Introduction

Beginning with the 2005-06 school year, every senior must pass the California High School Exit Examination (CAHSEE) in order to receive a high school diploma from a California public school. Students in the Class of 2006 will have their first opportunity to take the CAHSEE in February and March 2004.

All questions on the CAHSEE are evaluated by committees of content experts, including California educators, teachers, and administrators, to ensure the questions’ appropriateness for measuring the designated California academic content standards in English-language arts and mathematics. In addition to content, all items are reviewed and approved to ensure their adherence to the principles of fairness and to ensure no bias exists with respect to characteristics such as gender, ethnicity, and language.

This document combines released test questions that appeared on CAHSEE test forms in 2001 and 2002 with new test questions from 2003. It will replace the 2001 and 2002 CAHSEE released test questions formerly on the California Department of Education’s Web site at http://www.cde.ca.gov/statetests/cahsee/. The questions are grouped by strand (e.g., Number Sense). At the beginning of each strand section is a list of the specific standards assessed on the CAHSEE. Following a group of questions is a table that gives the correct answer for each question, the content standard each question is measuring, and the year each question originally appeared on the CAHSEE.

The following table lists each strand, the number of items that appear on the exam, and the number of released test questions that appear in this document.

<table>
<thead>
<tr>
<th>STRAND</th>
<th>NUMBER OF QUESTIONS ON EXAM</th>
<th>NUMBER OF RELEASED TEST QUESTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Number Sense (NS)</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>• Statistics, Data Analysis, and Probability (PS)</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>• Algebra and Functions (AF)</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>• Measurement and Geometry (MG)</td>
<td>17</td>
<td>26</td>
</tr>
<tr>
<td>• Mathematical Reasoning (MR)</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>• Algebra I (1A)</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>TOTAL</td>
<td>80</td>
<td>130</td>
</tr>
</tbody>
</table>

In selecting test questions for release, three criteria are used: (1) the questions adequately cover the content standards assessed on the CAHSEE, (2) the questions demonstrate a range of difficulty, and (3) the questions present a variety of ways each standard can be assessed. These released test questions do not reflect all of the ways the standards may be assessed. Released test questions will not appear on future tests.

For more information about the CAHSEE, visit the CDE’s Web site at the address listed above.

This is a sample of California High School Exit Examination questions. This is NOT an operational test form. Test scores cannot be projected based on performance on released test questions. Copyright © 2004 by the California Department of Education.
NUMBER SENSE

The following ten California mathematics academic content standards from the Number Sense strand are assessed on the CAHSEE and are represented in this booklet by 24 released test questions. These questions represent only a few of the ways in which these standards may be assessed on the CAHSEE.

<table>
<thead>
<tr>
<th>GRADE 7 — NUMBER SENSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Set 1.0</td>
</tr>
<tr>
<td>Students know the properties of, and compute with, rational numbers expressed in a variety of forms:</td>
</tr>
<tr>
<td>Standard 1.1</td>
</tr>
<tr>
<td>Read, write, and compare rational numbers in scientific notation (positive and negative powers of 10) with approximate numbers using scientific notation.</td>
</tr>
<tr>
<td>Standard 1.2</td>
</tr>
<tr>
<td>Add, subtract, multiply, and divide rational numbers (integers, fractions, and terminating decimals) and take positive rational numbers to whole-number powers.</td>
</tr>
<tr>
<td>Standard 1.3</td>
</tr>
<tr>
<td>Convert fractions to decimals and percents and use these representations in estimations, computations, and applications.</td>
</tr>
<tr>
<td>Standard 1.6</td>
</tr>
<tr>
<td>Calculate the percentage of increases and decreases of a quantity.</td>
</tr>
<tr>
<td>Standard 1.7</td>
</tr>
<tr>
<td>Solve problems that involve discounts, markups, commissions, and profit, and compute simple and compound interest.</td>
</tr>
</tbody>
</table>

| Standard Set 2.0 |
| Students use exponents, powers, and roots, and use exponents in working with fractions: |
| Standard 2.1 |
| Understand negative whole-number exponents. Multiply and divide expressions involving exponents with a common base. |
| Standard 2.2 |
| Add and subtract fractions by using factoring to find common denominators. |
| Standard 2.3 |
| Multiply, divide, and simplify rational numbers by using exponent rules. |
| Standard 2.4 |
| Use the inverse relationship between raising to a power and extracting the root of a perfect square integer; for an integer that is not square, determine without a calculator the two integers between which its square root lies and explain why. |
| Standard 2.5 |
| Understand the meaning of the absolute value of a number; interpret the absolute value as the distance of the number from zero on a number line; and determine the absolute value of real numbers. |
Number Sense

