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In November 2015, El Salvador reported their first case of Zika virus (ZIKV) infection, an
event followed by an explosive outbreak that generated over 6000 suspected cases in a
period of two months. National agencies began implementing control measures that
included vector control and recommending an increased use of repellents. Further, in
response to the alarming and growing number of microcephaly cases in Brazil, the
importance of avoiding pregnancies for two years was stressed. In this paper, we explore
the role of mobility within communities characterized by extreme poverty, crime and
violence. Specifically, the role of short term mobility between two idealized inter-
connected highly distinct communities is explored in the context of ZIKV outbreaks. We
make use of a Lagrangian modeling approach within a two-patch setting in order to
highlight the possible effects that short-term mobility, within highly distinct environments,
may have on the dynamics of ZIKV outbreak when the overall goal is to reduce the number
of cases not just in the most affluent areas but everywhere. Outcomes depend on existing
mobility patterns, levels of disease risk, and the ability of federal or state public health
services to invest in resource limited areas, particularly in those where violence is sys-
temic. The results of simulations in highly polarized and simplified scenarios are used to
assess the role of mobility. It quickly became evident that matching observed patterns of
ZIKV outbreaks could not be captured without incorporating increasing levels of hetero-
geneity. The number of distinct patches and variations on patch connectivity structure
required to match ZIKV patterns could not be met within the highly aggregated model that
is used in the simulations.
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1. Introduction

Zika virus (ZIKV), an emerging mosquito-borne flavivirus related to yellow fever, dengue, West Nile and Japanese en-
cephalitis (Hayes et al, 2009), has taken the Americas by storm. ZIKV is transmitted primarily by Aedes aegypti mosquitoes,
which also transmit dengue and chikungunya. As of February 9, 2016, according to the CDC (CDC(a), 2016), ZIKV cases had
been reported throughout the Caribbean, Mexico and South America with the exception of Chile, Uruguay, Argentina,
Paraguay and Peru. Several states within the United States had also reported ZIKV cases (Petersen, 2016) and although it is
expected that ZIKV will be managed effectively within the USA, the possibility of localized ZIKV outbreaks has yet to be ruled
out.

Phylogenetic analyses have revealed the existence of two main virus lineages (African and Asian) (Faye et al., 2014;
Haddow et al., 2012) albeit so far, no concise clinical differences have been identified between infections with strains
from these lineages. Further, the reports are not surprising since most African samples come from a rhesus sentinel in
Uganda, where ZIKV was first discovered, during primate and mosquito surveillance efforts aimed at assessing
Yellow Fever trends in 1947 (Dick, Kitchen, & Haddow, 1952). The African lineage has circulated primarily in wild pri-
mates and arboreal mosquitoes such as Aedes africanus within a specific geographic habitat; a narrow equatorial
belt running across Africa and into Asia. Spillover infections in humans have rarely occurred even in areas found to be
highly enzootic (Fauci & Morens, 2016; Musso, Cao-Lormeau, & Gubler, 2015). The Asian lineage, which seems to have
originated from the adaptation of the virus as it successfully invaded a different vector, Aedes aegypti, a variant capable of
infecting human populations rather effectively, (Fauci & Morens, 2016; Haddow et al., 2012), is the dominant type in the
Americas.

The first human infection was reported in Nigeria in 1954 (Macnamara, 1954). The evidence of when ZIKV moved out
of Africa and Asia was provided by the 2007 outbreak in Yap Island in the Federated States of Micronesia (Duffy et al.,
2009); an outbreak followed by larger outbreak in French Polynesia in 2013—2014 (Cao-Lormeau & Musso, 2014). The
virus then appeared in New Caledonia, the Cook Islands and Eastern Islands (Musso, Nilles, & Cao-Lormeau, 2014).
Decades old data from African researchers seem to support the possibility that ZIKV spread may have been facilitated by
prior chikungunya epizootics (Fauci & Morens, 2016). If this is the case then the pattern seemed to have repeated itself in
2013 when chikungunya spread from west to east, a sequence of outbreaks followed by ZIKV outbreaks (Fauci & Morens,
2016).

In early 2015, ZIKV was detected in Brazil. Phylogenetic analyses of the virus isolated from patients, placed the Brazilian
strains within the Asian lineage (Zanluca et al., 2015); that is, the one previously detected during the French Polynesian
outbreak (Cao-Lormeau et al., 2014). Since the first detection of ZIKV in Brazil, we have seen its range to grow reaching rather
quickly the nations of Bolivia, Brazil, Colombia, Ecuador, French Guyana, Guyana, Paraguay, Suriname and Venezuela (CDC(c),
2016). Furthermore, several Central America countries have now been invaded by the ZIKV, including Costa Rica, El Salvador,
Guatemala, Honduras, Nicaragua and Panama (CDC(d), 2016). As of September 23, 2016, all of the nations in the Americas
have experience active ZIKV outbreaks with the exception of Canada, Chile and Uruguay (CDC(f), 2016). The rapid geographic
expansion of ZIKV has led the World Health Organization (WHO) to declare it an international public health emergency (W. H.
0. (WHO), 2016).

