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a b s t r a c t 

A multi-patch and multi-group modeling framework describing the dynamics of a class of diseases driven 

by the interactions between vectors and hosts structured by groups is formulated. Hosts’ dispersal is 

modeled in terms of patch-residence times with the nonlinear dynamics taking into account the effective 

patch-host size. The residence times basic reproduction number R 0 is computed and shown to depend 

on the relative environmental risk of infection. The model is robust, that is, the disease free equilibrium 

is globally asymptotically stable (GAS) if R 0 ≤ 1 and a unique interior endemic equilibrium is shown to 

exist that is GAS whenever R 0 > 1 whenever the configuration of host-vector interactions is irreducible. 

The effects of patchiness and groupness , a measure of host-vector heterogeneous structure, on the basic 

reproduction number R 0 , are explored. Numerical simulations are carried out to highlight the effects of 

residence times on disease prevalence. 

© 2016 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

w  

u  

h  

[

 

p  

a  

h  

e  

d  

p  

[

t  

d  

t  

i  
1. Introduction 

Vector-borne diseases, a major public health problem around

the world, are responsible for over one million death and hundreds

of millions cases each year [51,65] and so diminishing their impact

is a worldwide priority. Travel, climate change and trade have sig-

nificantly altered vector-borne diseases dynamics [10,26,38,52,53] .

Ross [56] was the first to model a vector borne disease dynam-

ics. Ross’s paper [56] and follow up work [57–59] laid the founda-

tion of what is known today as the field of mathematical or the-

oretical epidemiology. There is an extensive literature associated

with the study of vector-host interactions in the context of hu-

man diseases ( [2,4,6,14–16,20–24,31,40,41,43,44] and the references

therein). Sparse theoretical results exist on the role of geographical

heterogeneity on the spread of vector-borne diseases, mostly via

metapopulation models [1,3,5,18,28,54,61,66,69] , that assume that

the movement of host is “permanent”; this approach has been

referred as Eulerian [30,47,48] . A Lagrangian perspective consid-
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rs the movement of individuals across patches in a framework

here the hosts’ origin or identity are never lost. This approach,

seful in the study of the role of movement of individuals in

ighly connected settings albeit it has received limited attention

18,25,34,54,60] . 

The concept of Langragian and Eulerian approaches were im-

lemented by Okubo et al. [47,48] in modeling the diffusion and

ggregation of animal populations in ecology. This nomenclature

as been used in the context of epidemic models by Cosner

t al. [18] . The use of a Lagrangian approach in the study of the

ynamics and control of vector-borne diseases has also been ex-

lored in [25,31] prior this work. Specifically, Dye and Hasibeder

25,31] considered the study of vector-born dynamics via SIS − SI

ype host-vector models in the context of n patch systems. Ro-

riguez and Torres-Sorando [54] used a Lagrangian perspective via

he incorporation of short-time visitations to multiple patches, also

n the context of vector borne disease. In [60] , authors also con-

idered a patchy Ross–Macdonald model and derived patch spe-

ific basic reproduction number in order to identify which patch

s a source or a sink. More recently, Iggidr et al. [34] introduced

 general SIR − SI multi group deriving necessary and sufficient

onditions for the existence of a sharp threshold [34] . Their [34]

http://dx.doi.org/10.1016/j.mbs.2016.09.006
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bstract setting did not incorporate residence times explicitly, al-

eit their general infection terms technically may allow for their

nclusion. The study in Iggidr et al. [34] and related papers, with

he exception of [25,31] , assume that hosts and vectors are res-

dents or members of particular patch or group. Our framework

an handle multiple levels of organization including the host’s age

r socio-economic structure (see [42,64] for the age factors and

8,37,49] for the socio-economics’ role). Since vector transmission

s often determined by the vectors’ place of residence, it is often

seful to decouple the host’s structure from that of vectors’ popu-

ation whenever possible. 

In this paper, we consider a vector-host model where the host

opulation is structured by groups/classes that interact with non-

obile vectors living in multiple patches/environments. The hosts’

roups may be defined by socioeconomic background, gender, or

ge. The vectors’ patches represent the vectors’ “space”, which in-

lude schools, farms, workplaces etc. Hosts, in general, will dis-

ribute their time in a multitude of vectors’ places of residence

patches). In our setup, we assume that the spatial scale under

onsideration is such that ignoring vector mobility across patches

s acceptable. There are evidences that such an assumption is rea-

onable, for example, Dengue and Chikungunya’s urban vectors

edes aegypti rarely travel more than a few tens of meters dur-

ng their lifespan [1,50] ; the mainly rural but urban adapted vector

edes albopictus have maximum dispersal of 40 0–60 0 m [33,45] ;

ccording to [9,45] , the vectors Aedes albopictus are unlikely to

ravel long distance due to wind speed variability, in fact, they

xhibit a tendency to fly closer to the ground, desisting to fly

uring heavy winds; the adult Anopheles ( vector of malaria) does

ot fly more than 2 km [63] ; and, Anopheles gambiae ’s (the main

alaria vector in Africa) maximal flight distance is 10 km [36] .

n short, the spread of vector-borne diseases, in many instances,

s primarily due to hosts’ dispersal. Therefore, it is assumed here

s in [5,69] that vectors do not abandon their geographical en-

ironment or patch. There are alternative modes of mosquitoes

ispersal like those generated by trade, including the used-tires’

rade [46,55] . 

The host population is structured into n groups with dispersal

odeled via the residence times matrix P = (p i j ) 1 ≤i ≤n, 
1 ≤ j≤m 

, where p ij 

enotes the proportion of time that a host member of Groups i

pends in Patch j . The use of this approach impacts the temporal

ynamics of the effective host population size in each patch. Host

ffective population size per patch, that is the number of hosts of

ach group at time t in Patch j , j = 1 , 2 , . . . , m ; is computed us-

ng the entries of the matrix P as weights. The density of effective

nfected host per patch account for both effective population and

ffective infected population size in each patch. 

The host effective population size has not been incorporated in

he literature using a Lagrangian approach in the context of vector-

orne diseases before [18,54] (but see [11] ). Our formulation gener-

lize the case where vectors and hosts are defined by jointly inhab-

ted patches [18,34,54] . We prove that the disease free equilibrium

s GAS if R 0 ≤ 1 and that a unique endemic equilibrium exists and

s GAS if R 0 > 1 whenever the multi-patch, multi-group system is

rreducible. This approach has been used in the study of a general

IS model in the context of communicable diseases [7] . 

The paper is organized as follow. Section 2 is devoted to the

erivation and basic properties of the model; Section 3 deals with

he stability analysis of the disease free equilibrium (DFE) and the

ndemic equilibrium. Section 4 , highlights the role of heterogene-

ty in term of patch and group variability on the basic reproduc-

ion number; Section 5 highlights tour results in the context of

 groups, 2 patches and 2 groups and 3 patches via simulations.

ection 6 collects our conclusions and thoughts on the usefulness

f this approach and list possible extensions. 
i  
. Derivation of the model 

We consider the dynamics of human-vector interactions within

 population composed of n social groups and m environments or

atches. We denote by N h , i the host population in social group i ,

 = 1 , . . . , i, and N v , j vector population in Patch j , j = 1 , . . . , m . The

usceptible and infected host populations in group i , i = 1 , . . . , n ,

t time t , are denoted by S h , i ( t ) and I h , i ( t ), respectively. It is as-

umed that the total host population in each group is constant,

hat is N h,i = S h,i (t) + I h,i (t) ; that the disease in the host is cap-

ured by an SIS epidemic model while the vectors’ dynamics fol-

ows an SI framework. The vector population in each patch is com-

osed by S v , j and I v , j , the susceptible and infected vector popula-

ions in Patch j , j = 1 , . . . , m, respectively. 