1. The radius of the earth’s orbit is 150,000,000,000 meters. What is this number in scientific notation?
 A. 1.5×10^{-11}
 B. 1.5×10^{11}
 C. 15×10^{10}
 D. 150×10^9

2. $3.6 \times 10^2 =$
 A. 3600
 B. 36
 C. 360
 D. 3600

3. The five members of a band are getting new outfits. Shirts cost $12 each, pants cost $29 each, and boots cost $49 a pair. What is the total cost of the new outfits for all of the members?
 A. $90
 B. $95
 C. $450
 D. $500

4. $\frac{11}{12} - \left(\frac{1}{3} + \frac{1}{4} \right) =$
 A. $\frac{1}{3}$
 B. $\frac{3}{4}$
 C. $\frac{5}{6}$
 D. $\frac{9}{5}$

5. Which of the following numerical expressions results in a negative number?
 A. $(-7) + (-3)$
 B. $(-3) + (7)$
 C. $(3) + (7)$
 D. $(3) + (-7) + (11)$

6. One hundred is multiplied by a number between 0 and 1. The answer has to be
 A. less than 0.
 B. between 0 and 50 but not 25.
 C. between 0 and 100 but not 50.
 D. between 0 and 100.
7. If Freya makes 4 of her 5 free throws in a basketball game, what is her free throw shooting percentage?
 A 20%
 B 40%
 C 80%
 D 90%

8. Some students attend school 180 of the 365 days in a year. About what part of the year do they attend school?
 A 18%
 B 50%
 C 75%
 D 180%

9. What is the fractional equivalent of 60%?
 A \(\frac{1}{6} \)
 B \(\frac{3}{6} \)
 C \(\frac{3}{5} \)
 D \(\frac{2}{3} \)

10. The cost of an afternoon movie ticket last year was $4.00. This year an afternoon movie ticket costs $5.00. What is the percent increase of the ticket from last year to this year?
 A 10%
 B 20%
 C 25%
 D 40%

11. The price of a calculator has decreased from $12.00 to $9.00. What is the percent of decrease?
 A 3%
 B 25%
 C 33%
 D 75%

12. Sally puts $200.00 in a bank account. Each year the account earns 8% simple interest. How much interest will be earned in three years?
 A $16.00
 B $24.00
 C $48.00
 D $160.00
13. A pair of jeans regularly sells for $24.00. They are on sale for 25% off. What is the sale price of the jeans?
 A $6.00
 B $18.00
 C $20.00
 D $30.00

14. A CD player regularly sells for $80. It is on sale for 20% off. What is the sale price of the CD player?
 A $16
 B $60
 C $64
 D $96

15. Which number equals \((2)^{-4}\)?
 A \(-8\)
 B \(\frac{1}{16}\)
 C \(\frac{1}{16}\)
 D \(\frac{1}{8}\)

16. \(\frac{10^{-2}}{10^{-4}} = \)
 A \(10^{-6}\)
 B \(10^{-2}\)
 C \(10^{2}\)
 D \(10^{8}\)

17. Which fraction is equivalent to \(\frac{5}{6} + \frac{7}{8}\)?
 A \(\frac{35}{48}\)
 B \(\frac{6}{7}\)
 C \(\frac{20}{21}\)
 D \(\frac{41}{24}\)

18. Which of the following is the prime factored form of the lowest common denominator of \(\frac{7}{10} + \frac{8}{15}\)?
 A \(5 \times 1\)
 B \(2 \times 3 \times 5\)
 C \(2 \times 5 \times 3 \times 5\)
 D \(10 \times 15\)
19. \((3^8)^2 =\)

A. \(3^4\)
B. \(3^6\)
C. \(3^{10}\)
D. \(3^{16}\)

20. \(4^3 \times 4^2 =\)

