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Abstract A class of models that describes the interactions between multiple host
species and an arthropod vector is formulated and its dynamics investigated. A host-
vector diseasemodel where the host’s infection is structured into n stages is formulated
and a complete global dynamics analysis is provided. The basic reproduction number
acts as a sharp threshold, that is, the disease-free equilibrium is globally asymptotically
stable (GAS) wheneverR2

0 ≤ 1 and that a unique interior endemic equilibrium exists
and is GAS ifR2

0 > 1.We proceed to extend this model withm host species, capturing
a class of zoonoses where the cross-species bridge is an arthropod vector. The basic
reproduction number of the multi-host-vector,R2

0(m), is derived and shown to be the
sum of basic reproduction numbers of the model when each host is isolated with an
arthropod vector. It is shown that the disease will persist in all hosts as long as it
persists in one host. Moreover, the overall basic reproduction number increases with
respect to the host and that bringing the basic reproduction number of each isolated
host below unity in each host is not sufficient to eradicate the disease in all hosts. This
is a type of “amplification effect,” that is, for the considered vector-borne zoonoses,
the increase in host diversity increases the basic reproduction number and therefore
the disease burden.
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1 Introduction

Zoonoses, infectious diseases caused by pathogens transmissible under natural condi-
tions from vertebrate animals to humans, account for 75% of emerging infectious
diseases (Taylor et al. 2001), with wildlife being an important source. Zoonotic
pathogens represent 61% of all known human pathogens (Taylor et al. 2001). These
zoonoses are responsible for over one billion cases of human morbidity, millions of
human mortality each year, and over $80 billion USD of global economic burden,
including public and animal health and livestock, from 1997 to 2009 (World Bank
2010). Therefore, understanding the dynamics of the underlying mechanisms that
drive the inter-host, between hosts, and/or vectors interactions to formulate better
control strategies should be a worldwide priority.
Zoonoses are transmitted through fourmajors transmission routes (Centers forDisease
Control and Prevention 2015c):

(i) Vector-borne class that includes diseases such as Lyme disease, tick-borne relaps-
ing fever (TBRF), West Nile virus (WNV), Chagas disease. They are transmitted
by the bite of arthropod vectors;

(ii) Direct transmission including Brucellosis, hantavirus, influenza, rabies, these
zoonoses are due to a close contactwith bodilyfluids of an infected host, including
contacts with fomites;

(iii) Indirect transmission (e.g., Anthrax, Echinococcosis, Leptospirosis) that are
transmitted through the air by droplet transfer from an infected host to susceptible
host; and

(iv) Food-borne or oral transmission class that includes Toxoplasmosis, Trichinel-
losis, Salmonellosis. that are caused by ingesting food or water contaminated
with a pathogen.

However, according to Johnson et al. (2015), arthropod vectors transmit 40% of
zoonoses involving wild animals and 20% of zoonoses involving domestic animals,
making vector-borne zoonoses (VBZ) arguably the most important class of zoonoses
(see Lloyd-Smith et al. (2009) for an excellent review on VBZ). The understanding
and control of zoonoses have been hampered because of the complexities of inter-
actions of zoonoses at the interface of humans, animals, vectors, and the ecosystem.
Mathematical models have long been used to gain insights of key components of the
disease in consideration, although most have dealt with only one host and a pathogen
(Anderson and May 1991; Kermack and McKendrick 1927) or along with a vector
(Ross 1911, 1916; Ross and Hudson 1917a, b).

While dynamical models capturing directly transmitted zoonoses, including food-
borne and free-living pathogens, have received substantial, yet insufficient, attention
(Begon and Bowers 1994; Begon et al. 1992; Bowers and Begon 1991; Greenman and
Hudson 2000; Holt and Pickering 1985; Lloyd-Smith et al. 2009) (and the references
therein), the literature on the dynamics ofmulti-host zoonoses is sparsewhen transmis-
sion involves an arthropod vector (mosquitoes, flies, fleas, ticks, etc.) (Bowman et al.
2005; Cruz-Pacheco et al. 2012a, b; Johnson et al. 2016; Simpson et al. 2011), most of
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which are focused on WNV and with at most two hosts. Indeed, even among papers
that claim to model a zoonosis, authors usually disregard the multi-host component.

The main goal of this paper is to formulate and investigate the global asymptotic
behavior of systems describing the interactions between multiple hosts and vectors
that capture the evolution of a class of vector-borne zoonoses. The outline of this
endeavor is based on the following steps:

• We begin by formulating a single host-vector model with an arbitrary number of
stages (or relapses) during the host’s infectiosity. The proposed model revisits the
models in Johnson et al. (2016), Palmer et al. (2016) and generalizes them in order
to incorporate the heterogeneity of the vector’s infection with respect to the host’s
stage of infection (Sect. 2).

• We then derive the basic reproduction number and provide a complete investigation
of the global stability of equilibria, which surprisingly has not been done (Sects. 2.2
and 2.3 ).

• We formulate a multi-host-vector model where each host’s infection dynamics
have an arbitrary number of stages (or relapses). The proposed model allows also
that some of the hosts are dead-end hosts, that is, they carry the pathogen but are not
infectious. This feature of the model allows for inspecting whether host diversity
(with respect to the number of different host species) increases or mitigates the
overall infection.

• We complete the global stability of equilibria of the model with m host species on
which a common arthropod vector is feeding. These results are new (Sect. 3).

The basic reproduction number of the multi-host-vector system is R2
0(m) =∑m

j=1
R2

0, j , where R2
0, j , for j = 1, 2, . . . ,m, is the basic reproduction number

of a single host-vector system, when taken in isolation. We prove that the disease-free
equilibrium (DFE) is globally asymptotically stable ifR2

0(m) ≤ 1. That is, in this case,
the disease dies out in all hosts and in the vector populations. IfR2

0(m) > 1, a unique
interior endemic equilibrium exists and is shown to be globally asymptotically stable.
Given the expression of R2

0(m) in terms of R2
0, j , for j = 1, 2, . . . ,m, this implies

that controlling vector-borne zoonoses requires a coordinated effort in controlling the
disease in all hosts. This result echoes the One Health concept (Centers for Disease
Control and Prevention 2017), which advocates for optimal health for all species and
the environment (One Health 2017). Moreover, the basic reproduction numberR2

0(m)

increases with respect to the number of hosts, although the increase in dead-hosts does
not affect R2

0(m). This is a type of “amplification effect.”

2 Single Host-Vector with Stage Progression

In this section, we derive an SEIR-SEI vector-borne disease for a single
host-vector and study its asymptotic properties. We later extend to the multi-host case
in Sect. 3.
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2.1 Formulation of the Model

We consider a host population, denoted by Nh, that interacts with a population of vec-
tors, denoted by Nv. This host-vector interaction leads to a transmission of pathogens
from host to vector and conversely. We suppose that the host population is subdivided
into susceptible hosts, denoted by Sh, latent hosts (infected but not infectious) Eh,
hosts in a successive chain of infected classes Ii , for i = 1, 2, . . . , n that represents
the different stages of the disease progression, and a class of recovered hosts, denoted

by Rh. The total host population is therefore, Nh = Sh + Eh +
∑n

i=1
Ii + Rh. A

host’s infection thus follows an SEIR type of framework. The vectors’ population is
composed of susceptible, latent, and infected vectors, denoted, respectively, by Sv,
Ev, and Iv, and their infection follows an SEI model type of structure. The hosts’
susceptible population is generated via a constant recruitment �h and reduced by a
per capita mortality rate of μh and through an infectious vector bite. The dynamics of
the susceptible host is therefore given by:

Ṡh = �h − b(Nh, Nv)βvhSh
Iv
Nv

− μhSh, (1)

where b(Nh, Nv) is the number of mosquito bites per human per unit of time. The new
infected hosts become latent and leave this stage either by natural death or entering
the infectious stage after an incubation period of 1/νh. Hence, the dynamics of latent
host is given by:

Ėh = b(Nh, Nv)βvhSh
Iv
Nv

− (μh + νh)Eh. (2)

The hosts’ incubation period is important for vector-borne diseases in general and
vector-borne zoonoses in particular. For instance, the latency period for the Japanese
Encephalitis Virus is 10 days in pigs (Khan et al. 2014) and 5–15 days (Centers
for Disease Control and Prevention 2015b) for humans. Humans are dead-end hosts,
that is, although deadly, the parasitaemia is insufficient to infect biting mosquitoes.
Similarly, the incubation period of TBRF is 7 days (Dworkin et al. 2008; Southern
and Sanford 1969). For other tick-borne diseases, the incubation period varies from
more than 2 weeks and up to 9 weeks (see Centers for Disease Control and Prevention
(2015a) for an overview of the incubation period of tick-borne diseases). The long
incubation period of some zoonoses (for instance, in Chagas’s disease case, human
host may stay asymptomatic his/her whole life), compared to their infectiosity period,
make it indispensable to incorporate a latent class in the dynamics of zoonoses.

After the incubation period, the latent host enters the first stage of infectiousness,
namely I1. The evolution of the latter follows,

İ1 = νhEh − (μh + η1 + γ1)I1.
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The infected hosts I1 leave this stage either by natural death at a rate μh, through
recovery at a per capita rate η1, or by progressing to the second stage of infectiousness
at a per capita rate of γ1. Hence,

İ2 = γ1 I1 − (μh + η2 + γ2)I2.

Similarly, for i = 3, 4, . . . , n − 1, the dynamics of the infected at stage i is captured
by:

İi = γi−1 Ii−1 − (μh + ηi + γi )Ii ,

and

İn = γn−1 In−1 − (μh + ηn)In .

Hosts’ stage-structured infectiousness in vector-borne zoonoses have long been
recognized in the literature (Cruz-Pacheco et al. 2012a; Homer et al. 2000; Velas-
cohernandez 1994). Although a review of the epidemiology of VBZ is beyond the
scope of this paper, we present in the following a list of some known VB zoonoses
to justify the rationale behind incorporating an stage-structure host infectiosity in the
host’s dynamics.