The entries of the residence times matrix P denote the pro-

ortion of time that individuals of different groups spend in each

atches; specifically p ij represents the proportion of time that

embers of group i spend in Patch j ( p ij ≥ 0 for all j and
 m 

j=1 p i j = 1 for all i ). The susceptible individuals of group i ( S h , i )

re generated through birth at the per-capita rate μi and they re-

over from infection at the per-capita rate γ i . It is assumed that all

ffsprings are susceptible and that the disease does not confer im-

unity. The birth of susceptible individuals in group i is compen-

ated by deaths, maintaining constant host population size in each

roup. The host population is at risk of infection in every patches

rom its interaction with local infected vectors ( I v , j , j = 1 , . . . , m ).

ence, the dynamics of the the susceptible host of group i , for

 = 1 , . . . , n, is given by: 

˙ 
 h,i = μi N h,i + γi I h,i −

m ∑ 

j=1 

b j (N h , N v , j ) βv ,h p i j S h,i 

I v , j 

N v , j 

− μi S h,i 

here b j (N h , N v , j ) is the number of mosquito bites per human per

nit of time [13,15,27,29] in Patch j . b j (N h , N v , j ) is assumed to be

 function of the number of host in Patch j ; a population that in-

ludes visitors from other patches. 

The dynamics of infected hosts of group i , i = 1 , . . . , n, is mod-

led as follows 

˙ 
 h,i = 

m ∑ 

j=1 

b j (N h , N v , j ) βv h p i j S h,i 

I v , j 

N v , j 

− (μi + γi ) I h,i (1)

The susceptible vectors in Patch j are replenished via constant

ecruitment �v , j , subject to death at the per-capita rate μv and

emoved (through harvesting and spraying) at the per-capita rate

j . We suppose that the natural per-capita vectors’ death rates are

he same in all patches. Though, the vectors do not move across

atches, the susceptible mosquitoes in Patch j ( S v , j ) may, of course,

e infected by infected hosts of any group while visiting Patch j .

he effective proportion of infected individuals in Patch j is there-

ore given by ∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

ence, the dynamics of susceptible vector in Patch j , j = 1 , . . . , m

n patch j at time t is given by 

˙ 
 v , j = �v ,i − a j βh v S v , j 

∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

− (μv + δ j ) S v , j 

here a j is the number of bites per mosquito per unit of time in

atch j , assumed to be constant. 

The dynamics of infected vectors in Patch j is given by 

˙ 
 v , j = a j βh v S v , j 

∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

− (μv + δ j ) I v , j (2)

We know that the total number of bites by mosquitoes ( a j N v , j 

n Patch j ) should equal the total number of bites received by
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Table 1 

Description of the parameters used in System (4) . 

Parameters Description 

βv h Infectiousness of human to mosquitoes per biting 

βh v Infectiousness of mosquitoes to humans per biting 

a j Biting rate in Patch j 

μi Per capita humans’ birth and death rate for Group i 

γ i Per capita Recovery rate for Group i 

p ij Proportion of time individual in Group i spend in Patch j 

μv Per capita natural death rate of mosquitoes 

δj Per capita death rate of control of mosquitoes in Patch j 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Flow diagram of the model. 
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humans ( b j (N h , N v ) 
∑ n 

k =1 p k j N h,k ) [2,13,44] . In our case, this con-

servation of contact rates should be satisfied in each patch. Hence,

for Patch j , we have: 

a j N v , j = b j (N h , N v , j ) 
n ∑ 

k =1 

p k j N h,k . 

This implies that: 

b j (N h , N v , j ) = 

a j N v , j ∑ n 
k =1 p k j N h,k 

(3)

Hence, the disease dynamics for n host groups interacting in m dif-

ferent environments subjected to resident vectors is completely de-

scribed by the following system: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ S h,i = μi N h,i + γi I h,i − βv h S h,i 

m ∑ 

j=1 

a j p i j 

I v , j ∑ n 
k =1 p k j N h,k 

− μi S h,i 

˙ I h,i = βv h S h,i 

∑ m 

j=1 a j p i j 

I v , j ∑ n 
k =1 p k j N h,k 

− (μi + γi ) I h,i 

˙ S v , j = �v , j − a j βh v S v , j 

∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

− (μv + δ j ) S v , j 

˙ I v , j = βh v S v , j 

∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

− (μv + δ j ) I v , j , 

(4)

with i = 1 , . . . , n and j = 1 , . . . , m . The parameters used in Model

(4) are defined in Table 1 and the flow diagram of the model is

provided in Fig. 1 . 

The total host population is constant and since total vector pop-

ulation dynamics are given by 

˙ N v , j = �v , j − (μv + δ j ) N v , j , 

we can deduce that 

lim sup 

t→ + ∞ 

N v , j = 

�v , j 

μv + δ j 

:= N̄ v , j 

And so, the vector population is asymptotically constant in each

patch. The use of the asymptotic theory on triangular systems

[12,68] , applied to System (4) , leads to the following equivalent au-

tonomous system: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

˙ I h,i = βv h (N h,i − I h,i ) 
m ∑ 

j=1 

a j p i j 

I v , j ∑ n 
k =1 p k j N h,k 

− (μi + γi ) I h,i , 

∀ i = 1 , 2 . . . . , n. 

˙ I v , j = a j βh v ( ̄N v , j − I v , j ) 

∑ n 
i =1 p i j I h,i ∑ n 

k =1 p k j N h,k 

− (μv + δ j ) I v , j , 

∀ j = 1 , 2 , . . . , m. 

(5)

Here, we have that human risk in Patch j is defined by a j βv h and

so, Patch j is riskier than Patch l whenever a j > a l . The model-

ing framework is quite flexible. For example, the case n = m covers

the interactions between n host groups (or classes) in n patches or

the case when hosts and vectors are co-residents. The case p i j = 0

for all j � = i or p = 1 when n = m leads to a collection of isolated
ii 
lassical Ross-Macdonald models. For n � = m , hosts are structured

n groups like children, farmers, retired people and vectors are dis-

ributed in patches or meeting places like home, school, farm, work

lace or mosquito breeding site, etc. People from the considered

roups visit patches and spend certain amount of time and get

ossibly infected whereby. 

Dye and Hasibeder [25,31] models involve n host and m vec-

or patches under the assumption that only the vectors move. The

odels in [18,54,60] , have incorporated residence times explicitly

ut their modeling does not account for the effective patch pop-

lation size. In fact, in [18,54] , the pattern of movement between

atches does not produce any “net” change on the total popula-

ion per patch at any given time. For example, it is assumed (in

54] ), that the total population of patch j is N / k where N the over-

ll human population and k the number of patches. In [18,60] , the

otal population in each patch j is N j (or H j in their notations) re-

ardless of the movement of individuals between patches. Simi-

ar remarks hold for the Dengue’s two-patch model in [39] . In our

ase, the host population in each patch is the sum of visiting indi-

iduals of different groups weighted by the proportion of time they

pend in each patch. This means that, at time t , at any given Patch

 , the host population is p 1 j N h, 1 + p 2 j N h, 2 + · · · + p n j N h,n , the ef-

ective population size of Patch j . Moreover, this approach is well

uited for better intervention strategies through the knowledge of

 j , j = 1 , . . . , m or the residence time matrix P = (p i j ) 1 ≤i ≤n, 
1 ≤ j≤m 

. For ex-

mple, if a particular host group is more affected by the disease

n consideration, that may lead to the patch within which the in-

ection had occurred, that is the patch “source” of infection. That

ould help steer control measures such as DDT in the “infectious”

atch or social distancing the “infected” group to mitigate the dis-

ase burden. 

