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Abstract We consider SIS, SIR and MSIR models with standard mass action and
varying population, with n different pathogen strains of an infectious disease. We
also consider the same models with vertical transmission. We prove that under generic
conditions a competitive exclusion principle holds. To each strain a basic reproduc-
tion ratio can be associated. It corresponds to the case where only this strain exists.
The basic reproduction ratio of the complete system is the maximum of each indi-
vidual basic reproduction ratio. Actually we also define an equivalent threshold for
each strain. The winner of the competition is the strain with the maximum threshold.
It turns out that this strain is the most virulent, i.e., this is the strain for which the en-
demic equilibrium gives the minimum population for the susceptible host population.
This can be interpreted as a pessimization principle.

Keywords Nonlinear dynamical systems · Global Stability · Lyapunov methods ·
Competition · Boundary equilibria
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1 Introduction

One of the most famous principles in theoretical ecology is the competitive exclusive
principle, sometimes called Gause’s Law of competitive exclusion, that stipulates:
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two species competing for the same resources cannot coexist indefinitely on the same
ecological niche [15, 25, 28, 31]. However, according to Amstrong and McGehee [3],
Volterra [38] was the first to use mathematical model to suggest that the indefinite
coexistence of two or more species limited by the same resource is impossible. An
abundance of literature was dedicated to the validation of this principle to epidemi-
ological and/or host-parasite models [1–4, 6–8, 15, 18, 19, 24, 25, 28–31] and the
references therein.

In mathematical epidemiology the seminal paper [6] proves a competitive exclu-
sion of infection with different levels in single host populations. When only one strain
is present a basic reproduction ratio can be computed [13, 36]. Hence to each strain is
associated such a number. The authors show that the competitive exclusion principle
holds generically and that the winning strain is the one which maximizes its basic
reproduction number. More precisely it is proved that all but one strain disappear,
the winning strain being persistent. The model [6] considered by Bremermann and
Thieme is a SIS model with n strains.

Ackleh and Allen [1] consider an SIR model with n strains and vertical transmis-
sion. They generalize a two-pathogen study by Andreasen and Pugliese [5]. They
assume for the population dynamics a constant birth rate and a nonlinear death rate.
Globally the population dynamics, without disease, is a generalized logistic type.
They also assume a vertical transmission. The analysis is done for mass action inci-
dence. The authors in [2] consider the SIS and SIR models with standard incidence.
In both cases they derive sufficient conditions for competitive exclusion between the
n strains. One of these conditions involved the maximization of the basic reproduc-
tion ratio for the winning strain. As in the paper of Bremermann and Thieme this is a
persistence result.

In [20], an analogous system has been considered with a general recruitment func-
tion f (N), but without vertical transmission. Similar competitive exclusion results
have been obtained (Theorem 3.3) under some additional assumptions. The stability
of the endemic equilibria is obtained but unfortunately, as stated by the authors, the
assumed hypotheses are generally hard to check. The study of the reduced system is
still under investigation.

Recently attention has focused on understanding the factors that lead to coexis-
tence or to competitive exclusion [10, 11, 34]. In the absence of multiple infections
and the presence of complete cross-immunity, only the parasite strain persists that has
the maximal basic reproduction ratio. See the survey [34]. This result has been proved
under quite a few restrictions. However the validity of such a principle has been
challenged. For example when the infection is transmitted both vertically and hori-
zontally, simulations have shown that strains with lower virulence can out-compete
strains with higher basic reproduction ratio [27].

To continue to explore this issue we consider a SIS or a SIR model with vertical
and horizontal transmission and a different population dynamics. In our SIR model
we, more generally, assume that when an individual recovers then only a fraction is
cross-immunized. The other part of the individuals are again susceptible after recov-
ering. We also show that MSIR model, where we consider protection by maternal
antibodies, have the same properties as SIS and SIR models. We consider the bilin-
ear mass action incidence. We assume, when acquired, total cross immunity and no
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superinfection. We prove that under generic conditions the principle of competitive
exclusion applies. Compared to the other results this is not the basic reproduction
ratio which determines the fate of the strain. We associate to each i strain a threshold
T0,i . This a threshold since T0,i > 1 is equivalent to R0,i > 1. The strain which maxi-
mizes its threshold wins the competition. Hence we can speak of a maximization of a
threshold but not maximization of the basic reproduction ratio. We prove that an en-
demic equilibrium exists and that this equilibrium is globally asymptotically stable.
Actually the winner is the strain which minimizes the number of susceptible at the
equilibrium, which is not necessarily the strain which maximizes its basic reproduc-
tion ratio. A similar kind of phenomenon is observed in [19]. This can be seen as a
pessimization principle [12, 33].