• Tick-borne relapsing fever (TBRF): Caused by Borrelia spirochetes and trans-
mitted by ticks of genus Ornithodoros, the infection has two main stages after the
latency period: the febrile and afebrile stages that last on average 3.1 and 9.25 days,
respectively (Southern and Sanford 1969). Moreover, according to Southern and
Sanford (1969), although there is an average of 3 stages (or relapses), up to 13
relapses could be observed in TBRF. It is worthwhile to note that different nomen-
clatures have been used to describe different infectious stages during an infection.
The terminology of stage progression is used in mathematical modeling (Guo and
Li 2006a; Guo et al. 2012; Iggidr et al. 2007), whereas the relapses is used more
in ecology (Johnson et al. 2016; Palmer et al. 2016; Southern and Sanford 1969).

• American Trypanosomiasis: After an incubation period of 1–2 weeks, the infec-
tion, also known as Chagas disease (caused by the parasite Trypanosoma cruzi
and transmitted by the vector kissing bug), has three main infectious stages: acute
(lasts 4–8 weeks), indeterminate, and chronic. In the first two stages, symptoms
might be absent, mild or unspecific. Similarly, for the African Trypanosomiasis,
also known as sleeping sickness, there are two main infectious stages (Franco
et al. 2014) after a 7-year incubation period (Wengert et al. 2014). In the first
stage, the parasitaemia is in the peripheral bloodstream, whereas in the later stage,
the parasites enter the nervous system. However, during this long latency period,
the parasitaemia in the bloodstream is considered to be sufficient to maintain the
transmission cycle (Wengert et al. 2014).

• West Nile Virus: Transmitted to different species mainly by Culex mosquitoes,
WNV has different pathogenicity depending on the host species under consider-
ation. For humans, there is an asymptomatic stage of 3–14 days and two main
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infectious stages, namely West Nile Fever, and West Nile neuroinvasive disease
(WNND).

The recovered hosts are replenished by the sum of the infected of all stages who
recovered from the disease and are reduced by the natural death rate. As the recovery
rate of infectious hosts at stage i is ηi , the dynamics of the recovered are given by:

Ṙh =
n∑

i=1

ηi Ii − μhRh.

The susceptible vectors are recruited via a constant recruitment �v and die at natural
death rate of μv or via control measures at a rate of δv. The infection of susceptible
vectors occurs after biting an infectious host. The total number of infectious hosts is∑n

i=1 Ii . However, for many vector-borne zoonoses, it is reasonable to assume that
the vector’s infectiousness to hosts’ early stages of the infection differs from that of
later stages as the parasite load in infectious individuals increases with respect to the
duration of infection. Therefore, by denoting βi as the infectiousness of the host at
stage i to vectors per bite and a as the biting rate, we incorporate the differential infec-
tiousness of vectors to the stage-structured infection of the host. Hence, the dynamics
of the susceptible and infected vectors are, respectively, given by:

Ṡv = �v − aSv

n∑

i=1

βi Ii
Nh

− (μv + δv)Sv,

Ėv = aSv

n∑

i=1

βi Ii
Nh

− (μv + νv + δv)Ev,

and

İv = νvEv − (μv + δv)Iv.

By the conservation law, the total number of bites on the host by mosquitoes (aNv)
should equal the total number of bites received by host (b(Nh, Nv)Nh). Therefore,

b(Nh, Nv)Nh = aNv,

or equivalently,

b(Nh, Nv) = aNv

Nh
. (3)

By plugging (3) into (1) and (2), the overall dynamics of the host-vector interaction
are given by the following system:
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Host

Sh Eh I1 I2 . . . In Rh

aβvhSh
Iv
N̄h νhEh γ1I1

η1I1

η2I2

γ2I2 γn−1In−1 ηnIn

Λh

μhSh μhEh μhI1 μhI2 μhIn μhRh

VectorsSv Ev Iv
Λv

aSv

n

i=1

βiIi

N̄h νvEv

(μv + δv)Sv (μv + δv)Iv(μv + δv)Ev

Fig. 1 Flow diagram of Model 4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡh = �h − a βvh Sh
Iv
Nh

− μhSh

Ėh = a βvh Sh
Iv
Nh

− (μh + νh)Eh

İ1 = νhEh − (μh + η1 + γ1)I1
İ2 = γ1 I1 − (μh + η2 + γ2)I2
...

İn−1 = γn−2 In−2 − (μh + ηn−1 + γn−1)In−1

İn = γn−1 In−1 − (μh + ηn)In
Ṙh =

∑n

i=1
ηi Ii − μhRh

Ṡv = �v − aSv
∑n

i=1

βi Ii
Nh

− (μv + δv)Sv

Ėv = aSv
∑n

i=1

βi Ii
Nh

− (μv + νv + δv)Ev

İv = νvEv − (μv + δv)Iv

(4)

The flow diagram of System (4) is represented in Fig. 1, and the parameters are
described in Table 1.

The subsystem describing the dynamics of the host is triangular, and hence we can
disregard the dynamics of the recovered host Rh. Moreover, the dynamics of the total
host andvector populations are givenby Ṅh = �h−μhNh and Ṅv = �v−(μh+δv)Nh.
Hence, we can deduce that:

lim
t→∞ Nh = �h

μh
:= N̄h and lim

t→∞ Nv = �v

μv + δv
:= N̄v.
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Table 1 Description of the parameters used in System (4)

Parameters Description

�h Recruitment of the host

�v Recruitment of vectors

a Biting rate

μh Host’s death rate

βv,h Vector’s infectiousness to the host per biting

βi Infectiousness of the host at stage i to vectors per biting

νh Host’s rate at which the exposed individuals become infected

ηi Per capita recovery rate of an infected host at stage i

γi Host’s per capita progression rate from stage i to i + 1

μv Vectors’ natural mortality rate

νv Vectors’ incubation rate

δv Vectors’ control-induced mortality rate

By using the theory of asymptotically autonomous systems for triangular systems
(Castillo-Chavez and Thieme 1995; Vidyasagar 1980), we can say that System (4) is
asymptotically equivalent to:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡh = �h − a βvh Sh
Iv
N̄h

− μhSh

Ėh = a βvh Sh
Iv
N̄h

− (μh + νh)Eh

İ1 = νhEh − (μh + η1 + γ1)I1
İ2 = γ1 I1 − (μh + η2 + γ2)I2
...

İn−1 = γn−2 In−2 − (μh + ηn−1 + γn−1)In−1

İn = γn−1 In−1 − (μh + ηn)In

Ėv = a(N̄v − Ev − Iv)
∑n

i=1
βi Ii
N̄h

− (μv + νv + δv)Ev

İv = νvEv − (μv + δv)Iv

(5)

Variations of this model have been considered in the literature. Indeed in modeling
tick-borne relapsing fever (TBRF), in Johnson et al. (2016) and Palmer et al. (2016)
considered an SIR-SI model where the dynamics of the infected host is structured
into n stages. However, these authors assume that the transmission from vector to
host is homogeneous with respect to the host’s stage of infection. Authors in Guo and
Li (2006b), Guo et al. (2012) have investigated SIR and SEIR multi-stages models,
respectively, although their systems describe infections that are directly transmitted,
that is, not coupled with an arthropod vector. Model (5) is an SEIR-SEI type with

heterogeneous infectiousness of vectors. When
1

νh
,
1

νv
→ 0, that is, when the mean
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latency period is 0, Model (5) is the limit of an SIR-SI model proposed in Johnson
et al. (2016) and Palmer et al. (2016). In many vector-borne diseases, zoonotic or
otherwise, the incubation period of the vector is relatively short compared to the
length of infection, as most arthropod vectors die while infected. However, mosquito-
borne diseases have a characteristic that differ from latter. Indeed, mosquitoes live for
only a couple weeks and the incubation period is often nearly 2 weeks, which means
the incubation period is on the same scale as the vector lifespan and most vectors die
before they become infectious. Moreover, most mosquito-borne disease models show
a high sensitivity to this incubation period. Therefore, for the sake of generality, we
assume that the dynamics of the vector is captured by an SEI structure. Also, Park
(2004) has proposed an SEIR-SEI stage progression model. In the abovementioned
papers, the authors derived the explicit expression of the equilibria and studied their
local stability. However, the global analysis of the asymptotic behavior of thesemodels
is lacking.

Remark 2.1 In Johnson et al. (2016), the authors assume different natural death rates

in each of the infected classes but assume that μi = 0.01

i + 2
for all i . In Model (4),

we assumed that all death rates are equal. However, it is not difficult to transform
System (4) into a system with different death rates in each class. Indeed, by choosing
�h = μS Sh + μE Eh + ∑n

i=1 μh,i Ii + μR R, the total population will be constant,
and by converting the variables into proportions, we obtain exactly System (5). This
mechanism of making the recruitment density dependent to stabilize the total pop-
ulation is called “density-dependence compensation” and has been identified in the
literature (McDonald et al. 2016) [but see also Anderson and May (1981), Thrall et al.
(1993)]. However, in cases in which there is no dependent compensation and that the
vital dynamics is captured by a constant recruitment and a disease-induced mortality,
the total host population will no longer be asymptotically constant and the results
obtained in this paper may not hold.

System (5) could be written in a more compact form as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡh = �he1 − a βvh Sh
Iv
N̄h

− μhSh

İh = a βvh Sh
Iv
N̄h

e1 + A Ih

Ėv = a
N̄v − Ev − Iv

Nh

〈(
0
β

) ∣∣∣ Ih
〉
− (μv + νv + δv)Ev

İv = νvEv − (μv + δv)Iv

(6)

where Ih = (Eh, I1, . . . , In)T, e1 = (1, 0, . . . , 0)T ∈ R
n+1, β = (β1, β2, . . . , βn)

T,

〈x
∣∣∣ y〉 is the canonical scalar product (here in Rn+1), and A is given by:
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A =

⎛

⎜⎜⎜⎜⎜⎜⎝

−(ν + μh) 0 . . . . . . 0
ν −α1 . . . . . . 0
0 γ1 −α2 . . . 0
...

. . .
. . .

...
...

0 . . .
. . . γn−1 −αn

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where αi = γi + ηi + μh, for i = 1, 2, . . . , n − 1 and αn = ηn + μh.
In the following lemma, we prove that the solutions of Model (6) remain positive

and bounded, that is, the solutions are biologically substantiated.

Lemma 2.1 The region defined by

	 =
{

(Sh, Eh, Ii , Ev, Iv) ∈ R
n+4+

∣∣∣ Sh + Eh +
n∑

i=1

Ii ≤ N̄h, Ev + Iv ≤ N̄v

}

is a compact attracting positively invariant set for system (6).