System (5) , could be written in a compact form as follows 

˙ I h = βv h diag (N h − I h ) P diag (a ) diag (P 

t N h ) 
−1 I v − diag (μ + γ ) I h 

˙ I v = βh v diag (a ) diag (N v − I v ) diag (P 

t N h ) 
−1 

P 

t I h − diag (μv + δ) I v 

(6)
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here I h = [ I h, 1 , I h, 2 , . . . , I h,n ] 
t , I v = [ I v , 1 , I v , 2 , . . . , I v ,m 

] t , N h = [ N h, 1 ,

 h, 2 , . . . , N h,n ] 
t , N̄ v = [ ̄N v , 1 , N̄ v , 2 , . . . , N̄ v ,m 

] t , δ = [ δ1 , δ2 , . . . , δm 

] t ,

 = [ a 1 , a 2 , . . . , a m 

] t and μ = [ μ1 , μ2 , . . . , μn ] 
t . 

We end this section by showing that the solutions of Model

5) are positive and bounded, or in other words, that the model

s biologically grounded. 

emma 1.1. The region defined by 

= 

{
(I h , I v ) ∈ R 

n + m 

+ | I h ≤ N h , I v ≤ N̄ v 
}

s a compact attracting positively invariant set for System (6) . 

roof. The set �, a subset R 

n + m , is clearly closed and bounded

nd hence a compact. The right-hand side of System (6) could be

ritten as A (I h , I v )(I h , I v ) 
t where 

 (I h , I v ) = 

(
−diag (μ + γ ) βv h diag (N h

βh v diag (a ) diag ( ̄N v − I v ) diag (P 

t N h ) 
−1 

P 

t 

ince, I n ≤ N h and I v ≤ N̄ v , the matrix A (I h , I v ) is Metzler. Hence,

he positive orthant R 

n + m 

+ is invariant. At I h = N h , we have ˙ I h =
diag (μ + γ ) I h ≤ 0 . Similarly, at I v = N̄ v , we have ˙ I v = −diag (μv +
) I v ≤ 0 . Hence, the vector field of (6) is pointed inward from the

aces of �. �

. Equilibria and global stability 

In the absence of infected vectors in all patches, Model (6) sup-

orts a unique, disease free equilibrium (DFE), given by E 0 = 0 R n + m .
he basic reproduction number, defined as the average number of

econdary cases produced of by an infected individual during its

ifetime, is computed using the next generation method [19,67] .

he right hand side of (6) could be written as F + V where 

(I h , I v ) = 

(
βv h diag (N h ) P diag (a ) diag (P 

t N h ) 
−1 I v 

βh v diag (a ) diag (N v ) diag (P 

t N h ) 
−1 

P 

t I h 

)
and 

V(I h , I v ) = 

(
−diag (μ + γ ) I h 
−diag (μv + δ) I v 

)

Let F = D F(I h , I v ) and V = D V(I h , I v ) evaluated at the DFE. We

btain: 

 = 

(
0 βv h diag (N h ) P diag (a ) d

βh v diag (a ) diag (N v ) diag (P 

t N h ) 
−1 

P 

t 0 

nd 

 = 

(
−V h 0 

0 −V v 

)

here V h = diag (μ + γ ) and V v = diag (μv + δ) . 

The basic reproduction number is the spectral radius of the

ext generation matrix: 

F V 

−1 = 

(
0 n,n M v h 
M h v 0 m,m 

)

here 

 h v = βh v diag (a ) diag (P 

t N h ) 
−1 diag (N v ) P 

t V 

−1 
h 

nd 

 v h = βv h diag (N h ) P diag (P 

t N h ) 
−1 diag (a ) V 

−1 
v 

Notice also that since (−F V ) 2 = diag (M v h , M h v ) , we can deduce

hat the basic reproduction number is R 

2 
0 = ρ(M v h M h v ) . 

More precisely, we have that 
 P diag (a ) diag (P 

t N h ) 
−1 

ag (μv + δ) 

)

P 

t N h ) 
−1 

)

 h v = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 βh v p 11 N v , 1 ∑ n 
i =1 p i 1 N h,i (μ1 + γ1 ) 

a 1 βh v p 21 N v , 1 ∑ n 
i =1 p i 1 N h,i (μ2 + γ2 ) 

· · · a 1 βh v p n 1 N v , 1 ∑ n 
i =1 p i 1 N h,i (μn + γn ) 

a 2 βh v p 12 N v , 2 ∑ n 
i =1 p i 2 N h,i (μ1 + γ1 ) 

a 2 βh v p 22 N v , 2 ∑ n 
i =1 p i 2 N h,i (μ2 + γ2 ) 

· · · a 2 βh v p n 2 N v , 2 ∑ n 
i =1 p i 2 N h,i (μn + γn ) 

. . . 
. . . · · ·

. . . 
a m βh v p 1 m N v ,m ∑ n 

i =1 p im N h,i (μ1 + γ1 ) 

a m βh v p 2 m N v ,m ∑ n 
i =1 p im N h,i (μ2 + γ2 ) 

· · · a m βh v p nm N v ,m ∑ n 
i =1 p im N h,i (μn + γn ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

nd 

 v h = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 βv h p 11 N h, 1 ∑ n 
i =1 p i 1 N h,i (μv + δ1 ) 

a 2 βv h p 12 N h, 1 ∑ n 
i =1 p i 2 N h,i (μv + δ2 ) 

· · · a m βh v p 1 m N h, 1 ∑ n 
i =1 p im N h,i (μv + δm ) 

a 1 βv h p 21 N h, 2 ∑ n 
i =1 p i 1 N h,i (μv + δ1 ) 

a 2 βv h p 22 N h, 2 ∑ n 
i =1 p i 2 N h,i (μv + δ2 ) 

· · · a m βv h p 2 m N h, 2 ∑ n 
i =1 p im N h,i (μv + δm ) 

. . . 
. . . · · ·

. . . 
a 1 βv h p n 1 N h,n ∑ n 

i =1 p i 1 N h,i (μv + δ1 ) 

a 2 βv h p n 2 N h,n ∑ n 
i =1 p i 2 N h,i (μv + δ2 ) 

· · · a m βh v p nm N h,n ∑ n 
i =1 p im N h,i (μv + δm ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

Note that the matrices M h v and M v h are of ( m , n ) and ( n ,

 ) size, respectively. The matrix M v h represents the new human

ases due to infected mosquitoes whereas M h v represents the new

osquito cases due to humans. In fact, the elements of M v h and

 h v have specific biological interpretations, for instance, 

• For i = 1 , . . . , n and j = 1 , . . . , m, we have (m h v ) ji =
a j βh v p i j ̄N v , j 

(μi + γi ) 
∑ n 

l=1 
p l j N h,l 

represents the average number of secondary 

vector (of Patch j ) cases of infection produced by a single

infected of group i during his/her infectious period. 
• Similarly, for i = 1 , . . . , n and j = 1 , . . . , m, we have (m v h ) i j =

a j βh v p i j N h,i 

(μv + δ j ) 
∑ n 

l=1 
p l j N h,l 

represents the average number of secondary 

human (of group i ) cases generated by an infected vector (of

Patch j ) during her infectious period. 
• The overall number of new cases produced by an infected

mosquitoes in Patch j is the sum of the elements of the j th

column of M v h , that is, 

n ∑ 

i =1 

(m v h ) i j = 

n ∑ 

i =1 

a j βh v p i j N h,i 

(μv + δ j ) 
∑ n 

l=1 p l j N h,l 

= 

a j βh v 

(μv + δ j ) 
∑ n 

l=1 p l j N h,l 

n ∑ 

i =1 

p i j N h,i 

= 

a j βh v 

(μv + δ j ) 
. 

