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We formulate a multi-group and multi-vector epidemic model in which hosts’ 
dynamics is captured by staged-progression SEIR framework and the dynamics 
of vectors is captured by an SI framework. The proposed model describes the 
evolution of a class of zoonotic infections where the pathogen is shared by m host 
species and transmitted by p arthropod vector species. In each host, the infectious 
period is structured into n stages with a corresponding infectiousness parameter to 
each vector species. We determine the basic reproduction number R2

0(m, n, p) and 
investigate the dynamics of the systems when this threshold is less or greater than 
one. We show that the dynamics of the multi-host, multi-stage, and multi-vector 
system is completely determined by the basic reproduction number and the structure 
of the host-vector network configuration. Particularly, we prove that the disease-free 
equilibrium is globally asymptotically stable (GAS) whenever R2

0(m, n, p) < 1, and 
a unique strongly endemic equilibrium exists and is GAS if R2

0(m, n, p) > 1 and 
the host-vector configuration is irreducible. That is, either the disease dies out or 
persists in all hosts and all vector species.

© 2019 Elsevier Inc. All rights reserved.

0. Introduction

Nearly two-thirds of all known human infectious diseases (ID) are caused by zoonotic pathogens which 
are transmissible from one host species (humans and vertebrate animals) to another [27,41], and therefore 
multi-host. Moreover, 75% of emerging and re-emerging infectious diseases are classified as zoonoses and 
constitute a major public health problem around the world, responsible for over one million death and 
hundreds of millions of cases each year [45]. Furthermore, it is estimated that zoonoses cause over 20 billion 
and 200 billion USD of direct and indirect economic burden across the world respectively [27,45]. Although 
the morbidity and mortality of most ID decreased, the incidence of zoonoses have increased [28]. Therefore, 
understanding the dynamics of zoonoses by systematic modeling and analyzing in order to control and 
mitigate these scourges should be a worldwide priority.

Multi-host infectious diseases include Lyme disease, tick-borne relapsing fever (TBRF), West Nile virus 
(WNV), Chagas disease, type A influenzas, Rift Valley fever, severe acute respiratory syndrome (SARS), etc. 
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However, 40% of multi-host ID are vector-borne [25]. That is, blood-sucking arthropod vectors such as ticks, 
mosquitoes, fleas and sandflies play the role of connecting multiple hosts while potentially infecting them 
and getting infected during this process. Thus, formulating the dynamics of zoonoses requires understanding 
the ecology of all involved host species and their interactions with vector species that carry the pathogen 
between hosts. These complexities have made a comprehensive study of zoonoses very challenging, making 
mathematical models of zoonoses scarce and mainly focused on WNV [8] or directly transmitted zoonoses [2,
3,30]. Recent research has been focused on understanding the dynamics and control of vector-borne zoonoses 
with one vector and two hosts (see [35,39] for WNV, [14] for Chagas’ disease, and [26,33] for TBRF). Also, 
authors in [6] proposed a class of vector-borne zoonoses with an arbitrary number of hosts and one vector 
and provided the complete global dynamics of equilibria.

However, another layer of complexity regarding the ecology of zoonoses consists of sometimes different 
arthropod vector species, or the same arthropod vectors but different genera, are responsible of transmitting 
the same pathogen to a number of different hosts. For instance, over 65 different mosquito species transmit 
WNV to a number of hosts including humans, mammals and many species of birds [20,34]. Another example 
of a highly complex zoonosis is the eastern equine encephalitis virus (EEEV). Indeed, as illustrated in [13,
31], the main vector of EEEV is the mosquito Culiseta melanura, which feeds exclusively on birds, and thus 
infects birds only. These birds infect, in turn, other mosquito species, which then bite humans, therefore 
creating a direct chain of transmission of the pathogen between a host and vector species with no direct link 
and/or transmissibility. Hence, as stated in [31], the elimination or mitigation of zoonoses requires breaking 
the multiple transmission cycles corresponding to each potential host and vector species.

Therefore, a better understanding of zoonoses requires taking into account the ecology of all host species 
(including dead-end hosts – hosts that do not contribute to further transmission of the pathogen) and all 
vector species, along with the epidemiology of the zoonosis within the before-mentioned species. Moreover, 
developing general theories for the role of intermediate hosts in pathogen emergence is one of the nine 
challenges in modeling the emergence of novel pathogens according to [29]. The goal of this paper is twofold.

The first goal of this paper is to derive a class of models that describes the interaction between m host 
species and p vector species where the latter differ in their propensity to acquire or infect the pathogen from 
the former. Moreover, we structure each host’s infectious stage into n different “ages” or classes where they 
infect each vector species at different rates. The proposed model provides a general framework in modeling 
zoonoses as it takes into account the complex patterns and multi-faceted host species dynamics along with 
their interactions with vector species. The derived class of models handles multiple levels of organizations 
including the case where some host or vector species have different epidemiological structures than others. 
Our modeling framework offers a plethora of possible scenarios and could be applied to study specific cases 
of zoonoses, and thus hopes to provide a forum that could help guide decisions on control efforts to mitigate 
and/or eradicate some zoonoses.

The second goal of the paper is to study the global asymptotic behavior of the proposed system. Particu-
larly, we derive conditions under which the disease dies out or persists in all host species and vector species. 
A key threshold quantity happens to be the basic reproduction number R2

0(m, n, p) for the general system 
with m host, n stages, and p vector species. We prove that the disease-free equilibrium is globally asymptot-
ically stable (GAS) whenever R2

0(m, n, p) < 1. The proof of the uniqueness of an endemic equilibrium (EE) 
for large epidemic systems is known to be challenging. Indeed, the uniqueness of an EE may not hold for 
multi-group directly transmitted diseases [38,24] and sexually transmitted diseases [22]. The global dynam-
ics of vector-borne diseases with one host species and one vector species have been investigated in different 
settings (see [10] for a model with time delays, [11] for a competitive exclusion result on a multi-strain model 
with distributed delay and [9] for the interplay between sterile and wild mosquitoes populations). For our 
system, a multi-host, multi-stage and multi-vector model, we will prove indeed that it has a unique strongly
EE (in the sense of Thieme [42]) under the assumption that the host-vector network configuration is irre-
ducible and R2

0(m, n, p) > 1. To do so, we transformed the system at equilibrium into an auxiliary dynamical 
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system and showed that the equilibrium of the newly crafted system, is globally attractive under the pre-
cited hypotheses. Moreover, we will prove that the strongly EE is GAS whenever it exists. The latter relies 
on a carefully constructed Lyapunov function and elements of graph theory. The authors in [17,18] first used 
tools of graph theory to study the GAS of the EE for multi-group models for directed transmitted diseases. 
To do so, they derived a Lyapunov function for the multi-group system from that of a single epidemic system. 
Also, in [36,37], the authors used these tools to investigate for stage-progression models for water-borne dis-
eases and the authors in [23] successfully generalized the approach to a multi-group vector-borne SIR−SI

system. For our model, the arbitrary number of host species, stages, and vector species (all potentially 
different) present specificities that make the approach employed the after-mentioned papers impractical. 
For instance, the construction of the Lyapunov function from that of one group does not apply in our case.

The paper is outlined as follows: Section 1 is devoted to the derivation of the model. Section 2 lays out 
the basic the properties of the model and determines the associated basic reproduction number. Section 3
provides a complete analysis of the model, and Section 4 is devoted to concluding remarks and discussions.