Most authors [1, 2, 6] prove the competitive exclusion by persistence: under some
conditions, all densities of infected strains, but one tend to 0. The remaining strain
stays positive, i.e., is persistent.

We consider in this paper, models with a different population dynamics. We con-
sider SIS, SIR and MSIR models with horizontal and vertical transmission. We con-
sider a constant recruitment (or immigration of susceptible individuals) and constant
death rate, which gives the dynamics without disease Ṅ = Λ − μN .

Our law is less general but we can obtain more precise results. We always have
a unique disease free equilibrium (DFE) and when the basic reproduction ratio is
greater than one then some boundary endemic equilibria exist. Under a generic con-
dition we prove that there is an equilibrium in a face of the nonnegative orthant, corre-
sponding to the extinction of all the strains but one, which is globally asymptotically
stable in the interior of the orthant and the corresponding face. We also describe the
stability on each face. The evolution in a face of the orthant corresponds biologically
to the nonexistence of some strains.

In this paper we prove this result by use of Lyapunov functions. Actually, the
function we use is a “Volterra” like Lyapunov function. This kind of function has
now been used successfully to ascertain global stability results in epidemiological
models. See for example the references in [14, 35].

The paper is organized as follows:
In the next section we introduce the special SIS model, with vertical transmis-

sion. We compute the equilibria and the basic reproduction ratios. We also define an
equivalent threshold.

Section 3 is devoted to the study of stability, under non-stringent generic hypoth-
esis. We obtain global stability results on the biological domain. The last section
examines the case of multi-strains SIR and MSIR model with vertical transmis-
sion.

2 SIS model with vertical transmission

2.1 The model

We assume that there is n strains of pathogens. The host population is divided into
susceptible and infected individuals. The number of susceptible individuals will be
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Fig. 1 A SIS model with n strains

denoted by S, and the number of individuals infected with strain i will be denoted
by Ii . There is a mass action horizontal transmission. We assume that a fraction of the
newborn, coming from the infectious individual, is infectious. In other words there
is a vertical transmission. The infectious host (by the i-th strain) gives birth to a new
infected host at the rate pi . Hence, piIi individuals enters into infected class Ii and
the same quantity is lacking from recruitment in the susceptible compartment. When
recovered individuals are again susceptible to the disease.

The model is represented in Fig. 1 and can be described by the following system
of differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

Ṡ = Λ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS,

İi = βiSIi − (μ + δi + γi − pi)Ii for i = 1, . . . , n.

(1)

The different parameters of our model are definite as:

Λ Recruitment of the susceptible individuals (birth, . . . );
βi transmission coefficient by i-th strain;
μ Natural mortality rate;
δi additional mortality of i-th strain;
γi recovered rate of i-th strain;
pi rate at which an infectious host (by the i-th strain) gives birth to a new infected

host.

We assume that

H: γi ≥ pi for i = 1, . . . , n. (2)

This assumption ensures that the recruitment Λ+∑n
i=1(γi −pi)Ii in the susceptible

compartment is always positive.
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2.2 Equilibria

We denote by N = S +∑n
i=1 Ii the total host population. The evolution of N is given

by

Ṅ = Λ − μN −
n∑

i=1

δiIi ≤ Λ − μN.

The region defined by

Ω =
{

(S, I ) ∈ R
n+1+

∣
∣
∣
∣
∣
S +

n∑

i=1

Ii ≤ Λ

μ

}

is a compact attracting positively invariant set for system (1).
The disease free equilibrium (DFE) is given by (S∗,0, . . . ,0) with S∗ = Λ

μ
. This

equilibrium belongs to Ω .
When only the strain i exists, the model is a two dimensional system (with S and

Ii ). The basic reproduction ratio [13, 36] of this model, with vertical transmission, is
given by

R0,i = βi
Λ
μ

+ pi

(μ + δi + γi)
.