The overall new vector cases generated by an infected human

f group i is the sum of the first column of M h v , namely, 

m 

 

j=1 

(m h v ) ji = 

m ∑ 

j=1 

a j βh v p i j ̄N v , j 

(μi + γi ) 
∑ n 

l=1 p l j N h,l 

= 

βh v 
(μi + γi ) 

m ∑ 

j=1 

a j p i j ̄N v , j ∑ n 
l=1 p l j N h,l 

. 

The matrix 

0 M v h 
M v h 0 

)
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or equivalently the matrix (
0 N v h 

N v h 0 

)
where N v h = diag (N h ) P diag (P 

t N h ) 
−1 diag (a ) and N h v =

diag (a ) diag (P 

t N h ) 
−1 diag ( ̄N v ) P 

t is what authors in [34] called

host-vector network. It is proven in [34] that the matrix −F V −1 is

irreducible if and only if M h v M v h and M v h M h v are both irreducible.

Notice that, even if n = m, the irreducibility of P is neither nec-

essary nor sufficient to ensure the irreducibility of M h v M v h and

M v h M h v . See the Section 5.1 for counter examples. 

Remark 2.1. If we suppose that n = m and p i j = 0 , ∀{ i, j} ∈
{ 1 , 2 , . . . , n } 2 and i � = j then P = I n . Hence, M h v and M v h are diago-

nal matrices and so is their product M h v M v h . Hence, 

R 

2 
0 = max { (R 

1 
0 ) 

2 , (R 

2 
0 ) 

2 , . . . , (R 

n 
0 ) 

2 } 
where 

(R 

i 
0 ) 

2 = 

a 2 
i 
βv h βh v ̄N v ,i 

μv (μi + γi ) N h,i 

For each i , the basic reproduction number (R 

i 
0 
) 2 is the one derived

from the classical Ross model. 

Theorem 2.1. Under the assumption that the host-vector network is

irreducible, we have that 

1. If R 0 ≤ 1 , the DFE is globally asymptotically stable. 

2. If R 0 > 1 , the DFE is unstable. 

Theorem 2.2. Under the assumption that the vector-host network is

irreducible, we have that if R 0 > 1 then there exists a unique endemic

equilibrium that is globally asymptotically stable. 

Theorems 2.1 and 3.2 can be obtained by using Smith’s re-

sults [62] . Indeed, it is immediate that System (6) is cooperative,

strongly concave and its Jacobian is irreducible. Hence, the theo-

rems can be obtained following Smith’s results [62] ( Theorem 3.1

and Corollary 3.2). A similar method using Hirsch’s theorem [32] is

outlined by Iggidr et al. in [35] for an SIS metapopulation model. 

A sharp threshold results of a multi-group vector-borne disease

model has been obtained in [34] by using nicely crafted Lyapunov

functions and elements of graph theory. 

4. Effects of heterogeneity 

In this section, we take a closer look to the effect of heterogene-

ity on the basic reproduction number and provide simple bounds

for the basic reproduction number that may be useful in applica-

tions. We also compare the effects of patchiness (the role of vari-

able number of patches/environments) and groupness (the role of

variable hosts’ groups) on the basic reproduction number. We de-

note R 

2 
0 
(m, n ) the basic reproduction number for n groups and m

patches. 

The basic reproduction number is the spectral radius of M v h M h v .

This matrix is supposed irreducible with entries are given by: 

r i j = 

βv h βh v N h,i 

μ j + γ j 

m ∑ 

k =1 

a 2 
k 

p ik p jk N v ,k 

( 
∑ n 

l=1 p lk N h,l ) 2 (μv + δk ) 
∀ i, j = 1 , . . . , n. 

(7)

R = (r i j ) is an n × n matrix. The basic reproduction number is also

the spectral radius of M h v M v h , a matrix with entries 

˜ r i j = 

a i a j βh v βv h N v ,i 

(μv + δ j )( 
∑ n 

l=1 p li N h,l )( 
∑ n 

l=1 p l j N h,l ) 

n ∑ 

k =1 

p ki p k j N h,k 

μk + γk 

∀ i, 

j = 1 , . . . , m. (8)
The next theorem collects a set of inequalities that identify

ower and upper bounds for the basic reproduction number. 

heorem 3.1. 

1. min 

j=1 , ... ,n 
L j ≤ R 

2 
0 (n, m ) ≤ max 

j=1 , ... ,n 
L j where 

L j = 

βh v βh v 
μ j + γ j 

m ∑ 

k =1 

a 2 
k 

p jk N v ,k 

( 
∑ n 

l=1 p lk N h,l )(μv + δk ) 

2. min 

i =1 , ... ,n 
L � 

i 
≤ R 

2 
0 (n, m ) ≤ max 

i =1 , ... ,n 
L � 

i 
where 

L � 
i 
= 

m ∑ 

k =1 

a 2 
k 
βh v βh v p ik N h,i N v ,k 

( 
∑ n 

l=1 p lk N h,l ) 2 (μv + δk ) 

( 

n ∑ 

j=1 

p jk 

μ j + γ j 

) 

3. min 

j=1 , ... ,m 

L 
j ≤ R 

2 
0 (n, m ) ≤ max 

j=1 , ... ,m 

L 
j where 

L 
j = 

a j βh v βv h 

(μv + δ j )( 
∑ n 

l=1 p l j N h,l ) 

n ∑ 

k =1 

p k j N h,k 

μk + γk 

( 

m ∑ 

i =1 

a i p ki N v ,i ∑ n 
l=1 p li N h,l 

) 

4. min 

i =1 , ... ,m 

L 
† 
i 

≤ R 

2 
0 (n, m ) ≤ max 

i =1 , ... ,m 

L 
† 
i 

where 

L † 
i 
= 

a i βh v βv h N v ,i ∑ n 
l=1 p li N h,l 

n ∑ 

k =1 

p ki N h,k 

μk + γk 

( 

m ∑ 

j=1 

a j p k j 

(μv + δ j ) 
∑ n 

l=1 p l j N h,l 

) 

roof. 