1. Formulation of the model

We consider the dynamics of a disease transmitted by the interplay between m host species and p
arthropod vectors. We assume that the disease follow an SEInR − SI structure where n designates the 
number of infectious stages in the evolution of the disease within each host species. Let Ni represent the 
total population of each host species i (1 ≤ i ≤ m) and let Si, Ei, Il,i, and Ri denote the susceptible, latent, 
infectious at stage l (1 ≤ l ≤ n), and recovered populations of host species i, respectively. Let Nv,j be the 
total population of arthropod vectors of species j, (1 ≤ j ≤ p), each of which is composed by susceptible 
vectors Sv,j and infectious vectors Iv,j . The susceptible populations of host species i are generated through 
a constant recruitment Λi, subjected to a natural death rate of μi and could be infected after being bitten 
by an infectious vector of any species j. After being infected, the susceptible populations of Host i become 
latent, who then become infectious after an incubation period of 1/νi. The infectiosity period of host species 
is structured into n stages, each characterizing the level of parasitemia in the corresponding host. At each 
stage l, the infectious of host i recover at a rate ηl,i, progressing to the next stage of infection at a rate 
γl,i or naturally die at a rate μi. The susceptible arthropod vectors of species j, Sv,j, could be infected by 
all infectious hosts, of any species and of any stage, at different rates. Moreover, they are replenished at a 
constant rate Λv,j and die either by natural death, at rate μv,j , or due to control strategies specific for each 
vector of species j, at a rate δv,j .

The overall multi-host, multi-stage and multi-vector model is captured by the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡi = Λi −
p∑

j=1
ai,jβ

�
i,jSi

Iv,j
Ni

− μiSi

Ėi =
p∑

j=1
ai,jβ

�
i,jSi

Iv,j
Ni

− (μi + νi)Eh

İ1,i = νiEi − (μi + η1,i + γ1,i)I1,i
İ2,i = γ1,iI1,i − (μi + η2,i + γ2,i)I2,i
...
İn−1,i = γn−2,iIn−2,i − (μi + ηn−1,i + γn−1,i)In−1,i
İn,i = γi,n−1Ii,n−1 − (μi + ηn,i)In,i
Ṙi =

∑n
k=1 ηk,iIi − μiRi

Ṡv,j = Λv,j −
m∑
i=1

ai,jSv,j

n∑
l=1

βi
l,jIl,i

Ni
− (μv,j + δv,j)Sv,j

İv,j =
m∑

ai,jSv,j

n∑ βi
l,jIl,i

Ni
− (μv,j + δv,j)Iv,j .

(1)
i=1 l=1
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Fig. 1. Flow diagram of Model 1. The dashed, dotted and dash-dotted lines capture the infection routes of vectors from all the 
infectious hosts at different stages. The planes lines capture the infection routes of hosts from the vectors. We did not display the 
recovery routes from each Ik,i (for k = 1, 2 . . . , n − 1 and i = 1, 2, . . . , m) to Ri.

A schematic description of the model is captured by Fig. 1 and the parameters are described in Table 1. 
The total population of host species and vector species are asymptotically constant as their dynamics are 
given by Ṅi = Λi − μiNi and Ṅv,j = Λv,j − (μv,j + δv,j)Nv,j , respectively. Hence, by using the theory of 
asymptotic systems [12,44] and by denoting the limits of Ni and Nv,j by Ni = Λi

μi
and Nv,j = Λv,j

μv,j+δv,j
, 

System (1) is asymptotically equivalent to its limit system. Moreover, in this case, it could be written in a 
compact form as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = Λh − diag−1(Nh)diag(S)A ◦B�Iv − diag(μh)S
Ė = diag−1(Nh)diag(S)A ◦B�Iv − diag(μh + νh)E
İ1 = diag(ν)E − diag(α1)I1
İ2 = diag(γ1)I1 − diag(α2)I2
...
İn−1 = diag(γn−2)In−2 − diag(αn−1)In−1
İn = diag(γn−1)In−1 − diag(αn)In

Ṡv = Λv − diag(Sv)
n∑

l=1

(A ◦Bl)Tdiag−1(Nh)Il − diag(μv + δv)Sv

İv = diag(Sv)
n∑

l=1

(A ◦Bl)Tdiag−1(Nh)Il − diag(μv + δv)Iv,

(2)

where S = [S1, S2, . . . , Sm]T , Nh = [N1, N2, . . . , Nm]T , E = [E1, E2, . . . , Em]T , Ik = [Ik,1, Ik,2, . . . , Ik,m]T
is the vector of infectious at stage k (1 ≤ k ≤ n) for all hosts species. Also, αk,i = μk,i + ηk,i + γk,i and 
γn,i = 0 for all i. For vectors, Sv = [Sv,1, Sv,2, . . . , Sv,p]T and Iv = [Iv,1, Iv,2, . . . , Iv,p]T denote the vectors 
of susceptible and infected, respectively. The matrices A, B� and Bl are given by

A =

⎛
⎜⎜⎜⎜⎝

a1,1 a1,2 . . . a1,p
a2,1 a2,2 . . . a2,p

...
...

. . .
...

a a . . . a

⎞
⎟⎟⎟⎟⎠ , B� = (β�

i,j) =

⎛
⎜⎜⎜⎜⎝

β�
1,1 β�

1,2 . . . β�
1,p

β�
2,1 β�

2,2 . . . β�
2,p

...
...

. . .
...

β� β� . . . β�

⎞
⎟⎟⎟⎟⎠ ,
m,1 m,2 m,p m,1 m,2 m,p
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Table 1
Description of the parameters used in System (2).

Parameters Description

Λh = [Λ1,Λ2, . . . ,Λm]T Vector of recruitment of the hosts;
Λv = [Λv,1,Λv,2, . . . ,Λv,p]T Vector of recruitment of the vectors;
ai,j Biting rate of vector j on Host i;
β�
i,j Infectiousness of Host i to vectors of species j per biting;

μh = [μ1, μ2, . . . , μm]T Hosts’ death rate;
νh = [ν1, ν2, . . . , νm]T Hosts’ incubation rate;
αk = [αk,1, αk,2, . . . , αk,m]T Hosts’ total duration at infectious stage k;
ηk = [ηk,1, ηk,2, . . . , ηk,m]T Hosts’ recovery rate at stage k;
γk = [γk,1, γk,2, . . . , γk,m]T Hosts’ progression rate from infectious stage k to k + 1;
βi
k,j Vector of species j’s infectiousness to Host i at stage k;

μv = [μ1, μ2, . . . , μp]T Vectors’ natural mortality rates;
δv = [δ1, δ2, . . . , δp]T Vectors’ control-induced mortality rates.

Bk =

⎛
⎜⎜⎜⎜⎝

β1
k,1 β1

k,2 . . . β1
k,p

β2
k,1 β2

k,2 . . . β2
k,p

...
...

. . .
...

βm
k,1 βm

k,2 . . . βm
k,p

⎞
⎟⎟⎟⎟⎠ ,

for 1 ≤ k ≤ n. A represents the biting/landing rates matrix, B� captures the infectiousness of host species 
to vector species; and the matrices Bk represents the infectiousness of vector species from infected host 
species at stage k.

Model (2) describes the dynamics of a Multi-Host and Multi-Vector SEInR − SI model where the 
infectious stage in each host is composed of n stages. The model is flexible and could be adapted to 
cases where different hosts could have different epidemiological structures with respect to the infection. 
This extends the work in [6,26,33] which consider the dynamics zoonoses and one vector species. Our model 
extend also the multi-host and multi-vector in [15] which explores and SIR-SI type of host-vector interaction. 
Particularly, our model consists of SEInR where the infection of each host is stratified into n infectious 
classes and each of these classes infect susceptible vectors at different rates. This extension captures a more 
realistic aspect of infection in the interactions between hosts and vectors. Moreover, although we considered 
an SI structure for the vectors for simplicity, the results of this paper are also valid if the vector species’s 
dynamics follows an SEI structure. Indeed, for some vectors such as mosquitoes, their incubation period is 
often nearly two weeks, which is on the same scale as their lifespan, making an SEI model more suited for 
their dynamics.