A. \(4^5\)
B. \(4^6\)
C. \(16^5\)
D. \(16^6\)

21. The square root of 150 is between

A. 10 and 11.
B. 11 and 12.
C. 12 and 13.
D. 13 and 14.

22. The square of a whole number is between 1,500 and 1,600. The number must be between

A. 30 and 35.
B. 35 and 40.
C. 40 and 45.
D. 45 and 50.

23. If \(|x| = 3\), what is the value of \(x\)?

A. \(-3\) or 0
B. \(-3\) or 3
C. 0 or 3
D. \(-9\) or 9

24. What is the absolute value of \(-4\)?

A. \(-4\)
B. \(-\frac{1}{4}\)
C. \(\frac{1}{4}\)
D. 4
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Standard</th>
<th>Year of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>7NS1.1</td>
<td>2002</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>7NS1.1</td>
<td>2001</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>7NS1.2</td>
<td>2002</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>7NS1.2</td>
<td>2002</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>7NS1.2</td>
<td>2001</td>
</tr>
<tr>
<td>6</td>
<td>D</td>
<td>7NS1.2</td>
<td>2001</td>
</tr>
<tr>
<td>7</td>
<td>C</td>
<td>7NS1.3</td>
<td>2002</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>7NS1.3</td>
<td>2001</td>
</tr>
<tr>
<td>9</td>
<td>C</td>
<td>7NS1.3</td>
<td>2001</td>
</tr>
<tr>
<td>10</td>
<td>C</td>
<td>7NS1.6</td>
<td>2002</td>
</tr>
<tr>
<td>11</td>
<td>B</td>
<td>7NS1.6</td>
<td>2001</td>
</tr>
<tr>
<td>12</td>
<td>C</td>
<td>7NS1.7</td>
<td>2002</td>
</tr>
<tr>
<td>13</td>
<td>B</td>
<td>7NS1.7</td>
<td>2001</td>
</tr>
<tr>
<td>14</td>
<td>C</td>
<td>7NS1.7</td>
<td>2001</td>
</tr>
<tr>
<td>15</td>
<td>C</td>
<td>7NS2.1</td>
<td>2003</td>
</tr>
<tr>
<td>16</td>
<td>C</td>
<td>7NS2.1</td>
<td>2002</td>
</tr>
<tr>
<td>17</td>
<td>D</td>
<td>7NS2.2</td>
<td>2003</td>
</tr>
<tr>
<td>18</td>
<td>B</td>
<td>7NS2.2</td>
<td>2001</td>
</tr>
<tr>
<td>19</td>
<td>D</td>
<td>7NS2.3</td>
<td>2002</td>
</tr>
<tr>
<td>20</td>
<td>A</td>
<td>7NS2.3</td>
<td>2001</td>
</tr>
<tr>
<td>21</td>
<td>C</td>
<td>7NS2.4</td>
<td>2002</td>
</tr>
<tr>
<td>22</td>
<td>B</td>
<td>7NS2.4</td>
<td>2001</td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>7NS2.5</td>
<td>2002</td>
</tr>
<tr>
<td>24</td>
<td>D</td>
<td>7NS2.5</td>
<td>2001</td>
</tr>
</tbody>
</table>
The following seven California mathematics academic content standards from the Statistics, Data Analysis, and Probability strand are assessed on the CAHSEE and are represented in this booklet by 17 test questions. These questions represent only a few of the ways in which these standards may be assessed on the CAHSEE.

GRADE 6 — STATISTICS, DATA ANALYSIS, AND PROBABILITY

Standard Set 1.0 Students compute and analyze statistical measurements for data sets:

1.1 Compute the range, mean, median, and mode of data sets.*

Standard Set 2.0 Students use data samples of a population and describe the characteristics and limitations of the samples:

2.5 Identify claims based on statistical data and, in simple cases, evaluate the validity of the claims.

Standard Set 3.0 Students determine theoretical and experimental probabilities and use these to make predictions about events:

3.1 Represent all possible outcomes for compound events in an organized way (e.g., tables, grids, tree diagrams) and express the theoretical probability of each outcome.

3.3 Represent probabilities as ratios, proportions, decimals between 0 and 1, and percentages between 0 and 100 and verify that the probabilities computed are reasonable; know that if \(P \) is the probability of an event, \(1 - P \) is the probability of an event not occurring.

