y+9Zi +nZ;,

Uy = ZoZ1Z2(Zo + Z1 + Z3),

Vs = fZ3Zy+ gZiZo + hZ3 72,

Uy = fZ3Z1+ gZyZs+ hZ3Zy,

Us = ghZiZ3+ fhZ3Z3 + fgZ377%.

These equations are easily adapted to describe the sections ¥; away from the fibers of P over {ﬁ, C, CQ}.

We will describe coordinates on this open subset of P and then adapt the ¥; to these coordinates.
Let U:=F\ {O, Cq, Cg}. Since y? = w(x) is an affine Weierstrass equation for E, one has

~ ~ Clx,y
B (8} = soee (20 )
and, since C1 = (a, §) and Csy = (o, —f3), it follows that
Clz, y,1] )
(W —w@),(z—a)t-1) )
Since the sections Zy, Z1, Zo are defined naturally to correspond to the natural basis of the decomposition

H(P,0p(1)) = H(E, 05(0)) ® H*(E, 0 (C1)) & H(E, 0(Cs))

U~ Spec(

one obtains a trivialization ]5|U4>T~J x P? by using the relative homogenous coordinates (~ZO VAR ?2)
Note that as the action of G on P permutes the fibers over {6, Cy, 02}7 G also acts on P|y. On P|y this
action is given on (Q, (Zo : Z1 : Z2)) € E x P2 ~ P|y by
76, (Q & C1, (222 Zy : 7)), 7, (Q @ C2, (Z1 : Za : Zp)).
Thus G permutes the three open affines
Plyn{Z #0},  Plun{Zi#0},  Plun{Z #0}.

In particular, when studying the local properties of a G-invariant divisor on P, one can ascertain its behavior
on all of P|y by only restricting attention to one of these three affine opens.
With this in mind, we define

T := PlyN{Zy # 0}
and set u := Z1/Zy,v := Z3/Zy. Then one has

T’:Spec( C[‘x’y7u7v7t] ) .

(y? —w(z), (z — )t — 1)
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We will work with these coordinates to establish local properties of the sections ¥, in ]5|U In doing so,
we prefer to work with polynomials in Clx,y, u,v,t] rather than the original equations ¥;. Upon setting
(Zo : Z1: Z3) = (1 : u:v) in the equation ¥;, one obtains a rational function in C(x,y,u,v,t). By clearing
denominators, one obtains a polynomial basis for H°(P,®*L)“ on T. More specifically, if we set

by = 28(y—pB) —px—a)

by = =28(y+p)—plx—a),
then f = r—a, g = —48%(x—a) /by, and h = —43%(x —a)/by. Furthermore, one can check that fgh = —4/32,
which yields b1by = —43%(z — a)3. One sees that multiplying each of the ¥; by b;by will clear their common

denominator, and (upon removing a common factor of (x — «)) this yields the following choice of equations
Wyt

wi = biby + 48%byut + 48%b10v*,

wy = —4B%(x — a)?uv(l +u+v),

wy = bibov + 48%byu® + 4820103,

wa = bibyu+ 46262u3v + 462171113,

ws = 4B%(x —a) (462u2v2 + b2+ bguz) )
The equations w; give a basis of T'(T, ®*L) satisfying

(w1:~~~:w5):(\111:~-~:\115)

onT.
To finish this section, recall that the elements of H°(P,®*L)S near the fiber 5~1(0) are handled via the
local equations
Xi(t, (242 2y Zo)) ==t W, (tZ) + Zy « Zs)
in order to account for the fact that all sections vanish to order at least one on p~1(0). Here t = z/y is a
parameter at 0 and Z, := t~'Z,. When f, g, h are expanded in powers of ¢ (for details, see [2, p.39]), these
equations become

x1 = 2B(Z} - Z3) +t(Z) + pZt + pZ3) + (higher terms),

Xo = Z4Z1Z2(Zy + Za) + tZ5 21 Zo,

X3 = ZPZy—2BZ1Z5 +t(uZyZ3 +2BZ,Z3) + (higher terms),

Xa = ZQZy+2BZ3 7y +H(uZ} Zy — 2825 Z3) 4 (higher terms),

X5 = 2BZP(Z7 - Z3) +t(wZ§Z3 + pnZ§ Z7 — AB*Z7 Z3) + (higher terms).

These are the equations we utilize in our study of H(P,®*L)% near p—1(0). Note that just outside 5~ (0)
we have

(Xl : X5):(\I/1 : \115)
As G permutes the fibers over {6, C1, Cg}, studying the local behavior of a section of HO(P, ®* L)% near
[)*1(()) will yield its behavior near the other two fibers as well. Thus we obtain a complete picture of the
these sections on all of P just by studying them on 7'U p~(0).