2. Basic properties and reproduction number

The set

Ω =
{

(S,E, I1, . . . , In,Sv, Iv) ∈ R
m(n+2)+2p
+ |S + E +

n∑
i=1

Ii ≤ Λh ◦ 1
μ
, Sv + Iv ≤ Λv ◦ 1

μv + δv

}

where ◦ denotes the Hadamard product, is a compact attracting positively invariant for System (2). There-
fore, the solutions of System (2) are biologically substantiated. The trivial equilibrium of System (2) is the 
disease-free equilibrium (D.F.E.) and is given by E0 =

(
S̄,0m(n+1), S̄v,0p

)
where

S̄ = Λh ◦ 1
μ

and S̄v = Λv ◦ 1
μv + δv

.

In the following lemma, we derive the basic reproduction number for Model (2) following [16,43].
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Lemma 2.1. The basic reproduction number of Model (2) is given by:

R2
0(m,n, p) = ρ

(
diag(Nv)

(
n∑

l=1

(A ◦Bl)T diag(γ1 ◦ γ2 ◦ · · · ◦ γl−1 ◦ ν)

diag−1((μ + ν) ◦ α1 ◦ α2 ◦ · · · ◦ αl)
)

diag−1(Nh)A ◦B�diag−1(μv + δv)
)
,

where ρ(.) denotes the spectral radius operator.

Proof. Following the next generation method [16,43], the system composed of the infected variables in 
(2) could be decomposed as the sum of two columns vectors F(E, I) and V(E, I) where F represents 
new infections in each host and arthropod species and V that of transitions between classes. By letting 
F = DF(E, I)|E0 and V = DV(E, I)|E0 , the Jacobian of F and V, evaluated at the DFE, we obtain:

F =
(

0m(n+1),m(n+1) A ◦B�

0p,m diag(Nv)Bdiag−1(Nh) 0mn+p,p

)

where

B =
(

(A ◦B1)T (A ◦B2)T . . . (A ◦Bn)T
)
,

and

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−diag(μ + ν) 0m,m . . . 0m,m 0m,p

diag(ν) −diag(α1) . . . 0m,m 0m,p

0m,m diag(γ1)
. . .

...
...

...
. . . . . .

...
...

0m,m 0m,m diag(γn−1) −diag(αn) 0m,p

0p,p 0p,p 0p,p 0p,p −diag(μv + δv)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is worth noticing that the matrix B has m × n columns and so, the last row of F has mn + m + p =
m(n + 1) + p columns, in accordance with the first row of F , as A ◦ B� has p columns. The matrix V
is Metzler (positive off-diagonal entries) and therefore −V −1 ≥ 0 [4]. Given the particular shape of the 
matrix V , the matrix-wise entries of −V −1 are given by the induction relationship:

(−V −1)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0m,m if 1 ≤ i ≤ n + 1, 1 ≤ i < j ≤ n + 1
diag−1(αi−1) if 1 ≤ i = j ≤ n + 1,

diag(γi−2)diag−1(αi)(−V −1)i−1,j if 2 ≤ i ≤ n, 1 ≤ j < i ≤ n,

0p,p if i = n + 2, 1 ≤ j ≤ n + 1,
0p,p if 1 ≤ i ≤ n + 1, j = n + 2,
diag−1(μv + δv) if i = j = n + 2,

where α0 = μ + ν and γ0 = ν. Hence, we can deduce that
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(−V −1)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0m,m if 1 ≤ i ≤ n + 1, 1 ≤ i < j ≤ n + 1
diag−1(αi−1) if 1 ≤ i = j ≤ n + 1,
diag(γj−1 ◦ · · · ◦ γi−2)diag−1(αj−1 ◦ · · · ◦ αi−1) if 2 ≤ i ≤ n, 1 ≤ j < i ≤ n

0p,p if i = n + 2, 1 ≤ j ≤ n + 1,
0p,p if 1 ≤ i ≤ n + 1, j = n + 2,
diag−1(μv + δv) if i = j = n + 2.

Hence, the next generation matrix is given by:

−FV −1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A ◦B�diag−1(μv + δv)

0m(n+1),m(n+1)

0m,p

...

...
0m,p

Θ1 Θ2 Θ3 . . . Θn+1 0p,p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Θ1 = diag(Nv) 
(

n∑
l=1

(A ◦Bl)T (−V −1)l+1,1

)
diag−1(Nh) and,

Θk+1 = diag(Nv)
(

n∑
l=k

(A ◦Bl)T (−V −1)l+1,k+1

)
diag−1(Nh) for k = 1, 2, . . . , n.

The basic reproduction number is the spectral radius of the next generation matrix. Hence, by denoting 
R0(m, n, p) the basic reproduction number of System (2) with n hosts, n infectious stages (in each host) 
and p vectors, we have: R0(m, n, p) = ρ(−FV −1). The matrix −FV −1 is an anti-diagonal block matrix, 
with Θ1 and A ◦B�diag−1(μv + δv) the anti-diagonal entries. Therefore,

R2
0(m,n, p) = ρ((−FV −1)2)

= ρ
(
Θ1A ◦B�diag−1(μv + δv)

)
= ρ

(
diag(Nv)

(
n∑

l=1

(A ◦Bl)T (−V −1)l+1,1

)
diag−1(Nh)A ◦B�diag−1(μv + δv)

)

= ρ

(
diag(Nv)

(
n∑

l=1

(A ◦Bl)Tdiag(γ1 ◦ γ2 ◦ · · · ◦ γl−1 ◦ ν)diag−1((μ + ν)

◦α1 ◦ α2 ◦ · · · ◦ αl)) diag−1(Nh)A ◦B�diag−1(μv + δv)
)
.

This proves our claim. �
The expression of the basic reproduction number R2

0(m, n, p) can be understood heuristically, using 
biological interpretations as follows. Indeed, since infection process requires a host species and a vector 
species, the transmission cycle has two steps: from host species to vector species and from vector species 
to host species. The first step is captured by Θ1 while the latter is represented by A ◦ B�diag−1(μv + δv). 
More specifically, when the host species are entirely susceptible, that is Ii = 0Rm , for i ∈ {1, 2, . . . , n}, 
the transmission rate is diag−1(Nh)diag(Nh)A ◦ B�Iv = A ◦ B�Iv. Thus, the transmission rate per infec-
tious vector of all species is A ◦ B�. However, the average life-span of infectious vectors, of all species, is 
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diag−1(μv + δv) units of time. Thus, a single infectious vector, accounting for all species, will produce an 
average of A ◦B�diag−1(μv +δv) infected host species. Of these host species, a fraction diag(ν)diag−1(μ +ν)
will survive the latency period to become infectious. The probability of these hosts to survive until a stage 
l of the infection is:

diag(γ1 ◦ γ2 ◦ · · · ◦ γl−1)diag−1(α1 ◦ α2 ◦ · · · ◦ αl)diag(ν)diag−1(μ + ν)

= diag(γ1 ◦ γ2 ◦ · · · ◦ γl−1 ◦ ν)diag−1((μ + ν) ◦ α1 ◦ α2 ◦ · · · ◦ αl).