The disease-free equilibrium is E0 = (S̄h, 0Rn+3), where S̄h = �h

μh
. This equilib-

rium always exists and it belongs to 	.
The infected compartments of System (6) are the sum of F and V where

F(Ih, Ev, Iv) =

⎛

⎜⎜⎜⎜⎝

a βvh Sh
Iv
N̄h

e1

a
N̄v − Ev − Iv

Nh

〈(
0
β

) ∣∣∣ Ih
〉

0

⎞

⎟⎟⎟⎟⎠
and

V(Ih, Ev, Iv) =
⎛

⎝
A Ih

−(μv + νv + δv)Ev
νvEv − (μv + δv)Iv

⎞

⎠ .

Let F = DF(Ih, Ev, Iv) and V = DV(Ih, Ev, Iv) be function-valued matrices eval-
uated at the DFE. We obtain:

F =

⎛

⎜⎜⎝

0n+1,n+1 0 aβvhe1

a
N̄v

N̄h
(0,β)T 0 0

01,n+1 0 0

⎞

⎟⎟⎠ and

V =
⎛

⎝
A 0 0

01,n+1 −(μv + νv + δv) 0
01,n+1 νv −(μv + δv)

⎞

⎠ .
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Given the particular form of A, it is not difficult to verify that:

− A−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ν + μh
0 . . . . . . 0

ν

α1(ν + μh)

1

α1
. . . . . . 0

γ1ν

α1α2(ν + μh)

γ1

α1α2

1

α2
. . . 0

...
. . .

. . .
. . .

...
γ1 . . . γn−1ν

α1 . . . αn(ν + μh)
· · · · · · γn−1

αn−1αn

1

αn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

Hence, the next-generation matrix is given by:

−FV−1 =

⎛

⎜⎜⎜⎜⎝

0n+1,n+1
a βvhνv

(μv + νv + δ)(μv + δ)
e1

a βvh

μv + δ
e1

−a
N̄v

N̄h
(0,β)TA−1 0 0

01,n+1 0 0

⎞

⎟⎟⎟⎟⎠
.

The basic reproduction number, defined as the average number of secondary cases
produced by an infected host during its infectious period while interacting with a
completely susceptible population, is computed using the next-generation method
(Diekmann and Heesterbeek 2000; van den Driessche andWatmough 2002). Denoted
by R0, it is the spectral radius of the next-generation matrix −FV−1. Therefore, for
Model (6), the basic reproduction number is,

R2
0 = a2 βvhνv

(μv + νv + δv)(μv + δv)

N̄v

N̄h
(0,β)T(−A−1)e1

:= a2βvh N̄vνvνh

N̄h(μv + νv + δv)(μv + δv)(νh + μh)

n∑

i=1

γ1γ2 . . . γi−1

α1α2 . . . αi
βi with γ0 = 1.

This quantity is intrinsically tied to the dynamics of the disease as we will discuss in
the next subsection.

2.2 Global Stability of the DFE

By the derivation of the basic reproduction number, the DFE is locally asymptotically
stable if R2

0 < 1 and unstable if R2
0 > 1 (Diekmann and Heesterbeek 2000; van den

Driessche and Watmough 2002). The following theorem provides a global result.

Theorem 2.1 The DFE is globally asymptotically stable ifR2
0 ≤ 1.

Proof The instability of the DFE when R2
0 > 1 follows (van den Driessche and

Watmough 2002). As for the global stability of the DFE whenR2
0 < 1, let us consider
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the candidate Lyapunov function:

V(Ih, Iv) = L(Ih) + cv,1 Ėv + cv,2 İv

where

L(Ih) = c0Eh +
n∑

i=1

ci Ii ,

with cv,1 = N̄h

aN̄v
, cv,2 = μv + νv + δv

νv
cv,1 and the coefficients ci for i =

1, 2, . . . , n − 1 are given by the following induction relationship:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c0 = ν

ν + μh
c1

c1 = β1

α1
+ γ1

α1α2
β2 + · · · + γ1 . . . γn−1

α1α2 . . . αn
βn,

ci+1 = 1

γi
(αi ci − βi ) , for i = 1, 2, . . . , n − 2,

cn = βn

αn
.

(8)

The derivative along the trajectories of the system is:

V̇(Ih, Ev, Iv) = L̇(Ih) + cv,1 Ėv + cv,2 İv

= c0 Ėh +
n∑

i=1

ci İi + cv,1 Ėv + cv,2 İv

= c0

(
a βvh Sh

Iv
N̄h

− (μh + νh)Eh

)
+ c1 (νhEh − α1 I1)

+
n∑

i=2

ci İi + cv,1 Ėv + cv,2 İv

= c0a βvh Sh
Iv
N̄h

− c1α1 I1 + c2 (γ1 I1 − α2 I2)

+
n∑

i=3

ci İi + cv,1 Ėv + cv,2 İv

= c0a βvh Sh
Iv
N̄h

− c1α1 I1 + (c1α1 − β1)I1 − c2α2 I2

+
n∑

i=3

ci İi + cv,1 Ėv + cv,2 İv,
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since c2γ1 = α1c1 − 1. Therefore,

V̇(Ih, Ev, Iv) = c0a βvh Sh
Iv
N̄h

− β1 I1 − c2α2 I2 +
n∑

i=3

ci İi + cv,1 Ėv + cv,2 İv.

Similarly, by using successively the induction relationship (8), we obtain,

V̇(Ih, Ev, Iv) = c0a βvh Sh
Iv
N̄h

−
n∑

i=1

βi Ii

+ cv,1

(
a(Nv − Ev − Iv)

n∑

i=1

βi Ii
N̄h

− (μv + νv + δv)Ev

)

+ cv,2 (νvEv − (μv + δv)Iv) . (9)

Considering the expression of cv,1 and cv,2 alongwith the inequality Sh ≤ N̄h, Equality
(9) leads to:

V̇(Ih, Ev, Iv) = c0aβvh
Sh
N̄h

Iv − (Ev + Iv)
n∑

i=1

βi Ii − N̄h(μv + νv + δv)(μv + δv)

aN̄vνv
Iv

= c0aβvh
Sh
N̄h

Iv − (Ev + Iv)
n∑

i=1

βi Ii − N̄h(μv + νv + δv)(μv + δv)

aN̄vνv
Iv

=
(
c0aβvh

Sh
N̄h

− N̄h(μv + νv + δv)(μv + δv)

aN̄vνv

)
Iv−(Ev+ Iv)

n∑

i=1

βi Ii

= N̄h(μv+νv + δv)

aN̄vνv

(
c0a

2βvh
N̄vνv

N̄h(μv+ νv+ δv)(μv + δv)

Sh
N̄h

− 1

)
Iv

− Iv

n∑

i=1

βi Ii

= N̄h(μv + νv + δv)(μv + δv)

aN̄vνv

(
R2

0
Sh
N̄h

− 1

)
Iv − Iv

n∑

i=1

βi Ii ,

since c0 = ν

ν + μh

n∑

i=1

γ1γ2 . . . γi−1

α1α2 . . . αi
βi . Thus, we conclude that

V̇(Ih, Ev, Iv) ≤ 0,

whenever R2
0 ≤ 1 as Sh ≤ N̄h. Moreover, V̇(Ih, Ev, Iv) = 0 if Iv = 0 or ifR2

0 = 1,
Sh = N̄h and

∑n
i=1 βi Ii = 0. Hence, we deduce that the largest set contained in

{(Ih, Ev, Iv) ∈ 	 | V̇(Ih, Ev, Iv) = 0} is reduced to the DFE. Since the set 	 is
compact and positively invariant, by LaSalle’s invariance principle (Bhatia and Szegö
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1970; LaSalle and Lefschetz 1961), the DFE is globally asymptotically stable on 	.
The attractiveness of 	 makes the DFE globally asymptotically stable on Rn+4. �	

2.3 Endemic Equilibria

In this section, we discuss the existence conditions for the endemic equilibrium and
investigate its global stability whenever it exists.

Let (S∗
h , I

∗
h, E

∗
v , I

∗
v )T � 0 be an endemic equilibrium for Model (6). Therefore

(S∗
h , I

∗
h, E

∗
v , I

∗
v )T satisfies the endemic relations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = �h − a βvh S∗
h
I ∗
v

N̄h
− μhS∗

h

0 = a βvh S∗
h
I ∗
v

N̄h
− (μh + νh)E∗

h

E∗
h = α1

νh
I ∗
1

I ∗
2 = γ1

α2
I ∗
1

I ∗
3 = γ2

α3
I ∗
2 = γ1γ2

α2α3
I ∗
1

...

I ∗
n−1 = γn−2

αn−1
I ∗
n−2 = γ1γ2 . . . γn−2

α2α3 . . . αn−1
I ∗
1

I ∗
n = γn−1

αn
I ∗
n−1 = γ1γ2 . . . γn−1

α2α3 . . . αn
I ∗
1

0 = a(N̄v − E∗
v − I ∗

v )
∑n

i=1
βi I ∗

i

N̄h
− (μv + νv + δv)E∗

v

0 = νvE∗
v − (μv + δv)I ∗

v

(10)

where αi = μi + ηi + γi . It follows from (10) that there is an interior endemic
equilibrium if I ∗

1 > 0. Moreover, we can deduce that:

n∑

i=1

βi I
∗
i = I ∗

1

(
β1 + γ1

α2
β2 + · · · + γ1γ2 . . . γn−1

α2 . . . αn
βn

)

= α1c1 I
∗
1 . (11)

The first equation of (10) implies that:

S∗
h = μh N̄h

μh + aβvh
I ∗
v

N̄h

and E∗
h = aβvh

μh + νh

μh I ∗
v

μh + aβvh
I ∗
v

N̄h

.

After some algebraic operations, we successively obtain,

I ∗
v = (μh + νh)(μv + δv)μh N̄h(R2

0 − 1)

(μh + νh)(μv + δv)aβvh + a2βvhc1νhμh
,

123



Multi-stage Vector-Borne Zoonoses Models: A Global Analysis

E∗
h = μh(μv + δv)N̄h(R2

0 − 1)

ac1νhμh + (μv + δv)(μh + νh)R2
0

,

and

I ∗
1 = μhνh(μv + δv)N̄h(R2

0 − 1)

aα1c1νhμh + α1(μv + δv)(μh + νh)R2
0

, (12)

where c1 is defined by the relations (8). Hence, relations (11–12) and the endemic
relations imply that (S∗

h , I
∗
h, E

∗
v , I

∗
v )T � 0 if and only if R2

0 > 1. The next theorem
gives the asymptotic behavior of this equilibrium whenever it exists.