1. Since M v h M h v is a nonnegative irreducible matrix, the basic re-

production number R 

2 
0 

= ρ(M v h M h v ) satisfy the Frobenius’ in-

equality: 

min 

j 
r j (M v h M h v ) ≤ R 

2 
0 (n, m ) ≤ max 

j 
r j (M v h M h v ) 

where r j (M v h M h v ) = 

∑ n 
i =1 r i j and r ij are given by (7) . We have: 

r j (M v h M h v ) = 

n ∑ 

i =1 

r i j 

= 

n ∑ 

i =1 

βv h βh v N h,i 

μ j + γ j 

m ∑ 

k =1 

a 2 
k 

p ik p jk N v ,k 

( 
∑ n 

l=1 p lk N h,l ) 2 (μv + δk ) 

= 

βv h βh v 
μ j + γ j 

m ∑ 

k =1 

a 2 
k 

p jk N v ,k 

( 
∑ n 

l=1 p lk N h,l ) 2 (μv + δk ) 

n ∑ 

i =1 

p ik N h,i

= 

βv h βh v 
μ j + γ j 

m ∑ 

k =1 

a 2 
k 

p jk N v ,k 

( 
∑ n 

l=1 p lk N h,l )(μv + δk ) 

:= L j 

2. This inequality is obtained in the same way as 1 this time, by

summing over the columns of M v h M h v and using Frobenius’ in-

equality. 

3. By considering the fact that R 

2 
0 (n, m ) is also the spectral radius

of matrix M h v M v h , the Frobenius’ inequality leads to 

min 

j 
˜ r j (M h v M v h ) ≤ R 

2 
0 (n, m ) ≤ max 

j 
˜ r j (M h v M v h ) , 

where ˜ r j (M h v M v h ) = 

∑ m 

i =1 ̃  r i j and ˜ r i j are given by (8) . It follows

that, 

˜ r j (M h v M v h ) = 

m ∑ 

i =1 

˜ r i j 

= 

m ∑ 

i =1 

a i a j βh v βv h N v ,i 

(μv + δ j )( 
∑ n 

l=1 p li N h,l )( 
∑ n 

l=1 p l j N h,l ) 

×
n ∑ 

k =1 

p ki p k j N h,k 

μk + γk 
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c  

w  
= 

a j βh v βv h 

(μv + δ j )( 
∑ n 

l=1 p l j N h,l ) 

m ∑ 

i =1 

a i p ki N v ,i 

( 
∑ n 

l=1 p li N h,l ) 

×
n ∑ 

k =1 

p k j N h,k 

μk + γk 

:= L 
j 
4. Let r i (M h v M v h ) denote the sum of the entries along the i th row

of M h v M v h . We have: 

˜ r i (M h v M v h ) = 

m ∑ 

j=1 

˜ r i j 

= 

m ∑ 

j=1 

a i a j βh v βv h N v ,i 

(μv + δ j )( 
∑ n 

l=1 p li N h,l )( 
∑ n 

l=1 p l j N h,l ) 

×
n ∑ 

k =1 

p ki p k j N h,k 

μk + γk 

= 

a i βh v βv h N v ,i 

( 
∑ n 

l=1 p li N h,l ) 

m ∑ 

j=1 

a j N v ,i 

(μv + δ j )( 
∑ n 

l=1 p l j N h,l ) 

×
n ∑ 

k =1 

p ki p k j N h,k 

μk + γk 

:= L † 
i 

We deduce the inequality as in 3. �

Note that the bounds L j and L � 
j 

can be interpreted biologically.

 j is the sum of the products of the number of secondary cases of

nfections on mosquitoes (of Patch k , k = 1 , . . . , m ) produced by in-

ected host of Group j ( 
a k βh v N̄ v ,k 
μ j + γ j 

) and secondary cases of infections

n hosts (of Group j ) produced by infected mosquitoes in Patch k

 

a k βv h 
μv + δk 

p jk ∑ n 
l=1 

p lk N h,l 
) for k = 1 , . . . , m . 

Similarly, L � is the sum of the product between the number

f secondary cases produced by infected mosquitoes (of Patch k )

n hosts, that is, 
a k βh v p ik N h,i 

( 
∑ n 

l=1 
p lk N h,l )(μv + δk ) 

, and the secondary mosquito

ases of infection produced by infected hosts during their infec-

ious period, that is, 
∑ n 

j=1 
a k 

μ j + γ j 

p jk ∑ n 
l=1 

p lk N h,l 
. 

heorem 3.2. If the residence time matrix is of rank one then an ex-

licit expression of the basic reproduction number for the general sys-

em is given by 

 

2 
0 (m, n ) = 

βv h βh v 

( 
∑ n 

l=1 p l N h,l ) 2 

m ∑ 

k =1 

a 2 
k 
N v ,k 

(μv + δk ) 

( 

n ∑ 

i =1 

p 2 
i 
N h,i 

μi + γi 

) 

roof. Let us suppose that the residence time matrix P is of rank 1.

here exist x ∈ R 

n + and y ∈ R 

m + such that P = xy T . Since P is stochas-

ic, we can deduce that x i 
∑ m 

j=1 y j = 1 for i = 1 , 2 , . . . , n . There-

ore, P could be written as P = � p t where p ∈ R 

m and 

∑ m 

i =1 p i =
 . Hence, the matrices M v h M h v and M h v M v h are also of rank

ne. Therefore the trace of M v h M h v is only positive eigenvalue of

 v h M h v . Hence, by using (7) , we obtain: 

 

2 
0 (m, n ) = 

n ∑ 

i =1 

βv h βh v N h,i 

μi + γi 

m ∑ 

k =1 

a 2 
k 

p 2 
i 
N v ,k 

( 
∑ n 

l=1 p l N h,l ) 2 (μv + δk ) 

= 

βv h βh v 

( 
∑ n 

l=1 p l N h,l ) 2 

n ∑ 

i =1 

p 2 
i 
N h,i 

μi + γi 

m ∑ 

k =1 

a 2 
k 
N v ,k 

(μv + δk ) 

= 

βv h βh v 

( 
∑ n 

l=1 p l N h,l ) 2 

m ∑ 

k =1 

a 2 
k 
N v ,k 

(μv + δk ) 

( 

n ∑ 

i =1 

p 2 
i 
N h,i 

μi + γi 

) 
� t  
If we assume that “virtual” dispersal does not induce any sub-

tantial change in the population of each patch, i.e p i N h,i = N h,i at

ny time and that μi = μ and γi = γ for all i = 1 , 2 , . . . , n, then we

ecover the result of Dye and Hasibeder [25,31] , namely, 

 

2 
0 (m, n ) = R 

2 
0 (m, 1) , 

here R 

2 
0 
(m, 1) is the basic reproduction number corresponding

f m patches of vectors and a single host group. Similarly, if δ j = δ
nd a j = a for all j = 1 , 2 , . . . , m, we obtain 

 

2 
0 (m, n ) = R 

2 
0 (1 , n ) , 

here R 

2 
0 (1 , n ) is the basic reproduction number corresponding of

 host groups and a single patch of vectors. 

For m patches and one group, the basic reproduction number is

iven by 

 

2 
0 (m, 1) = 

βv h βh v 
(μ + γ ) N h 

m ∑ 

k =1 

a 2 
k 

p 2 
1 k 

N v ,k 

(μv + δk ) 
. 

The basic reproduction number associated with single group

nd single environment turns out to be the classical R 

2 
0 
, that is,

 

2 
0 (1 , 1) = 

a 2 βv h βh v 
(μ+ γ )(μv + δ) 

N v 
N h 

. We arrive at the following result: 

emma 3.1. We have 

 

2 
0 (m, 1) ≥ R 

2 
0 (1 , 1) 

roof. 