During this time, there is an average of diag(Nv)(A ◦Bl)Tdiag−1(Nh) infectious bites by susceptible vector 
species. Thus, during its infectivity period, an infectious host, of all species, will infect on average:

diag(Nv)
(

n∑
l=1

(A ◦Bl)Tdiag(γ1 ◦ γ2 ◦ · · · ◦ γl−1 ◦ ν)diag−1((μ + ν) ◦ α1 ◦ α2 ◦ · · · ◦ αl)
)

diag−1(Nh)

susceptible vectors of different species that bite them. Therefore, the net result of these two steps is, since 
we are dealing with matrices, the spectral radius of

diag(Nv)
(

n∑
l=1

(A ◦Bl)Tdiag(γ1 ◦ γ2 ◦ · · · ◦ γl−1 ◦ ν)diag−1((μ + ν) ◦ α1 ◦ α2 ◦ · · · ◦ αl)
)

diag−1(Nh)A ◦B�diag−1(μv + δv),

or, equivalently of

A ◦B�diag−1(μv + δv)diag(Nv)
(

n∑
l=1

(A ◦Bl)Tdiag(γ1 ◦ γ2 ◦ · · · ◦ γl−1 ◦ ν)

diag−1((μ + ν) ◦ α1 ◦ α2 ◦ · · · ◦ αl)
)

diag−1(Nh).

In the next section, we study the asymptotic properties of System (2). Particularly, we show that the 
dynamics of the system is completely determined by R2

0(m, n, p) under certain conditions.

3. Global stability of equilibria

3.1. The disease free equilibrium

The disease-free equilibrium (DFE) always exists and is in Ω. The following theorem gives conditions 
under which it is globally asymptotically stable (GAS).

Theorem 3.1. The DFE is GAS whenever R2
0(m, n, p) < 1.

Proof. The proof consists of proving that all infected variables of System (1) converge to zero and using 
the local stability of the DFE when R2

0(m, n, p) < 1 to conclude the GAS of the disease-free steady state. 
Considering that diag(Sh) ≤ diag(Nh) and

İv = diag(Sv)
n∑

(A ◦Bl)Tdiag−1(Nh)Il − diag(μv + δv)Iv

l=1
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= diag(Nv − Iv)
n∑

l=1

(A ◦Bl)Tdiag−1(Nh)Il − diag(μv + δv)Iv

≤ diag(Nv)
n∑

l=1

(A ◦Bl)Tdiag−1(Nh)Il − diag(μv + δv)Iv,

we obtain, from System (2), that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ė ≤ A ◦B�Iv − diag(μh + νh)E
İ1 = diag(ν)E − diag(α)I1

İ2 = diag(γ1)I1 − diag(α1)I2
...
İn−1 = diag(γn−2)In−2 − diag(αn−1)In−1

İn = diag(γn−1)In−1 − diag(αn)In

İv ≤ diag(Nv)
n∑

l=1

(A ◦Bl)Tdiag−1(Nh)Il − diag(μv + δv)Iv

Therefore, we deduce that

⎛
⎜⎜⎜⎜⎜⎜⎝

Ė
İ1
...
İn
İv

⎞
⎟⎟⎟⎟⎟⎟⎠

≤ (F + V )

⎛
⎜⎜⎜⎜⎜⎜⎝

E
I1
...
In
Iv

⎞
⎟⎟⎟⎟⎟⎟⎠

(3)

where F and V are the matrices generated in the next generation method. Since F is a nonnegative matrix 
and V is a Metzler matrix, we have (see [4]),

ρ(−FV −1) < 1 ⇐⇒ α(F + V ) < 0

where α(F + V ) is the stability modulus of F + V . Hence, the trajectories of the auxiliary system whose 
RHS is that of (3) converge to zero whenever R0(m, n, p) = ρ(−FV −1) < 1. Since all the variables are 
positive, by the comparison theorem [40], we conclude that

lim
t→∞

E = lim
t→∞

I1 = · · · = lim
t→∞

In = 0m and lim
t→∞

Iv = 0p. (4)

Moreover, this implies that:

lim
t→∞

S = Λh � μh and lim
t→∞

Sv = Λv � (μh + δv), (5)

where � denotes the Hadamard division. Relations (4) and (5) imply the attractivity of the DFE. Moreover, 
by [16,43], the DFE is locally asymptotically stable whenever R2

0(m, n, p) < 1. We conclude thus that the 
DFE is GAS whenever R2

0(m, n, p) < 1. �
Remark 3.1. In Theorem 3.1, it is worthwhile noting that no hypothesis on the irreducibility of the con-
nectivity matrix is needed. This is important as this hypothesis is customarily used [5,17,23,36] to obtain a 
Lyapunov function in the form of V = cT I where c is the left eigenvector of the next generation matrix.
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3.2. Existence and uniqueness of the EE

In this subsection, we explore the asymptotic behavior of System (2) when R2
0(m, n, p) > 1. Particularly, 

we want to obtain conditions for which the disease persists in all stages, of all hosts and all vectors. That 
is, an equilibrium such that

I∗l,i 	 0 I∗v,j 	 0 for all l, i, j.

Such interior equilibrium is also called strongly endemic [42]. The existence of such equilibrium is tied to 
the overall basic reproduction number and the connectivity between host and vector species. That is, the 
matrix

N =

⎛
⎜⎝

0m(n+1),m(n+1) A ◦B�

n∑
l=1

(A ◦Bl)T 0mn+p,p

⎞
⎟⎠ .

The following theorem gives the existence conditions of such an equilibrium.

Theorem 3.2. There exists a unique strongly endemic equilibrium for Model (2) whenever R2
0(m, n, p) > 1

and the Host-Vector connectivity configuration N is irreducible.

Proof. An endemic equilibrium satisfies the relations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λh = diag−1(Nh)diag(S∗)A ◦B�I∗v + diag(μh)S∗

diag(μh + νh)E∗ = diag−1(Nh)diag(S∗)A ◦B�I∗v
diag(α1)I∗1 = diag(ν)E∗

diag(α2)I∗2 = diag(γ1)I∗1
...
diag(αn−1)I∗n−1 = diag(γn−2)I∗n−2

diag(αn)I∗n = diag(γn−1)I∗n−1

Λv = diag(S∗
v)

∑n
l=1(A ◦Bl)Tdiag−1(Nh)I∗l + diag(μv + δv)S∗

v

diag(μv + δv)I∗v = diag(S∗
v)

∑n
l=1(A ◦Bl)Tdiag−1(Nh)I∗l

(6)

In the following, we express all variables at equilibrium in terms of I∗v. From (6), we express all I∗l (1 ≤ l ≤ n) 
in terms of I∗1, as follows:

I∗l = diag(γ1 ◦ γ2 ◦ · · · ◦ γl−1)diag−1(α2 ◦ · · · ◦ αl)I∗1. (7)

From (7), it follows that I∗l 	 0, for any 1 ≤ l ≤ n, if and only if I∗1 	 0. Moreover, we can also express I∗1
in terms of I∗v and S∗ since

I∗1 = diag−1(α1)diag(ν)E∗

= diag−1(α1)diag−1(μh + νh)diag(ν)diag−1(Nh)diag(S∗)A ◦B�I∗v (8)

Using the equilibrium relation stemming from the equation of infected vectors (in (6)), the relation S∗
v =

Nv − I∗v, along with (7) and (8), we obtain
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diag(μv + δv)I∗v = diag(Nv − I∗v)
n∑

l=1

(A ◦Bl)TDldiag(S∗)A ◦B�I∗v, (9)

where

Dl = diag−1(Nh)diag(γ0 ◦ γ1 ◦ γ2 ◦ · · · ◦ γl−1)diag−1(α0α1 ◦ α2 ◦ · · · ◦ αl)diag−1(Nh)

and α0 = μh + νh and γ0 = ν. Now, we want to express S in terms of I∗v. That will make (9) in terms of I∗v
only. By using the equation of susceptible in (6), we obtain

diag(S∗) = diag(Nh)diag−1(A ◦B�I∗v) + diag−1(μ).

