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Abstract Wedevelop amulti-patch andmulti-groupmodel that captures the dynamics
of an infectious disease when the host is structured into an arbitrary number of groups
and interacts into an arbitrary number of patches where the infection takes place. In
this framework, we model host mobility that depends on its epidemiological status,
by a Lagrangian approach. This framework is applied to a general SEIRS model and
the basic reproduction number R0 is derived. The effects of heterogeneity in groups,
patches and mobility patterns onR0 and disease prevalence are explored. Our results
show that for a fixed number of groups, the basic reproduction number increases with
respect to the number of patches and the host mobility patterns. Moreover, when the
mobilitymatrix of susceptible individuals is of rankone, the basic reproduction number
is explicitly determined and was found to be independent of the latter if the matrix is
also stochastic. The cases where mobility matrices are of rank one capture important
modeling scenarios. Additionally, we study the global analysis of equilibria for some
special cases. Numerical simulations are carried out to showcase the ramifications of
mobility pattern matrices on disease prevalence and basic reproduction number.
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1 Introduction

The role of heterogeneity in populations and their mobility have long been recognized
as driving forces in the spread of infectious diseases (Anderson andMay 1991;Dushoff
and Levin 1995; Prothero 1977; Sattenspiel and Simon 1988). Indeed, populations are
composed of individuals with different immunological features and hence differ in
how they can transmit or acquire an infection at a given time. These differences could
result from demographic, host genetic or socio-economic factors (Anderson and May
1991). Populations alsomove across different geographical landscapes, importing their
disease history with them either by infecting or getting infected in the host/visiting
location.

While the concept of modeling epidemiological heterogeneity within a population
goes back to Kermack andMcKendrick inmodeling the age of infection (Kermack and
McKendrick 1927), the approach gained prominence with Yorke and Lajmonivich’s
seminal paper (Lajmanovich and Yorke 1976) on the spread of gonorrhea, a sexually
transmitted disease. An abundant and varied literature have followed on understanding
the effects of “superspreaders ” which are core groups on the disease dynamics (Blythe
and Castillo-Chavez 1989; Castillo-Chavez and Busenberg 1991; Jacquez et al. 1988,
1996; Yorke et al. 1978) or related multi-group models (Bonzi et al. 2011; Fall et al.
2007; Hethcote and Thieme 1985; Huang et al. 1992; Nold 1980; Rushton and Maut-
ner 1955; Sattenspiel and Simon 1988) (and the references therein). Similarly, spatial
heterogeneity in epidemiologyhas been extensively explored in different settings.Con-
tinuum models of dispersal have been investigated through diffusion equations (Metz
and Diekmann 2014) whereas islandsmodels have been dealt through metapopulation
approach (Arino 2009; Arino and Portet 2015; Arino and Driessche 2006; Iggidr et al.
2012, 2016; Salmani and Driessche 2006; Sattenspiel and Dietz 1995), defined here
as continuous models with discrete dispersal.

Although the importance and the complete or partial analysis of these two types
of heterogeneities have been studied separately in the aforementioned papers, lit-
tle attention has been given to the simultaneous consideration of groups and spacial
heterogeneities. Moreover, previous studies on multi-group rely on differential sus-
ceptibility in each group through the WAIFW [Who Acquires Infection From Whom
(Anderson and May 1991)] matrices which, we argue, are difficult to quantify. Sim-
ilarly, in metapopulation (Eulerian) settings, the movement of individuals between
patches is captured in terms of flux of population, making it nearly impossible to track
the life-history of individuals after the interpatch mixing.

In this paper, we introduce a general modeling framework that structures popula-
tions into an arbitrary number of groups (e.g. demographic, ethnic or socio-economic
grouping). These populations, with different health statuses, spend certain amounts of
time in an arbitrary number of locations, or patches, where they could get infected or
infect others. Each patch is defined by a particular risk of infection tied to environmen-
tal conditions of each patch. This approach allows us to track individuals of each group
over time and to avoid the use of differential susceptibility of individuals or groups,
which is theoretically nice but practically difficult to assess. The likelihood of infec-
tion depends both on the time one spends (in a particular patch) and the risk associated
with that patch. Moreover, we incorporate individuals’ behavioral decisions through
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differential residence times. Indeed, individuals of the same group spend different
amounts of time in different areas depending on their epidemiological conditions. We
also considered two cases of the general framework, that are particularly important
from modeling standpoint: when the susceptible and/or infected individuals of differ-
ent groups have proportional residence times in different patches. That is, when the
mobility matrix of susceptible (or infected) individuals, M (or P) is of rank one. In
these cases, we obtain explicit expressions of the basic reproduction number in terms
of mobility patterns. It turns out that if M is of rank one and stochastic, the basic
reproduction number is independent of the mobility patterns of susceptible host.

In short, we address how group heterogeneity, or groupness, patch heterogeneity,
or patchiness, mobility patterns and behavior each alter or mitigate disease dynamics.
In this sense, our paper is a direct extension of Bichara and Castillo-Chavez (2016);
Bichara et al. (2015, 2016) and Castillo-Chavez et al. (2016) but also other studies
that capture dispersal through Lagrangian approaches—in which it is possible to track
host movement after the interpatch mixing—(Cosner et al. 2009; Iggidr et al. 2016;
Rodríguez and Torres-Sorando 2001; Ruktanonchai et al. 2016) and a recent paper
(Falcón-Lezama et al. 2016) that investigates the effects of daily movements in the
context of Dengue.

The paper is organized as follows. Section 2 explains themodel derivation, states the
basic properties and the computation of the basic reproduction numberR0(u, v) for u
groups and v patches. Section 3 investigates the role of patch and group heterogeneity
on the basic reproduction number, and how dispersal patterns alter R0(u, v) and the
disease prevalence. Section 5 is devoted to the existence, uniqueness and stability
of equilibria for the considered system under certain conditions. Finally, Sect. 6 is
dedicated to concluding remarks and discussions.

2 Derivation of the model

Weconsider a population that is structured in an arbitrarliymanyu groups interacting in
v patches.We consider a typical disease captured by an SEIRS structure. Naturally, Si ,
Ei , Ii and Ri are the susceptible, latent, infectious and recovered individuals of Group
i respectively. The population of each group is denoted by Ni = Si + Ei + Ii + Ri ,
for i = 1, . . . , u. Individuals of Group i spend on average some time in Patch j ,
j = 1, . . . , v. The susceptible, latent, infected and recovered populations of group i
spendmi j ,ni j , pi j andqi j proportion of times respectively inPatch j , for j = 1, . . . , v.
At time t , the effective population of Patch j is N eff

j = ∑u
k=1(mkj Sk + nkj Ek +

pkj Ik + qkj Rk). This effective population of Patch j describes the temporal dynamics
of the population in Patch j weighted by the mobility patterns of each group and
each epidemiological status. Of this patch population,

∑u
k=1 pkj Ik are infectious. The

proportion of infectious individuals in Patch j is therefore,

∑u
k=1 pkj Ik∑u

k=1(mkj Sk + nkj Ek + pkj Ik + qkj Rk)
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Susceptible individuals of Group i could be infected in any Patch j , j = 1, . . . , v
while visiting there. Hence, the dynamics of susceptible of Group i is given by:

Ṡi = �i −
v∑

j=1

β jmi j Si

∑u
k=1 pkj Ik∑u

k=1(mkj Sk + nkj Ek + pkj Ik + qkj Rk)
− μi Si + ηi Ri

where �i denotes a constant recruitment of susceptible individuals of Group i , μi the
natural death rate, β j the risk of infection and ηi the immunity loss rate. The patch
specific risk vector B = (β j )1≤ j≤v is treated as constant. However, in Sect. 5.2, we
also considered the case when this risk depends on the effective population size.