 

2 
0 (m, 1) = 

βv h βh v 
(μ+ γ1 ) N h 

m ∑ 

k =1 

a 2 
k 

p 2 
1 k 

N̄ v ,k 

(μv + δk ) 
(9) 

≥ βv h βh v 
(μ+ γ1 ) N h 

a 2 
k 

p 2 11 N̄ v , 1 

(μv + δ1 ) 
:= R 

2 
0 (1 , 1) 

ince p 11 = 1 for a single patch and single host. �

emark 3.1. In Lemma 3.1 , we are comparing the basic reproduc-

ion number of the m patches and 1 group case with the one of 1

atch and 1 group case. And so, the p 11 in the RHS of the inequal-

ty in the proof of Lemma 3.1 , is seen both as the p 11 of the single

atch, single group case and the m patches, single group case. 

Lemma 3.1 states that, for a single group, the presence of

atch/environmental heterogeneity might increase the basic repro-

uction number. 

. Special cases and simulations 

In this section, we provide examples of cases where the num-

er of patches and number of groups are either equal or non-

qual, that is, we highlight in a limited way the role of patchi-

ess and groupness . We start off by the case of two patches and

wo groups to showcase that even when the residence times ma-

rix P is square, its irreducibility is neither necessary nor sufficient

o ensure the irreducibility of the next generation matrix. This im-

lies that the disease either dies out or persists in all patches and

roups. We then consider the three patches and two groups for

hich the disease persists in all groups and patches in an attempt

o see how the differential in residence times leads to a differential

n the disease burden for hosts and vectors. 

.1. The two patches and two groups case 

As stated at the derivation of the model ( Section 2 ), this system

ould model either the case where there are two patches within

hich there are hosts and vectors or it could model the case where

here are two groups of hosts interacting in two different patches.
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The basic reproduction number, for n = 2 , m = 2 is ρ(M v h M h v ) ,

where 

M h v = 

( 

a 1 βh v p 11 ̄N v , 1 
(p 11 N h, 1 + p 21 N h, 2 )(μ1 + γ1 ) 

a 1 βh v p 21 ̄N v , 1 
(p 11 N h, 1 + p 21 N h, 2 )(μ2 + γ2 ) 

a 2 βh v p 12 ̄N v , 2 
(p 12 N h, 1 + p 22 N h, 2 )(μ1 + γ1 ) 

a 2 βh v p 22 ̄N v , 2 
(p 12 N h, 1 + p 22 N h, 1 )(μ2 + γ2 ) 

) 

and 

M v h = 

( 

a 1 βv h p 11 N h, 1 

(p 11 N h, 1 + p 21 N h, 2 )(μv + δ1 ) 

a 2 βv h p 12 N h, 1 

(p 12 N h, 1 + p 22 N h, 2 )(μv + δ2 ) 
a 1 βv h p 21 N h, 2 

(p 11 N h, 1 + p 21 N h, 2 )(μv + δ1 ) 

a 2 βv h p 22 N h, 2 

(p 12 N h, 1 + p 22 N h, 2 )(μv + δ2 ) 

) 

We have that 

M v h M h v = 

(
m 11 m 12 

m 21 m 22 

)
where 

m 11 = 

a 2 1 βh v βv h p 
2 
11 N̄ v , 1 N h, 1 

(p 11 N h, 1 + p 21 N h, 2 ) 2 (μ1 + γ1 )(μv + δ1 ) 

+ 

a 2 2 βh v βv h p 
2 
12 N̄ v , 2 N h, 1 

(p 12 N h, 1 + p 22 N h, 2 ) 2 (μ1 + γ1 )(μv + δ2 ) 
, 

m 12 = 

a 2 1 βh v βv h p 11 p 21 ̄N v , 1 N h, 1 

(p 11 N h, 1 + p 21 N h, 2 ) 2 (μ2 + γ2 )(μv + δ1 ) 

+ 

a 2 2 βh v βv h p 12 p 22 ̄N v , 2 N h, 1 

(p 12 N h, 1 + p 22 N h, 2 ) 2 (μ2 + γ2 )(μv + δ2 ) 
, 

m 21 = 

a 2 1 βh v βv h p 11 p 21 ̄N v , 1 N h, 2 

(p 11 N h, 1 + p 21 N h, 2 ) 2 (μ1 + γ1 )(μv + δ1 ) 

+ 

a 2 2 βh v βv h p 12 p 22 ̄N v , 2 N h, 2 

(p 12 N h, 1 + p 22 N h, 2 ) 2 (μ1 + γ1 )(μv + δ2 ) 
, 

and 

m 22 = 

a 2 1 βh v βv h p 
2 
21 N̄ v , 1 N h, 2 

(p 11 N h, 1 + p 21 N h, 2 ) 2 (μ2 + γ2 )(μv + δ1 ) 

+ 

a 2 2 βh v βv h p 
2 
22 N̄ v , 2 N h, 2 

(p 12 N h, 1 + p 22 N h, 2 ) 2 (μ2 + γ2 )(μv + δ2 ) 

We observe, that even for the case n = m, the irreducibility of P is

nor necessary not sufficient to ensure the irreducibility of M v h M h v 
and M h v M v h . Indeed, if p 12 = 0 , p 21 > 0 and p 22 > 0, the residence

time matrix is given by (
1 0 

p 21 p 22 

)
is reducible whereas 

M v h M h v = 

⎛ 

⎝ 

a 2 1 βh v βv h p 
2 
11 N̄ v , 1 N h, 1 

(p 11 N h, 1 + p 21 N h, 2 ) 2 (μ1 + γ1 )(μv + δ1 ) 

a 2 1 βh v βv h p 21 ̄N v , 1 N h, 2 

(N h, 1 + p 21 N h, 2 ) 2 (μ1 + γ1 )(μv + δ1 ) 

a 2 1 βh v βv h p 11 p 21 ̄N v , 1 N h, 1 

(N h, 1 + p 21 N h, 2 ) 2 (μ2 + γ2 )(μv + δ1 ) 

a 2 1 βh v βv h p 
2 
21 N̄ v , 1 N h, 2 

(N h, 1 + p 21 N h, 2 ) 2 (μ2 + γ2 )(μv + δ1 ) 
+ 

a 2 2 βh v βv h ̄N v , 2 
N h, 2 (μ2 + γ2 )(μv + δ2 ) 