Hence, Equation (9) leads to:

diag(μv + δv)I∗v = diag(Nv − I∗v)
n∑

l=1

(A ◦Bl)TDl[diag(Nh)diag−1(A ◦B�I∗v) + diag−1(μ)]A ◦B�I∗v

= diag(Nv − I∗v)
n∑

l=1

(A ◦Bl)TDldiag(Nh)diag−1(A ◦B�I∗v + μ ◦Nh)A ◦B�I∗v

:= F (I∗v) (10)

Thus, a unique strongly endemic equilibrium exists if and only if the vectorial equation (10) has a unique 
nonnegative solution. Moreover, notice that Equation (10) is satisfied if and only if I∗v is an equilibrium of 
the auxiliary dynamical system:

ẋ = F (x) − diag(μv + δv)x. (11)

Now, we will show that System (11) has unique equilibrium I∗v 	 0 if the connectivity matrix N is irreducible 
and R2

0(m, n, p) > 1. To this end, we will use elements from monotone systems and particularly Hirsch’s 
theorem [21]. Indeed, System (11) is monotone if and only if the vector field F (x) − diag(μv + δv)x is, or 
equivalently whenever the F ′(x) is Metzler. That is, the off-diagonal elements of F ′(x) are positive. We 
have:

F ′(x) =
(

diag(Nv − x)
n∑

l=1

(A ◦Bl)TDldiag(Nh)diag−1(A ◦B�x + μ ◦Nh)A ◦B�x

)′

= −diag
(

n∑
l=1

(A ◦Bl)TDldiag(Nh)diag−1(A ◦B�x + μ ◦Nh)A ◦B�x

)

+ diag(Nv − x)
n∑

l=1

(A ◦Bl)TDldiag(Nh)
(

diag−1(A ◦B�x + μ ◦Nh)A ◦B�x
)′

, (12)

since the first term is a diagonal matrix. It follows from (12), that F ′(x) is Metzler as long as M :=
(diag−1(A ◦B�x + μ ◦Nh)A ◦B�x)′ is. We have:

M = (diag−1(A ◦B�x + μ ◦Nh)A ◦B�x)′

= diag−1(A ◦B�x + μ ◦Nh)A ◦B� + diag(A ◦B�x)(diag−1(A ◦B�x + μ ◦Nh))′

= diag−1(A ◦B�x + μ ◦Nh)A ◦B�
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+diag(A ◦B�x)
(
− diag−1(A ◦B�x + μ ◦Nh)A ◦B�diag−1(A ◦B�x + μ ◦Nh)

)
= diag−1(A ◦B�x + μ ◦Nh)

(
A ◦B�diag(A ◦B�x + μ ◦Nh)

− diag(A ◦B�x)A ◦B�
)

diag−1(A ◦B�x + μ ◦Nh)

= diag−1(A ◦B�x + μ ◦Nh)A ◦B�diag(μ ◦Nh)diag−1(A ◦B�x + μ ◦Nh),

as A ◦B�diag(A ◦B�x) = diag(A ◦B�)A ◦B�x. Hence, M and therefore F ′(x) is Metzler. Moreover, since the 
Host-Vector configuration N is irreducible, F ′(x) is irreducible. Thus, the auxiliary dynamical system (11)
is strongly monotone. Moreover, it could be seen that the map of F ′(x) is monotonically decreasing. Since 
F (0Rp) − diag(μv + δv)0Rp = 0Rp and x ≤ Nv, by Hirsch’s theorem ([21], page 55), the trajectories of the 
auxiliary system (11) either tend to the origin, or else there is a unique equilibrium I∗v 	 0 and all trajectories 
tend to I∗v. The origin is unstable since, for G(x) := F (x) −diag(μv+δv)x, we have ρ(G′(0Rp)) > 1. Indeed, it 
could be shown easily that ρ(diag−1(μv +δv)F ′(0Rp)) = R2

0(m, n, p). We have shown that if R2
0(m, n, p) > 1

and the host-vector configuration is irreducible, a unique solution I∗v 	 0 of Equation (10) exists. Hence, 
using (6), (7), we deduce that E∗ 	 0 and I∗l 	 0, for 1 ≤ l ≤ n. We conclude therefore that System (2)
has a unique strongly endemic equilibrium whenever R2

0(m, n, p) > 1 and N is irreducible. �
The following subsection consists of investigating the asymptotic properties of this unique strongly en-

demic equilibrium.

3.3. Global stability of the EE

Theorem 3.3. The strongly endemic equilibrium is GAS whenever it exists.

Proof. We consider the following Lyapunov function candidate V =
m∑
i=1

viVi where

Vi =
Si∫

S∗
i

(
1 − S∗

i

x

)
dx +

Ei∫
E∗

i

(
1 − E∗

i

x

)
dx +

n∑
k=1

ck,i

Ik,i∫
I∗
k,i

(
1 −

I∗k,i
x

)
dx +

p∑
j=1

wijVv,j ,

Vv,j =
Sv,j∫

S∗
v,j

(
1 −

S∗
v,j

x

)
dx +

Iv,j∫
I∗
v,j

(
1 −

I∗v,j
x

)
dx, wij =

aijβ
�
ijS

∗
i

Ni(μv,j + δv,j)
,

c1,i = νi + μi

νi
, and ck,i = 1

αk,iI∗k,i

p∑
j=1

wij

m∑
i=1

aij
S∗
v,j

Ni

n∑
l=k

βi
l,jI

∗
l,i ∀k = 1, . . . , n

The coefficients vi are positive to be determined later. The function V is definite positive and the goal is 
show that its derivative along the trajectories of the multi-host, multi-vector system (2) is definite-negative. 
To ease the notations, let

β̄i
l,j = aijS

∗
v,j

βi
l,jI

∗
l,i

Ni
.

Throughout this proof, we will be using the component-wise endemic relations, which could be written as:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λi =
p∑

j=1
ai,jβ

�
i,jS

∗
i

I∗v,j
Ni

+ μiS
∗
i

(μi + νi)E∗
h =

p∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

α1,iI
∗
1,i = νiE

∗
i

α2,iI
∗
2,i = γ1,iI

∗
1,i

...
αn−1,iI

∗
n−1,i = γn−2,iI

∗
n−2,i

αn,iI
∗
n,i = γi,n−1I

∗
i,n−1

Λv,j =
m∑
i=1

n∑
l=1

β̄i
l,j + (μv,j + δv,j)S∗

v,j

(μv,j + δv,j)I∗v,j =
m∑
i=1

n∑
l=1

β̄i
l,j

(13)

The derivative of V along the trajectories of (2) is given by:

V̇ =
m∑
i=1

vi

⎡
⎣Ah,i +

p∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
2 − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

)

+
p∑

j=1
ai,jβ

�
i,jS

∗
i

Iv,j
Ni

− (μi + νi − c1,iνi)Ei −
n∑

k=2

ck,iαk,iI
∗
k,i

Ik−1,i

I∗k−1,i

I∗k,i
Ik,i

+
n∑

k=1

ck,iαk,iI
∗
k,i −

n−1∑
k=1

(ck,iαk,i − ck+1,iγk,i)Ik,i − cn,iαn,iIn,i

+
p∑

j=1
wijAv,j +

p∑
j=1

wij

m∑
i=1

n∑
l=1

β̄i
l,j

(
2 −

S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,i
I∗l,i

)

+
p∑

j=1
wij

m∑
i=1

n∑
l=1

β̄i
l,j

Il,i
I∗l,i

−
p∑

j=1
wij(μv,j + δv,j)Iv,j

⎤
⎦ , (14)

where Ah,i = μiS
∗
i

(
2 − S∗

i

Si
− Si

S∗
i

)
and Av,j = (μv,j + δv,j)S∗

v,j

(
2 −

S∗
v,j

Sv,j
− Sv,j

S∗
v,j

)
.