The latent individuals of Group i are generated through infection of susceptible
and decreased by natural death and by becoming infectious at the rate νi . Hence the
dynamics of latent of Group i , for i = 1, . . . , u, is given by:

Ėi =
v∑

j=1

β jmi j Si

∑u
k=1 pkj Ik∑u

k=1(mkj Sk + nkj Ek + pkj Ik + qkj Rk)
− (νi + μi )Ei

The dynamics of infectious individuals of Group i is given by

İi = νi Ei − (γi + μi )Ii

where γi is the recovery rate of infectious individuals. Finally, the dynamics of recov-
ered individuals of Group i is:

Ṙi = γi Ii − (ηi + μi )Ri

The complete dynamics of u-groups and v-patches SEIRS epidemic model is given
by the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡi = �i − ∑v
j=1 β jmi j Si

∑u
k=1 pk j Ik

∑u
k=1(mkj Sk + nk j Ek + pk j Ik + qk j Rk)

− μi Si + ηi Ri ,

Ėi = ∑v
j=1 β jmi j Si

∑u
k=1 pk j Ik

∑u
k=1(mkj Sk + nk j Ek + pk j Ik + qk j Rk)

− (νi + μi )Ei

İi = νi Ei − (γi + μi + δi )Ii

Ṙi = γi Ii − (ηi + μi )Ri

(1)

The description of parameters in Model (1) is given in Table 1. These parameters are
composed of three set of parameters: ecological/environmental (number of patches v

and their risk B), epidemiological (Recruitment, death rates, recovery rate, etc) and
behavioral (mobilitymatrices) parameters. A schematic description of the flow is given
in Fig 1.
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Table 1 Description of the parameters used in System (1)

Parameters Description

�i Recruitment of the susceptible individuals in Group i

β j Instantaneous risk of infection in Patch j

μi Per capita natural death rate of Group i

νi Per capita rate at which latent in Group i become infectious

γi Per capita recovery rate of Group i

mi j Proportion of time susceptible individuals of Group i spend in Patch j

ni j Proportion of time latent individuals of Group i spend in Patch j

pi j Proportion of time infectious individuals of Group i spend in Patch j

qi j Proportion of time recovered individuals of Group i spend in Patch j

ηi Per capita loss of immunity rate

δi Per capita disease induced death rate of Group i

Patch 1: β1

u

i=1

(mijSi + nijEi + pijIi + qijRi)

Patch 2: β2

u

i=1

(mijSi + nijEi + pijIi + qijRi)

Patch v: βv

u

i=1

(mijSi + nijEi + pijIi + qijRi). . . . . .

Group 1

S1

E1

I1

R1

Group 2

S2

E2

I2

R2

Group u

Su

Eu

Iu

Ru

. . . . . .

m11

n11

p11

q11

m12

n12

p12

q12

m1v

n1vp1v

q1v

m21

n21

p21

q21

m2l

n2v

p2v

q2v

mu2

nu2

pu2
qu2

muv

nuv

puv

quv
mu1

nu1

pu1

qu1

Fig. 1 Flow diagram of Model 1

Model (1) could be written in the compact form,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ṡ = � − diag(S)Mdiag(B)diag−1(MT S + N
TE + P

T I + Q
TR)PT I − diag(μ)S + diag(η)R

Ė = diag(S)Mdiag(B)diag−1(MT S + N
TE + P

T I + Q
TR)PT I − diag(ν + μ)E

İ = diag(ν)E − diag(γ + μ + δ)I

Ṙ = diag(γ )I − diag(η + μ)R

(2)
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where S = [S1, S2, . . . , Su]T , E = [E1, E2, . . . , Eu]T , I = [I1, I2, . . . , Iu]T
and R = [R1, R2, . . . , Ru]T . The matrices M = (mi j )1≤i≤u,

1≤ j≤v

, N = (ni j )1≤i≤u,
1≤ j≤v

,

P = (pi j )1≤i≤u,
1≤ j≤v

and Q = (qi j )1≤i≤u,
1≤ j≤v

represent the residence time matrices

of susceptible, latent, infectious and recovered individuals respectively. Moreover,
� = [�1,�2, . . . , �u]T , B = [β1, β2, . . . , βv]T , μ = [μ1, μ2, . . . , μu]T ,
ν = [ν1, ν2, . . . , νu]T , γ = [γ1, γ2, . . . , γu]T , δ = [δ1, δ2, . . . , δu]T and η =
[η1, η2, . . . , ηu]T .

Model (2) brings added value to the existing literature in the following ways:

1. The structure of the host population is different and independent from the patches
where the infection takes place. Indeed, in the previous epidemicmodels describing
human dispersal or mixing (Eulerian or Lagrangian), hosts’ structure unit and the
geographical landscape unit, be it group or patch, is the same and homogeneous
in term of transmission rate. Our model captures added heterogeneity in the sense
that we decouple the structure of the host to that of patches. For instance, our
framework fits well for nosocomial diseases (hospital-acquired infections), where
the hospitals could be treated as patches and host’s groups as gender or age (see
Eckenrode et al. 2014; Kaplan et al. 2002 for the effects of gender and age on
nosocomial infections).

2. In our formulation, there is no need to measure contacts rates, a difficult task for
nearly all diseases that are not either sexually transmitted or vector-borne. Each
patch is defined by its specific risk of infection that could be tied to environmental
or hygienic conditions. Hence, susceptibility is not individual-based nor group-
based as in classical formulation of multi-group models [the contact matrices in
these type of models are known as WAIFW, i.e., Who Acquires Infection From
Whom (Anderson andMay 1991)], but a patch specific risk. In fact, our framework
is capable of capturing a wide-range of modeling scenarios, including group-
susceptibility. Indeed, if gi is the risk of infection of Group i , i = 1, 2, . . . , u,
it suffices to replace Si by gi Si in only the infection terms in (1). That is, the
dynamics of susceptible and latent hosts, for i = 1, 2, . . . , u will be:

Ṡi = �i −
v∑

j=1

β jmi j gi Si

∑u
k=1 pkj Ik∑u

k=1(mkj Sk + nkj Ek + pkj Ik + qkj Rk)

−μi Si + ηi Ri ,

and

Ėi =
v∑

j=1

β jmi j gi Si

∑u
k=1 pkj Ik∑u

k=1(mkj Sk + nkj Ek + pkj Ik + qkj Rk)
− (νi + μi )Ei .