It has been estimated that about 80% of people infected with ZIKV are asymptomatic (Zika virus, 2016; Duffy et al., 2009) in
line with various vector born diseases spread by Aedes aegypti mosquitoes. ZIKV clinical manifestations include dengue-like
symptoms, that is, arthralgia, particularly swelling, mild fever, lymphadenopathy, skin rash, headaches, retro orbital pain, and
conjunctivitis, which normally last for 2—7 days (Zika virus, 2016; W. H. O. (WHO), 2016; Zanluca et al., 2015). The similarities
in symptoms, sources of mis-identification, bring a high level of uncertainty in efforts to asses the number of patients infected
with ZIKV. It is believe that it may be higher than what it has been reported (Fauci & Morens, 2016; Salvador & Fujita, 2015).
Moreover, for example, co-infection with dengue and ZIKV is not uncommon and as a result ZIKV diagnosis is difficult
(Dupont-Rouzeyrol et al., 2015).

At present, there is no ZIKV vaccine available. Further, ZIKV infections are being linked with neurological (microcephaly)
and auto-immune (Guillain-Barré syndrome) complications. Evidence supports a troubling new transmission mode for a
vector born disease, namely that of sexual transmission (CDC(b), 2016; W. H. O. (WHO), 2016). Education on ZIKV modes of
transmission and ways of preventing transmission are essential to halt ZIKV spread at regional, national and global levels.
Control measures are limited and include the use of insect repellents to the use of protection while engaged in sexual
activity and sex abstinence (CDC(b), 2016). An inexpensive effective way to diagnose ZIKV seems to have been found.
Scientists from Arizona State University and Harvard University have created a diagnostic tool, similar to a pregnancy test,
capable of given a quick, effective, simple and inexpensive way of diagnosing ZIKV infections (Gazette, 2016; The Biodesign
Institute, 2016).

Resource limited and poor nations face challenges that make the use of standard efforts and approaches aimed at
controlling vector borne diseases ineffective due to extreme variations in the levels of public safety, gang violence and
conflict. A lack of attention to the threats posed by the weakest links in the global spread of diseases poses a serious
threat to global health policies (see (Castillo-Chavez et al., 2015; Chowell, Castillo-Chavez, Krishna, Qiu, & Anderson,
2015; Espinoza, Moreno, Bichara, & Castillo-Chavez, 2016, p. pp.123; Patterson-Lomba, Goldstein, Gomez-Liévano,
Castillo-Chavez, & Towers, 2015, 2016, p. pp.1011; Perrings et al., 2014; Zhao, Feng, & Castillo-Chavez, 2014)). The

Please cite this article in press as: Moreno, V. M., et al., Role of short-term dispersal on the dynamics of Zika virus in an extreme
idealized environment, Infectious Disease Modelling (2016), http://dx.doi.org/10.1016/j.idm.2016.12.002




V.M. Moreno et al. / Infectious Disease Modelling xxx (2016) 1—14 3

importance of focusing on the weakest links of global transmission networks becomes obvious when the levels of
violence in Latin America and the Caribbean, which houses 9% of the global population but accounts for 33% of the
world's homicides (Jaitman, 2015). In this study, we analyze the impact that restrictions to public safety, which affect
mobility and altered the levels of local risk, may have on the dynamics of ZIKV transmission and control. The long-term
interest of our efforts is to limit the role that violence and conflict play on the overall health patterns of individuals living
in the Caribbean, particularly in El Salvador.

2. Single patch model

We revisit a simplified vector-borne transmission model, a building block for the derivation of highly simplified two-patch
scenarios. Two-patch models are used to explore the role of residence times and risk (possibly defined by underlying levels of
violence or a lack of a health-medical infrastructure) on the dynamics of the ZIKV. The general version of an N-patch
framework and its analysis can be found in (Bichara & Castillo-Chavez, 2016).

Patch heterogeneity is built in by assuming that within the first patch there is low levels of security making it difficult
to carry out sustainable vector control efforts. The second patch is considered to be safe with its population having access
to reasonable health services on demand. In other words, we are focusing on a highly bi-modal situation, an idealized
situation that does not capture the levels of complexity and heterogeneity present in conflict or crime ridden
communities.

Simulations based on highly idealized exploratory settings may lead to more credible conclusions if the models are
parameterized using “realistic” estimates of the parameters involved. Highly detailed models, for example, agent based
models, require huge amounts of data as well as the type information that often has still to be collected or measured within
accepted protocols. The proper parametrization of detailed models may require detailed accounts of individuals' daily
mobility activities as it was done, for example, by those working on the EpiSims project (Stroud, Del Valle, Sydoriak, Riese, &
Mniszewski, 2007); the kind of worthwhile far reaching project that we hope that this paper may instigate in the context of
communities where violence and health disparities are the norm.