Theorem 2.2 The endemic equilibrium for themulti-hostModel (6) is globally asymp-
totically stable whenever R2

0 > 1.

Proof Let us consider the Lyapunov function

W = b0
(
Sh − S∗

h log Sh + Eh − E∗
h log Eh

) +
n∑

i=1

bi
(
Ii − I ∗

i log Ii
)

+ v1
(
Sv − S∗

v log Sv + Ev − E∗
v log Ev

)

+ v2
(
Iv − I ∗

v log Iv
) + K

where

K = v1
(
S∗
v − S∗

v log S
∗
v + E∗

v − E∗
v log E

∗
v

) + v2
(
I ∗
v − I ∗

v log I ∗
v

)

+ b0
(
S∗
h − S∗

h log S
∗
h + E∗

h − E∗
h log E

∗
h

)

+
n∑

i=1

bi
(
I ∗
i − I ∗

i log I ∗
i

)

and bi , for i = 0, 1, . . . , n, and v1, v2 are positive constants. The function W is
therefore positive-definite with respect to the endemic equilibrium. The challenge is
how to choose these coefficients to make the derivative ofW along the trajectories of
(6) negative-definite. To ease the notations and WLOG, we denote

β̄i = aβi
1

N̄h
, β̄h = (β̄1, . . . , β̄n)

T and β̄v = aβvh
1

N̄h
.

The derivation of W along the trajectories of (6) is as follows:

Ẇ = b0

(
1 − S∗

h

Sh

) (
�h − β̄vSh Iv − μhSh

)

+ b0

(
1 − E∗

h

Eh

) (
β̄vSh Iv − (μh + νh)Eh

)

+ b1

(
1 − I ∗

1

I1

)
(νhEh − α1 I1) +

n∑

i=2

bi

(
1 − I ∗

i

Ii

)
(γi−1 Ii−1 − αi Ii )
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+ v1

(
1 − S∗

v

Sv

)(
�v − Sv

n∑

i=1

β̄i Ii − (μv + δv)Sv

)

+ v1

(
1 − E∗

v

Ev

)(
Sv

n∑

i=1

β̄i Ii − (μv + νv + δv)Ev

)

+ v2

(
1 − I ∗

v

Iv

)
(νvEv − (μv + δv)Iv) . (13)

By grouping all linear terms of (13) in Eh, Ii , for i = 1, 2, . . . , n and Iv, and denoting
it by L , we obtain after lengthy computations and arrangements:

L =
(
bT Ã + v1S

∗
v β̄

T
h

)
Ih + (b1νh − b0(μh + νh))Eh

+ (v2νv − v1(μv + νv + δv)) Ev

+ (
b0β̄vS

∗
h − v1(μv + δv)

)
Iv (14)

where bT = (b1, b2, . . . , bn) and Ã is the submatrix A obtained by removing the first
row and first column. We choose b, b0 and v2 that cancel the coefficients of Ih, Eh and
Ev, respectively. That is,

b̃ = −v1S
∗
v Ã−T β̄h, b0 = νh

μh + νh
b1 and v2 = μv + νv + δv

νv
v1.

More precisely, from the expression of b and using endemic relations (10), the first
component of b could take the following different forms:

b1 = v1S
∗
v

n∑

i=1

γ1 . . . γi−1

α1 . . . αi
β̄i

= v1S
∗
v

(
1

α1
β̄1 + γ1

α1α2
β̄2 + · · · + γ1 . . . γn−1

α1α2 . . . αn
β̄n

)

= v1S
∗
v

1

α1

(
β̄1 + γ1

α2
β̄2 + · · · + γ1 . . . γn−1

α2 . . . αn
β̄n

)

= v1S
∗
v
1

α1

∑n
i=1 β̄i I ∗

i

I ∗
1

. (15)

Also, b0 could clearly be expressed as

b0 = νh

μh + νh
b1

= νh

μh + νh
v1S

∗
v
1

α1

∑n
i=1 β̄i I ∗

i

I ∗
1

. (16)
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The use of (16) cancels the coefficient of Iv in (14). Indeed,

b0β̄vS
∗
h − v2(μv + δv) = νh

μh + νh
v1S

∗
v
1

α1

∑n
i=1 β̄i I ∗

i

I ∗
1

β̄vS
∗
h − v2(μv + δv)

= v1
νh

(μh + νh)α1 I ∗
1
S∗
v

n∑

i=1

β̄i I
∗
i β̄vS

∗
h − v2(μv + δv)

= v1
1

(μh + νh)E∗
n

(μv + νv + δv) E
∗
v β̄vS

∗
h − v2(μv + δv)

= v1 (μv + νv + δv) E
∗
v − v2(μv + δv)

= v1
1

β̄vS∗
h I

∗
v

(μv + νv + δv) E
∗
v β̄vS

∗
h − v2(μv + δv)

= v1 (μv + νv + δv)
E∗
v

I ∗
v

− v2(μv + δv)

= v1 (μv + νv + δv)
μv + δv

νv
− v2(μv + δv)

= 0.

Therefore, with this choice for b, b0 and v2, all linear terms in (13) cancel. The
remaining terms in Ẇ are:

Ẇ = v1

(
1 − S∗

v

Sv

)
(�v − (μv + δv)Sv) + v1(μv + νv + δv)E

∗
v − v1

E∗
v

Ev
Sv

n∑

i=1

β̄i Ii

− v2νvEv
I ∗
v

Iv
+ v2(μv + δv)I

∗
v + b0

(
1 − S∗

h

Sh

)
(�h − μhSh)

+ b0

(
(μh + νh)E

∗
h − β̄vSh Iv

E∗
h

Eh

)
+ b1(μh + η1 + γ1)I

∗
1 − b1νh

I ∗
1 Eh

I1

+
n−1∑

i=2

(
bi (μh + ηi + γi )I

∗
i − biγi−1

I ∗
i Ii−1

Ii

)

+ bn(μh + ηn)I
∗
n − bnγn−1

I ∗
n In−1

In

= v1 (μv + δv)S
∗
v

(
2 − S∗

v

Sv
− Sv

S∗
v

)

︸ ︷︷ ︸
Av

+2v1(μv + νv + δv)E
∗
v

− v1(μv + νv + δv)E
∗
v
S∗
v

Sv

− v1
E∗
v

Ev
Sv

n∑

i=1

β̄i Ii − v2νvEv
I ∗
v

Iv
+ v2(μv + δv)I

∗
v
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+ b0 μhS
∗
h

(
2 − S∗

h

Sh
− Sh

S∗
h

)

︸ ︷︷ ︸
Ah

+2b0(μh + νh)E
∗
h

− b0(μh + νh)E
∗
h
S∗
h

Sh
+ b0

(
−β̄vSh Iv

E∗
h

Eh

)

+ b1(μh + η1 + γ1)I
∗
1 − b1νhEh

I ∗
1

I1

+
n−1∑

i=2

(
bi (μh + ηi + γi )I

∗
i − biγi−1

I ∗
i Ii−1

Ii

)

+ bn(μh + ηn)I
∗
n − bnγn−1

I ∗
n In−1

In
.

By using the endemic relations and (15–16), b0 and b1 could be written as:

b0 = νh

μh + νh
b1

= νh

μh + νh
v1S

∗
v
1

α1

∑n
i=1 β̄i I ∗

i

I ∗
1

= v1

μh + νh
S∗
v

∑n
i=1 β̄i I ∗

i

E∗
h

= v1

β̄v
S∗
v

∑n
i=1 β̄i I ∗

i

S∗
h I

∗
v

.

Hence,

Ẇ = v1Av + 2v1(μv + νv + δv)E
∗
v − v1(μv + νv + δv)E

∗
v
S∗
v

Sv

− v1
E∗
v

Ev
Sv

n∑

i=1

β̄i Ii − v2νvEv
I ∗
v

Iv
+ v2(μv + δv)I

∗
v

+ b0Ah + 2b0(μh + νh)E
∗
h − b0(μh + νh)E

∗
h
S∗
h

Sh
+ b0

(
−β̄vSh Iv

E∗
h

Eh

)

+ b1(μh + η1 + γ1)I
∗
1 − b1νhEh

I ∗
1

I1

+
n−1∑

i=2

(
bi (μh + ηi + γi )I

∗
i − biγi−1

I ∗
i Ii−1

Ii

)

+ bn(μh + ηn)I
∗
n − bnγn−1

I ∗
n In−1

In
.

Taking into account the construction of bi , we have
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2b0(μh + νh)E
∗
h = 2v1(μv + δv)I

∗
v = 2v1S

∗
v

n∑

i=1

β̄i I
∗
i ,

bi = v1S
∗
v

∑n
j=i β̄ j I ∗

j

(μh + ηi + γi )I ∗
i

= v1S
∗
v

∑n
j=i β̄ j I ∗

j

αi I ∗
i

, ∀i = 1, 2, . . . , n − 1,

and,

bn = v1
β̄n S∗

v

αn
.

It follows that:

Ẇ
v1

= Av + b0
Ah

v1
+ 2S∗

v

n∑

i=1

β̄i I
∗
i − S∗

v

n∑

i=1

β̄i I
∗
i
S∗
v

Sv
− E∗

v

Ev
Sv

n∑

i=1

β̄i Ii

− Ev

E∗
v

I ∗
v

Iv
S∗
v

n∑

i=1

β̄i I
∗
i + 4S∗

v

n∑

i=1

β̄i I
∗
i − S∗

v

n∑

i=1

β̄i I
∗
i
S∗
h

Sh

− S∗
v

n∑

i=1

β̄i I
∗
i
Sh
S∗
h

E∗
h

Eh

Iv
I ∗
v

− S∗
v

n∑

i=1

β̄i I
∗
i
I ∗
1

I1

Eh

E∗
h

+
n−1∑

i=2

⎛

⎝S∗
v

n∑

j=i

β̄ j I
∗
j − S∗

v

n∑

j=i

β̄ j I
∗
j
I ∗
i

Ii

Ii−1

I ∗
i−1

⎞

⎠

+ β̄n S
∗
v I

∗
n − β̄n S

∗
v I

∗
n
I ∗
n

In

In−1

I ∗
n−1

.