The system (1) has n endemic equilibria, located in the boundary of the nonnega-
tive orthant.

Namely (S̄1, Ī1,0, . . . ,0), (S̄2,0, Ī2,0, . . . ,0), . . . , (S̄n,0, . . . ,0, Īn), where

S̄i = μ + γi + δi − pi

βi

and Īi = Λ

μ + δi

(

1 − μ(μ + γi + δi − pi)

βiΛ

)

.

The boundary equilibrium (S̄i ,0, . . . , Īi , . . . ,0) is in Ω if and only if

T0,i = βiΛ

μ(μ + δi + γi − pi)
> 1.

It is clear, with our running hypothesis (2), that

T0,i > 1 ⇐⇒ R0,i > 1.

Hence T0,i is a threshold, in the sense of [21], and we have

S̄i = S∗

T0,i

and Īi = Λ

μ + δi

(

1 − 1

T0,i

)

. (3)

When T0,i = 1 then S̄i = S∗ and Īi = 0.
A condition for a coexistence of strains i and j will be

μ + γi + δi − pi

βi

= μ + γj + δj − pj

βj

.
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or equivalently

T0,i = T0,j > 1

To have a coexistence of all the strains in the interior of the nonnegative orthant
will require n preceding equalities. This condition is clearly non generic. In this case,
there is a continuum of stable equilibria. The proof is developed at the Sect. 3.3.

The coexistence can occur if the death rate is density dependent [1, 5] or even with
a standard incidence law and exponentially growing host populations [26].

3 Global stability analysis

Let us recall that we assume, without loss of generality, our standing hypothesis (2).
We define

R0 = max
i=1,...,n

R0,i and T0 = max
i=1,...,n

T0,i .

We have seen that

T0 > 1 ⇐⇒ R0 > 1.

3.1 Global stability of the DFE

Theorem 1 If T0 ≤ 1, the DFE is globally asymptotically stable in the nonnegative
orthant. If T0 > 1, the DFE is unstable.

Proof We consider the Lyapunov function

V =
n∑

i=1

Ii .

We will use the LaSalle invariance principle on compact sets [16, 22, 23] to prove the
asymptotic stability. By hypothesis each T0,i satisfies T0,i ≤ 1.

Computing the derivatives of V along the trajectories gives

V̇ =
n∑

i=1

(
βiS − (μ + δi + γi − pi)

)
Ii

≤
n∑

i=1

(

βi

Λ

μ
− (μ + δi + γ1 − pi)

)

Ii

≤
n∑

i=1

(μ + δi + γi − pi)(T0,i − 1)Ii

≤ 0.

Now we consider the set contained in Ω where V̇ = 0.
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To have V̇ = 0 in Ω this implies that for each index

Ii = 0 or S = S̄i .

We associate to each subset I of indices, a point defined by if j /∈ I then Ij = 0 and
if i ∈ I then S = S̄i and for any couple (i, k) in I 2 we assume S̄i = S̄k . For each kind
of subset and condition we have a solution of V̇ = 0. All these solutions constitute a
set E . We state, from the relation (3), that our condition implies T0,i = T0,k . Then we
only consider the subset of indices I such that for any couple (j, k) ∈ I 2, T0,j = T0,k .
Any subset of this kind gives a solution in E .

But now we consider the greatest invariant set contained in Ω and in E .
A trajectory starting from one of this point is given by

Ṡ = Λ − S̄i

∑

i∈I
βiIi +

∑

i∈I
(γi − pi)Ii − μS̄i .

We state that for any solution in E we have İi = 0.
By invariance Ṡ = 0, hence

Λ − μ
S∗

T0,i

=
∑

i∈I

(

βi

S∗

T0,i

− (γi − pi)

)

Ii =
∑

i∈I
(μ + δi)Ii .

Now we recall that T0 ≤ 1, hence each T0,i ≤ 1, which implies Λ − μ S∗
T0,i

≤ 0.
If T0,i < 1, the preceding inequality cannot be satisfied in the nonnegative orthant.

Finally, we see that our set of indices I is such that T0,i = 1 for any index in I . But
this implies again Ii = 0 by invariance. Then the only invariant set contained in Ω ,
such that V̇ = 0, is the DFE. This proves, by the results of [22, 23], that the DFE is
globally asymptotically stable in Ω . Since Ω is an attracting set the stability is global
in the nonnegative orthant.