Given the expression of wij , the terms in Iv,j sum to zero. Similarly, using the expression of c1,i, the 
terms in Ei also sum to zero. Hence, what remains in (14) is:

V̇ =
m∑
i=1

vi

⎡
⎣ p∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
2 − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

)

−
n∑

k=2

ck,iαk,iI
∗
k,i

Ik−1,i

I∗k−1,i

I∗k,i
Ik,i

+
n∑

k=1

ck,iαk,iI
∗
k,i −

n−1∑
k=1

(ck,iαk,i − ck+1,iγk,i)Ik,i

−cn,iαn,iIn,i +
p∑

wij

m∑ n∑
β̄i
l,j

(
2 −

S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,i
I∗l,i

)

j=1 i=1 l=1
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+
p∑

j=1
wij

m∑
i=1

n∑
l=1

β̄i
l,j

Il,i
I∗l,i

+ Ah,i +
p∑

j=1
wijAv,j

⎤
⎦ (15)

Our first major claim is:

m∑
i=1

vi

⎡
⎣n−1∑
k=1

(ck,iαk,i − ck+1,iγk,i)Ik,i − cn,iαn,iIn,i −
p∑

j=1
wij

m∑
i=1

n∑
l=1

β̄i
l,j

Il,i
I∗l,i

⎤
⎦ = 0 (�)

Indeed, the equality (�) claims that all linear terms in Il,i (1 ≤ l ≤ n) in (15) sum to zero. By using the 
expressions of ck,i, we obtain:

ck,iαk,i − ck+1,iγk,i = 1
I∗k,i

p∑
j=1

wij

m∑
i=1

n∑
l=k

β̄i
l,j −

γk,i
αk+1,iI∗k+1,i

p∑
j=1

wij

m∑
i=1

n∑
l=k+1

β̄i
l,j

= 1
I∗k,i

p∑
j=1

wij

m∑
i=1

(
n∑

l=k

β̄i
l,j −

n∑
l=k+1

β̄i
l,j

)

= 1
I∗k,i

p∑
j=1

wij

m∑
r=1

β̄r
k,j .

Substituting this expression of ck,iαk,i − ck+1,iγk,i in (�), we obtain:

m∑
i=1

vi

⎡
⎣ n∑
k=1

⎛
⎝ 1
I∗k,i

p∑
j=1

wij

m∑
r=1

β̄r
k,j

⎞
⎠ Ik,i −

p∑
j=1

wij

m∑
r=1

n∑
l=1

β̄r
l,j

Il,r
I∗l,r

⎤
⎦ = 0. (��)

We work the second sum in (��) out in order to obtain a factor of Ik,i and therefore compare it with the 
first one. We have:

m∑
i=1

vi

⎡
⎣ p∑
j=1

wij

m∑
r=1

n∑
l=1

β̄r
l,j

Il,r
I∗l,r

⎤
⎦ =

m∑
i=1

vi

⎡
⎣ p∑
j=1

wij

n∑
l=1

(
m∑
r=1

βr
l,j

Il,r
I∗l,r

)⎤
⎦

=
m∑
i=1

⎡
⎣ p∑
j=1

n∑
k=1

m∑
r=1

viwij β̄
r
k,j

Ik,r
I∗k,r

⎤
⎦ ,

obtained by replacing the index l by k for convenience. Now, by successively switching the subindices i and 
r; and using properties of nested sums, we obtain:

m∑
i=1

vi

⎡
⎣ p∑
j=1

wij

m∑
r=1

n∑
l=1

β̄r
l,j

Il,r
I∗l,r

⎤
⎦ =

m∑
r=1

⎡
⎣ p∑
j=1

n∑
k=1

m∑
i=1

vrwrj β̄
i
k,j

Ik,i
I∗k,i

⎤
⎦

=
m∑
i=1

n∑
k=1

⎡
⎣ m∑
r=1

p∑
j=1

vrwrj β̄
i
k,j

⎤
⎦ Ik,i
I∗k,i

.

Thus, showing (��) is equivalent to show that:

m∑ p∑
vrwrj β̄

i
k,j = vi

p∑
wij

m∑
β̄r
k,j
r=1 j=1 j=1 r=1
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This is also equivalent to:

m∑
r=1

p∑
j=1

vrwrj

n∑
k=1

β̄i
k,j = vi

p∑
j=1

wij

m∑
r=1

n∑
k=1

β̄r
k,j (���)

Showing (���) concludes the proof of (�). We notice that the relation (���) is satisfied if vi are the 
components of the solution of the linear system B̄v = 0, with

B̄ =

⎛
⎜⎜⎜⎜⎝

♣11 ♣12 . . . ♣1m
♣21 ♣22 . . . ♣2m

...
...

. . .
...

♣m1 ♣m2 . . . ♣mm

⎞
⎟⎟⎟⎟⎠ , (16)

where

♣kk =
p∑

j=1
wkj

⎛
⎝−

m∑
i=1,i �=k

n∑
l=1

β̄i
l,j

⎞
⎠

and

♣ik =
p∑

j=1
wkj

n∑
l=1

β̄i
l,j , ∀k �= i.

Moreover, we have:

m∑
i=1

♣ik = ♣kk +
m∑

i=1,i �=k

♣ik

=
p∑

j=1
wkj

⎛
⎝−

m∑
i=1,i �=k

n∑
l=1

β̄i
l,j

⎞
⎠ +

m∑
i=1,i �=k

p∑
j=1

wkj

n∑
l=1

β̄i
l,j

= 0.

Since the Host-Vector connectivity configuration N is irreducible, the matrix B̄ is also irreducible. Thus, 
it could be shown easily that dim(ker(B̄)) = 1. Moreover, vi = −Cii where Cii is the cofactor of the i-th
diagonal of B̄. Also, Cii < 0 for all i = 1, 2, . . . , m. Thus, there exists v = (v1, v2, . . . , vm)T 	 0 such that 
B̄v = 0. We choose the coefficients vi of Vi in Lyapunov function are as such.

To show (���), we start by its left hand side (LHS):

LHS(���) =
m∑
r=1

p∑
j=1

(
vrwrj

n∑
k=1

β̄i
k,j

)

=
m∑

r=1,r �=i

vr

p∑
j=1

(
wrj

n∑
k=1

β̄i
k,j

)
+ vi

p∑
j=1

(
wij

n∑
k=1

β̄i
k,j

)
.