Within this manuscript, it is assumed that each patch is made up of individuals experiencing the same degree of risk
of infection, which is just a function of the patch. Consequently, all individuals while in Patch 1 will be experiencing high
risk of infection while those in Patch 2 will be experiencing low risk. In short, movement (daily activities) would alter the
amount of time that each individual spends on each patch, the longer that an individual is found in Patch 1, the more
likely that he/she will become infected. The level of patch-specific risk to infection is captured via the use of a single

parameter E,-, i=1,2 with 31 > Bz- This assumption models in a rather simplistic way the health disparities that we
address within a highly polarized setting. This is a first effort aimed at exploring the role of risk and mobility on the
dynamics of ZIKV in a world where two highly-distinct mobile communities co-exist. The case of Johannesburg and
Soweto in South Africa, or North and South Bogota in Colombia, or Rio de Janeiro and adjacent favelas in Brazil, or gang-
controlled and gang-free areas within San Salvador, are but some of the unfortunately large number of pockets domi-
nated by conflict or high crime within urban centers around world. The short time scale dynamics of individuals (daily
mobility as they go to work or carry out on other activities including attendance to schools and universities) in both
patches are incorporated within this model with the analysis (simulations) carried out over the duration of a single
outbreak.

The ZIKV dynamics single patch model involves hosts and vectors populations of size N;, and N,. Both populations are
subdivided by epidemiological states; the transmission process is modeled as the result of the interactions of these
populations. On that account, we let Sy, Ep, Iy 4, Ins and Ry, denote the susceptible, latent, infectious asymptomatic, in-
fectious symptomatic and recovered host sub-populations. Similarly, S,, E, and I, are used to denote the susceptible,
latent and infectious mosquito sub-populations. Since the focus is on the study of disease dynamics over a single
outbreak, we neglect the hosts' demographics while assuming that the vector's demographics do not change, meaning
that, it is assumed the birth and death per capita mosquito rates cancel each other out. New reports (Zika virus, 2016;
Duffy et al., 2009) point out the presence of large numbers of asymptomatic ZIKV infectious individuals. Consequently,
we consider two classes of infectious I, 4 and I, 5, that is, asymptomatic and symptomatic infectious individuals. Further,
since there is no full knowledge of the dynamics of ZIKV transmission, it is assumed that I, and I individuals are
equally infectious with their periods of infectiousness roughly the same. Our assumptions could be used to reduce the
model to one that considers a single infectious class I, = I, 4 + I, ;. We keep both infectious classes as it may be desirable
to keep track of each type. These assumptions may not be too bad given our current knowledge of ZIKV epidemiology and
the fact that ZIKV infections, in general, are not severe. Furthermore, given that the infectious process of ZIKV is
somewhat similar to that of dengue, we use some of the parameters estimated in dengue transmission studies within El
Salvador. ZIKV basic reproduction number estimates are taken from those that we just estimated using outbreak data
from Barranquilla Colombia (Towers et al., 2016). Furthermore, the selection of model parameters ranges used, also
benefited from prior estimates conducted with data from the 2013—2014 French Polynesia outbreak (Kucharski et al.,
2016), some of the best available. The dynamics of the prototypic single patch system, single epidemic outbreak, can
therefore modeled using the following standard nonlinear system of differential equations (Brauer & Castillo-Chavez,
2012):
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The parameters of Model 1 are collected and described in Table 1 while the model flow diagram is presented in Fig. 1.

The basic reproduction number for this prototypic model, that is, the average number of secondary infections generated by
a typical infectious individual in a population where nobody has experienced a ZIKV-infection is computed by taking S(0) =
Ny, in Model (1). The basic reproduction number is given by

_ b2N, B, Bryvol(1 = @)k + Gyl
Ny, (i, + v0)

o2 2
= ‘ﬁO,s + ‘%O,a' (2)
Ry = vazﬂvhﬁhuyv
V NiYhtty (v + 1)

The reduced form corresponds to the basic reproduction number when I = I, 4 + I,

The dynamics of the single patch model are well known. In short, if 3 < 1, there is no epidemic outbreak, that is, the
proportion of introduced infected individuals decrease, while if %29 > 1 we have that the infected host population grows, an
outbreak takes place, that is, the number of cases exceeds the initial size of the introduced infected population at time t = 0.
Finally, when £ > 1, the population of infected individuals eventually decreases and the disease dies out (single outbreak
model).