For the sake of simplicity, we considered the case where all host groups have the
same risk of infection, though all the results obtained in this paper hold without
this simplification.
The risk in each patch may be fixed, as in Model (2), or variable and dependent of
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the effective patch population (see Sect. 5.2). The prospect of infection is tied to
the environmental risk and time spent in that environment. This fits, for example,
pandemic influenza in schools and, again, the nosocomial infections (length of
stay in hospitals and their corresponding risks). These residences times and patch
related risks are easier to quantify than contact rates. This paper extend earlier
results in Bichara and Castillo-Chavez (2016) and Bichara et al. (2015).

3. The model allows individuals of different groups to move across patches without
losing their identities. This approach allows a more targeted control strategy for
public health benefit. Therefore, the model follows a Lagrangian approach and
generalize (Bichara and Castillo-Chavez 2016; Bichara et al. 2015; Cosner et al.
2009; Iggidr et al. 2016; Rodríguez and Torres-Sorando 2001; Ruktanonchai et al.
2016).

4. There are different mobility patterns depending on the epidemiological class of
individuals. This allows us to highlight and assess the effects of hosts’ behavior
through social distancing and their predilection for specific patches on the disease
dynamics. Although the differential mobility have been considered in an Eulerian
setting (Salmani and Driessche 2006; Xiao and Zou 2014), its incorporation in
a Lagrangian setting is new and is an extension of Bichara and Castillo-Chavez
(2016), Bichara et al. (2015), Cosner et al. (2009), Falcón-Lezama et al. (2016),
Iggidr et al. (2016), Rodríguez and Torres-Sorando (2001) and Ruktanonchai et al.
(2016) (for which mobility is independent of hosts’ epidemiological class).

5. In this framework, we consider only patches where the infection takes place (hos-
pitals, schools, malls, etc) whereas previous models suppose that the patches are
distributed over the whole space. In short, the mobility matrices are not assumed
to be stochastic.In this case, a natural condition on the mobility matrices arises:
X1 ≤ 1, for X ∈ {M,N,P,Q}, where 1 is the vector whose components are all
equal to unity. These conditions stem from the fact that the added proportion of
time spend in all patches cannot be more that 100%. However, as pointed out by a
reviewer, the stochasticity of the mobility matrices is not really restrictive. Indeed,
as we are considering an arbitrary number of patches, we can, without loss of gen-
erality, add an additional patch within which individuals spent “the rest of their
time” and where no infection takes place in it. That is, βv+1 = 0.

We denote by N the vector of populations of each group. The dynamics of the
population in each group is given by the following:

Ṅ = � − μ ◦ N − δ ◦ I ≤ � − μ ◦ N

where ◦ denotes the Hadamard product. Thus, the set defined by

� =
{

(S,E, I,R) ∈ R
4u+ | S + E + I + R ≤ � ◦ 1

μ

}

is a compact attracting positively invariant for System (2).
The disease-free equilibrium (DFE) of System (2) is given by (S∗, 0, 0, 0) where

S∗ = � ◦ 1

μ
.
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Remark 2.1 If the susceptible or infected individuals do not go to the patches where
the infection takes place, either due to intervention strategy or social distancing, that is
when the residence timematricesM orP are the nullmatrix (the susceptible individuals
do not spend any time in the considered patches), the disease does not spread and
eventually dies out.

We compute the basic reproduction number following Diekmann et al. (1990) and van
den Driessche and Watmough (2002). By decomposing the infected compartments of
(2) as a sum of new infection terms and transition terms,

(
Ė
İ

)

= F(E, I) + V(E, I)

=
(
diag(S)Mdiag(B)diag−1(MTS + N

TE + P
T I + Q

TR)PT I
0

)

+
( −diag(ν + μ)E
diag(ν)E − diag(γ + μ + δ)I

)

The Jacobian matrix at the DFE of F(E, I) and V(E, I) are given by:

F = DF(E, I)

∣
∣
∣
∣
DFE

=
(
0u,u diag(S∗)Mdiag(B)diag−1(MTS∗)PT

0u,u 0u,u

)

and,

V = DV(E, I)

∣
∣
∣
∣
DFE

=
(−diag(μ + ν) 0u,u

diag(ν) −diag(μ + γ + δ)

)

Hence, we obtain

−V−1 =
(

diag−1(μ + ν) 0u,u

diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ)) diag−1(μ + γ + δ)

)

The basic reproduction number is the spectral radius of the next generation matrix

−FV−1 =
(
Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ + δ)) Zdiag−1(μ + γ + δ)

0u,u 0u,u

)

where

Z = diag(S∗)Mdiag(B)diag−1(MTS∗)PT

Finally, the basic reproduction number for u groups and v patches is given by

R0(u, v) = ρ(Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ + δ)))
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The disease-free equilibrium is asymptotically stable whenever R0(u, v) < 1 and
unstable if R0(u, v) > 1 (Diekmann et al. 1990; van den Driessche and Watmough
2002).

3 Effects of heterogeneity on the basic reproduction number

In this section, we investigate the effects of patchiness, groupness and mobility on
the basic reproduction number. More particularly, how the basic reproduction number
changes its monotonicity with respect to the number of patches, groups and mobility
patterns of individuals.

The following theoremgives themonotonicity of the basic reproductionwith respect
the residence times patterns of the infected individuals.

Theorem 3.1 The basic reproduction number R0(u, v) is a nondecreasing function
with respect to P, that is, the infected individuals movement patterns.

Proof Recall that R0(u, v) = ρ(Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))) where,
Z = diag(S∗)Mdiag(B)diag−1(MTS∗)PT . Thematrix Z is linear inP and has all non-
negative entries. We consider the order relation for the matrices as follows: A ≤ B if
ai j ≤ bi j , for all i and all j , where ai j and bi j are entries of A and B respectively. Also,
A < B if A ≤ B and A �= B. Hence, since thePerron–Frobenius theorem (Berman and
Plemmons 1994) (Corollary 1.5, page 27) guarantees that for any positives matrices
A and B such that A ≥ B ≥ 0, then ρ(A) ≥ ρ(B), we deduce that, for any matrix
P

′ ≥ P,

R0(u, v,P) = ρ(diag(S∗)Mdiag−1(B)diag(MTS∗)PT diag(ν)diag−1((μ + ν)

◦ (μ + γ + δ)))

≤ ρ(diag(S∗)Mdiag(B)diag−1(MTS∗)P′T diag(ν)diag−1((μ + ν)

◦ (μ + γ + δ)))

:= R0(u, v,P′)

	

The variation in monotonicity ofR0(u, v) with respect to the residence times pat-

terns of susceptible individuals, that isM, is more complicated and difficult to assess
in general and even in some more restrictive particular cases (see Remark 3.2).

Hereafter, we define two bounding quantities tied to the global basic reproduction
number:

R̃i
0(u, v) = νi

(νi + μi )(γi + μi + δi )

v∑

j=1

β jmi j S∗
i pi j∑u

k=1 mkj S∗
k

= βiνi

(νi + μi )(γi + μi + δi )

v∑

j=1

(
β j

βi

)
mi j S∗

i pi j∑u
k=1 mkj S∗

k
,
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and,

Ri
0 = νi

(μi + νi )(μi + γi + δi )

v∑

k=1

βk pik

It is worthwhile noting thatRi
0 = R0(1, v). That is,Ri

0 is also the basic reproduction
number of the global system in presence of one group only, namely the i th , spread
over v patches. Ri

0 could be seen as a group specific “reproduction number”.
The quantity R̃i

0(u, v) could be heuristically seen as the sum of the average number
of cases produced by an infected of group i over all patches, in presence of other groups.