CALCULATIONS

With J; C |D] on Ef’), let J, = ®*J; C ®*|D| denote the pullback of the pencil to P via the diagram
Pt
L
B ——E

If A; is the base locus of J;, then ®71(A;) C P is the base locus of J;.

(1) This calculation shows that ®~1(A;) is nonsingular in the affine coordinate chart T C P.



SINGULAR CODE

ring R=0, (x,y,u,v,t),dp;

poly El_tilde=y2-x3-x2-x+3/4;

poly alpha=1;

poly beta=3/2;

poly mu=6;

poly bl=2xbeta*(y-beta)-mu*(x-alpha);

poly b2=-2*betax(y+beta)-mu*(x-alpha) ;

poly invert_t=(x-alpha)*t-1;

poly omega_1=blx*b2+4xbeta”2*b2*ud+4*xbeta”2xbl*v4;
poly omega_2=-4xbeta”2*(x-alpha) ~"2xuv* (1+u+v);

poly omega_3=bl*b2*v+dxbeta”2*xb2*xu3+4*beta”2*xblxv3u;
poly omega_4=bl*b2*ut+d*xbeta”2*xb2*xudv+4d*beta”2xbl*v3;
poly omega_b=4*beta”2*(x-alpha)* (4*xbeta”2*u2v2+bl*v2+b2*u2) ;
ideal I=El_tilde,invert_t,omega_1,omega_3-omega_4;
matrix J=jacob(I);

ideal K=minor(J,4); K=K+I; K=stdfglm(X);

dim(K) ;

-1 // No solutions.

VVVVVVVVVVVVVVYVYVYV

This calculation shows that ®~1(A;) has no singularities in the fiber 5~1(0) C P.
ring R=0, (u,v,w,t),dp;

poly beta=3/2;

poly mu=6;

poly chi_1=2xbeta*(v4-w4)+t* (u4+mu*v4d+mu*ws) ;

poly chi_2=uvw* (v+w)+tu2vw;

poly chi_3=u3w-2*beta*vw3+t* (mu*vw3+2xbeta*uv3) ;

poly chi_4=u3v+8v3w+t* (muxv3w-2*beta*uw3) ;

poly chi_b=2xbeta*u2* (v2-w2)+t* (mu*xu2* (v2+w2)-4xbeta”2*v2w2) ;
poly pl=subst(chi_1,w,1);

poly p2=subst(chi_3-chi_4,w,1);

ideal Jacl=diff (pl,u)*diff(p2,v)-diff(pl,v)*diff(p2,u),
diff (pl,u)*diff (p2,t)-diff (pl,t)*diff (p2,u),

diff (pl,v)*diff(p2,t)-diff (pl,t)*diff (p2,v);

> ideal singl=pl,p2,w-1,t,Jacl;

> ideal Kl=std(singl);

> dim(K1);

-1 // No solutions with Z_0’ != 0.
> poly ql=subst(chi_1,v,1);

> poly g2=subst(chi_3-chi_4,v,1);

> ideal Jac2=diff(ql,u)*diff(q2,w)-diff(ql,w)*diff(q2,u),
diff (ql,u)*diff(q2,t)-diff (ql,t)*diff(q2,u),
diff(ql,w)*diff(q2,t)-diff(ql,t)*diff(q2,w);

> ideal sing2=ql,q2,v-1,t,Jac2;

> ideal K2=std(sing2);

> dim(K2);

-1 // No solutions with Z_1 !'= 0.
> poly ri=subst(chi_1,u,1);

> poly r2=subst(chi_3-chi_4,u,1);

> ideal Jac3=diff(rl,w)*diff(r2,v)-diff(rl,v)*diff(r2,w),
diff (r1,w)*diff (r2,t)-diff(rl,t)*diff (r2,w),

diff (rl,v)*diff(r2,t)-diff(rl,t)*diff (r2,v)

> ideal sing3=ri1,r2,u-1,t,Jac3;

> ideal K3=std(sing3);

V VV V V V V VYV VYV
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> dim(X3);
-1 // No solutions with Z_2 != 0.