Now, suppose that T0 > 1 (or equivalently R0 > 1). The Jacobian matrix of sys-
tem (1) at the DFE is:

J0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−μ −β1S∗ + (γ1 −p1) −β2S∗ + (γ2 −p2) · · · −βnS∗ + (γn −pn)

0 β1S∗ − α1 0 . . . 0
...

. . .
. . .

. . .
...

0
. . .

. . . βiS
∗ − αi

...

... · · · . . .
. . . 0

0 · · · · · · 0 βnS∗ − αn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with αi = μ + δi + γi − pi . The eigenvalues of J0 are −μ and αi(T0,i − 1). Hence if
T0 > 1, then the Jacobian matrix J0 has at least one positive eigenvalue and therefore
the DFE is unstable. �

Remark 1 We have proved the result without any additional hypotheses on the rela-
tions between the T0,i .
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3.2 Global stability and competitive exclusion

In this section we assume R0 > 1 or equivalently T0 > 1. We will assume in the
sequel that one strain is maximizing its threshold. In other words there is a strain (we
can assume that it is the one with index 1) such that for any i > 1 we have

T0,1 > T0,i .

With T0 > 1, let i0 the last index for which T0,i > 1. Then

T0,1 > T0,2 ≥ · · · T0,i0 > 1 ≥ T0,i0+1 ≥ · · · T0,n.

Theorem 2 Under the hypothesis T0,1 > T0,i satisfied for i = 2, . . . , n, the endemic
equilibrium

(
S∗

T0,1
,

Λ

μ + δ1

(

1 − 1

T0,1

)

,0, . . . ,0

)

,

is globally asymptotically stable on the intersection of the of the nonnegative orthant
with the two half-hyperspace defined by the inequalities S > 0 and I1 > 0.

Proof We denote by (S̄, Ī ), with Ī = ( Λ
μ+δ1

(1 − 1
T0,1

),0, . . . ,0) ∈ R
n+ the endemic

equilibrium.
We consider the following Lyapunov function, defined on the intersection of the

nonnegative orthant with the half open hyperplane spaces given by the inequalities
S > 0 and I1 > 0:

V (S, I ) = S − S̄ logS + μ + δ1

μ + δ1 + γ1 − p1
(I1 − Ī1 log I1)

+
n∑

i=2

(

1 − γi − pi

βiS̄

( T0,i

T0,1

)2)

Ii + K. (4)

Where K is chosen such that V (S̄, Ī ) = 0.

K = −S̄ + S̄ log S̄ − μ + δ1

μ + δ1 + γ1 − p1
(Ī1 − Ī1 log Ī1).

Indeed this function, on the considered domain, is a positive definite Lyapunov func-
tion. To sustain that claim, we must prove that the coefficients of Ii are positive. For
this issue we use the following relation

T0,i

T0,1
=

βiΛ
μ(μ+δi+γi−pi)

β1Λ
μ(μ+δ1+γ1−p1)

= βiS̄

μ + δi + γi − pi

.

From this relation, we deduce the inequality

γi − pi

βiS̄

( T0,i

T0,1

)2

= γi − pi

μ + δi + γi − pi

T0,i

T0,1
< 1. (5)
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Using the endemic relation Λ = β1S̄Ī1 − (γ1 −p1)Ī1 +μS̄, the derivative of V along
trajectories of system (1) is

V̇ =
(

1 − S̄

S

)

Ṡ + μ + δ1

μ + δ1 + γ1 − p1

(

1 − Ī1

I1

)

İ1

+
n∑

i=2

(

1 − γi − pi

βi S̄

( T0,i

T0,1

)2)(
βiSIi − (μ + δi + γi − pi)Ii

)

︸ ︷︷ ︸
C

.

Which can also be written

V̇ = β1S̄Ī1 − (γ1 − p1)Ī1 + μS̄ − β1SI1 −
n∑

i=2

βiSIi + (γ1 − p1)I1

+
n∑

i=2

(γi − pi)Ii − μS

− S̄

S

(

β1S̄Ī1 − (γ1 − p1)Ī1 + μS̄ − β1SI1 −
n∑

i=2

βiSIi + (γ1 − p1)I1

+
n∑

i=2

(γi − pi)Ii − μS

)

+ μ + δ1

μ + δ1 + γ1 − p1

[
β1SI1 − (μ + δ1 + γ1 − p1)I1 − β1SĪ1

+ (μ + δ1 + γ1 − p1)Ī1
] + C

= [
μS̄ + (μ + δ1)Ī1 + (γ1 − p1)I1

]
(

2 − S

S̄
− S̄

S

)

+
n∑

i=2

(

γi − pi − βiS − S̄

S
(γi − pi − βiS)

)

Ii + C.