In the following theorem, we explore how the general basic reproduction number
R0(u, v) is tied to these specific reproduction numbers and whether it increases or
decreases when the number of patches and/or groups changes. An underlying assump-
tion in the following theorem is that when adding patches, the proportion of time spent
in the existing patches remain exactly the same.

Theorem 3.2 We have the following inequalities:

1. max

{

max
i=1,...,u

R̃i
0(u, v), min

i=1,...,u
Ri

0

}

≤ R0(u, v) ≤ max
i=1,...,u

Ri
0

2. R0(u, v) ≥ R0(1, v) ≥ R0(1, 1).
3. For a fixed number of groups u,R0(u, v) ≥ R0(u, v′) where v and v′ are integers

such that v ≥ v′.

Proof 1. We prove first that R0(u, v) ≥ max
i=1,...,u

R̃i
0(u, v) and then min

i=1,...,n
Ri

0 ≤
R0(u, v) ≤ max

i=1,...,n
Ri

0.

Let ei the i−th vector of the canonical basis of R4u . We have

eTi diag(S
∗)M = (mi1S

∗
i ,mi2S

∗
i , . . . ,mivS

∗
i )

It follows that,

eTi diag(S
∗)Mdiag(B) = (β1mi1S

∗
i , β2mi2S

∗
i , . . . , βvmivS

∗
i )

We also have

M
TS∗ =

⎛

⎜
⎜
⎜
⎜
⎝

∑u
k=1 mk1S∗

k
∑u

k=1 mk2S∗
k

...
∑u

k=1 mkvS∗
k

⎞

⎟
⎟
⎟
⎟
⎠
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Since PT ei is the i−th column of PT , we obtain:

diag−1(MTS∗)PT ei =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

pi1∑u
k=1 mk1S∗

k
pi2∑u

k=1 mk2S∗
k

...
piv∑u

k=1 mkvS∗
k

⎞

⎟
⎟
⎟
⎟
⎟
⎠

Hence, the diagonal elements of Mdiag(B)diag(MTS∗)−1
P
T is given by

eTi diag(S
∗)Mdiag(B)diag−1(MTS∗)PT ei = β1mi1 pi1S∗

i∑u
k=1 mk1S∗

k
+ β2mi2 pi2S∗

i∑u
k=1mk2S∗

k

+ · · · + βvmiv pivS∗
i∑u

k=1mkvS∗
k

=
v∑

j=1

β jmi j pi j S∗
i∑u

k=1 mkj S∗
k

This implies that, for all i = 1, · · · , v, R̃i
0(u, v) is a diagonal element of the next

generation matrix. Since the spectral radius of a matrix is the greater or equal to
its diagonal elements, we can conclude that R0(u, v) ≥ R̃i

0 for all i = 1, · · · , u.
This implies that

R0(u, v) ≥ max
i=1,...,u

R̃i
0(u, v) (3)

It remains to prove that min
i=1,...,u

Ri
0 ≤ R0(u, v) ≤ max

i=1,...,u
Ri

0. The basic reproduc-

tion number is given byR0(u, v) = ρ(Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ + δ)))

where

Z = diag(S∗)Mdiag(B)diag−1(MTS∗)PT

It can be shown that the elements of this matrix are the following:

zi j = ν j

(μ j + ν j )(μ j + γ j + δ j )

v∑

k=1

βkmik p jk S∗
i∑u

l=1 mlk S∗
l

∀ 1 ≤ i, j ≤ u. (4)

If MP
T is irreducible, the matrix Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))) is

irreducible, and therefore its spectral radius satisfy the Frobenius’ inequality (Horn
and Johnson 1985, Theorem 8.1.22, page 492):

min
j

z j ≤ R0(u, v) ≤ max
j

z j
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where z j = ∑u
i=1 zi j and zi j are given by (4). We have:

z j =
u∑

i=1

zi j

=
u∑

i=1

ν j

(μ j + ν j )(μ j + γ j + δ j )

v∑

k=1

βkmik p jk S∗
i∑u

l=1 mlk S∗
l

= ν j

(μ j + ν j )(μ j + γ j + δ j )

u∑

i=1

v∑

k=1

βkmik p jk S∗
i∑u

l=1 mlk S∗
l

= ν j

(μ j + ν j )(μ j + γ j + δ j )

v∑

k=1

u∑

i=1

βkmik p jk S∗
i∑u

l=1 mlk S∗
l

= ν j

(μ j + ν j )(μ j + γ j + δ j )

v∑

k=1

βk p jk
∑u

l=1mlk S∗
l

u∑

i=1

mik S
∗
i

= ν j

(μ j + ν j )(μ j + γ j + δ j )

v∑

k=1

βk p jk

:= R j
0

Hence,

min
i

Ri
0 ≤ R0(u, v) ≤ max

i
Ri

0 (5)

The relations (3) and (5) imply the desired inequality.
2. By using the inequality proved in the first part, we have:

R0(u, v) ≥ min
i=1,...,u

Ri
0

:= R0(1, v),

Finally, we have:

R0(1, v) = R1
0

= ν1

(μ1 + ν1)(μ1 + γ1 + δ1)

v∑

k=1

βk p1k

≥ β1 p11ν1
(μ1 + ν1)(μ1 + γ1 + δ1)

:= R0(1, 1)

3. Let u a fixed number of groups. We would like to prove thatR0(u, v) ≥ R0(u, v′)
for any v ≥ v′. Since,R0(u, v) = ρ(Zdiag(ν)diag−1((μ+ν)◦ (μ+γ + δ))) and
the number of groups is fixed, the epidemiological parameters remain the same
for any number of patches. Hence, it remains to compare Zv and Zv′ where Z is
the part of the next generation matrix that depends on the number of patches.
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For v patches, we have

Zi j
v =

v∑

k=1

βkmik p jk S∗
i∑u

l=1 mlk S∗
l

For v′ patches,

Zi j
v′ =

v′
∑

k=1

βkmik p jk S∗
i∑u

l=1 mlk S∗
l

Hence, for v ≥ v′, we have clearly Zi j
v ≥ Zi j

v′ . Hence, thanks to Perron-
Frobebenius’ theorem, we conclude that R0(u, v) ≥ R0(u, v′).

	

Remark 3.1 • The inequality in Item 3 of Theorem 3.2 is independent of the risk of

infection in the additional patches.
• If the residence times network configuration changes due the newly added patches,
the increasingproperty of the basic reproductionnumberwith respect to the number
of patches (Item 3 of Theorem 3.2) may not hold. This is an interesting avenue to
exploring the monotonicity of R0 and/or the dynamics of the disease.

We investigate relevant modeling scenarios where the expression of the general basic
reproduction number for u patches and v patches, R0(u, v), could be explicitly
obtained. In the rest of the paper, we use 〈x | y〉 to denote the canonical scalar
product.

