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SUMMARY EXTENDING TO A SMOOTH METRIC

We construct new solutions to the quasi-Einstein metrics. Via stan- | | Theorem 0.7 Let M be a product of Fano Kihler—Einstein manifolds (M;, h;) with Ric = p;h;. Then the S*-bundle over M admits quasi—Einstein | | Given the rationally symmetric metric on (0, 7) x S~ 1(1),
dard techniques, the main application of this result is that it yields || metrics if 0 < |q;| < p;, where the q; are integers which determine the Euler class.
new solutions to Einstein’s equations. Such spaces were first studied g =dt* + (t)ds%_l,
by Einstein as models for the universe. Today they are still objects | EIEV I S GO NI PN I B i:Te) 30 o . .
of central importance in both physics and mathematics, serving as we wish it to extend smoothly at ¢ = 0. Using the coordm.ate change
fundamental building blocks in general relativity. The Euler class measure how twisted the bundles is: a strip of paper has zero Euler class, but a Mobius band has non-zero class. r = tswithz € R", ¢ > 0, and s € S"!(1), we require that the
functions
2 2
\- The photograph shows Einstein writing out his equation: note the [7(t) | 1 (1 _ T )
WARPED PRODUCTS Ricci curvature term. We will rewrite our Ricci cuvature term as t2 12 t?

follows. Let a(s) = f*(t) and ds = f(t)dt. Differentiating «, to be smooth at ¢ = 0. To do so, we just need the functions to be

continuous at ¢t = 0 or else it will not be differentiable. In other

o 1 , words,
o/(s) =2 (1), = 2 (D) 55 = 20(1) = m T i (1- 50 ew

im
t—0 12 7 t50 t2 2

The Euclidean plane is a product: R* = R x R. We measure the
squared length of a vector v = (z,y) by adding the squares of the
lengths of the projections onto each factor:

ol = 2 + 2.
For the first limit, since the denominator goes to 0 as ¢t approaches
zero, we need f(0) = 0. Similarly, for the second limit, we need to
o (s) =2f(t)— =2L = |- — _§ , assume that f(0) = 1. Like the first limit, lim;_,o ¢* = 0 so we need

lim; (1 — f2(t)/t*) = 1. Notice that

More generally, if (M, g) and (H, h) are Riemannian manifolds the
product manifold is (M x N, g+ h).

Definition 0.1 A warped product metricon M x N is given as g+e’ h,
where f € C>(M).

2 2 2
This explains the first term we encounter in the quasi-Einstein lim f gt) _ (lim f (t)) _ (Hm ) —f (0)> — f (0))2 =1
equations below; it corresponds to one of the Ricci curvature. t=0 ¢ t—0 1 t—=0  t—0

Example 0.2 Taking f = 0 yields usual products, so this is a generaliza-
tion.

which is desired. With our choice of a(s) = f4(t), we get that o’/ (0) =

2
\_
FUTURE RESEARCH

Example 0.3 Take (0, 7) x S' with metric dt? + sin®(t)d0?). We obtain a
description of the round sphere S* with the north and south poles removed.

Let s be the coordinate on I = (0,1) such that ds = f(t)dt, a(s) = f2(t), Bi(s) = g?(t), ¢(s) = v(t) and V = IIi=7¢>™ (t). We choose our
anti-derivative so that s ranges over the interval |0, s.|. Under the coordinate changes, the quasi-Einstein equations are given by:

t = 0: North Pole

T 2
la// 4 1 o (log VY + Z n; gt 1 (5’) +m (oqu" 4 O/qb’) _ € | (1) Into the future, we aim to study the quasi-Einstein equations in the
2 2 — bi Bi ¢ 2¢ 2 noncompact case and find new solutions there. This is a natural next
T tion.
1 1 n;q? o' € ques
t = m/2: the equator 504” T 50/(10g V) —a ; 252 Tm 2 o (2) _
“ol B 2 - ] _ T -
5 3, + <5z (52) +35 3, t (log V)’ 3, +- 252 +mg 5Z¢ =5 ©R REFERENCES
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The fundamental reason we care about the quasi-Einstein equations , .
s 616 = o5+ R2), Bils) = Ails 4 50)* () = VA5t mo) ™ [ V(4w (B4 S04 m0)?) 3] 5. Huang, 1. Murphy and . Phan Ques Einstein metrics or
Theorem 0.4 Let (S%, h) denote the round sphere. Then (M xS?, g+e’ h) z ’ ' '
is Einstein < (M, g, f) is quasi-Einstein. Remark: One can solve for «a(s) using the tools from Math 250B since the system boils down to solving a first order linear differential || [4] J. Wang, M. Wang, Einstein metrics on S2-bundles, Math Ann,
equation, 310, (1998), 497- 526.
In fact S® can be any Einstein manifold. Our aim therefore is to find 1 / / / 1 . I \-
. o_ . . . 1 1 . —
\a solution to the quasi-Einstein equations. o+« <( og V) + m(log @) s+ So) 5 (s + ko) + (5 + ko)
where F is constant. Applying the integrating factor, we get
SETUP pplying & & &
Warped products are now used in a second way: to find an explicit [ — o (logV)'+ o) ds = elog VH(m=Dlog(s+ro) — V(g 4 50)™ L.

solution to the quasi-Einstein equations . \-

Lemma 0.5 Let (H, h) be a Riemannian manifold. For the warped product PROOF

. L 2 2 . . .
mgtrzc g = ff?t + f2 (&)l on I x H has (one of its) Ricci curoature terms | | pyjy:g proof has an issue when he determnines k¢ and s, as functions of E. The proof presented does not work for the case of S*-bundles
given by ——. but only in the case when blowdowns are allowed. We find a different way of determining these numbers as functions of E.

Example 0.6 For (0,7) x S, dt? + sin® td6?, there is only one curvature || Lemma 0.8 With the same notation as above;

terms:
— _ —(—sint) 1 1. If a(0) = 0, then kg is a root of the quadratic %x2 +2x — F.
f Sin ¢ 2. If a(s,) = 0, then —ko — s, is a root of the quadratic 12? + 2z — E.
\T his is the “round” sphere, which is curved the same for all values of t.

\T his can be proved by plugging in the assumptions into equation (3).