3.5 Understand the difference between independent and dependent events.

GRADE 7 — STATISTICS, DATA ANALYSIS, AND PROBABILITY

Standard Set 1.0 Students collect, organize, and represent data sets that have one or more variables and identify relationships among variables within a data set by hand and through the use of an electronic spreadsheet software program:

1.1 Know various forms of display for data sets, including a stem-and-leaf plot or box-and-whisker plot; use the forms to display a single set of data or to compare two sets of data.*

1.2 Represent two numerical variables on a scatterplot and informally describe how the data points are distributed and any apparent relationship that exists between the two variables (e.g., between time spent on homework and grade level).

* The crossed-out portion of this standard is not assessed on the CAHSEE, but is still included in grade-level standards.
25. Donald priced six personal Compact Disc (CD) players. The prices are shown below.

\[\$21.00, \$23.00, \$21.00, \$39.00, \$25.00, \$31.00 \]

What is the median price?
A $21.00
B $24.00
C $27.00
D $30.00

26. Rico’s first three test scores in biology were 65, 90, and 73. What was his mean score?

A 65
B 73
C 76
D 90

27. The chart below shows the mathematics test scores of three students.

<table>
<thead>
<tr>
<th>Students</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parisa</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Hector</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Charles</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td>9</td>
</tr>
</tbody>
</table>

What is Hector’s mean score?
A 6
B 7
C 8
D 9

28. The Smithburg town library wanted to see what types of books were borrowed most often.

According to the circle graph shown above—

A more Children’s books were borrowed than Romance and Science Fiction combined.
B more than half of the books borrowed were Children’s, Mysteries, and Art combined.
C more Mysteries were borrowed than Art and Science Fiction combined.
D more than half of the books borrowed were Romance, Mysteries, and Science Fiction combined.

29. Three-fourths of the 36 members of a club attended a meeting. Ten of those attending the meeting were female. Which one of the following questions can be answered with the information given?

A How many males are in the club?
B How many females are in the club?
C How many male members of the club attended the meeting?
D How many female members of the club did not attend the meeting?
30. *Quality Drinks* used the data in the table above to create an advertisement. It claims, “*Quality Drinks* cares. We have one-tenth the number of injuries at work as *Best Drinks* has.” Why is this claim misleading?

A. On the average, *Best Drinks* has more injuries per year.

B. The claim should say, “one-fifth the number of injuries.”

C. The claim should say, “twenty-five percent fewer injuries.”

D. On the average, *Quality Drinks* has more injuries per year.

31. To get home from work, Curtis must get on one of the three highways that leave the city. He then has a choice of four different roads that lead to his house. In the diagram below, each letter represents a highway, and each number represents a road.

If Curtis randomly chooses a route to travel home, what is the probability that he will travel Highway B and Road 4?

A. \(\frac{1}{16} \)

B. \(\frac{1}{12} \)

C. \(\frac{1}{4} \)

D. \(\frac{1}{3} \)
32. A bucket contains 3 bottles of apple juice, 2 bottles of orange juice, 6 bottles of tomato juice, and 8 bottles of water. If Kira randomly selects a bottle, what is the probability that she will select a drink other than water?

A \[\frac{3}{4} \]

B \[\frac{11}{19} \]

C \[\frac{8}{19} \]

D \[\frac{1}{4} \]

33. The spinner shown above is fair. What is the probability that the spinner will not stop on red if you spin it one time?

A \[\frac{1}{4} \]

B \[\frac{1}{3} \]

C \[\frac{3}{4} \]

D \[\frac{4}{3} \]

34. Mr. Gulati is holding five cards numbered 1 through 5. He has asked five students to each randomly pick a card to see who goes first in a game. Whoever picks the card numbered 5 goes first. Juanita picks first, gets the card numbered 4, and keeps the card. What is the probability that Yoko will get the card numbered 5 if she picks second?

A \[\frac{1}{2} \]

B \[\frac{1}{3} \]

C \[\frac{1}{4} \]

D \[\frac{1}{5} \]

35. A bag contained four green balls, three red balls, and two purple balls. Jason removed one purple ball from the bag and did not put the ball back in the bag. He then randomly removed another ball from the bag. What is the probability that the second ball Jason removed was purple?