By separating the first index from the sum, we obtain:

Ẇ
v1

= Av + b0
Ah

v1
+ 6S∗

v β̄1 I
∗
1 + 6S∗

v

n∑

i=2

β̄i I
∗
i − S∗

v β̄1 I
∗
1
S∗
v

Sv
− S∗

v

n∑

i=2

β̄i I
∗
i
S∗
v

Sv

− E∗
v

Ev
Svβ̄1 I1 − E∗

v

Ev
Sv

n∑

i=2

β̄i Ii − Ev

E∗
v

I ∗
v

Iv
S∗
v β̄1 I

∗
1 − Ev

E∗
v

I ∗
v

Iv
S∗
v

n∑

i=2

β̄i I
∗
i

− S∗
v β̄1 I

∗
1
S∗
h

Sh
− S∗

v

n∑

i=2

β̄i I
∗
i
S∗
h

Sh
− S∗

v β̄1 I
∗
1
Sh
S∗
h

E∗
h

Eh

Iv
I ∗
v

− S∗
v

n∑

i=2

β̄i I
∗
i
Sh
S∗
h

E∗
h

Eh

Iv
I ∗
v

− S∗
v β̄1 I

∗
1
I ∗
1

I1

Eh

E∗
h

− S∗
v

n∑

i=2

β̄i I
∗
i
I ∗
1

I1

Eh

E∗
h

+
n∑

i=2

⎛

⎝S∗
v

n∑

j=i

β̄ j I
∗
j − S∗

v

n∑

j=i

β̄ j I
∗
j
I ∗
i

Ii

Ii−1

I ∗
i−1

⎞

⎠ .
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Therefore,

Ẇ
v1

= Av + b0
Ah

v1

+ S∗
v β̄1 I

∗
1

(
6 − S∗

v

Sv
− Sv

S∗
v

I1
I ∗
1

E∗
v

Ev
− Ev

E∗
v

I ∗
v

Iv
− S∗

h

Sh
− Sh IvE∗

h

S∗
h I

∗
v Eh

− Eh I ∗
1

E∗
h I1

)

+ S∗
v

n∑

i=2

β̄i I
∗
i

(
6 − S∗

v

Sv
− Sv Ii E∗

v

S∗
v I

∗
i Ev

− Ev I ∗
v

E∗
v Iv

− S∗
h

Sh
− Sh IvE∗

h

S∗
h I

∗
v Eh

− Eh I ∗
1

E∗
h I1

)

+
n∑

i=2

⎛

⎝S∗
v

n∑

j=i

β̄ j I
∗
j − S∗

v

n∑

j=i

β̄ j I
∗
j
I ∗
i Ii−1

Ii I ∗
i−1

⎞

⎠ .

By using the properties of nested sums,
∑n

i=2

(∑n
j=i u jwi

)
= ∑n

i=2 ui
∑i

j=2 w j ,

we obtain,

n∑

i=2

⎛

⎝
n∑

j=i

β̄ j I
∗
j

⎞

⎠ =
n∑

i=2

β̄i I
∗
i (i − 1),

and

n∑

i=2

⎛

⎝
n∑

j=i

β̄ j I
∗
j
I ∗
i Ii−1

Ii I ∗
i−1

⎞

⎠ =
n∑

i=2

β̄i I
∗
i

⎛

⎝
i∑

j=2

I ∗
j I j−1

I j I ∗
j−1

⎞

⎠ .

Finally,

Ẇ
v1

= Av + b0
Ah

v1
+ S∗

v β̄1 I
∗
1

(
6 − S∗

v

Sv
− Sv

S∗
v

I1
I ∗
1

E∗
v

Ev
− Ev

E∗
v

I ∗
v

Iv
− S∗

h

Sh

− Sh IvE∗
h

S∗
h I

∗
v Eh

− Eh I ∗
1

E∗
h I1

)
+ S∗

v

n∑

i=2

β̄i I
∗
i

⎛

⎝5 + i − S∗
v

Sv
− Sv Ii E∗

v

S∗
v I

∗
i Ev

− Ev I ∗
v

E∗
v Iv

− S∗
h

Sh
− Sh IvE∗

h

S∗
h I

∗
v Eh

− Eh I ∗
1

E∗
h I1

−
i∑

j=2

I ∗
j I j−1

I j I ∗
j−1

⎞

⎠ .

By setting v1 = 1 and replacing Av and Ah by their respective values, the final
expression of Ẇ is:
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Ẇ = (μv + δv)S∗
v

(
2 − S∗

v

Sv
− Sv

S∗
v

)
+ b0μhS∗

h

(
2 − S∗

h

Sh
− Sh

S∗
h

)

+S∗
v β̄1 I ∗

1

(
6 − S∗

v

Sv
− Sv

S∗
v

I1
I ∗
1

E∗
v

Ev
− Ev

E∗
v

I ∗
v

Iv
− S∗

h

Sh
− Sh IvE∗

h

S∗
h I

∗
v Eh

− Eh I ∗
1

E∗
h I1

)

+S∗
v

n∑

i=2

β̄i I
∗
i

⎛

⎝5 + i − S∗
v

Sv
− Sv Ii E∗

v

S∗
v I

∗
i Ev

− Ev I ∗
v

E∗
v Iv

− S∗
h

Sh

− Sh IvE∗
h

S∗
h I

∗
v Eh

− Eh I ∗
1

E∗
h I1

−
i∑

j=2

I ∗
j I j−1

I j I ∗
j−1

⎞

⎠ ,

(17)

with b0 = S∗
v

∑n
i=1 β̄i I ∗

i

(μh + νh)E∗
h
. By using the geometric-arithmetic mean inequality, we

conclude that Ẇ is negative-definite, which proves the global asymptotic stability of
the endemic equilibrium. �	
This result of global stability of the endemic equilibrium is new and extend the results
of Palmer et al. (2016) in which the endemic equilibrium is proven to be locally
asymptotically stable if R2

0 > 1 and R2
0 is close to one. Theorems 2.1 and 2.2 solve

completely the global dynamics of the vector-borne staged progression model (6). The
basic reproduction number R2

0 acts as a sharp threshold for the disease in the sense
that the latter dies out if R2

0 ≤ 1 and persists whenever R2
0 > 1.

Now that the dynamics of the single host-vector staged progression is solved, we
tackle the dynamics of multi-host vector-borne zoonoses in the next section.

3 Multi-host Vector-Borne Models

Vector-borne zoonoses are central in understanding the dynamics of zoonoses in gen-
eral as vectors play the bridging role in transporting the infection from one species
to another. Many zoonotic pathogens are shared in multiple hosts. For instance, for
West Nile virus, the pathogen has been found in more 300 bird species as well as in
other mammals such as horses, bats, and squirrels, among others (Marfin et al. 2001).
Therefore, it is important to investigate a general model that captures the dynamics of
an arbitrary number of host species interacting with an arthropod vector that bridges
the infection among hosts. In Cruz-Pacheco et al. (2012a, b), the authors investigated
the dynamics of Chagas’ disease and WNV, respectively, with two host species. In
modeling TBRF, Johnson et al. (2016) proposed a two hosts and one vector model,
namely pine squirrels and deer mice. These two hosts are bitten by the same vector
(ticks).

Building upon the same scheme as in Model (4), we derive a multi-host vector-
borne zoonoses model with m hosts and n stages of infection. However, the infection
terms in the multi-host necessitates a detailed formulation as it differs from the one
host scenario. For instance, the equation of susceptible of Host j is given by

Ṡ j = � j − b j (N j , Nv)βvhS j
Iv
Nv

− μhSh, (18)
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where b j (N j , Nv) is the number of bites per Host j per unit of time. Hence, the total
number of bites on Host j is b j (N j , Nv)N j .

The equation of susceptible vectors is given by:

Ṡv = �v −
m∑

j=1

a jβhvSv

∑n
i=1 β j,i I j,i

N j
− (μv + δv)Sv

where a j is the number of bites per mosquito per unit of time on Host j .
By the conservation law, the total number of bites on Host j by mosquitoes (a j Nv)

should equal the total number of bites received by Host j (b j (N j , Nv)N j ). Therefore,

b j (N j , Nv)N j = a j Nv,

or equivalently,

b j (N j , Nv) = a j Nv

N j
.

Hence, for j = 1, 2, . . . ,m, Eq. (18) leads to,

Ṡ j = � j − a jβvhS j
Iv
N j

− μ j S j .

Therefore, the dynamics of a model that captures the interactions between m host
species and an arthropod vector is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

For j = 1, 2 . . . ,m :
Ṡ j = � j − a jβv, j S j

Iv
N̄ j

− μ j S j

Ė j = a jβv, j S j
Iv
N̄ j

− (μ j + ν j )Eh, j

İ j,1 = ν j Eh, j − (μ j + η j,1 + γ j,1)I j,1
İ j,2 = γ j,1 I j,1 − (μ j + η j,2 + γ j,2)I j,2
...

İ j,n−1 = γ j,n−2 I j,n−2 − (μ j + η j,n−1 + γ j,n−1)I j,n−1

İ j,n = γ j,n−1 I j,n−1 − (μ j + η j,n + γ j,n)I j,n

Ṡv = �v −
m∑

j=1

a j Sv

∑n
i=1 β j,i I j,i

N̄ j
− (μv + δv)Sv

Ėv =
m∑

j=1

a j Sv

∑n
i=1 β j,i I j,i

N̄ j
− (μv + νv + δv)Ev.

İv = νvEv − (μv + δv)Iv.

(19)

Parameters in System (19) are described in Table 2.

123



Multi-stage Vector-Borne Zoonoses Models: A Global Analysis

Table 2 Description of the parameters used in System (19)

Parameters Description

� j Recruitment of Host j

�v Recruitment of vectors

a j Biting rate on Host j

μ j Host j’s death rate

βv, j Vector’s infectiousness to Host j per biting

β j,i Infectiousness of Host j at stage i to vectors per biting

ν j Host j’s rate at which the exposed individuals become infected

νv Vector’s rate at which the exposed individuals become infected

μv Vector’s natural death rate.