In the next section, a two patch model using the Lagrangian approach specified in (Bichara & Castillo-Chavez, 2016;
Bichara, Kang, Castillo-Chavez, Horan, & Perrings, 2015) is introduced with individuals from Patch i (i = 1,2) never loosing
their residency status as a result of their daily mobility patterns across patches; an assumption captured with the use of a
residence time matrix. A matrix, where each entry p; models the average (fixed) proportion of time that a typical resident
spends on his/her own patch or as a visitor to another patch per unit of time, hence (p;; + p; = 1). Hence, at any given time ¢,
the effective population size in each patch does not necessarily match that given by the number of patch residents. In our
framework, we make sure that population patch size at time t does account for patch residents (in residency at time t) and
patch visitors in at time t.

2
Ry

Table 1

Description of the parameters used in System (1).
Parameters Description Value
Bun Infectiousness of human to mosquitoes 0.41
B, Infectiousness of mosquitoes to humans 0.5
b; Biting rate in Patch i 0.8
Vp Humans' incubation rate 1
q Fraction of latent that become asymptomatic and infectious 0.1218
¥i Recovery rate in Patch i %
pij Proportion of time residents of Patch i spend in Patch j [0,1]
™ Vectors' natural mortality rate &5
vy Vectors' incubation rate i

o
vl
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3. Residence times and two-patch models

The role of mobility between two communities, within the same city, living under dramatically distinct health, economic,
social and security settings is explored using a model as simple as possible, that is, a model that only considers two patches
(prior modeling efforts that didn't account for the effective population size but that incorporated specific controls include,
(Lee & Castillo-Chavez, 2015)). It is assumed that Patch 2 has access to working health facilities, low crime rate, adequate
human and financial resources and adequate public health policies, in place. On the other hand, Patch 1 lacks nearly
everything and crime is high. Within this highly simplified setting, the differences in risk naturally, which depend on host
vector ratios, biting rates, the level of access and ability to buy repellents and nets, the regularity of visits by vector control
crews and more, need to be incorporated. These differences are captured by just postulating highly distinct transmission rates;
that is, we study the dynamics of host mobility in highly distinct environments, with risk being captured by the transmission
rate, B Hence, [/3;>>B; where 3, defines the risk in Patch i, i = 1,2 [Patch 1 (high risk) and Patch 2 (low risk)].

The host populations are stratified by epidemiological classes indexed by the patch of residence. Particularly Sy, ;, Ep, j, I g i
I and Ry, ; denote the susceptible, latent, infectious asymptomatic, infectious symptomatic and recovered host populations
inpatchi,i=1,2withS,;, E,; and I,; denoting the susceptible, latent and infectious mosquito populations in patchi,i =1, 2.
As before, Nj, ; denotes the host patch population size (i,i = 1,2) and N, ; the total vector population in patch i, i = 1,2. The
vector is assumed to be incapable of moving between patches; a reasonable assumption in the case of Aedes aegypti under the
appropriate spatial scale. The patch model-parameters are collected in Table 1 with the flow diagram, single-patch dynamics
model, capturing the situation when residents and visitors do not move; that is, when the 2 x 2 residence times matrix P is
such that p;; = pyp = 1 (Fig. 1).

3.1. Two patch model

The Lagrangian framework, in the context of vector born and communicable diseases, is described in (Bichara & Castillo-
Chavez, 2016; Bichara et al., 2015, 2016). The application of this framework within a two patch model setting, where vectors
are incapable of moving across patches, leads to the following set of nonlinear differential equations:
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The basic reproduction number of this model is the largest eigenvalue of the matrix,
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Fig. 1. Flow diagram of the model.
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Specifically, we have that,

1
RE = 5 (mn +my; + \/(mn — my)? — dmyimy, )

If the two patches are isolated, a case that allows us to estimate the power of ZIKV transmission when each community
deals with ZIKV independently then local basic reproduction number is 2y = max{%g;}, i = 1,2, where,

Roj = Nuib?BunBrure
l Nh,i’Yh:"Lu(Vv + ,LLV)

that is, the expression found in Formula (2), with patch risk disparity, captured via the inequality, E > @ which turns out to
be directly proportional to the local basic reproduction numbers (%;) in the absence of mobility (uncoupled patches).
Changes in the entries of the coupling matrix P, would naturally impact the (two-patch) global basic reproduction number,
Ry and, the dynamics of ZIKV on the overall two-patch system, including the final epidemic size and the ZIKV levels of
infection within each patch. We then proceed to collect the results of a series of observations based on the simulation of
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extreme scenarios, all designed to explore the role that mobility (P), variations in patch risk (%;) and population density on
the risk and impact of a ZIKV outbreak on each patch. Naturally, the use of an extreme and simplistic set up is unlikely to yield
a broad characterization of the role of mobility, variations in risk and host density on ZIKV outbreaks within heterogenous
populations. Simulation results highlight nevertheless the impact that mobility, necessary for our economic survival (Soweto
residents working primarily in Johannesburg, South Africa), has on ZIKV outbreaks; or the impact of high levels of crime and
the restrictions that it imposes on vector borne control interventions (San Salvador, Rio de Janeiro and others) on ZIKV
outbreaks. The upshot is that the sharing of health and security resources between resource-rich and resource-limited
adjacent communities can make a difference whenever there is an agreement on the tradeoffs between public good and
individual safety.