A \[\frac{1}{36} \]

B \[\frac{1}{9} \]

C \[\frac{1}{8} \]

D \[\frac{2}{9} \]
36. Heather flipped a coin five times, and each time it came up heads. If Heather flips the coin one more time, what is the theoretical probability that it will come up tails?

A $\frac{1}{6}$
B $\frac{1}{2}$
C $\frac{3}{5}$
D $\frac{5}{6}$

37. The circle graph shown above represents the distribution of the grades of 40 students in a certain geometry class. How many students received As or Bs?

A 6
B 10
C 15
D 20
Statistics, Data Analysis, and Probability

39. The graph below represents the closing price of a share of a certain stock for each day of a week.

Which day had the greatest increase in the value of this stock over that of the previous day?

A Tuesday
B Wednesday
C Thursday
D Friday

38. Based on the bar graph shown above, which of the following conclusions is true?

A Everyone ran faster than 6 meters per second.
B The best possible rate for the 100-meter dash is 5 meters per second.
C The first-place runner was four times as fast as the fourth-place runner.
D The second-place and third-place runners were closest in time to one another.
40. Which scatterplot shows a negative correlation?

A

Number of Books

0 10 20 30 40 50

0 10 20 30 40

Number of Students

B

Price per Person

0 10 20 30 40 50

0 10 20 30 40

Number of People

C

Miles Driven

0 10 20 30 40 50

0 10 20 30 40

Number of People

D

Cost of Call (cents)

0 10 20 30 40 50

0 10 20 30 40

Number of Minutes
41. The cost of a ticket to Funland varies according to the season. Which of the following conclusions about the number of tickets purchased and the cost per ticket is best supported by the scatterplot above?

A. The cost per ticket increases as the number of tickets purchased increases.
B. The cost per ticket is unchanged as the number of tickets purchased increases.
C. The cost per ticket decreases as the number of tickets purchased increases.
D. There is no relationship between the cost per ticket and the number of tickets purchased.
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Standard</th>
<th>Year of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>B</td>
<td>6PS1.1</td>
<td>2003</td>
</tr>
<tr>
<td>26</td>
<td>C</td>
<td>6PS1.1</td>
<td>2002</td>
</tr>
<tr>
<td>27</td>
<td>C</td>
<td>6PS1.1</td>
<td>2001</td>
</tr>
<tr>
<td>28</td>
<td>D</td>
<td>6PS2.5</td>
<td>2003</td>
</tr>
<tr>
<td>29</td>
<td>C</td>
<td>6PS2.5</td>
<td>2002</td>
</tr>
<tr>
<td>30</td>
<td>D</td>
<td>6PS2.5</td>
<td>2001</td>
</tr>
<tr>
<td>31</td>
<td>B</td>
<td>6PS3.1</td>
<td>2002</td>
</tr>
<tr>
<td>32</td>
<td>B</td>
<td>6PS3.3</td>
<td>2003</td>
</tr>
<tr>
<td>33</td>
<td>C</td>
<td>6PS3.3</td>
<td>2001</td>
</tr>
<tr>
<td>34</td>
<td>C</td>
<td>6PS3.5</td>
<td>2002</td>
</tr>
<tr>
<td>35</td>
<td>C</td>
<td>6PS3.5</td>
<td>2002</td>
</tr>
<tr>
<td>36</td>
<td>B</td>
<td>6PS3.5</td>
<td>2001</td>
</tr>
<tr>
<td>37</td>
<td>B</td>
<td>7PS1.1</td>
<td>2003</td>
</tr>
<tr>
<td>38</td>
<td>D</td>
<td>7PS1.1</td>
<td>2002</td>
</tr>
<tr>
<td>39</td>
<td>B</td>
<td>7PS1.1</td>
<td>2001</td>
</tr>
<tr>
<td>40</td>
<td>B</td>
<td>7PS1.2</td>
<td>2002</td>
</tr>
<tr>
<td>41</td>
<td>C</td>
<td>7PS1.2</td>
<td>2001</td>
</tr>
</tbody>
</table>
ALGEBRA AND FUNCTIONS

The following ten California mathematics academic content standards from the Algebra and Functions strand are assessed on the CAHSEE and are represented in this booklet by 26 test questions. These questions represent only a few of the ways in which these standards may be assessed on the CAHSEE.