Theorem 3.3 If the susceptible residence times matrix M is of rank one, an explicit
expression of R0 is given by

R0(u, v) =
(
ξ TS∗)−1 BT

P
T diag−1(ν)diag((μ + ν) ◦ (μ + γ + δ))diag(S∗)ξ

:=
(
ξ TS∗)−1

〈

B | P
T diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))diag(S∗)ξ

〉

where ξ ∈ R
u is such that M = ξ Tm, with m ∈ R

v . Moreover, if the matrix M is
stochastic, we have:

R0(u, v) =
(
1TS∗)−1

〈

B | P
T diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))S∗

〉

Proof If the susceptible residence times matrix M is of rank one, it exist a vector
ξ ∈ R

u and a vector m ∈ R
v such that M = ξmT . We have the following:

M
TS∗ = mξ TS∗ = 〈ξ | S∗〉m

Hence,

diag−1(MTS∗) = diag−1(〈ξ | S∗〉m) = 〈ξ | S∗〉−1diag−1(m)
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and

Z = diag(S∗)Mdiag(B)diag−1(MTS∗)PT

= diag(S∗)ξmT diag(B)〈ξ | S∗〉−1diag−1(m)PT

= 〈ξ | S∗〉−1diag(S∗)ξmT diag(B)diag−1(m)PT

= 〈ξ | S∗〉−1diag(S∗)ξmT diag−1(m)diag(B)PT

= 〈ξ | S∗〉−1diag(S∗)ξ1T diag(B)PT because mT diag−1(m) = 1T

= 〈ξ | S∗〉−1diag(S∗)ξBT
P
T (6)

We deduce that the non-zero diagonal block of the next generation matrix could be
written as:

Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ + δ)))

= 〈ξ | S∗〉−1diag(S∗)ξBT
P
T diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ)))

This matrix is clearly of rank 1, since it could be written as wzT where w ∈ R
u and

w ∈ R
v . Hence, its unique non zero eigenvalue is

R0(u, v) = 〈ξ | S∗〉−1BT
P
T diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ)))diag(S∗)ξ

or, equivalently,

R0(u, v) =
(
ξ TS∗)−1

〈

B | P
T diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))diag(S∗)ξ

〉

Now, ifM is of rank one and stochastic, that is ,
∑v

j=1mi j = 1, for all i = 1, . . . , u,
it is not difficult to show that ξ = 1, where 1 is the vector whose components are all
equal to unity. This leads to

R0(u, v) =
(
1TS∗)−1

〈

B | P
T diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))S∗

〉

	

Remark 3.2 If the residence times matrix of susceptible individuals, that is M, is of
rank one and stochastic, the basic reproduction number is independent ofM.

It is worthwhile noting that there is a special case for which the result of Remark 3.2
holds even if the matrix M is not stochastic but only of rank one and sub-stochastic.
Indeed, by adding a new patch v+1 with βv+1 = 0 where the hosts of different groups
spend “the rest of their times”, the new mobility matrices will become the matrices
M̃ = (M,M′), Ñ = (N,N′), P̃ = (P,P′) and Q̃ = (Q,Q′), where M′,N′,P′ and Q

′
are column vectors. The new mobility matrices are stochastic and R0(u, v,M,P) =
R0(u, v + 1, M̃, P̃) since βv+1 = 0. Hence, if M and M̃ are of rank one, the basic
reproduction number is still independent of M. In this case, the matrix M could be
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expressed as 1mT with
∑v

j=1m j < 1. Thus, there is a special case when M is rank
1, yet sub-stochastic, and the reproduction number does not depend on M.

From a modeling standpoint, the rank one condition of M (i.e., M = ξmT with
ξ ∈ R

u and m ∈ R
v) can be interpreted as follows:

• The ratio of the proportions of time spent in any given patch by susceptible individ-
uals belonging to two different groups, is identical. Indeed, for any given group i ,
the ratio of the proportion of time spent in any given patch by susceptible individual
is:

mi j
v∑

k=1

mik

= ξim j
v∑

k=1

ξimk

= m j
v∑

k=1

mk

,

which is independent of i . Moreover, if M is stochastic, we deduce that the sus-
ceptible of each group spend the exact proportion of time in any given patch, since∑v

k=1 mk = 1.
• A straightforward case that stems from the previous point is whenever there is one
patch and multiple groups; or when there are multiple patches and one group.
Similar remarks hold when the matrix P is of rank one, which is dealt in the next
theorem.

Theorem 3.4 If the infected residence timesmatrixP is of rank one, an explicit expres-
sion of R0 is given by

R0(u, v) =
〈

S∗ ◦ α | diag(ν)diag−1((μ + ν)

◦ (μ + γ + δ))Mdiag−1(MTS∗)B ◦ p

〉

where α ∈ R
u and p ∈ R

v are such that P = αpT . Moreover, if P is stochastic,

R0(u, v) = S∗T diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))Mdiag(B)diag−1(MTS∗)p

:=
〈

S∗ | diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))Mdiag−1(MTS∗)B ◦ p

〉

Proof If the susceptible residence times matrix P is of rank one, there exists a vector
p ∈ R

v and α ∈ R
u such that P = αpT . The next generation matrix is:

−FV−1 = diag(S∗)Mdiag(B)diag−1(MTS∗)pαT diag−1((μ + ν) ◦ (μ + γ + δ))

which is of rank one since it could be written as xyT where x = diag(S∗)M
diag(B)diag−1(MTS∗)p and y = diag−1((μ + ν) ◦ (μ + γ + δ))α. Hence, its unique
non zero eigenvalue is,
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R0(u, v) = αT diag−1((μ + ν) ◦ (μ + γ + δ))diag(S∗)Mdiag(B)diag−1(MTS∗)p
= (α ◦ S∗)Tdiag−1((μ + ν) ◦ (μ + γ + δ))Mdiag(B)diag−1(MTS∗)p

=
〈

α ◦ S∗ | diag(ν)diag−1((μ + ν)

◦(μ + γ + δ))Mdiag−1(MTS∗)B ◦ p

〉

If P is stochastic, we can show that α = 1 and hence,

R0(u, v) =
〈

S∗ | diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ))Mdiag−1(MTS∗)B ◦ p

〉

which is the desired result. 	

The condition of rank one of the matricesM and P, when both matrices are stochas-

tic, means that the susceptible and infected individuals of different groups spend the
same proportion of time in each and every patch. When the matrices are not stochas-
tic, the rank one condition means that the proportion of times spent by susceptible or
infected individuals of different groups in each patch are proportional. That is, there
exists α j such that mi j = α jmi for all 1 ≤ i, j ≤ u.