4. Results

The impact of risk and mobility under few selected, non exhaustive, scenarios is used to highlight the impact of mobility
and risk under our restricted bi-modal set up. As specified, Patch 1 experiences high levels of crime, poverty and lack of
resources while Patch 2 has access to vector control measures, health care facilities and resources to minimize local crime and
violence; scenarios motivated by the dynamics of disease in conflict zones.

Since individuals experience a higher risk of ZIKV infection while in Patch 1 then it is assumed that mobility from Patch 2
to Patch 1 is unappealing with typical Patch 2 residents spending (on the average) a reduced amount of time each unit of time
in Patch 1. Parameters are chosen so that the dynamics of ZIKV within Patch 2 cannot be supported in the absence of mobility
between Patch 1 and Patch 2. Thus, the Patch 2 local basic reproductive number is taken to be less than one, namely,
Ry = 0.9. Mobility is modeled under the residence times matrix P with entries given initially by, pp; = 0.10 and p;; = 0.

Two cases are explored: A “worst case” scenario where control measures are hardly implemented due to crime, conflict or
other factors on Patch 1, that is, Patch 1 is a place where the risk of acquiring a ZIKV infection is high since %¢; = 2. The “best
case” scenario corresponds to the case when Patch 1 can implement some control measures with some degree of effec-
tiveness and, consequently Patch 1 has an #y; = 1.52. The %; values use are in line with those previously estimated for ZIKV
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P, =0%
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P, =30% 0.958
S N I P, = 45% 0.957 |
0.956 |
0.03 F
0.955 |
0.02 | 0.954 -
0.953 |
0.01
0.952 -
o) S— L Loy r— PR W— "] 0.951 L H L L L 1
0 100 200 300 400 500 600 700 200 300 400 500 600 700
Time Time
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0.03 . 0.6+
: _p12 =0% :""“
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Time Time

Fig. 2. Per patch incidence and final size proportions for p; = 0.10, p;; = 0,0.15,0.30 and 0.45. Mobility shifts the behavior of the Patch 1 final size in the “worst
case” scenario: #p; =2 and %y, = 0.9.
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Fig. 3. Per patch incidence and final size proportions for py; = 0.10, p1; = 0,0.15,0.30 and 0.45. Mobility significantly shapes the per patch final sizes in the
“worst case” scenario %y = 2 and #gy = 0.9.

outbreaks (Kucharski et al., 2016; Towers et al., 2016). Simulations are seeded by introducing an asymptomatic infected
individual in Patch 1 under the assumption that the host and vector populations are fully susceptible in both Patches.

Fig. 2 (top), shows the incidence and final ZIKV epidemic size when Patch 1 is under the “worst case scenario,” defined by a
basic reproduction number of %y, = 2 (Towers et al., 2016). Fig. 2 shows that at p;; = 0.15 the final number of infected
residents in Patch 1 is larger to the number in the baseline scenario (p, = 0). In fact, it reaches almost 96% of the population,
an unrealistic value. Additional simulated p;, values show that final Patch 1 size would go below the baseline case; a benefit
of mobility.

Fig. 2 highlights the case when the final Patch 2 epidemic size grows with increases in mobility when compared with the
baseline case (no mobility from Patch 1). We see reductions in the final Patch 1 epidemic size for some mobility values
accompanied by increments in the final Patch 2 epidemic size when compared to the baseline scenario (no mobility from
Patch 1). Specifically, reductions in Patch 1 final epidemic size are around 1 x 10~3 while increments in Patch 2 are around
1 x 102, under the assumption that the population in Patch 1 is the same as that in Patch 2. Thus while mobility may provide
benefits within Patch 1 (under the above assumptions) the fact remains that it does it at a cost. In short, it is also observed that
the final epidemic size per patch does not respond linearly to changes in mobility even when only the mobility p;, is
increased (see Figs. 2 and 3).

Consider now the “best case” scenario, a basic reproductive number 24, = 1.52, under the assumption that the population
in Patch 1 is the same as that in Patch 2. The results of simulations collected in Fig. 3 show a final size epidemic curve similar to
that generated in the “worst case” scenario for Patch 1. Some mobility values can increase the final Patch 1 epidemic size,
reaching almost 80% of the population when p, = 0.30, an unrealistic level, albeit, as expected lower than in the “worst” case
scenario. The existence of a mobility threshold after which the final epidemic sizes in Patch 1 starts to decrease is also
observed.