η j,i Per capita recovery rate for Host j at stage i

γ j,i Host j’s per capita progression rate from stage i to i + 1

Remark 3.1 Some authors Bowman et al. (2005), Dobson (2004) and Simpson et al.
(2011) assumed that the vectors’ biting rate is constant on all hosts (that is, vectors
bite a certain fixed number of bites a day regardless of hosts) and denoted by a. By
the conservation law,

b j (N j , Nv) = aNv∑m
j=1 N j

.

Our approach assumes that a j represents the biting rate of vector onHost j . This differ-
ential vector biting rates on hosts embodies also the well-documented biting/feeding
preference of vectors with respect to the hosts (Johnson et al. 2016; Simpson et al.
2011). However, the two approaches are mathematically equivalent if the host popu-
lations are asymptotically constant.

System (19) models a range of modeling scenarios in vector-borne zoonoses. For
instance, if a subset K of the considered hosts carries the pathogen but are dead-end
hosts, that is, they do not spread the infection, it is sufficient to let βk,i = 0 for all
k ∈ K and i = 1, 2, . . . , n. It also captures the casewhere different hosts have different
epidemiological responses to the infection. That is, by appropriately choosing the
parameters in System (19), the model could describe the case the infection follows an
SIR-type of structure for a collection of hosts and SEIR-type or SI-type with multiple
stage of infections for other hosts.
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With β j = (β j,1, . . . , β j,m)T, System (19) could be written in a more compact vec-
torial form as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ1 = �1e1 − a1βv,1S1
Iv
N̄1

− μ1S1

Ṡ2 = �2e1 − a2βv,2S2
Iv
N̄2

− μ2S2

...

Ṡm = �me1 − amβv,mSm
Iv
N̄m

− μmSm

İ1 = a1βv,1S1
Iv
N̄1

e1 + A1I1

İ2 = a2βv,2S2
Iv
N̄2

e1 + A2I2

...

İm = amβv,mSm
Iv
N̄m

e1 + AmIm

Ėv =
m∑

j=1

a j
N̄v − Iv
N̄h, j

〈(
0
β j

) ∣∣∣ I j
〉
− (μv + νv + δv)Ev,

İv = νvEv − (μv + δv)Iv.

(20)

where I j = (E j , I j,1, I j,2 . . . , I j,n)T is the vector of infected of Host j ( j =
1, 2, . . . ,m) and

A j =

⎛

⎜⎜⎜⎜⎜⎜⎝

−(ν j + μ j ) 0 . . . . . . 0
ν j −α j,1 . . . . . . 0
0 γ j,1 −α j,2 . . . 0
...

. . .
. . .

...
...

0 . . .
. . . γ j,n−1 −α j,n

⎞

⎟⎟⎟⎟⎟⎟⎠

where α j,i = γ j,i + η j,i + μ j , for j = 1, . . . ,m and i = 1, 2, . . . , n. The term α j,i

represents the mean period for which infected population of Host j in stage i leave
this stage.

3.1 Basic Reproduction Number and Basic Properties

In this subsection, we derive the basic reproduction number of the multi-host system.
First of all, the solutions ofModel (20) are bounded as a result of the followingLemma,
whose proof is straightforward.
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Lemma 3.1 The region defined by

	 =
{

(S j , E j , I j,i , Ev, Iv) ∈ R
m(n+2)+2
+

∣∣∣ S j + E j +
n∑

i=1

I j,i

≤ � j

μ j
, for j = 1, . . .m, Ev + Iv ≤ �v

μv

}

is a compact attracting positively invariant set for system (20).

The disease-free equilibrium ofModel (20) is (S∗, 0
R(n+1)m+2)with S∗ = [S∗

1 , S
∗
2 , . . . ,

S∗
m] =

[
�1

μ1
,
�2

μ2
, . . . ,

�m

μm

]
. The vector field of Model (20) could be subdivided into

new infections vector F and transition vector V where

F(I1, . . . , Im , Ev, Iv) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1βv,1S1
Iv
N̄1

e1

a2βv,2S2
Iv
N̄2

e1

. . .

amβv,mSm
Iv
N̄m

e1
m∑

j=1

a j
N̄v − Iv
N̄h, j

〈(
0
β j

) ∣∣∣ I j
〉

0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

V(I1, . . . , Im , Ev, Iv) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

A1I1
A2I2

.

.

.

AmIm
−(μv + νv + δv)Ev

νvEv − (μv + δv)Iv

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

The Jacobian matrices at the DFE of F and V are F = DF(I1, I2, . . . , Im, Iv)
∣∣
DFE

and V = DV(I1, I2, . . . , Im, Ev, Iv)
∣∣
DFE and are given by:

F =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n+1,n+1 0n+1,n+1 · · · · · · 0n+1,1 a1βv,1e1
0n+1,n+1 0n+1,n+1 · · · · · · 0n+1,1 a2βv,2e1

...
...

...
...

...
...

0n+1,n+1 0n+1,n+1 · · · · · · 0n+1,1 amβv,me1

a1
N̄v

N̄1
(0,β1)

T a2
N̄v

N̄2
(0,β2)

T · · · am
N̄v

N̄m
(0,βm)T 0 0

0 0 . . . 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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and

V = diag(A1, A2, . . . , Am, Av),

where

Av =
(−(μv + νv + δv) 0

νv −(μv + δv)

)
.

It follows that

−V−1 = diag
(
−A−1

1 ,−A−1
2 , . . . ,−A−1

m ,−A−1
v

)
.

Thus, the next-generation matrix is:

−FV−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0n+1,n+1 · · · · · · (0n+1,1, a1βv,1e1)(−A−1
v )

0n+1,n+1 · · · · · · (0n+1,1, a2βv,2e1)(−A−1
v )

.

.

.
.
.
.

.

.

.
.
.
.

0n+1,n+1 · · · · · · (0n+1,1, amβv,me1)(−A−1
v )

a1
N̄v

N̄1
(0, β1)

T(−A−1
1 ) · · · am

N̄v

N̄m
(0, βm)T(−A−1

m ) 01,2

01,n+1 . . . 01,n+1 01,2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix (−FV−1)2 is of rank one, and its largest eigenvalue is:

R2
0(m) =

m∑

j=1

a2jβv, jνv

(μv + νv + δv)(μv + δv)

N̄v

N̄h, j
(0,β j )

T
(
−A−1

j

)
e1

:=
m∑

j=1

R2
0, j ,

whereR2
0, j is the basic reproduction number when Host j is the only coupled host to

the vector. A more explicit expression of R2
0 could be obtained by computing A−1

j .
Indeed,

− A−1
j =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

ν j + μ j
0 . . . . . . 0

ν j

α j,1(ν j + μ j )

1

α j,1
. . . . . . 0

γ j,1ν

α j,1α j,2(ν j + μ j )

γ j,1

α j,1α j,2

1

α j,2
. . . 0

...
. . .

. . .
. . .

...
γ j,1 . . . γ j,n−1ν j

α j,1α j,2 . . . α j,n(ν j + μ j )
· · · · · · γ j,n−1

α j,n−1α j,n

1

α j,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(21)
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Hence, we deduce that,

(0,β j )
T(−A−1

j )e1 = β j,1
ν j

α j,1(ν j + μ j )
+ β j,2

γ j,1ν j

α j,1α j,2(ν j + μ j )
+ · · ·

+β j,n
γ j,1 . . . γ j,n−1ν j

α j,1α j,2 . . . α j,n(ν j + μ j )

= ν j

ν j + μ j

(
β j,1

α j,1
+ β j,2γ j,1

α j,1α j,2
+ · · · + β j,nγ j,1 . . . γ j,n−1

α j,1α j,2 . . . α j,n

)

= ν j

ν j + μ j

n∑

i=1

γ j,1γ j,2 . . . γ j,i−1

α j,1α j,2 . . . α j,i
β j,i with γ j,0 = 1.

Finally, the basic reproduction number of a multi-host-vector model with n stages is
given by

R2
0(m) =

m∑

j=1

R2
0, j ,

where

R2
0, j = a2jβv, jνv

(μv + νv + δv)(μv + δv)

N̄v

N̄h, j

ν j

ν j + μ j

n∑

i=1

γ j,1γ j,2 . . . γ j,i−1

α j,1α j,2 . . . α j,i
β j,i .

This result generalizes the results of Cruz-Pacheco et al. (2012a, b), Johnson et al.
(2016), for which j = 2, and Palmer et al. (2016) for which j = 1. Similar remarks
hold for Bowman et al. (2005).

The overall basic reproduction number increases with respect to the number of host
species. Indeed, since the reproduction number for m host species interacting with an
arthropod vector is R2

0(m) = ∑m
j=1R2

0, j , by adding an additional new host species,
say m + 1, the new global basic reproduction number will be

R2
0(m + 1) =

m+1∑

j=1

R2
0, j

= R2
0(m) + R2

0,m+1

≥ R2
0(m).

Moreover, this implies that the addition of dead-end hosts, for which the basic repro-
duction number is zero in isolation, keeps the overall basic reproduction number
steady. However, it is worthwhile noting that an underlying assumption to this is that
the addition of the new host did not affect the biting or the transmissibility for the
vectors to the previous m hosts and vice versa. If this hypothesis is not satisfied, the
monotonicity of R2

0(m) with respect to host species may not hold. A similar, yet
contrasting, result has been obtained in Dobson (2004). Indeed, in Dobson (2004)
the authors found that the basic reproduction number in multi-host models, when not
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coupled with an arthropod vector, increases with host diversity for density-dependent
transmission and decreases for frequency-dependent transmission. Ourmodel consists
of frequency-dependent transmission, but R2

0(m) increases with host diversity. This
contrast fromDobson (2004) stems from our modeling approach, particularly the total
number of vector bites on hosts. Indeed, as pointed out in Remark 3.1, we consider a
frequency-dependent infection process but in which the arthropod vector has a fixed
number of bites on each Host j , that is b j (N j , Nv). In Bowman et al. (2005), Dobson
(2004) and Simpson et al. (2011), the authors define b(

∑m
j=1 N j , Nv) as the number

of bites on all hosts. The latter will lead to a factor of
∑m

j=1 N j in the denominator
of the infection term. Thus, increasing host diversity decreases the infection force and
therefore the basic reproduction number. In spite of this difference on the overall basic
reproduction numbers, the systems are mathematically asymptotically equivalent if
the host populations are either constant or asymptotically constant. Moreover, since
the hosts’ populations are asymptotically constant, our transmission term could be
seen as density-dependent, for which the monotonicity of R2

0(m) coincides with that
of Dobson (2004).