⎞ 

⎠ 

is irreducible. Similarly, the residence times matrix 

P = 

(
0 1 

1 0 

)
is irreducible while the non-diagonal entries of M v h M h v are equal

to zero, that is, m 12 = m 21 = 0 . Hence, M v h M h v is not irreducible. If

the matrices M h v M v h and M v h M h v are not both irreducible, we may

obtain boundary equilibria for which the disease dies out in some

hosts’ groups and vectors’ patches while persisting in others. See

Fig. 7 a and b for instance. 
.2. The three patches and two groups case 

As an illustrative example, we consider System (5) for the case

 = 2 groups and m = 3 patches. The basic reproduction number is

he spectral radius of 

F V 

−1 = 

⎛ 

⎜ ⎝ 

0 0 

0 0 

M v h 

M h v 
0 0 0 

0 0 0 

⎞ 

⎟ ⎠ 

(10)

here 

 h v = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 βh v p 11 ̄N v , 1 

(p 11 N h, 1 + p 21 N h, 2 )(μ1 + γ1 ) 

a 1 βh v p 21 ̄N v , 1 

(p 11 N h, 1 + p 21 N h, 2 )(μ2 + γ2 ) 

a 2 βh v p 12 ̄N v , 2 

(p 12 N h, 1 + p 22 N h, 2 )(μ1 + γ1 ) 

a 2 βh v p 22 ̄N v , 2 

(p 12 N h, 1 + p 22 N h, 1 )(μ2 + γ2 ) 

a 3 βh v p 13 ̄N v , 3 

(p 13 N h, 1 + p 23 N h, 2 )(μ1 + γ1 ) 

a 3 βh v p 23 ̄N v , 3 

(p 13 N h, 1 + p 23 N h, 1 )(μ2 + γ2 ) 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

and 

 v h = 

⎛ 

⎜ ⎜ ⎝ 

a 1 βv h p 11 N h, 1 

(p 11 N h, 1 + p 21 N h, 2 )(μv + δ1 ) 

a 2 βv h p 12 N h, 1 

(p 12 N h, 1 + p 22 N h, 2 )(μv + δ2 ) 

a 1 βv h p 21 N h, 2 

(p 11 N h, 1 + p 21 N h, 2 )(μv + δ1 ) 

a 2 βv h p 22 N h, 2 

(p 12 N h, 1 + p 22 N h, 2 )(μv + δ2 ) 

a 3 βv h p 13 N h, 1 

(p 13 N h, 1 + p 23 N h, 2 )(μv + δ3 ) 

a 3 βv h p 23 N h, 2 

(p 13 N h, 1 + p 23 N h, 2 )(μv + δ3 ) 

⎞ 

⎟ ⎟ ⎠ 

For purposes of simulations, we use the following baseline pa-

ameters with the ranges given in parentheses. 

βh v = 0 . 5(0 . 001 − 0 . 54) , βv h = 0 . 41(0 . 3 − 0 . 9) 

1 

μv 
= 20(10 − 30) days , 

1 

μ1 

= 75 × 365 days 

a 1 = 0 . 5 day 
−1 

, a 2 = 0 . 4 day 
−1 

, a 3 = 0 . 3 day 
−1 

1 

μ2 

= 73 × 365 days , 
1 

γ1 

= 7 days , 
1 

γ2 

= 6 days , 

δ1 = 0 . 001 day 
−1 

, δ2 = 0 . 01 , δ3 = 0 . 08 day 
−1 

. 

he values of βh v , βv h and μv are taken from [17] . The host popu-

ations and the recruitments of vectors for the 3 patches are taken

s 

N h, 1 = 40 0 0 , N h, 2 = 450 0 , �v , 1 = 10 0 0 , 

v , 2 = 10 0 0 , �v , 3 = 950 . 

nless otherwise stated, we fix p 13 = 0 . 1 and p 23 = 0 . 2 , carrying

ut System (5) simulations that focus on the effects of non-fixed

esidence times matrix entries on the prevalence of hosts and vec-

ors. 

Fig. 2 displays the dynamics of infected hosts of Group 1

 Fig. 2 a) and Group 2 ( Fig. 2 b). The level of endemicity of individ-

als of Group 1 seems to decrease as proportion of time in Patch

 ( p 12 ) increases; probably because as p 12 increases, p 11 decreases.

n other words, individuals of Group 1 spend more time in the less

iskier Patch 2 ( a 2 = 0 . 4 ) than in the riskier Patch 1 ( a 1 = 0 . 5 ). We

ee that the less time that individuals spend in riskier environment

he less likely that they will become infected, as one would expect.

In Fig. 2 b, the level of endemicity of hosts in Group 2 seems

o decrease as p 22 increases or equivalently as p 21 decreases (

p 21 + p 22 + p 23 = 1 and p 23 is fixed). It is so because individuals

re increasing their residence time in Patch 2 ( a 2 = 0 . 4 ) rather

han in Patch 1. 

Figs. 3 and 4 offer an overview on how the dynamics of vectors

hange as the proportion of time that individuals of Group 1 and
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(a) The level of prevalence of host of group
1 seems to decrease as p12 increases (and
hence p11 decreases).
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(b) The level of prevalence of host of group
2 seems to decrease with respect to p22.

Fig. 2. Dynamics of I h , 1 and I h , 2 for different values of p ij . 
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(a) The level of prevalence of vectors of
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(b) The level of prevalence of host of group
2

Fig. 3. Dynamics of I v , 1 and I v , 2 for different values of p ij . 
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Fig. 4. Dynamics of vectors in Patch 3 ( I v , 3 ) for different values of p ij . 
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roup 2 spend in environments 1, 2 and 3 varies. For the selected

esidence times matrix entries, the prevalence of vector in environ-

ent 1 (see Fig. 3 a) is at its highest if p 12 = 0 and p 22 = 0 . 8 . With

his configuration, p 11 = 0 . 9 and Patch 1 has the highest effective

opulation size. Moreover, Patch 1 has the highest biting rate, lead-

ng to high level of vector infections in that patch. 

Though �v , 1 = �v , 2 , the prevalence of vectors Patch 2 ( Fig. 3 b)

s lower than of Patch 1 ( Fig. 3 a), regardless of the combination

f the chosen residence times entries. This is because the effective

opulation of Patch 2 is less than the effective population of Patch
 for all the three selected residence time configurations and also

ecause a 1 > a 2 . 

Fig. 4 represent the dynamics of the vectors in Patch 3. The

umber of infected vector in this patch is much less when com-

ared to the number of infected in Patches 1 and 2. Again, the ef-

ective population size of Patch 3, with p 13 = 0 . 1 and p 23 = 0 . 2 , is

uch less when compared to those in Patches 1 and 2. Addition-

lly, we also have by assumption that a 3 < a 2 < a 1 . 

For the vectors’ prevalence, we obtain similar results as in

igs. 3 and 4 even if when biting rates are equal in all the three

atches. This last comment highlights the role of the effective pop-

lation per patch. 

emark 4.1. For all the selected combination of the residence

imes matrix entries in Figs. 2 –4 , the matrices M v h M h v and M h v M v h 
re irreducible and R 0 > 1 and so the curves of the infected hosts

nd vectors in those figures are reaching an endemic equilibrium

evel in accordance with Theorem 2.2 . 

In Figs. 5 and 6 , we consider the case where the residence time

atrix is fixed as follows: 

 = 

(
0 . 4 0 . 3 0 . 3 

0 . 4 0 . 4 0 . 2 

)
n that case, the matrices M h v M v h and M v h M h v are both ir-

educible. We sketch the trajectories of System (5) for differ-

nt initial conditions. Since, with these values of parameters

nd residence times matrix, the basic reproduction number is

 0 (3 , 2) = 1 . 4771 , and so the result of Theorem 2.2 should hold

nd Fig. 5 confirms that. More precisely, Fig. 5 a shows that the

rajectories of infected individuals of Groups 1 and 2 converge
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(a) Dynamics of infected hosts of Group 1 and
Group 2.
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(b) Dynamics of infected vectors of Patch 1 and
Patch 2.

Fig. 5. Trajectories of System (5) , with n = 2 groups and m = 3 patches with 4 different initial conditions. The trajectories are converging toward a unique interior endemic 

equilibrium. 
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(b) Dynamics of infected vectors of Patch 1 and
Patch 2.