The results in Fig. 3 suggest that under all p;, mobility levels, Patch 2 final ZIKV epidemic size supports monotone growth
in the total number of infected individuals. The changes in the final epidemic size in each patch in Fig. 3 are roughly equivalent
(the same order, 1 x 10~2) given that the population in Patch 1 is the same as that in Patch 2.
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Fig. 4. Local and global final sizes through mobility values when p,; = 0.10. Although mobility reduces the global 2y, allowing mobility in the case of El Salvador
(%o = 2) might lead to a detrimental effect in the global final size.

The simulation results presented so far only provide partial information on the impact that short term mobility may have
on the transmission dynamics of ZIKV. This is an expected outcome given the myriad of assumptions that have been put in
place, namely, the restrictions placed on population density; the population in Patch 1 is the same as that in Patch 2. Now, by
fixing the mobility from Patch 2 to Patch 1, we are just focusing only on the impact of changes in mobility from Patch 1 to
Patch 2. Further, the potential changes in mobility patterns that host populations may have in response to ZIKV dynamics are
being ignored by our use of a mobility matrix P with constant entries pj;. Yet, under such restrictions and assumptions, we
have found that the qualitative response, final epidemic size within Patch 1 is qualitatively similar in the worst and best case
scenarios: increasing at first, decreasing after a certain threshold and crossing down the baseline case under some mobility
regimes. Further, it has been observed that the qualitative behavior of the final epidemic size in Patch 2 grows monotonically
as mobility increases. Patch 1 and Patch 2 responses are of different orders of magnitude in the “worst case” scenario but
roughly of the same order of magnitude in the “best case” scenario, which means, under our restrictive conditions and as-
sumptions, that reductions in risk in Patch 1 do help significantly.

4.1. The role of risk heterogeneity in the dynamics of ZIKV transmission

The impact of risk heterogeneity on ZIKV dynamics within the overall two-patch system is explored, an analysis that
requires the numerical estimation of the global reproduction number as a function of the mobility matrix P. Using the
previous scenarios (%#p; = 1.52,2) simulations are carried out first assuming equal population sizes (N; = N,). However,
when looking at the impact of changes in risk on Patch 2 (%2, = 0.8,0.9, 1, 1.1). Our simulations identify a growing epidemic
in Patch 2 as risk increases with the overall community experiencing nonlinear changes in risk as residency times change
from the baseline scenario given by p; = 0. Specifically, Fig. 4 captures overall reductions on the global reproductive number
for all residence times while identifying the existence of a residence time interval for which mobility decreases the total size
of the outbreak in the two patch community, when compared to the corresponding baseline case (p; = 0).

In the absence of mobility from Patch 1 (p1, = 0), increases in the final epidemic size as %; increases, are observed. These
simulations show that mobility can slow down the speed of the outbreak (smaller global 22y). Of course, the simulation
results also re-affirm the obvious, that is, that the existence of a high risk, mobile and well connected patch, can serve as an
outbreak magnifier; a situation that has been explored within an n-patch system under various connective schemes (Bichara
et al., 2015; Castillo-Chavez et al., 2016). This is because, in the two patch case, it is observed that the global reproductive
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Fig. 5. Total final size and global basic reproductive number through mobility values when p,; = 0.10. Local risk values are setup to %, = 0.9 and #y; = 1.52,2.

number £, experiences reductions for almost all mobility values. For the scenarios selected 2y never drops below 1. Hence,
under our assumptions and scenarios, it is seen that the use of fixed mobility patterns make the eliminating ZIKV extremely
difficult if not impossible under our two scenarios. Fig. 4 provides an example that highlights the relationship between the
global reproductive number and corresponding final epidemic size.

4.2. The role of population size heterogeneity in the dynamics of ZIKV transmission

The role of population density on the total final epidemic size and global basic reproductive number are explored under
our two scenarios, now under the changed assumption that the densities (population sizes) of Patch 1 and Patch 2 differ.
Specifically, we take N; = 2N,, 3N,, 5N, and 10N,.

Table 2

Final size (Patch 1, Patch 2) N; = 10000, %01 = 2, o2 = 0.9 and p,1 = 0.10.
N, Low Mobility Intermediate Mobility High Mobility Min %q
Ny =N, (0.9594, 0.5333) (0.9583, 0.5633) (0.9539, 0.6122) 1.4954
Ny =2N, (0.9683, 0.5418) (0.9685, 0.5599) (0.9667, 0.6116) 1.6786
Ny =3N, (0.9709, 0.5390) (0.9713, 0.5478) (0.9701, 0.6018) 1.7640
Ny = 5N, (0.9729, 0.5283) (0.9732, 0.5255) (0.9725, 0.5852) 1.8457
Ny = 10N, (0.9741, 0.5030) (0.9743, 0.4908) (0.9739, 0.5624) 1,9173