Finally we decompose V̇ in the sum of three expressions:

V̇ = [
μS̄ + (μ + δ1)Ī1 + (γ1 − p1)I1

]
(

2 − S

S̄
− S̄

S

)

+
n∑

i=2

(

γi − pi − βiS − S̄

S
(γi − pi − βiS)

)

Ii + C.

By using the relation

T0,i

T0,1
=

βiΛ
μ(μ+δi+γi−pi)

β1Λ
μ(μ+δ1+γ1−p1)

= βiS̄

μ + δi + γi − pi

.
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We have:

C =
n∑

i=2

(

1 − γi − pi

βi S̄

( T0,i

T0,1

)2)[
βiSIi − (μ + δi + γi − pi)Ii

]
.

Which can be written

C =
n∑

i=2

(

βiS − βiS̄

( T0,1

T0,i

)

− (γi − pi)
S

S̄

( T0,i

T0,1

)2

+ (γi − pi)

( T0,i

T0,1

))

Ii . (6)

We call B the sum of the last two terms in V̇ , i.e.,

B =
n∑

i=2

(

γi − pi − βiS − S̄

S
(γi − pi − βiS)

)

Ii + C.

Then, using relation (6)

B =
n∑

i=2

[

γi − pi − βiS − S̄

S
(γi − pi) + βiS̄

]

Ii

+
n∑

i=2

[

βiS − βiS̄

( T0,1

T0,i

)

− (γi − pi)
S

S̄

( T0,i

T0,1

)2

+ (γi − pi)

( T0,i

T0,1

)]

Ii .

Thus,

B =
n∑

i=2

[

(γi − pi) + βiS̄ − S̄

S
(γi − pi) − βiS̄

( T0,1

T0,i

)

− (γi − pi)
S

S̄

( T0,i

T0,1

)2

+ (γi − pi)

( T0,i

T0,1

)]

Ii .

Using the inequality between the geometric and arithmetic means we have

− S̄

S
(γi − pi) − (γi − pi)

S

S̄

( T0,i

T0,1

)2

≤ −2

√

(γi − pi)2

( T0,i

T0,1

)2

.

Hence, with the hypothesis γi ≥ pi , from the preceding inequality we deduce

B ≤
n∑

i=2

[

−2(γi − pi)
T0,i

T0,1
+ γi − pi + βiS̄ − βiS̄

T0,1

T0,i

+ (γi − pi)
T0,i

T0,1

]

Ii

≤
n∑

i=2

[

(γi − pi)

(

1 − T0,i

T0,1

)

+ βiS̄

(

1 − T0,1

T0,i

)]

Ii .
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Since γi − pi ≤ μ + γi + δi − pi = βiS̄
T0,1

T0,i
, with T0,1

T0,i
> 1, we can write, for each

index i = 2, . . . , n, the following inequalities

[

(γi − pi)

(

1 − T0,i

T0,1

)

+ βiS̄

(

1 − T0,1

T0,i

)]

Ii

≤
(

βiS̄
T0,1

T0,i

(

1 − T0,i

T0,1

)

+ βiS̄

(

1 − T0,1

T0,i

))

Ii = 0.

This relation proves that B ≤ 0. Then V̇ is bounded by the first expression

V̇ ≤ [
μS̄ + (μ + δ1)Ī1 + (γ1 − p1)I1

]
(

2 − S

S̄
− S̄

S

)

.

Since γ1 ≥ p1, using again the inequality between the arithmetic and geometric
means, we obtain V̇ ≤ 0.