However, B̄v = 0 implies that, for any i, ♣iivi +
m∑

♣irvr = 0. Therefore,

r=1,r �=i
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p∑
j=1

wij

⎛
⎝−

m∑
r=1,r �=i

n∑
l=1

β̄r
l,j

⎞
⎠ vi +

m∑
r=1,r �=i

⎛
⎝ p∑

j=1
wrj

n∑
l=1

β̄i
l,j

⎞
⎠ vr = 0

Thus, using the properties of nested again, LHS(���) becomes

LHS(���) =
m∑

r=1,r �=i

vr

p∑
j=1

(
wrj

n∑
k=1

β̄i
k,j

)
+ vi

p∑
j=1

(
wij

n∑
k=1

β̄i
k,j

)

=
p∑

j=1
wij

⎛
⎝ m∑

r=1,r �=i

n∑
l=1

β̄r
l,j

⎞
⎠ vi + vi

p∑
j=1

(
wij

n∑
k=1

β̄i
k,j

)

= vi

p∑
j=1

wij

⎛
⎝ m∑

r=1,r �=i

n∑
l=1

β̄r
l,j +

n∑
k=1

β̄i
k,j

⎞
⎠

= vi

p∑
j=1

wij

(
m∑
r=1

n∑
l=1

β̄r
l,j

)
,

which is exactly the right hand side of (���).
In summary, Relation (�), obtained through (��) and (���) cancels linear terms in Il,i, for 1 ≤ l ≤ n, 

in the expression of V̇ given in relation (15). Thus, the latter yields to:

V̇ =
m∑
i=1

vi

⎡
⎣ p∑
j=1

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

(
2 − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

)

−
n∑

k=2

ck,iαk,iI
∗
k,i

Ik−1,i

I∗k−1,i

I∗k,i
Ik,i

+
n∑

k=1

ck,iαk,iI
∗
k,i

+
p∑

j=1
wij

m∑
i=1

n∑
l=1

β̄i
l,j

(
2 −

S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,i
I∗l,i

)
+ Ah,i +

p∑
j=1

wijAv,j

⎤
⎦ . (17)

By using endemic relations (13) and the expression of the coefficients ck,i, we have

ai,jβ
�
i,jS

∗
i

I∗v,j
Ni

= wij

m∑
r=1

n∑
l=1

β̄r
l,j ,

and

ck,iαk,iI
∗
k,i =

p∑
j=1

wij

m∑
i=1

n∑
l=k

β̄i
l,j ∀k = 1, . . . , n.

Substituting these expressions and switching i by r in the last sum of (17), the expression V̇ becomes:

V̇ =
m∑
i=1

vi

⎡
⎣ p∑
j=1

wij

m∑
r=1

n∑
l=1

β̄r
l,j

(
2 − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

)

−
n∑ p∑

wij

m∑ n∑
β̄i
l,j

Ik−1,i

I∗k−1,i

I∗k,i
Ik,i

+
n∑ p∑

wij

m∑ n∑
β̄i
l,j
k=2 j=1 i=1 l=k k=1 j=1 i=1 l=k
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+
p∑

j=1
wij

m∑
r=1

n∑
l=1

β̄r
l,j

(
2 −

S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,r
I∗l,r

)
+ Ah,i +

p∑
j=1

wijAv,j

⎤
⎦

=
m∑
i=1

vi

⎡
⎣ p∑
j=1

wij

m∑
r=1

β̄r
1,j

(
5 − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

I1,r
I∗1,r

)

+
p∑

j=1
wij

m∑
r=1

n∑
l=2

β̄r
l,j

(
5 − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,r
I∗l,r

)

−
n∑

k=2

p∑
j=1

wij

m∑
i=1

n∑
l=k

β̄i
l,j

Ik−1,i

I∗k−1,i

I∗k,i
Ik,i

+
n∑

k=2

p∑
j=1

wij

m∑
i=1

n∑
l=k

β̄i
l,j + Ah,i +

p∑
j=1

wijAv,j

⎤
⎦ (18)

Also, notice that:

n∑
k=2

p∑
j=1

wij

m∑
i=1

n∑
l=k

β̄i
l,j =

p∑
j=1

wij

m∑
i=1

n∑
k=2

n∑
l=k

β̄i
l,j

=
p∑

j=1
wij

m∑
i=1

n∑
l=2

(l − 1)β̄i
l,j .

Therefore, Equation (18) implies that:

V̇ =
m∑
i=1

vi

⎡
⎣ p∑
j=1

wij

m∑
r=1

β̄r
1,j

(
5 − S∗

i

Si
− E∗

i Si

EiS∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,jSv,jI1,r

Iv,jS∗
v,jI

∗
1,r

)

+
p∑

j=1
wij

m∑
r=1

n∑
l=2

β̄r
l,j

(
4 + l − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,r
I∗l,r

)

−
p∑

j=1
wij

m∑
i=1

n∑
k=2

n∑
l=k

β̄i
l,j

Ik−1,i

I∗k−1,i

I∗k,i
Ik,i

+ Ah,i +
p∑

j=1
wijAv,j

⎤
⎦ . (19)

Moreover,

n∑
k=2

n∑
l=k

β̄i
l,j

Ik−1,i

I∗k−1,i

I∗k,i
Ik,i

=
n∑

l=2

n∑
k=l

β̄i
k,j

Il−1,i

I∗l−1,i

I∗l,i
Il,i

=
n∑

l=2
β̄i
l,j

l∑
k=2

Ik−1,i

I∗k−1,i

I∗k,i
Ik,i

,

since 
n∑

l=2

n∑
k=l

ulvk =
n∑

l=2

vl

l∑
k=2

vk. Thus, Equation (19) implies

V̇ =
m∑
i=1

vi

⎡
⎣ p∑
j=1

wij

m∑
r=1

β̄r
1,j

(
5 − S∗

i

Si
− E∗

i Si

EiS∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,jSv,jI1,r

Iv,jS∗
v,jI

∗
1,r

)

+
p∑

wij

m∑ n∑
β̄r
l,j

(
4 + l − S∗

i

Si
− E∗

i Si

EiS∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,r
I∗l,r

)

j=1 r=1 l=2
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−
p∑

j=1
wij

m∑
r=1

n∑
l=2

β̄r
l,j

l∑
k=2

Ik−1,r

I∗k−1,r

I∗k,r
Ik,r

+ Ah,i +
p∑

j=1
wijAv,j

⎤
⎦ . (20)

Finally, by combining the second and third sums in (20), we obtain:

V̇ =
m∑

i,r=1

p∑
j=1

viwij β̄
r
1,j

(
5 − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

I1,r
I∗1,r

)
(21)

+
m∑

i=1,r

p∑
j=1

viwij

n∑
l=2

β̄r
l,j

(
4 + l − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,r
I∗l,r

−
l∑

k=2

Ik−1,r

I∗k−1,r

I∗k,r
Ik,r

)
+

m∑
i=1

viAh,i +
m∑
i=1

p∑
j=1

viwijAv,j

= S1 + S2 +
m∑
i=1

viAh,i +
m∑
i=1

p∑
j=1

viwijAv,j .

The terms Av,j and Ah,i are clearly definite-negative. Note that, taken separately, the two sums S1 and 
S2 in (21) are not definite negative. Hence, to finish the proof, we will prove that the sum S1 + S2 is 
definite-negative. To do so, we look at the coefficients of the sums from the graph-theoretical standpoint, 
following the same approach as [17–19,23]. Indeed, let G(N ) be the directed graph that represents the 
connectivity N between the m hosts (including the l stages) and p vectors. Since the Host-Vector connectivity 
configuration N is irreducible, it follows that graph G(N ) is strongly connected. Recall that, for i =
1, 2, . . . , m, vi are components of the solution of the system B̄v = 0, where B̄ is given by (16). The matrix 
B̄ is the so-called Laplacian matrix and its associated the graph G(B̄) is strongly connected since B̄ is 
irreducible, since N is. Moreover, the solution of B̄v = 0 is given by the Kirchhoff’s matrix tree theorem 
[7,32] as follows:

vi =
∑
T∈Ti

w(T )

where Ti is the set of all spanning trees T of G(B̄) rooted at Host i. Particularly,

w(T ) =
∏

(m,l,r,j)∈E(T )

β̄m
l,jwrj ,

where E(T ) is the set of all arcs in T . For our setup, an arc (i, l, i′, j) describes an infection arc that starts 
from Host i, at stage l directed to Host i′ through Vector j. From a modeling standpoint, vi connects Host 
i to all vectors (through β̄i

l,j) and connect all vectors to all hosts but i (through wkj , with k �= i). By using 
Cayley’s formula [1,32], each vi = Cii is the sum of nm−1pm−1mm−2 terms, each of which is the product of 
m′ − 1 wkj β̄

i
l,j with k �= i. These wkj β̄

i
l,j represent the weight of each spanning tree Ti, rooted at Host i.