Table 3

Final size (Patch 1, Patch 2) N5y = 10000, %91 = 1.52, %92 = 0.9 and p,; = 0.10.
N, Low mobility Intermediate mobility High mobility Min #g
Ny =N, (0.7920, 0.3756) (0.7950, 0.4010) (0.7849, 0.4304) 1.1853
Ny = 2N, (0.8287, 0.3938) (0.8340, 0.4061) (0.8300, 0.4356) 1.3023
Ny =3N, (0.8398, 0.3948) (0.8448, 0.3956) (0.8422, 0.4248) 1.3590
Ny = 5N, (0.8480, 0.3877) (0.8520, 0.3731) (0.8500, 0.4046) 1.4141
Ny = 10N, (0.8533, 0.3652) (0.8556, 0.3352) (0.8542, 0.3756) 1.4630
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It is observed that difference in population sizes do matter. Specifically, it is observed that (under our selections) big
difference in density indicates that a higher final epidemic size is reached. The value of 90% for the “worst case” is possible
with changes in the global reproductive number exhibiting different patterns (see Fig. 5). We observe that despite increases in
the total final epidemic size as mobility changes the global %, actually decreases monotonically for most residence times,
never falling bellow one. A sensible degree of magnification on the spread of the disease as residence times change is
observed whenever the differences between N; and N, are not too extreme. In fact, it is possible for mobility to be beneficial
in the control of ZIKV under the above simplistic extreme scenarios. Simulations continue to show that under the prescribed
conditions and assumptions, model generated ZIKV outbreaks remain unrealistically high.

The simulations show, for example, that the global reproductive number reaches its minimum at around p;; = 0.90 with
Fig. 5 showing that the larger the high risk population gets (N; > N,), the greater the total final epidemic size becomes as
individuals from Patch 1 spend more than half of their day in Patch 2. Using a low p;, value, a small benefit is observed,
namely, the total final epidemic size is reduced, when the differences between %; are high.

For the two epidemiological scenarios #y; = 2 and %7 = 1.52, Tables 2 and 3 provide a summary of the average pro-
portion of infected for low (p;; =0 —0.2), intermediate (p;; =0.2 —0.4) and high mobility (p;; = 0.4 —0.6) when
p21 = 0.10. The role of population scaling N; = 2N, 3N,, 5N, and 10N, is also explored.

Fig. 6 shows the global % over all mobility values for different population weights in the two epidemic scenarios. The
minimum <2 value is reached for all cases when mobility is at an unrealistic 91% and when N; =N,.

The results collected in Fig. 6 show that short-term mobility plays an important role in ZIKV dynamics, again, under a
system involving two highly differentiated patches. Simulations also suggest that, even though mobility can reduce the global
basic reproductive number, that is not enough to eliminate an outbreak or really make a difference under our two scenarios.

5. Conclusions and discussion

A two-patch model where host-mobility is modeled using a Lagrangian approach is used to help understand the role
of host-movement on the transmission dynamics of ZIKV. This study focuses on the dynamics of a single outbreak albeit
the modeling framework can be used to study long-term dynamics as well, as long as the mobility patterns can be
captured effectively by the matrix P; which seems to be appropriate when used to model, for example, daily activity
patterns within an urban center. We make use of only two patches, as distinct as they can be, with the hope that sim-
ulations in this simplified system can shed some light on the transmission dynamics of ZIKV, in the presence of extreme
health disparities within neighboring communities or within urban centers. This framework can be used to study the
dynamics of vector born diseases within a collection of neighboring communities or neighborhoods experiencing mul-
tiple levels of health disparities and diverse connectivity mobility structures (Bichara & Castillo-Chavez, 2016). The study
of the role of mobility at larger scales can be best captured using question-specific related models that account for the
possibility of long-term mobility (see for example (Banks and Castillo-Chavez, 2003; Baroyan et al., 1971; Chowell,
Hyman, Eubank, & Castillo-Chavez, 2003b; Elveback et al., 1976; Herrera-Valdez, Cruz-Aponte, & Castillo-Chavez, 2011;
Khan et al., 2009; Rvachev & Longini, 1985)).