By Lyapunov’s theorem this proves the stability of the endemic equilibrium.
To prove the asymptotic stability, we will use LaSalle’s principle [16, 22, 23]. We

recall the expression of V̇

V̇ = (
μS̄ + (μ + δ1)Ī1 + (γ1 − p1)I1

)
(

2 − S

S̄
− S̄

S

)

+
n∑

i=2

(

γi − pi − βiS − S̄

S
(γi − pi − βiS)

)

Ii + C. (7)

We have to find the points (S, I1, . . . , In) for which V̇ = 0.
We have seen that V is the sum of three nonpositive quantities. The first term, a

positive definite function of S, is zero if and only if S = S̄.
The second term, with S = S̄, is equal to zero since

n∑

i=2

(

γi − pi − βiS − S̄

S
(γi − pi − βiS)

)

Ii

∣
∣
∣
∣
∣
S=S̄

= 0.

Finally,

C =
n∑

i=2

(

1 − γi − pi

βi S̄

( T0,i

T0,1

)2)(
βiSIi − (μ + δi + γi − pi)Ii

)

=
n∑

i=2

(

1 − γi − pi

βi S̄

( T0,i

T0,1

)2)(
βiS̄ − (μ + δi + γi − pi)

)
Ii

=
n∑

i=2

(

1 − γi − pi

βi S̄

( T0,i

T0,1

)2)(

βiS̄ − βiS̄
T0,1

T0,i

)

Ii
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=
n∑

i=2

(

1 − γi − pi

βi S̄

( T0,i

T0,1

)2)

︸ ︷︷ ︸
>0

βiS̄

(

1 − T0,1

T0,i

)

︸ ︷︷ ︸
<0

Ii .

Then C = 0 if and only each Ii = 0 for i = 2, . . . , n.
We found that V̇ = 0 implies S = S̄ and Ii = 0 for i = 2, . . . , n. We conclude by

Lasalle’s principle, that the greatest invariant set is reduced to the endemic equilib-
rium. This ends the proof of the theorem. �

For any strain, we have defined T0,i = βiΛ
μ(μ+γi+δi−pi)

= Λ

μS̄i
.

We showed, that the winner strain maximizes the threshold T0,i , thus mini-
mizes S̄i . This result is analogous to those obtained in [19]. This can be interpreted
like a pessimization principle [12].

3.3 The coexistence case

The coexistence of all the strains occurs when the following non generic condition
holds:

∀(i, j) ∈ {1, . . . , n}2, T0,i = T0,j > 1.

When the n equalities are satisfied, we have:

S̄ = μ + γi + δi − pi

βi

∀i ∈ {1, . . . , n}

= Λ

μT0,1
(8)

and then Ī1, . . . , Īn satisfy the linear algebraic equation (using the equation of Ṡ):

Λ −
n∑

i=1

βi

Λ

μT0,1
Īi +

n∑

i=1

(γi − pi)Īi − μ
Λ

μT0,1
= 0.

Hence, we have a continuum equilibria of (1) given by the following set:

S =
{(

Λ

μT0,1
, Ī1, . . . , Īn

)

∈ Ω

∣
∣
∣

Λ −
n∑

i=1

βi

Λ

μT0,1
Īi +

n∑

i=1

(γi − pi)Īi − μ
Λ

μT0,1
= 0

}

.

Knowing that T0,1 = T0,i , we have the following equivalence:

(
Λ

μT0,1
, Ī1, . . . , Īn

)

∈ S ⇐⇒
n∑

i=1

(μ + δi)Īi = Λ − μ
Λ

μT0,1
. (9)
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Theorem 3 Suppose that the condition T0,1 = T0,i > 1 is satisfied for all i =
2, . . . , n. The equilibrium set S is globally asymptotically stable.

Proof Let us consider the following Lyapunov function:

V (S, I1, . . . , In) = S − S̄ − S̄ log
S

S̄
+

n∑

i=1

μ + δi

μ + δi + γi − pi

(

Ii − Īi − Īi log
Ii

Īi

)

.

First recall that the following relation holds:

1 = T0,i

T0,1
=

βiΛ
μ(μ+δi+γi−pi)

β1Λ
μ(μ+δ1+γ1−p1)

= βiS̄

μ + δi + γi − pi

. (10)

The derivative of V along trajectories of system (1) is

V̇ =
(

1 − S̄

S

)

Ṡ +
n∑

i=1

μ + δi

μ + δi + γi − pi

(

1 − Īi

Ii

)

İi ,

V̇ = Λ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS

− S̄

S

(

Λ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS

)

+
n∑

i=1

μ + δi

μ + δi + γi − pi

[
βiSIi − (μ + δi + γi − pi)Ii

− βiSĪi + (μ + δi + γi − pi)Īi

]

= Λ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS − Λ
S̄

S

+
n∑

i=1

βiS̄Ii −
n∑

i=1

(γi − pi)Ii

S̄

S
+ μS̄

+
n∑

i=1

[
μ + δi

μ + δi + γi − pi

βiSIi − (μ + δi)Ii

− μ + δi

μ + δi + γi − pi

βiSĪi + (μ + δi)Īi

]

.