4 Simulations

In this section, we run some numerical simulations for 2 groups and 3 patches in
order to highlight the effects of differential residence times and to illustrate the pre-
viously obtained theoretical results. To that end, unless otherwise stated, the baseline
parameters of the model are chosen as follows:

β1 = 0.25 days−1, β2 = 0.15 days−1, β3 = 0.1 days−1,

1

μ1
= 75 × 365 days,

1

μ2
= 70 × 365 days,

�1 = 150,�2 = 100, ν1 = ν2 = 1

4
days−1,

1

γ1
= 7 days,

1

γ2
= 6 days, η1 = η2 = 0.00137 days−1,

δ1 = δ2 = 2 × 10−5 days−1

Although the values of β j are chosen throughout this section, for convenience, to
be between 0 and 1, they need only to be nonnegative. We begin by simulating the
dynamics of Model 2 when the basic reproduction number is below or above unity.
Figure 2 shows the dynamics of infected individuals of Group 1 (Fig. 2a) and Group
2 (Fig. 2b). The disease persists in both groups whenR0 > 1 ( Fig. 2a, b), dotted red
and dashed green curves) while it dies out when R0 < 1 ( Fig. 2a, b), solid blue and
dash-dotted black curves).
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Fig. 2 Dynamics of infected individuals of Group 1 (a) and Group 2 (b). Values of β1 = 0.35, β2 = 0.25,
β3 = 0.15 and μ1 = 0.03, and μ2 = 0.04 are chosen for this set of simulations. a Dynamics of I1, b
dynamics of I2
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Fig. 3 Variation of the disease prevalence at the equilibrium level with respect to the mobility patterns of
susceptible and infected individuals of Group 1 (a) and Group 2 (b) in Patch 1 with β1 = 0.35, β2 = 0.25,
β3 = 0.15 and μ1 = μ2 = 0.05. a Ī1 vs. m11, p11, b Ī2 vs. m11, p11

Figure 3 displays how the equilibrium value of infected individuals of Group 1 and
Group 2 change with respect to residence times of infected and susceptible of group
1 in Patch 1, that is m11 and p11. For instance, in Fig. 3a, the disease burden in Group
1 ( Ī1) is moderately low for all values of m11 as long as p11, the residence times of
Group 1’s infected into Patch 1, is below 0.3, even if Patch 1 is the riskiest patch
with β1 = 0.35. However, this prevalence level is more marked when m11 ≥ 0.4 and
p11 ≥ 0.5. The heatmap of Ī1 with respect to m12 and p21 shows similar patterns. We
decided not to display this figure. Figure 3b shows the changes in the values of infected
in Group 2 ( Ī2) due to movement patterns of susceptible and infected of Group 1 (m11
and p11) when their own movement patterns are fixed (m21 = 0.6 and p21 = 0.4).

Figure 4 gives an overview of the dynamics of the basic reproduction number with
respect of mobility patterns of susceptible and infected individuals of Group 1 in Patch
1 and Patch 2. Figure 4a shows that m11 and p11 could bring R0 from bellow unity
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Fig. 4 Variation of R0 with respect to the mobility patterns of susceptible and infected individuals of
Group 1 in Patch 1 (a) and Patch 2 (b). Values of β1 = 0.2, β2 = 0.1 and β3 = 0.08 are chosen for this set
of simulations. aR0 vs. m11, p11, bR0 vs. m12, p12
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Fig. 5 Variability of R0 with respect to m11, m12 and p11, p12. If all other parameters are fixed, R0
increases with respect to m11 and m12. a R0 vs. m11, b R0 vs. p11

to above unity. Particularly, if m11 ≥ 0.4, thenR0 > 1, which lead to the persistence
of the disease. Also, R0 is much higher when m11 ≥ 0.7 and p11 ≥ 0.2. Figure 4b
shows how R0 varies when the movement of infected and susceptible of Group 1 in
Patch 2 change.

In Fig. 5, we revisit the variability of the basic reproduction number with respect of
mobility patterns of susceptible and infected individuals of Group 1 (Fig. 4). However,
we obtain a clear picture on how it changes. Indeed, Fig. 5a suggests thatR0 increases
with respect to m11 and m12; and p11 and p12 (Fig. 5b). However,R0 increases much
faster with respect to p11 than to m11. Moreover, Fig. 5b confirms also the result of
Theorem 3.1, which states that the basic reproduction number increases with respect
of pi j , that is the movement patterns of infected individuals.

Figure 6 showcases that, for a fixed number of groups (3 in this case), the basic
reproduction number increases as the number of patches increases, and that indepen-
dently of the values of the risk of infection of the added patches. This figure, also
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Fig. 6 Effects of patchiness on
the basic reproduction number
R0 with u = 3. This risk of
infection chosen for these 4
patches are: β1 = 0.25,
β2 = 0.15, β3 = 0.1, β4 = 0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

confirms our the theoretical result in Item 3 of Theorem 3. It also shows a linear
monotonicity of R0(u, v) with respect to P. Other values of βs than those of Fig. 6
exhibit similar patterns.

5 Global stability of equilibria

The global stability of equilibria for the general Model (2) happens to be very chal-
lenging. In fact, for models with such intricated nonlinearities, it is shown in Huang
et al. (1992) that multiple endemic equilibria may exist. In this section, we explore
the global stability of equilibria for some particular cases of the general model.

5.1 Identical mobility and no disease induced mortality

In this subsection, we suppose that the host mobility to the patches is independent of
the epidemiological status and that we neglect the disease induced mortality. In this
case, the dynamics of the total population is given by

Ṅ = � − μ ◦ N

Hence, limt→∞ N = �
μ

:= N̄. By using the theory of asymptotic systems (Castillo-
Chavez and Thieme 1995; Vidyasagar 1980), System (2) is asymptotically equivalent
to:

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ = � − diag(S)Mdiag(B)diag−1(MT N̄)MT I − diag(μ)S + diag(η)R
Ė = diag(S)Mdiag(B)diag−1(MT N̄)MT I − diag(ν + μ)E
İ = diag(ν)E − diag(γ + μ)I
Ṙ = diag(γ )I − diag(η + μ)R

(7)

Model (7) generalizes models considered in Bichara et al. (2015). Let us denote
REq

0 (u, v) the corresponding basic reproduction number of Model (7). Its expression
is
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REq
0 (u, v) = ρ(diag(S∗)Mdiag(B)diag−1(MTS∗)MT diag(ν)diag−1((μ + ν)

◦ (μ + γ )))

The following theorem gives the global stability of the disease free equilibrium.

Theorem 5.1 Whenever the host-patch mobility configuration MM
T is irreducible,

the following statements hold:

1. IfREq
0 (u, v) ≤ 1, the DFE is globally asymptotically stable (GAS).

2. IfREq
0 (u, v) > 1, the DFE is unstable.

Proof Let (wE , wI ) a left eigenvector of Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ )) corre-
sponding to ρ(Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ ))) where

Z = diag(S∗)Mdiag(B)diag−1(MTS∗)MT

Hence,

(wE , wI )Zdiag(ν)diag−1((μ + ν) ◦ (μ + γ )) = (wE , wI )ρ(Zdiag(ν)diag−1

((μ + ν) ◦ (μ + γ )))

= (wE , wI )ρ(−FV−1)

SinceMM
T is irreducible, thematrix Zdiag(ν)diag−1((μ+ν)◦(μ+γ )) is irreducible.