GRADE 7 — ALGEBRA AND FUNCTIONS

<table>
<thead>
<tr>
<th>Standard Set 1.0</th>
<th>Students express quantitative relationships by using algebraic terminology, expressions, equations, inequalities, and graphs:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Use variables and appropriate operations to write an expression, an equation, an inequality, or a system of equations or inequalities that represents a verbal description (e.g., three less than a number, half as large as area A).</td>
</tr>
<tr>
<td>1.2</td>
<td>Use the correct order of operations to evaluate algebraic expressions such as $3(2x + 5)^2$.</td>
</tr>
<tr>
<td>1.5</td>
<td>Represent quantitative relationships graphically and interpret the meaning of a specific part of a graph in the situation represented by the graph.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Set 2.0</th>
<th>Students interpret and evaluate expressions involving integer powers and simple roots:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Interpret positive whole-number powers as repeated multiplication and negative whole-number powers as repeated division or multiplication by the multiplicative inverse. Simplify and evaluate expressions that include exponents.</td>
</tr>
<tr>
<td>2.2</td>
<td>Multiply and divide monomials; extend the process of taking powers and extracting roots to monomials when the latter results in a monomial with an integer exponent.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Set 3.0</th>
<th>Students graph and interpret linear and some nonlinear functions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Graph functions of the form $y = nx^2$ and $y = nx^3$ and use in solving problems.</td>
</tr>
<tr>
<td>3.3</td>
<td>Graph linear functions, noting that the vertical change (change in y-value) per unit of horizontal change (change in x-value) is always the same and know that the ratio (“rise over run”) is called the slope of a graph.</td>
</tr>
<tr>
<td>3.4</td>
<td>Plot the values of quantities whose ratios are always the same (e.g., cost to the number of an item, feet to inches, circumference to diameter of a circle). Fit a line to the plot and understand that the slope of the line equals the quantities.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Set 4.0</th>
<th>Students solve simple linear equations and inequalities over the rational numbers:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Solve two-step linear equations and inequalities in one variable over the rational numbers, interpret the solution or solutions in the context from which they arose, and verify the reasonableness of the results.</td>
</tr>
<tr>
<td>4.2</td>
<td>Solve multistep problems involving rate, average speed, distance, and time or a direct variation.</td>
</tr>
</tbody>
</table>
42. Which of the following inequalities represents the statement, “A number, \(x \), decreased by 13 is less than or equal to 39”?

A. \(13 - x \geq 39 \)
B. \(13 - x \leq 39 \)
C. \(x - 13 \leq 39 \)
D. \(x - 13 < 39 \)

43. A shopkeeper has \(x \) kilograms of tea in stock. He sells 15 kilograms and then receives a new shipment weighing 2\(y \) kilograms. Which expression represents the weight of the tea he now has?

A. \(x - 15 - 2y \)
B. \(x + 15 + 2y \)
C. \(x + 15 - 2y \)
D. \(x - 15 + 2y \)

44. Divide a number by 5 and add 4 to the result. The answer is 9. Which of the following equations matches these statements?

A. \(4 = 9 + \frac{n}{5} \)
B. \(\frac{n}{5} + 4 = 9 \)
C. \(\frac{5}{n} = 4 \)
D. \(\frac{n + 4}{5} = 9 \)

45. In a certain room, the number of chairs, \(c \), is equal to 3 times the number of tables, \(t \). Which equation matches the information?

A. \(3 \cdot c = t \)
B. \(3 \cdot t = c \)
C. \(3 \cdot c = 3 \cdot t \)
D. \(c \cdot t = 3 \)

46. If \(n = 2 \) and \(x = \frac{1}{2} \), then \(n(4 - x) = \)

A. 1
B. 3
C. 7
D. 10

47. If \(h = 3 \) and \(k = 4 \), then \(\frac{hk + 4}{2} - 2 = \)

A. 6
B. 7
C. 8
D. 10

This is a sample of California High School Exit Examination questions. This is NOT an operational test form. Test scores cannot be projected based on performance on released test questions. Copyright © 2004 by the California Department of Education.
Algebra and Functions

48. The graph below shows the growth in U.S. population from 1860 to 1980.

U.S. Population Growth

What was the increase in population from 1870 to 1930?
A 100,000,000
B 80,000,000
C 50,000,000
D 40,000,000