Using βiS̄ = μ + δi + γi − pi , and Λ = ∑n
i=1 βiS̄Īi − ∑n

i=1(γi − pi)Īi + μS̄ =
∑n

i=1(μ + δi)Īi + μS̄
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V̇ = Λ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS − Λ
S̄

S
+

n∑

i=1

βiS̄Ii

−
n∑

i=1

(γi − pi)Ii

S̄

S
+ μS̄ +

n∑

i=1

(μ + δi)

[

Ii

S

S̄
− Ii − Īi

S

S̄
+ Īi

]

= 2Λ − Λ
S̄

S
− S

S̄

(

μS̄ +
n∑

i=1

(μ + δi)Īi

)

+
n∑

i=1

(
γi − pi − (μ + δi) + βiS̄

)
Ii

−
n∑

i=1

(γi − pi)Ii

S̄

S
−

n∑

i=1

βiS̄
S

S̄
Ii +

n∑

i=1

(μ + δi)Ii

S

S̄

= Λ

(

2 − S̄

S
− S

S̄

)

+
n∑

i=1

(γi − pi)Ii

(

2 − S̄

S
− S

S̄

)

.

Hence,

V̇ =
(

Λ +
n∑

i=1

(γi − pi)Ii

)

︸ ︷︷ ︸
D

(

2 − S

S̄
− S̄

S

)

. (11)

Thanks to Assumption 2, D > 0.
Hence V̇ ≤ 0 for all (S, I1, . . . , In) ∈ Ω , and V̇ = 0 if and only if S = S̄. By

Lyapunov theorem, the equilibria (S̄, Ī1, Ī2, . . . , Īn) where S̄ is fixed by (8) and Īi for
i = 1, . . . , n, belong to S , are stable. It is clear that the only invariant set contained in
Ω such that V̇ = 0 is reduced to S . Hence, by LaSalle’s invariance principle, the set
of equilibria S is globally asymptotically stable. This ends the proof. �

4 SIR and MSIR models

4.1 SIR model

We consider a SIR model where a proportion of infected can recover and have total
immunity for all strains. For this model (see Fig. 2), we have the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = Λ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS,

İi = βiSIi − (μ + δi + νi + γi − pi)Ii, i = 1, . . . , n,

Ṙ =
n∑

i=1

νiIi − μR.

(12)

Since R is not present in the n+1 first equations, we have a triangular system. We are
in a compact domain. By Vidyasagar ’s theorem [37], to study stability, it is sufficient
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Fig. 2 A SIR model with n strains

to study the system composed by the n + 1 first equations. Then the above results
concerning multi-strains SIS system (1) are valid for the SIR system (12) with the
same Lyapunov functions by replacing δi by δ′

i = δi + νi .

4.2 MSIR model

In practice, for some diseases, a proportion of newborns may have temporary passive
immunity due to protection from maternal antibodies. Thus we need to incorporate
an additional class M which contains these infants with passive immunity [17]. If
the maternal antibodies disappear from the body, the infant moves to the susceptible
class S [17, 32]. So, if we suppose, for 0 ≤ q < 1, that the quantity qΛ are the infants
with passive immunity and (1 − q)Λ are the ones without passive immunity, we have
the following graph (see Fig. 3).

The dynamics of this model is given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṁ = qΛ − (μ + η)M,

Ṡ = (1 − q)Λ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS + ηM,

İi = βiSIi − (μ + δi + νi + γi − pi)Ii, i = 1, . . . , n,

Ṙ =
n∑

i=1

νiIi − μR.

(13)
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Fig. 3 A MSIR model with n strains

This system is clearly triangular and the first equation of M satisfies:

lim sup
t→+∞

M(t) = qΛ

μ + η
:= M∗.