This implies that (wE , wI ) � 0.
We consider the Lyapunov function

V (E, I) = (wE , wI )

(
diag−1(μ + ν) 0u,u

diag(ν)diag−1((μ + ν) ◦ (μ + γ )) diag−1(μ + γ )

) (
E
I

)

The derivative of V (E, I) along trajectories of (7) is

V̇ (E, I) = (wE , wI )

(
diag(μ + ν)−1 0u,u

diag(ν)diag−1((μ + ν) ◦ (μ + γ )) diag−1(μ + γ )

)(
Ė
İ

)

= (w̃E , w̃I )

(−diag(μ + ν) diag(S)Mdiag(B)diag−1(MT N̄)MT

diag(ν) −diag(μ + γ )

) (
E
I

)

where w̃E = wEdiag−1(μ + ν) + wIdiag(ν)diag−1((μ + ν) ◦ (μ + γ )) and w̃I =
wIdiag−1(μ + γ ), or equivalently (w̃E , w̃I ) = (wE , wI )(−V−1).

Since diag(S) ≤ diag(S∗) and S∗ = N̄, we obtain (denoting I the identity matrix),

V̇ (E, I) ≤ (w̃E , w̃I )(F + V )

(
E
I

)

= (wE , wI )
(
−V−1F − I

) (
E
I

)
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=
(
REq

0 (u, v) − 1
)

(wE , wI )

(
E
I

)

≤ 0.

We consider first the case whenREq
0 (u, v) < 1. Let E be an invariant set contained in

�, where V̇ (E, I) = 0. This set is reduced to the origin of R2u (i.e., (E, I) = (0, 0)).
This, combined to the invariance of E , leads to R = 0 and S = S∗. Hence, the only
invariant set contained in �, such that V̇ (E, I) = 0, is reduced to the DFE. Hence,
by LaSalle’s invariance principle (Bhatia and Szegö 1970; LaSalle and Lefschetz
1961), the DFE is globally asymptotically stable on �. Since � is an attracting set,
we conclude that the DFE is GAS on the positive orthant R4u+ .

When REq
0 (u, v) = 1, we can show that

V̇ (E, I) = (wE+wI diag(ν)diag(μ + γ+δ)−1)diag(μ + ν)−1 (diag(S)−diag(S∗))·
Mdiag(B)diag−1(MT N̄)MT I
≤ 0.

Therefore, as above, LaSalle’s invariance principle allows to conclude.
The instability of the DFE when REq

0 (u, v) > 1 follows from Diekmann et al.
(1990); van den Driessche and Watmough (2002). 	


The following theorem provides the uniqueness of the endemic equilibrium.

Theorem 5.2 IfREq
0 (u, v) > 1, Model (7) has a unique endemic equilibrium.

The proof of this theorem is similar to that of Theorem 5.3 in the next subsection.

5.2 Effective population size dependent risk

So far, the risk associated with each patch is represented by the constant vector B.
However, in some cases, it is more appropriate to assume that the risk of catching a
disease depends on the size of the population or crowd, that is the effective population
size in each patch. In this subsection, we suppose that the risk of infection in each patch
j is linearly proportional to the effective population size, that is N eff

j = ∑u
k=1(mi j Si +

ni j Ei + pi j Ii + qi j Ri ). Hence,

β j (N
eff
j ) = β j

u∑

k=1

(mkj Sk + nkj Ek + pkj Ik + qkj Rk)

Hence, the rate at which susceptible individuals are infected in Patch j is, therefore

β j (N
eff
j )

∑u
k=1 pkj Ik∑u

k=1(mkj Sk + nkj Ek + pkj Ik + qkj Rk)
:= β j

u∑

k=1

pkj Ik
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Therefore, in this settings, the dynamics of the population in different epidemiological
classes take the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡi = �i −
v∑

j=1

β jmi j Si

u∑

k=1

pkj Ik − μi Si + ηi Ri ,

Ėi =
v∑

j=1

β jmi j Si

u∑

k=1

pkj Ik − (νi + μi )Ei

İi = νi Ei − (γi + μi + δi )Ii
Ṙi = γi Ii − (ηi + μi )Ri

(8)

System (8) could be written in a compact form as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ = � − diag(S)Mdiag(B)PT I − diag(μ)S + diag(η)R
Ė = diag(S)Mdiag(B)PT I − diag(ν + μ)E
İ = diag(ν)E − diag(γ + μ + δ)I
Ṙ = diag(γ )I − diag(η + μ)R

(9)

Clearly, System (9) is a particular case of System (2) when the transmission term
takes a modified density-dependent form. Positivity and boundedness properties of
solutions of System (2) hold for those of System (9). The basic reproduction number
of Model (9), denoted by RDD

0 (u, v) is:

RDD
0 (u, v) = ρ(diag(S∗)Mdiag(B)PT diag(ν)diag−1((μ + ν) ◦ (μ + γ + δ)))

We explore the properties of steady state solutions. The following result gives the
global stability of the DFE. Its proof is similar to that of Theorem 5.1.

Corollary 5.1 Whenever the host-patch mobility configuration MP
T is irreducible,

the following statements hold:

1. IfRDD
0 (u, v) ≤ 1, the DFE is globally asymptotically stable.

2. IfRDD
0 (u, v) > 1, the DFE is unstable.

The proof of the existence and uniqueness of the endemic equilibrium (EE) for
Model (9) is done in two steps, by carefully crafting a new auxiliary system whose
EE uniqueness is tied to that of Model (9).

Let

A = diag−1(η + μ) diag(γ ) diag−1(γ + μ + δ) diag(ν),

L = diag−1(γ + μ + δ) diag(ν)

and K = diag−1(μ)diag(ν + μ) − diag−1(μ) diag(η) A (10)

We have the following lemma,
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Lemma 5.1 Model (9) has a unique endemic equilibrium if the function

g(y) = diag−1(ν + μ) diag(S∗ − Ky)Mdiag(B)PT Ly,

has a unique fixed point.

Proof Let (S̄, Ē, Ī, R̄) an equilibriumpoint of System (9)with Ī � 0. This equilibrium
satisfies the following system:

⎧
⎪⎪⎨

⎪⎪⎩

0 = � − diag(S̄)Mdiag(B)PT Ī − diag(μ)S̄ + diag(η)R̄
0 = diag(S̄)Mdiag(B)PT Ī − diag(ν + μ)Ē
0 = diag(ν)Ē − diag(γ + μ + δ)Ī
0 = diag(γ )Ī − diag(η + μ)R̄

(11)

We can easily see that R̄ = AĒ and Ī = LĒ, where A, L and K are as defined in (10).
Thus, Ī � 0 implies that Ē � 0 and R̄ � 0.
Hence, System (11) could be written only in terms of S̄ and Ē, that is:

{
S̄ = diag−1(μ)

(
� − diag(S̄)Mdiag(B)PT LĒ + diag(η) AĒ

)

Ē = diag−1(ν + μ) diag(S̄)Mdiag(B)PT L Ē
(12)

Let x = diag−1(μ)�− S̄ and y = Ē. Since S̄ ∈ �, it is clear that x ≥ 0 and y ≥ 0.
Expressing the system (12) into new variables, we obtain:

{
x = diag−1(μ) f (x, y) − diag−1(μ) diag(η) A y (13a)

y = diag−1(ν + μ) f (x, y) (13b)

where

f (x, y) = diag(S∗ − x)Mdiag(B)PT Ly

It follows from (13b) that f (x, y) = diag(ν + μ) y, and hence (13a) implies that
x = Ky where

K = diag−1(μ)diag(ν + μ) − diag−1(μ) diag(η) A

After some algebraic manipulations, it could be shown that K > 0. Combining
the fact that x = Ky and (13b), it follows that (13), and subsequently (11), could be
written in the single vectorial equation:

y = g(y)

where

g(y) = diag−1(ν + μ) f (Ky, y)

= diag−1(ν + μ) diag(S∗ − Ky)Mdiag(B)PT Ly (14)
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Thus, Model (9) has a unique endemic equilibrium Ī � 0 if and only if g(y) has a
unique fixed point ȳ � 0. The desired result is achieved. 	