Although the goal is not to fit specific outbreaks or specific situations, we still make use of recently published parameter
ranges, including some reported by us (Towers et al., 2016); since framing the system within the range of ZIKV accepted
parameters helps highlight the impact that mobility may have within two highly distinct (bi-modal) communities. The
introduction of a Lagrangian modeling approach to study epidemic ZIKV outbreaks is also useful as it makes use of measurable

parameters, for instance risk (), which affect individuals differentially as a function of measurable patch-residency times
and, of course, mobility patterns (residency times).
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The impact of ZIKV can be assessed locally (each patch) or globally, that is, over the two patch system. System risk
assessment was carried out via the computation of the system %, which must be carried out via the numerical solution of a
system of nonlinear equations. Specifically, changes on the system %, were computed (as residency times were varied) in
relationship to the local %, that is, local basic reproduction numbers, both computed in the absence of mobility. Further, the
mobility-dependent system final epidemic sizes were computed via simulations that helped asses the impact of mobility (and
risk) not only locally but also on the overall system; an evaluation that depends on estimates of the overall basic reproduction
number (a measure of the disease's short-term power and long-term impact). The metrics used in our assessment include the
overall final epidemic size (a measure of the overall impact of an outbreak), a function of mobility within the two selected
scenarios, (#91 = 1.52 and %1 = 2).

It was found out that mobility's impact on the total final epidemic size depends on the local risk of infection and patch
population size. It was also determined that short term mobility is not always beneficial (hence the importance of reducing
health disparities at the most vulnerable places). In fact, mobility from high to low risk patches can reduce or increase the
total final epidemic size.

The challenges posed by policies that may be beneficial to the system but detrimental are also explored within our two-
patch system. Situations where the total final epidemic size increased with Rg, increases and situations where the total final
epidemic size decreased under low mobility values when Ry, >1 were documented. Population density does make a dif-
ference and examples when Ry, < 1 with mobility incapable of reducing the total final epidemic size under no differences in
patch density (here measured by total population size in each patch, both assumed to have roughly the same area) were also
identified. Differences in population density were also shown to be capable of generating reductions on the total final
epidemic size within some mobility regimes.

The highly simplified two-patch model used seem to have shed some light on the role of mobility on the spread of ZIKV in
areas where huge differences in the availability of public health programs and services —the result of endemic crime,
generalized violence and neglect— exist. Model simulations also seemed to have shed some light on the potential relevance of

the factors that we failed to account for. The value of the use of single patch-specific risk parameters () has strengths and
limitations. It is important to notice that the model used did not account explicitly for changes in the levels of infection within
the vector population nor does it account for impact of substantial differences in patch vector population sizes. The simplified
model fails to account for the responses to outbreaks by patch residents as individuals may alter mobility patterns, use more
protective clothing, and respond individually and independently of official control programs in response to dramatic in-
creases on vector population or a surge in cases. Clearly, the use of two patches and our assumptions do limit the outcomes
that such a system can support. Communities can't in generally be modeled under a highly differentiated two-tier system and
in the case of ZIKV, the possibility of vertical transmission in humans and vectors as well as sexually-transmitted ZIV can't be
completely neglected (Brauer, Castillo-Chavez, Mubayi, & Towers, 2016). The introduction of changes in behavior in response
to individuals' assessment of the levels of risk infection over time needs to be addressed (Castillo-Chavez et al., 2016); a
challenge that has yet to be met to the satisfaction of the scientific community involved in the study of epidemiological
processes as complex adaptive systems (see for example (Fenichel et al., 2011; Morin, Fenichel, & Castillo-Chavez, 2013;
Perrings et al., 2014)).

The limitations of the role of technology in the absence of the public health infrastructure —there is no silver bullet— has
been recently addressed in the context of Ebola ((Chowell et al., 2015; Yong, Herrera, & Castillo-Chavez, 2016)) with appli-
cations of the Lagrangian approach as presented here in the context of communicable and vector born diseases, including
dengue, tuberculosis and Ebola, in settings where health disparities are pervasive ((Bichara et al., 2016; Espinoza et al., 2016,
p. pp.123)). Further, the use of simplified models, quite often tends to over-estimate the impact of an outbreak (see (Nishiura
etal, 2009, 2011)) and the model and scenarios used highlight the limitations on the use of simplified settings when the goal
is to capture or mimic the dynamics of specific systems—not the goal of this manuscript.

Certainly, we have seen the use of dramatic measures to limit the spread of diseases like SARS, Influenza or Ebola ((Chowell
et al,, 20034, 2015; Herrera-Valdez et al., 2011)), as well as the rise of vector born diseases like Dengue and Zika, and the
dramatic implications that some measures have had on local and global economies. The question remains, what can we do to
mitigate or limit the spread of disease, particularly emergent diseases without disrupting central components? Discussions
on these issues are recurrent (Fenichel et al., 2011; Morin et al., 2013), most intensely in the context of SARS, Influenza, Ebola
and Zika, in the last decade or so. The vulnerability of world societies is directly linked to the lack of action in addressing the
challenges faced by the weakest links in the system must be accepted and acted on by the world community. We need global
investments in communities and nations where health disparities and lack of resources are the norm. We must invest in
research and surveillance within clearly identified world hot spots, where the emergence of new disease are most likely to
emerge, and we must do so with the involvement, at all levels, of the affected communities (Castillo-Chavez et al., 2015;
Perrings et al., 2014).
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