Thanks to a result by Thieme and Castillo-Chavez [9], the system (13) have the same
qualitative dynamics as the following limit system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = (1 − q)Λ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS + ηM∗,

İi = βiSIi − (μ + δi + νi + γi − pi)Ii, i = 1, . . . , n,

Ṙ =
n∑

i=1

νiIi − μR.

(14)

This system can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ = Λ̃ −
n∑

i=1

βiSIi +
n∑

i=1

(γi − pi)Ii − μS,

İi = βiSIi − (μ + δi + νi + γi − pi)Ii, i = 1, . . . , n,

Ṙ =
n∑

i=1

νiIi − μR.

(15)
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Fig. 4 Case of DFE where all strains extinct. The values of different parameters are the following Λ = 20,
β1 = 0.05, β2 = 0.05, β3 = 0.03, β4 = 0.05, β5 = 0.05, β6 = 0.06, μ = 0.9; γ1 = 0.6, γ3 = 0.9,
γ5 = 1.4, γ2 = 1.5, γ4 = 1.9, γ6 = 0.7, p1 = 0.3, p2 = 0.01, p3 = 0.03, p4 = 0.025, p5 = 0.03,
p6 = 0.08, δ1 = 0.2, δ3 = 0.85, δ5 = 0.98, δ2 = 0.85, δ4 = 0.8, δ6 = 0.05. We have the inequality
Ti < 1 ∀i ∈ {1, . . . ,6}

where Λ̃ = Λ
μ+η

(η + (1 − q)μ). This system (15) has the exact same properties as
the system (12).

5 Simulations

In this section we show some figures obtained by numerical simulation of the previ-
ous results. Figure 4 presents the case when T0 ≤ 1, i.e., when the DFE is GAS. The
non generic case where coexistence occurs is represented in Figs. 5 and 6. The Fig. 7
illustrates the generic case when the exclusion holds.

Here we present the non generic case where, with the same parameters and dif-
ferent initial conditions, the system (1) converges toward two different coexistence
equilibria. However all of these equilibria belong to the set S .

With parameters Λ = 15, β1 = 0.98, β2 = 0.98, μ = 0.1; γ1 = 0.52, γ2 = 0.72,
p1 = 0.2, p2 = 0.2, δ1 = 0.62, δ2 = 0.42, we have the following equalities: T1 =
T2 = 14.134615. We have also S̄ ≈ 1.0612245.
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Fig. 5 Non generic case: An SIS model with 2 coexisting strains. For the initial condi-
tion (S(0), I1(0), I2(0)) = (10,5,8), this figure shows that the system (1) towards the equilib-
rium S̄ ≈ 1.0612245, Ī1 ≈ 9.5965706 and Ī2 ≈ 15.354513. Obviously, the relation (9) holds:
Λ − (μ + δ1)Ī1 − (μ + δ2)Ī2 − μS̄ ≈ 0

Fig. 6 Non generic case: An SIS model with 2 coexisting strains. For the initial condition
(S(0), I1(0), I2(0)) = (5,3,1), this figure shows that the system (1) towards the equilibrium
S̄ ≈ 1.0612245, Ī1 ≈ 16.672251 and Ī2 ≈ 5.5574169. Again, even with completely different values of
Ī1 and Ī2 from the Fig. 5, the relation (9) holds: Λ − (μ + δ1)Ī1 − (μ + δ2)Ī2 − μS̄ ≈ 0
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Fig. 7 Generic case where an exclusive competition occurs. With parameters Λ = 20, β1 = 0.45,
β2 = 0.05, β3 = 0.5, β4 = 0.05, β5 = 0.05, β6 = 0.5, μ = 0.9; γ1 = 0.3, γ3 = 0.9, γ5 = 1.4,
γ2 = 1.5, γ4 = 1.9, γ6 = 0.9, p1 = 0.3, p2 = 0.01, p3 = 0.03, p4 = 0.025, p5 = 0.03, p6 = 0.08,
δ1 = 0.2, δ3 = 0.85, δ5 = 0.98, δ2 = 0.85, δ4 = 0.8, δ6 = 0.05, we have the following inequalities:
T1 > T6 > T3 > 1 > T2 > T4 > T5. The strain # 1 wins the competition while other strains disappear
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gestions which led to an improvement of the presentation of this manuscript.
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