This calculation finds all fibers of J; that have singularities in T, and gives numerical coordinates
for them. The numerical coordinates are contained in the separate file [4].

ring R=0, (x,y,u,v,t,a), (dp(5),dp(1));

poly El_tilde=y2-x3-x2-x+3/4;

poly alpha=1;

poly beta=3/2;

poly mu=6;

poly b_1=2*betax(y-beta)-mux*(x-alpha) ;

poly b_2=-2%beta*(y+beta)-mu*(x-alpha) ;

poly invert_t=(x-alpha)*t-1;

poly omega_1=b_1xb_2+4*xbeta”2*b_2*ud+4*xbeta”2%b_1%*v4;

poly omega_2=-4xbeta”2*(x-alpha) ~"2*uv* (1+u+v);

poly omega_3=b_1%b_2*v+dxbeta”2*b_2*u3+4*beta”2*xb_1*v3u;

poly omega_4=b_1*b_2*u+dxbeta”2xb_2*u3v+4*beta”2xb_1*v3;

poly omega_b=4*beta”2*(x-alpha)* (4xbeta”2*u2v2+b_1*v2+b_2*u2) ;

poly Ll=omega_l+a*(omega_3-omega_4);

ideal sing=El1_tilde,Ll,invert_t,diff(L1,u),diff(L1,v),

diff(El_tilde,y)*diff(L1,x)-diff(E1_tilde,x)*diff(L1,y);

> ideal K=stdfglm(sing); dim(K); vdim(K);

0 // Solution set has dimension O as affine scheme

126 // Solution set has dimension 126 as vector space over Rationals

> poly sing_a_values=K[1];

// Given the choice of monomial ordering above, the first
element in a Groebner basis for the ideal "sing" will represent
the intersection of "sing" with the polynomial subring in the
variable a.

VVVVVVVVVVVVYVVYV

> sing_a_values;
751689a42+133446906a40+12912311529a38+517896020340a36
+7891332449328a34+55050945738624a32+224530526292224a30
+594950582418432a28+1110418441469952a26+1912067423830016a24
+4686348602572800a22+12979649665302528a20
+28031314997280768a18+43741902922579968a16
+49919629706919936a14+42303198374920192a12
+26690144132136960a10+12381904309321728a8
+4097476109795328a6+913333385428992a4
+122458107543552a2+7421703487488
// This shows there are 42 values of a for which
the fiber is singular. Note also that a=0 is
not a root since the constant term is nonzero.
> LIB "solve.lib"; solve(K,15,1);
// This command gives the numerical coordinates for the 126
solutions. The output from this command has been placed
in the separate file "SING_AWAY_FROM_O.pdf"

This calculation shows that no fiber of .J; has singularities in the fiber 5~1(0) C P.

> ring R=0, (u,v,w,t,a),dp;
// Here we have set u=Z_0’, v=Z_1, w=Z_2.
> poly beta=3/2;
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poly mu=6;

poly chi_1=2xbeta*(v4-w4)+t* (ud+mu*vd+mu*ws) ;

poly chi_2=uvw* (v+w)+tu2vw;

poly chi_3=u3w-2*beta*vw3+t* (mu*xvw3+2*beta*uv3d) ;

poly chi_4=u3v+8v3w+t* (muxv3w-2xbeta*uw3) ;

poly chi_b=2xbeta*u2* (v2-w2)+t* (mu*xu2* (v2+w2)-4xbeta”2*v2w2) ;
poly Li=axchi_1+(chi_3-chi_4);

ideal singl=L1,diff(L1,t),diff(L1,v),diff(L1,w),u-1,t;
dim(std(singl));

-1 // No solutions with Z_0’ != 0.

> ideal sing2=L1,diff(L1,t),diff(L1,u),diff(L1l,w),v-1,t;
> dim(std(sing2));

-1 // No solutions with Z_1 != 0.

> ideal sing3=L1,diff(L1,t),diff(L1,u),diff(L1,v),w-1,t;
> dim(std(sing3));

-1 // No solutions with Z_2 != 0.

V VV V V V V V.YV

REFERENCES

[1] G.-M. Greuel, G. Pfister, H. Schonemann. SINGULAR, A System for Polynomial Computations, version 3.1. Available at
http://www.singular.uni-kl.de/

[2] H. Ishida. Catanese-Ciliberto surfaces of fiber genus three with unique singular fiber. Tohoku Math. J. (2) 58 (2006), 33-69.
[38] C. Lyons. The Tate Conjecture for a family of surfaces of general type with pg = q¢ = 1 and K? = 3. Available at
http://mathfaculty.fullerton.edu/clyons/data/index.htm

[4] C. Lyons. Numerical data for “The Tate Conjecture for a family of surfaces of general type with pg = q =1 and K2 =3".
Available at http://mathfaculty.fullerton.edu/clyons/data/index.htm