Next, we present another lemma whose proof is straightforward:

Lemma 5.2 The function g(y) has a fixed point ȳ if and only if ȳ is an equilibrium
of ẏ = F(y) where

F(y) = diag(ν + μ)g(y) − diag(ν + μ)y

The proof of this lemma is straightforward.

Theorem 5.3 Under the assumption that the host-patch mobility configurationMP
T

is irreducible, Model (9) has a unique endemic equilibrium wheneverRDD
0 (u, v) > 1.

Proof By using Lemma 5.1 and Lemma 5.2, the uniqueness of EE for Model (9) is
equivalent to the uniqueness of an EE for this system

ẏ = F(y) (15)

when RDD
0 (u, v) > 1. Therefore, we will prove that the auxiliary system (15) has

an unique EE. In fact, we will prove that this equilibrium is globally attractive if
RDD

0 (u, v) > 1. The proof of the latter is based on Hirsch’s theorem (Hirsch 1984),
by using elements of monotone systems. The Jacobian of the vector field F(y) is:

F ′(y) = diag(ν + μ) (g′(y) − I)

=
(
−diag

(
Mdiag(B)PT Ly

)
K + diag(S∗ − Ky)Mdiag(B)PT L

)

− diag(ν + μ) I

= − diag(ν + μ) I − diag
(
Mdiag(B)PT Ly

)
K + diag(S∗ − Ky)M

diag(B)PT L .

where I is the identity matrix. Thematrix−diag(ν+μ) I−diag
(
Mdiag(B)PT Ly

)
K

is a diagonal matrix and diag(S∗ −Ky)Mdiag(B)PT L is a nonnegative matrix (since
S∗ − Ky = S̄). It follows that F ′(y) is Metzler and is irreducible since MP

T is.
Therefore, System (15) is strongly monotone. Moreover, it is clear that the map F ′ :
R
u −→ R

u × R
u is antimonotone. Also, F(0Ru ) = 0Ru and F ′(0Ru ) = g′(0Ru ) −

I = diag(S∗)Mdiag(B)PT L−I. Since ρ(g′(0Ru )) = ρ(diag(S∗)Mdiag(B)PT L) =
RDD

0 (u, v) > 1,we deduce that F ′(0Ru ) has at least a positive eigenvalue and therefore
0Ru is unstable. Therefore, System (15) has unique equilibrium ȳ � 0Ru , which is
globally attractive, due toHirsch’s theorem (Hirsch 1984) (Theorem6.1).We conclude
that Model (9) has a unique endemic equilibrium whenever RDD

0 (u, v) > 1. 	

Note that with the choice of P = Mdiag−1(MT N̄) and δ = 0, System (9) is exactly

System (7). Therefore, their solutions have the same asymptotic behavior.
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6 Conclusion and discussions

Heterogeneity in space and social groups are often studied separately and sometimes
interchangeably in the context of disease dynamics. Moreover, in these settings, sus-
ceptibility of the infection is based on group or individual. In this paper, we propose
a new framework that incorporates heterogeneity in space and in group for which the
structure of the latter is independent from that of the former. We define patch as a loca-
tion where the infection takes place, which has a particular risk of infection. This risk
is tied to environmental or hygienic or economic conditions that favors the infection.
The likelihood of infection in each patch depends on both the risk of the patch and
the proportion of time each host spend in that environment. We argue that this patch-
specific risk is easier to assess compared to the classical differential susceptibility or
WAIFW matrices. Human host is structured in groups, where a group is defined as a
collection of individuals with similar demographic, genetic or social characteristics.
In this framework, the population of each patch at time t is captured by the temporal
mobility patterns of all host groups visiting the patches, which in turn depends on the
host’s epidemiological status.

Under this framework, we propose a general SEIRS multi-patch and multi-group
model with differential state-host mobility patterns. We compute the basic reproduc-
tion number of the system with u groups and v patches, R0(u, v), which depends on
the mobility matrices of susceptible, M, and infected, P. The disease persists when
R0 > 1 and dies out from all patches when R0(u, v) < 1 (Fig. 2), when MP

T is
irreducible. When this matrix is not irreducible, the disease will persist or die out in
all patches of the subsystem for which the configuration group-patch is irreducible
and will be decoupled from the remaining system.

We systematically investigate the effects of heterogeneity in mobility patterns,
groups and patches on the basic reproduction and on disease prevalence. Indeed, we
have shown that, if the epidemiological parameters are fixed, the basic reproduction
number is an increasing function of the entries of infected hosts’ movement matrix
(e.g. Theorem 3.1). Also, if the number of groups is fixed, an increase in the number
of patches increases the basic reproduction number (e.g. see Theorem 3.2). Explicit
expressions of the basic reproduction numbers are obtained when the mobility matri-
cesM and P are of rank one. That is, when, for all groups, susceptible (and infected)
individuals’ residence times in all patches are proportional (Theorems 3.3 and 3.4). It
turns out that if the susceptible residence time matrix is of rank one and stochastic, the
basic reproduction number is independent ofM. Moreover, we also show that ifM is
of rank one, its stochasticity is sufficient but not necessary for the basic reproduction
number to be independent of M. However, if the infected residence time matrix P is
of rank one, stochastic or otherwise, the basic reproduction number still depends on
the infected movement patterns.

The patch-specific risk vector B could also depend on the effective population size.
We explored the case when this dependence is linear, that is when, for each patch j ,
β j (N eff

j ) = β j
∑u

k=1(mkj Sk +nkj Ek + pkj Ik +qkj Rk). In this case, the transmission
term of our model is captured by a density dependent incidence. Moreover, we show
that this case is isomorphic to the general model, where the mobility patterns of host
does not dependent on the epidemiological class, that is when M = N = P = Q. We
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prove that, in this case the disease free equilibrium is globally asymptotically stable
whenever R0 ≤ 1 while an unique endemic equilibrium exists ifR0 > 1.
We suspect that the disease free equilibrium is globally asymptotically stablewhenever
R0 ≤ 1 forModel (2), where the patch-specific risk is constant. A similar remark holds
for the global stability of the endemic equilibrium of Model (9) and Model (2) when
R0 > 1. This is still under investigation. Further areas of extensions of this study
include more general forms of the patch-specific risks and when mobility patterns
reflect the choices that individuals make at each point in time. These choices are based
on maximizing the discounted value of an economic criterion à la (Fenichel et al.
2011; Perrings et al. 2014).
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