Now, we investigate what each term of viwij β̄
r
l,j represents in terms of the graph G(B̄) and its spanning 

trees. Indeed, each term in viwij β̄
r
l,j for all i, j, l, r is a weight of a unicyclic graph of a particular length, 

obtained by adding an arc (r, l, i, j) to a directed tree rooted at Host i, T ∈ Ti. The obtained unicyclic 
graph Q has a unique cycle CQ of length 1 ≤ d ≤ m. We group all isomorphic cycles as they will have the 
same coefficients. Hence, we conclude that S1 +S2 is the sum over all unicyclic graphs as S1 +S2 =

∑
Q SQ, 

where
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SQ = w(Q1)
∑

(i,1,r,j)∈E(CQ1)

(
5 − S∗

i

Si
− E∗

i SiIv,j
EiS∗

i I
∗
v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,jSv,jI1,r

Iv,jS∗
v,jI

∗
1,r

)

+ w(Q2)
∑

(i,l,r,j)∈E(CQ2)

(
4 + l − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,r
I∗l,r

−
l∑

k=2

Ik−1,r

I∗k−1,r

I∗k,r
Ik,r

)

+ w(Q3)
∑

(i,l,r,j)∈E(CQ3)

(
9 + l − S∗

i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,jSv,jI1,r

Iv,jS∗
v,jI

∗
1,r

−S∗
i

Si
− E∗

i

Ei

Si

S∗
i

Iv,j
I∗v,j

− Ei

E∗
i

I∗1,i
I1,i

−
S∗
v,j

Sv,j
−

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,r
I∗l,r

−
l∑

k=2

Ik−1,r

I∗k−1,r

I∗k,r
Ik,r

)
, (22)

where CQ1, CQ2 (for which l ≥ 2) and CQ3 represents the cycles that correspond to elements in S1, S2

and S1 + S2 exclusively. Now, each of the three sums in (22) are definite-negative. Indeed, we have:

∏
(i,1,r,j)∈E(CQ1)

S∗
i

Si

E∗
i SiIv,j

EiS∗
i I

∗
v,j

Ei

E∗
i

I∗1,i
I1,i

S∗
v,j

Sv,j

I∗v,jSv,jI1,r

Iv,jS∗
v,jI

∗
1,r

=
∏

(i,1,r,j)∈E(CQ1)

I∗1,i
I1,i

I1,r
I∗1,r

= 1,

since CQ1 is a cycle. Also,

∏
(i,l,r,j)∈E(CQ2)

S∗
i

Si

E∗
i

Ei

Si

S∗
i

Iv,j
I∗v,j

Ei

E∗
i

I∗1,i
I1,i

S∗
v,j

Sv,j

I∗v,j
Iv,j

Sv,j

S∗
v,j

Il,r
I∗l,r

l∏
k=2

Ik−1,r

I∗k−1,r

I∗k,r
Ik,r

=
∏

(i,l,r,j)∈E(CQ2)

I∗1,i
I1,i

Il,r
I∗l,r

l∏
k=2

Ik−1,r

I∗k−1,r

I∗k,r
Ik,r

= 1.

Similarly, the product of the non constant terms in the last sum (22) is equal to 1 as CQ3 is a cycle.
Hence, by the arithmetic-geometric mean, SQ is definite-negative for each unicyclic graph Q. It follows 

from (21), that V̇ is definite-negative. Thus, the global stability of the EE follows from the Lyapunov stability 
theorem. This ends the proof. �
Remark 3.2. Although the Lyapunov function obtained in Theorem 3.3 is somehow similar to those obtained 
in [17,18] for multi-group models, they are structurally different, in the sense that it is not linear combination 
of Lyapunov functions of one-group (or one host, multiple vectors). Indeed, the orbital derivative of Lyapunov 
function V =

∑m
i=1 viVi where is Vi is the Lyapunov function for one host and multiple vectors, is not 

definite-definite negative for the coefficient v = (v1, v2, . . . , vm)T .

In this paper, we have considered an SI model structure for the dynamics of the vectors. However, the 
results obtained here are valid for SEI type of structure. Indeed, in this case, the following Lyapunov 
function V =

∑m
i=1 viVi where

Vi =
Si∫

S∗

x− S∗
i

x
dx +

Ei∫
E∗

x−E∗
i

x
dx +

n∑
k=1

ck,i

Ik,i∫
I∗

x− I∗k,i
x

dx +
p∑

j=1
wijVv,j
i i k,i
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where

Vv,j =
Sv,j∫

S∗
v,j

x− S∗
v,j

x
dx +

Ev,j∫
E∗

v,j

x− E∗
v,j

x
dx + νv,j + μv,j + δv,j

νv,j

Iv,j∫
I∗
v,j

x− I∗v,j
x

dx,

wij =
aijβ

�
ijS

∗
i νv,j

Ni(νv,j + μv,j + δv,j)(μv,j + δv,j)
, c1,i = νi + μi

νi
.

And

ck,i = 1
αk,iI∗k,i

p∑
j=1

wij

m∑
i=1

aij
S∗
v,j

Ni

n∑
l=k

βi
l,jI

∗
l,i ∀k = 1, . . . , n.

This Lyapunov function has its derivative along the trajectories of the SEInR − SEI system, definite 
negative. The corresponding coefficients vi are determined in the same fashion as the SEInR− SI case.

4. Conclusion and discussions

In this paper, we formulated a multi-host, multi-stage and multi-vector epidemic model that describes the 
evolution of a class of zoonoses in which the pathogen is shared by multiple host species and the transmission 
occurs through the biting or landing of an arthropod vector. The proposed model improves those of [6,26,
33] —by incorporating multiple arthropod vector species— and [14,15] —by incorporating multiple hosts 
within multiple stages in each hosts’ infectious class and the heterogeneous nature of the interactions between 
these host species and multiple arthropod vector species. We computed the basic reproduction number of 
the general system R2

0(m, n, p), for m hosts, n hosts’ infectious stages and p vectors species. We proved 
that the disease free equilibrium is globally asymptotically stable whenever R2

0(m, n, p) < 1 (Theorem 3.1). 
Under the assumption the host-vector network configuration is irreducible, we proved that there exists a 
unique “strongly” endemic equilibrium as long as R2

0(m, n, p) > 1 and that, it is GAS whenever it exists. 
This result is new and improves previous results of [6], for which the global result for multiple hosts and 
one vector is given, and of [15] in which a case of multi-species, multi-vector is considered but no stability 
results were given.

The global stability of the strongly equilibrium relies on a carefully constructed Lyapunov functions 
and tools of graph theory, à la [17,18,23]. The uniqueness and the global stability of the strongly endemic 
equilibrium requires the irreducibility of the host-vector network (Theorem 3.2 and Theorem 3.3), leading 
to the conclusion that the disease either dies out or persists in all hosts and all vectors. That is, controlling 
the disease requires an intervention in all hosts. This is close to impossible, given that some hosts are not 
even known. Furthermore, in some cases the natural habitats of some hosts and vectors are so apart that it 
is unlikely there is a direct transmission between these hosts and vector for an infection to take place. This 
could collapse the irreducibility of the hosts-vectors configuration. Thus, it is important to investigate the 
global asymptotic behavior of the solutions when the host-vector network configuration is reducible. This 
is the subject of a separate study and will be published elsewhere.

Other venues of expanding this work consist of considering different functional reproduction schemes for 
different vectors and/or hosts. Indeed, in this paper, although we have different reproduction (recruitment) 
rate for each hosts and vectors, they follow the same scheme, that is, they all consist of constant recruitments.
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