Fig. 6. Trajectories of System (5) , with n = 2 groups and m = 3 Patches with 4 different initial conditions. With βh v = 0 . 2 and βv h = 0 . 4 , we have R 0 (3 , 2) = 0 . 6353 and the 

trajectories are converging toward the disease free equilibrium. 
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(b) Dynamics of infected vectors of Patch 1, Patch
2 and Patch 3.

Fig. 7. Trajectories of System (5) , with n = 2 groups and m = 3 patches with 4 different initial conditions. The disease dies out for the host of Group 2 whereas it persists 

for those of Group 1. Similarly, the disease dies out for the vector of Patch 2 but persists for the vectors of Patches 1 and 3. 
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to the same interior endemic equilibrium for four different ini-

tial conditions, namely IC 1 = [ I h, 1 (0) = 180 , I h, 2 (0) = 180 , I v , 1 (0) =
0 , I v , 2 (0) = 0 , I v , 3 (0) = 0] (solid red for I h , 1 and dashed red

for I h , 2 in Fig. 5 a), IC 2 = [ I h, 1 (0) = 100 , I h, 2 (0) = 250 , I v , 1 (0) =
60 0 0 , I v , 2 (0) = 10 0 0 , I v , 3 (0) = 200] (solid black for I h , 1 and

dotted black for I h , 2 in Fig. 5 a), IC 3 = [ I h, 1 (0) = 80 , I h, 2 (0) =
200 , I v , 1 (0) = 1000 , I v , 2 (0) = 500 , I v , 3 (0) = 400] (solid green for

I h , 1 and dotted green for I h , 2 in Fig. 5 a) and IC 4 = [ I h, 1 (0) =
0 , I h, 2 (0) = 80 , I v , 1 (0) = 1 , I v , 2 (0) = 2 , I v , 3 (0) = 3] (solid blue for

 h , 1 and dotted blue for I h , 2 in Fig. 5 a). 

Similarly, Fig. 5 b displays the trajectories of infected vectors in

he three considered environments. For all the above-mentioned

nitial conditions, these trajectories converge to their interior en-

emic equilibrium level. 

Fig. 6 sketches the case where the values of all the parame-

ers are the same as above but where β = 0 . 2 and β = 0 . 4 . In
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his case, the basic reproduction number is R 0 = 0 . 6353 which is

ess than one. As we can see in Fig. 6 a and b, the trajectories of

nfected hosts of the two groups and the infected vectors of the

hree patches are converging to zero for the above four initial con-

itions. This suggests that the DFE is globally asymptotically stable

nd confirms the result of Theorem 2.1 . 

Now, we consider the case where the configuration of the

roup-Patch network is not irreducible. If we assume that p 12 =
p 21 = p 23 = 0 , the residence times matrix becomes 

 = 

(
0 . 7 0 0 . 3 

0 1 0 

)
. 

his imply that M h v = 

⎛ 

⎜ ⎝ 

a 1 βv h N̄ v , 1 
N h, 1 (μ1 + γ1 ) 

0 

0 
a 2 βv h N̄ v , 2 

N h, 2 (μ2 + γ2 ) 
a 3 βv h N̄ v , 3 

N h, 1 (μ1 + γ1 ) 
0 

⎞ 

⎟ ⎠ 

and M v h =

a 1 βh v 
μv + δ1 

0 
a 3 βh v 
μv + δ3 

0 
a 2 βh v 
μv + δ2 

0 

)
. Hence, the matrices M v h M h v and M h v M v h 

re not both irreducible and hence Theorem 2.2 does not hold, as

hown in Fig. 7 , where a boundary equilibrium appears. In this

ase, members of Group 2 spend all their time in Patch 2 and

ence are isolated from the rest of groups and patches. The ba-

ic reproduction number of Group 2 in Patch 2 is (R 0 (2 , 2)) 2 =
a 2 

2 
βv h βh v N v , 2 

(μv + δ2 )(μ2 + γ2 ) N h, 2 
= 0 . 8 . The diseases dies out from the hosts of

roup 2 (see Fig. 7 a, solid curves) and vectors of Patch 2 (Fig. 7 b,

olid curves). Members of Group 1 are connected to Patch 1 and

atch 3. Hence, the corresponding basic reproduction number is

(R 

1 , 1 , 3 
0 

) 2 = 

a 2 
1 
βv h βh v N v , 21 

(μv + δ1 )(μ1 + γ1 ) N h, 1 
+ 

a 2 
3 
βv h βh v N v , 3 

(μv + δ3 )(μ1 + γ1 ) N h, 1 
= 1 . 8549 . Hence,

he disease persists among the members of Group 1(see Fig. 7 a,

ashed curves) and vectors of Patches 1 and 3 (see Fig. 7 b, dashed

urves). This case offers a glimpse on how disease dynamics when

ome groups are strongly connected to some environments while

ther groups are isolated. 

. Conclusion and discussion 

Modeling vector-borne interactions have often been based on

ell-mixed models that make it difficult to address effectively

he role of host mobility on vector borne disease dynamics.

ere, we consider a Lagrangian framework where hosts’ disper-

al is modeled via the proportion of time that individuals spend

n different environments. In the process, we are forced to ac-

ount, for time variations in effective population size within each

atch/environment. The kind of natural adjustment that can sig-

ificantly alter the quantitative and qualitative dynamics of vec-

or borne dynamics in geographically heterogeneous system; here

ithin spatial scales that make it possible to neglect vector mobil-

ty. 

And so, we consider a general SIS framework to account for

he host dynamics and an SI framework to account for the vector

ynamics. The transmission terms must make adjustments to ac-

ount for the effective population size generated by the residence

ime matrix. This is handled via the use of a modified frequency-

ependent incidence model that accounts for the effective den-

ity of infected hosts within each patch at any time. We compute

he basic reproduction number R 

2 
0 
(P , m, n ) for the general host-

ector model and prove that the disease free equilibrium is glob-

lly asymptotically stable (GAS) if R 

2 
0 
(P , m, n ) ≤ 1 . We also show

hat there exists a unique interior endemic equilibrium that is GAS

henever R 

2 
0 (P , m, n ) > 1 in the irreducible case, that is, when the

osts’ groups and vector patches are strongly connected. When ir-

educibility does not hold, the existence of boundary equilibria is

dentified. In addition, we provide explicit expression for the basic

eproduction number whenever the residence time matrix P is of
ank one. Finally, we briefly explore the role of variability in the

umber of patches and groups on the basic reproduction number,

 

2 
0 
(P , m, n ) and in the process, bounds for R 

2 
0 
(P , m, n ) are identi-

ed. 

Our results generalize those of [18,39,54] since our models ac-

ount for the time-dependant effective patch population size. The

pproach we considered here includes the case where the hosts’

tructure is defined by residency ( see Section 5.1 ) as well as the

ase when the hosts’ structure is defined by groups or classes that

re independent from the spatially explicit patches. 

In short, the contributions of this manuscript are primarily tied

o the effective population size, a function of the mobility matrix

 = (p i j ) 1 ≤i ≤n, 
1 ≤ j≤m 

, where the p ij denotes the proportion of time the

ost of group i (or the member of a well defined class i ) spends in

nvironment j . We explicitly study the role of the matrix P on R 0 

nd connected the dynamics to the reducibility and irreducibility

tructure of the system. Theorems were established and examples

rovided on the role of pachiness and groupness on the disease dy-

amics. 
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