3.2 Global Stability of Equilibria

In this subsection, we study the global behavior of the steady states of models describ-
ing VBZ, that is Model (20), with respect to the overall basic reproduction number
R2

0(m).

Theorem 3.1 TheDFE is globally asymptotically stable for themulti-hostModel (20)
whenever R2

0(m) ≤ 1.

Proof We consider a barycentric-type Lyapunov function, a weighted sum of Lya-
punov functions of the one host case:

V =
m∑

j=1

p jL j + Ev + μv + νv + δv

νv
Iv

where L j = c j,0E j + c j,1 I j,1 + c j,2 I j,2 + · · · + c j,n I j,n and p j = a jβ j,v
N̄v

N̄h, j
.

The coefficients c j,i for i = 1, 2, . . . , n are similar to those chosen in the proof of
Theorem 2.1. They are defined recursively as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c j,0 = ν j

ν j + μ j
c j,1

c j,1 =
(

β j,1

α j,1
+ γ j,1

α j,1α j,2
β j,2 + · · · + γ j,1 . . . γ j,n−1

α j,1α j,2 . . . α j,n
β j,n

)

c j,i+1 = 1

γ j,i

(
α j,i c j,i − β j,i

)
, ∀i = 1, . . . , n − 2

c j,n = βn

α j,n
.

(22)

123



Multi-stage Vector-Borne Zoonoses Models: A Global Analysis

The derivative of V along the solutions of System (20) is:

V̇ =
m∑

j=1

p j L̇ j + Ėv + μv + νv + δv

νv
İv,

where:

L̇ j = c j,0 Ė j +
n∑

i=1

c j,i İ j,i .

By using the induction relationship (22) and as in the proof of Theorem 2.1, we obtain

L̇ j = c j,0a jβv, j S j
Iv
N̄ j

−
n∑

i=1

β j,i I j,i . (23)

Thus, the derivative of the function V becomes:

V̇ =
m∑

j=1

p j

(
c j,0a jβv, j S j

Iv
N̄ j

−
n∑

i=1

β j,i I j,i

)

+
⎛

⎝
m∑

j=1

a j (N̄v − Ev − Iv)

∑n
i=1 β j,i I j,i

N̄ j
− (μv + νv + δv)Ev

⎞

⎠

+μv + νv + δv

νv
(νvEv − (μv + νv + δv)Iv)

=
m∑

j=1

(
a j

N̄v

N̄ j
− p j

)
n∑

i=1

β j,i I j,i −
m∑

j=1

a j (Ev + Iv)

∑n
i=1 β j,i I j,i

N̄ j

+
⎛

⎝
m∑

j=1

p j c j,0a jβv, j
S j

N̄ j
− (μv + νv + δv)(μv + δv)

νv

⎞

⎠ Iv

= −
m∑

j=1

a j (Ev + Iv)

∑n
i=1 β j,i I j,i

N̄ j

+
⎛

⎝
m∑

j=1

c j,0 a
2
jβv, j

N̄v

N̄ j

S j

N̄ j
− (μv + νv + δv)(μv + δv)

νv

⎞

⎠ Iv,

since p j = a j
N̄v

N̄ j
. Hence, we obtain,

V̇ = −
m∑

j=1

a j (Ev + Iv)

∑n
i=1 β j,i I j,i

N̄ j

+ (μv + νv + δv)(μv + δv)

νv

⎛

⎝
m∑

j=1

R2
0, j

S j

N̄ j
− 1

⎞

⎠ Iv
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≤ −
m∑

j=1

a j (Ev + Iv)

∑n
i=1 β j,i I j,i

N̄ j

+ (μv + νv + δv)(μv + δv)

νv

(
R2

0(m) − 1
)
Iv, since S j ≤ N̄ j , ∀ j.

≤ 0 whenever R2
0(m) ≤ 1. (24)

It is not difficult to see that the largest invariant set within {V̇ = 0} is reduced to the
DFE, which is therefore globally asymptotically stable in the compact set 	 thanks
to (Bhatia and Szegö 1967, Theorem 3.7.11, p. 346; LaSalle 1968, Theorem 3). Since
	 is an attractive set, it follows that the DFE is globally asymptotically stable in
R
m(n+2)+2. �	

Theorem 3.2 A unique endemic equilibrium exists for the multi-host Model (20)
whenever R2

0(m) > 1.

Proof The endemic relations of (20) are as follows, for j = 1, 2, . . . ,m:

E j = α j,1

ν j
I ∗
j,1, I ∗

j,1 = α j,2

γ j,1
I ∗
j,2,

and for i = 2, . . . , n,

I ∗
j,i−1 = α j,i

γ j,i−1
I ∗
j,i .

Hence, as in (11) for the one host case, we can show that:

n∑

i=1

β j,i I
∗
j,i = α j,1c j,1 I

∗
j,1. (25)

Indeed, the relationship (25) could be shown by expressing all components of the
endemic equilibrium in terms of I ∗

v . From the first equation of (19), taken at the
equilibrium, we obtain:

S∗
j = μ j N̄ 2

j

μ j N̄ j + a jβv, j I ∗
v

E∗
j = a jβv, j

μ j + ν j

μ j N̄ 2
j

μ j N̄ j + a jβv, j I ∗
v

I ∗
v

N̄ j

= a jβv, j

μ j + ν j

μ j N̄ j I ∗
v

μ j N̄ j + a jβv, j I ∗
v

I ∗
j,1 = ν j

α j,1
E∗

j

= ν j

α j,1

a jβv, j

μ j + ν j

μ j N̄ j I ∗
v

μ j N̄ j + a jβv, j I ∗
v

.
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We can express, similarly, the expressions of I ∗
j,i in term of I ∗

v and by summing them
up, we obtain (25).

From the equation of vectors in (19) at the equilibrium, we obtain

0 = (
N̄v − E∗

v − I ∗
v

) m∑

j=1

a j

∑n
i=1 β j,i I ∗

j,i

N̄ j
− (μv + νv + δv)E

∗
v

= (
N̄v − E∗

v − I ∗
v

) m∑

j=1

a j
α j,1c j,1 I ∗

j,1

N̄ j
− (μv + νv + δv)E

∗
v

=
(
N̄v − μv + δv

νv
I ∗
v − I ∗

v

) m∑

j=1

a j
α j,1c j,1

N̄ j

ν j

α j,1

a jβv, j

μ j + ν j

μ j N̄ j I ∗
v

μ j N̄ j + a jβv, j I ∗
v

− (μv + νv + δv)(μv + δv)

νv
I ∗
v

=
(
N̄v − μv + νv + δv

νv
I ∗
v

) m∑

j=1

a j c j,1
ν j a jβv, j

μ j + ν j

μ j I ∗
v

μ j N̄ j + a jβv, j I ∗
v

− (μv + νv + δv)(μv + δv)

νv
I ∗
v . (26)

Since the equilibrium is endemic I ∗
v > 0, Eq. (26) is satisfied if, and only if:

0 =
(
N̄v − μv + νv + δv

νv
I ∗
v

) m∑

j=1

c j,1
a2jβv, j

μ j + ν j

ν jνv

(μv + νv + δv)(μv + δv)

μ j

μ j N̄ j + a jβv, j I ∗
v

− 1

:= f
(
I ∗
v

)
. (27)

The function f (I ∗
v ) is decreasing and f (0) = R2

0(m) − 1. Moreover, f ( νv N̄v
μv+νv+δv

) =
−1 < 0. Hence, the equation f (I ∗

v ) has a unique positive root in (0, N̄v) if, and only
if f (0) > 0, that is, whenever R2

0(m) > 1.
Since the other components S∗

j , E∗
j , I ∗

i, j , for j = 1, 2, . . . ,m and i = 1, 2, . . . , n,
are uniquely expressed in terms of I ∗

v , we conclude that there is a unique endemic
equilibrium in Int(	) whenever R2

0(m) > 1. �	
Theorem 3.3 The endemic equilibrium is globally asymptotically stable onRm(n+2)+2.

Proof We consider the following Lyapunov function

V =
m∑

j=1

A j0

(
S j − S∗

j log S j + E j − E∗
j log E j

)

+
m∑

j=1

(
n∑

i=1

A j,i

(
I j,i − I ∗

j,i log I j,i
))
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+ V1
(
Sv − S∗

v log Sv
) + V1

(
Ev − E∗

v log Ev
)

+ V2
(
Iv − I ∗

v log Iv
)

(28)

where the coefficients V1, V2, A j0, A ji , for i = 1, 2, . . . , n and j = 1, 2, . . . ,m are
positive to be determined later. The function V is thus positive-definite.

The derivative of V along trajectories is:

V̇ = V1

m∑

j=1

(
a j

S∗
v

N̄ j

n∑

i=1

β j,i I
∗
j,i

(
2 − S∗

v

Sv
− Sv

S∗
v

I j,i
I ∗
j,i

E∗
v

Ev

)
+ a j S

∗
v

∑n
i=1 β j,i I j,i

N̄ j

)

+ V1Av − (V1(μv + νv + δv) − V2νv) Ev − V2(μv + δv)Iv + V2νvE
∗
v

− V2νvE
∗
v
Ev

E∗
v

I ∗
v

Iv
+

m∑

j=1

(
A j0Ahj + A j0a jβv, j S

∗
j
I ∗
v

N̄ j

(
2 − S∗

j

S j
− S j

S∗
j

Iv
I ∗
v

E∗
j

E j

)

+ A j0

(
a jβv, j S

∗
j
Iv
N̄ j

)
− A j0(μ j + ν j )E j + A j1

(
ν j E j − α j,1 I j,1

)

− A j1ν j E j

(
I ∗
j,1

I j,1

)
+ A j1α j,1 I

∗
j,1 +

n∑

i=2

(
A ji

(
γ j,i−1 I j,i−1 − α j,i I j,i

)

− A jiγ j,i−1 I j,i−1

(
I ∗
j,i

I j,i

)
+ A jiα j,i I

∗
j,i

))
, (29)

where Av = (μv + δv)S∗
v

(
2 − S∗

v

Sv
− Sv

S∗
v

)
and Ah j = μhS∗

j

(
2 − S∗

j

S j
− S j

S∗
j

)
.

We choose the coefficients A ji and V2 in a similar fashion as in the one host case,
that is,

V2 = μv + νv + δv

νv
V1

A j0(μ j + ν j )E
∗
j = A j0a jβv, j S

∗
j
I ∗
v

N j

= V1a j
S∗
v

N̄ j

(
n∑

i=1

β j,i I
∗
j,i

)
for all j = 1, 2, . . . ,m, (30)

and

A j1 = 1

ν j E∗
j
V1a j

S∗
v

N̄ j

(
n∑

i=1

β j,i I
∗
j,i

)
for all j = 1, 2, . . . ,m.

Also,

A ji =
∑n

k=i β j,k I ∗
j,k

α j,i I ∗
j,i

V1a jβ j,v
S∗
v

N̄ j
for all 2 ≤ i ≤ n − 1, 1 ≤ j ≤ m,
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and

α j,n A jn = V1a jβ j,v
S∗
v

N̄ j
for all 1 ≤ j ≤ m.

We obtain

V̇ = V1

m∑

j=1

a jβ j,1
S∗
v

N̄ j
I ∗
j,1

(
6 − S∗

v

Sv
− Sv

S∗
v

I j,1
I ∗
j,1

E∗
v

Ev
− Ev

E∗
v

I ∗
v

Iv
− S∗

j

S j

− S j

S∗
j

Iv
I ∗
v

E∗
j

E j
− E j

E∗
j

I ∗
j,1

I j,1

)
+ V1

m∑

j=1

a j
S∗
v

N̄ j

n∑

i=2

β j,i I
∗
j,i

(
5 + i − S∗

v

Sv
− Sv

S∗
v

I j,i
I ∗
j,i

E∗
v

Ev
− Ev

E∗
v

I ∗
v

Iv
− S∗

j

S j
− S j

S∗
j

Iv
I ∗
v

E∗
j

E j

− E j

E∗
j

I ∗
j,1

I j,1
−

i∑

k=2

I j,k−1

I ∗
j,k−1

I ∗
j,k

I j,k

)
+ Av + V1

m∑

j=1

Ah j .

The function V̇ is therefore negative-definite for any positive value of V1, particu-
larly for V1 = 1. SinceV is positive-definite, the global stability of the interior endemic
equilibrium on R

m(n+2)+2 follows from the Lyapunov stability theorem. �	
The result of global stability of the endemic equilibrium generalizes (Cruz-Pacheco

et al. 2012a, b) for an arbitrary number of hosts. Indeed, in Cruz-Pacheco et al. (2012a),
Cruz-Pacheco et al. considered and SIR-SI with two hosts in their model capturing
Chagas’ disease. The authors also considered the case where one host (humans) has
two stages of infections, namely acute and chronic. Our model considers an arbitrary
number of hosts and hosts’ infectious stages. Similarly, Cruz-Pacheco et al. (2012b)
considered a model describing NWV dynamics with an arbitrary number of hosts, but
the result of global stability has been done only for the two hosts case.

Remark 3.2 We have proved that the multi-host model (20) satisfies the sharp-
threshold property, that is, the disease dies out if R2

0(m) ≤ 1 and persists otherwise.
However, R2

0(m) = ∑m
j=1R2

0, j , where R2
0, j is the basic reproduction number in the

presence of Host j only. Hence, R2
0(m) ≤ 1 �⇒ R2

0, j ≤ 1 for all j = 1, 2, . . . ,m.
Thus, the eradication of the multi-host disease in one host is subject to the eradi-
cation of the disease from all hosts. However, the multi-host system could have a
basic reproduction number greater than one even though the reproduction number of
each isolated host-vector is less than one (see Figs. 2, 3). This phenomenon has been
observed in childhood diseases in a metapopulation setting where the disease could
persist globally even if the disease dies out locally (at patch level) (Lloyd and May
1996). For zoonoses, this phenomenon could be seen as follows: even if the infectious
hosts and/or vectors in a single host-vector system are small enough to prevent per-
sistence of the disease (that is R2

0, j ≤ 1), the connection of a new host species may
lead to a new infectious transmission route, which in turn could trigger new infectious

123



D. Bichara et al.

0 100 200 300 400 500 600 700 800 900 1000

t

0

1000

2000

3000

4000

5000

6000
In

fe
ct

ed
 H

os
t 1

 a
nd

 H
os

t 2
I1,1
I1,2
I1,3
I1,4
I2,1
I2,2
I2,3
I2,4

Fig. 2 (Color figure online) Simulation of two separate systems with one host each and four stages of
infection. The R2

0, j values are 0.52 for the host 1 population and 0.66 for the host 2 population. As
expected, the infected populations go to zero
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Fig. 3 (Color figure online) Simulation of a two host system where there are four stages of infection
for each host. The R2

0, j values are 0.52 for the host 1 population and 0.66 for the host 2 population,

giving a combined system R2
0(2) = 1.18. The infected populations eventually go to the nonzero endemic

equilibrium

hosts or vectors. This, therefore, may make R2
0(m) > 1, and thus the disease will

persist for the two host-vector system.

In the next subsection, we provide a set of simulations that illustrate our analytical
results and showcase that control strategies that target host-vector system in isolation
may not be sufficient to eradicate VBZ.
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3.3 Simulations

To illustrate the previous theoretical results, we run a set of simulations of a two
host system with four stages of infection, that is m = 2 and n = 4. Unless otherwise
stated, the baseline parameters for the simulations are those given in Table 3. For these
values, the overall basic reproduction number is R2

0(2) = 1.18. Figure 3 shows that
the trajectories of the solutions representing the infected populations for all stages for
both hosts tend to a nonzero endemic equilibrium as predicted by Theorems 3.2 and
3.3. However, if the two hosts are considered separately, the system behaves as two
isolated host-vector systems, with the same parameter values, the corresponding basic
reproduction numbers are R2

0,1 = 0.52 and R2
0,2 = 0.66 and therefore the disease

dies out from both hosts and the vector population as portrayed in Fig. 2 and stated
in Theorem 2.1. Figures 2 and 3 exemplify also Remark 3.2, in which it is noted
that controlling VBZ in each species in isolation, does not lead necessarily a complete
control ofVBZ.A coordinated effort in all host species and vector population is needed
to steer the overall basic reproduction number below unity, and therefore eliminating
the disease in all host species and vectors. Also, the simulations capture that host

Table 3 Parameters used in the
simulations

Parameter Host 1 Host 2

� j 100 100

βv, j 0.2 0.2

μ j 1/28,875 1/28,875

ν j 1/15 1/15

a j 0.37 0.37

β j,1 0.2 0.2

β j,2 0.3 0.3

β j,3 0.4 0.4

β j,4 0.5 0.5

η j,1 0.01 0.01

η j,2 0.007 0.007

η j,3 0.004 0.004

η j,4 0.001 0.001

γ j,1 0.125 0.125

γ j,2 0.01 0.0875

γ j,3 0.05 0.05

γ j,4 0.025 0.0125

�v 10,000

μv 1/15

δv 0.001

νv 0.25

R2
0, j 0.52 0.66

R2
0(2) 1.18
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diversity increases the prevalence of the disease, leading to the “amplification effect.”
By choosing the values of βs lower than those given in Table 3 will lead to the overall
basic reproduction number R2

0(2) ≤ 1 and the simulations show that all infected
population tend to zero as proved in Theorem 3.1. Alternatively, if the parameters are
chosen such that R2

0,1 > 1 and R2
0,2 > 1, the trajectories of the isolated host-vector

systems converge to an endemic equilibria as expected (Theorem 2.2). We decided
not to displays the figures of these cases.

4 Conclusion and Discussions

Mathematical models of zoonoses have often been investigated when the transmission
is direct, in which case, these models could be seen as multi-group models that well
investigated in the literature. However, most zoonotic pathogens are spread through
arthropod vectors such as mosquitoes, flies, fleas, ticks that transmit pathogens across
species.

We considered a general host-vector SEIR-SEImodelwhere a host’s infectious state
is subdivided into n classes, each of which has a different infectiosity to the vector.
We derived the basic reproduction number R2

0. Our results show that the dynamics
of the model is robust and is tied to R2

0. The disease-free equilibrium is globally
asymptotically stable (GAS) if R2

0 ≤ 1 and unstable otherwise (Theorem 2.1). A
unique endemic equilibrium exists and is GAS whenever R2

0 > 1 (Theorem 2.2).
We extended the host-vector-staged progressionmodel tom host species interacting

with an arthropodvector to obtain a general framework inmodeling a class of zoonoses.
The basic reproduction number R2

0(m) for the system with m hosts is derived and
happened to be the sumof basic reproduction number of the host-vector systemswhen a
unique host is interacting with the arthropod vector, that is,R2

0, j , for j = 1, 2, . . . ,m.
We proved that the system with m hosts remains robust as its asymptotic behavior
is solely determined by R2

0(m). The disease dies out from all hosts if R2
0(m) ≤ 1

(Theorem 3.1) and persists in all hosts if R2
0(m) > 1. Moreover, we proved that a

unique endemic equilibrium exists and is globally asymptotically stable if R2
0(m) is

above unity (Theorems 3.2 and 3.3 ).
However, the disease might persist in all hosts, that is, the global R2

0(m) could
be greater than unity even if R2

0, j < 1 for j = 1, 2 . . . ,m, that is, for all hosts.
Therefore, host heterogeneity favors the spread of the infection, and thus causes the
so-called “amplification effect” (Miller and Huppert 2013) as opposed to the “dilution
effect” (Miller and Huppert 2013; Ostfeld and Keesing 2012; Salkeld et al. 2013),
for which the increase in host diversity could potentially decrease or drive out the

pathogens (Ostfeld and Keesing 2012). As R2
0(m) =

∑m

j=1
R2

0, j and considering

the GAS of the unique endemic equilibrium, we deduced that the persistence of the
disease in one host-vector system is sufficient to ensure persistence in all hosts. The
overall mitigation or elimination of vector-borne zoonoses requires control strategies
that bring the basic reproduction numbers in all hosts significantly below unity, and
therefore reduces the disease burden in all hosts. Hence, this paper encompasses and
reinforces the One Health (Centers for Disease Control and Prevention 2017) concept,
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for which human, animal and ecosystem health are ecologically interconnected (One
Health 2017).
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