49. Consider the circle graph shown below.

Ramon’s 24-hour day

School \(\frac{1}{4} \)
Eating, Playing, T.V. \(\frac{1}{3} \)
Sleeping \(\frac{1}{3} \)
Homework \(\frac{1}{12} \)

How many hours a day does Ramon spend in school?
A 2 hours
B 4 hours
C 6 hours
D 8 hours

50. After three hours of travel, Car A is about how many kilometers ahead of Car B?
A 2
B 10
C 20
D 25
51. The graph above shows the time of travel by pupils from home to school. How many pupils must travel for more than 10 minutes?

A 2
B 5
C 7
D 8

52. The cost of a long distance call charged by each of two telephone companies is shown on the graph below.

Company A is less expensive than Company B for

A all calls.
B 3 minute calls only.
C calls less than 3 minutes.
D calls longer than 3 minutes.

53. \(x^3y^3 = \)

A \(9xy \)
B \((xy)^6 \)
C \(3xy \)
D \(xxxyyy \)

54. \(\sqrt{4x^4} = \)

A 2
B \(2x \)
C \(4x \)
D \(2x^2 \)
55. Simplify the expression shown below.

\[(5x^2z^2)(8xz^3)\]

A \(40x^3z^6\)
B \(40x^2z^5\)
C \(40x^3z^6\)
D \(40x^5z^5\)

56. Simplify the expression shown below.

\[(6a^4bc)(7ab^3c)\]

A \(13a^4b^3c\)
B \(13a^5b^4c^2\)
C \(42a^4b^3c\)
D \(42a^5b^4c^2\)
57. Which of the following is the graph of \(y = \frac{1}{4} x^2 \)?
58. Which of the following could be the graph of \(y = x^3 \)?

- **A**
- **B**
- **C**
- **D**
59. What is the slope of the line shown in the graph above?

A -2

B $\frac{-1}{2}$

C $\frac{1}{2}$

D 2

60. The slope of the line shown below is $\frac{2}{3}$.

What is the value of d?

A 3

B 4

C 6

D 9
61. What is the equation of the graph shown below?

A \(y = x - 1 \)
B \(y = x + 1 \)
C \(y = x + 3 \)
D \(y = x - 3 \)

62. What is the slope of the line below?

A \(\frac{3}{2} \)
B \(\frac{2}{3} \)
C \(\frac{2}{3} \)
D \(\frac{3}{2} \)
63. Best Burger sells cheeseburgers for $1.75 each. Part of a table representing the number of cheeseburgers purchased and their cost is shown below.

<table>
<thead>
<tr>
<th>Number Purchased</th>
<th>Cost($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1.75</td>
</tr>
<tr>
<td>2</td>
<td>3.50</td>
</tr>
<tr>
<td>3</td>
<td>5.25</td>
</tr>
<tr>
<td>4</td>
<td>7.00</td>
</tr>
</tbody>
</table>

Which of the following is a portion of the graph of the data in the table?

A) Cost
 Number of Cheeseburgers

B) Cost
 Number of Cheeseburgers

C) Cost
 Number of Cheeseburgers

D) Cost
 Number of Cheeseburgers

64. In the inequality $2x + $10,000 ≥ $70,000, x represents the salary of an employee in a school district. Which phrase most accurately describes the employee’s salary?

A) At least $30,000
B) At most $30,000
C) Less than $30,000
D) More than $30,000

65. Solve for x.

$$2x - 3 = 7$$

A) -5
B) -2
C) 2
D) 5

66. Solve for n.

$$2n + 3 < 17$$

A) $n < 2$
B) $n < 3$
C) $n < 5$
D) $n < 7$

67. Stephanie is reading a 456-page book. During the past 7 days she has read 168 pages. If she continues reading at the same rate, how many more days will it take her to complete the book?

A) 12
B) 14
C) 19
D) 24
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Standard</th>
<th>Year of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>C</td>
<td>7AF1.1</td>
<td>2002</td>
</tr>
<tr>
<td>43</td>
<td>D</td>
<td>7AF1.1</td>
<td>2002</td>
</tr>
<tr>
<td>44</td>
<td>B</td>
<td>7AF1.1</td>
<td>2001</td>
</tr>
<tr>
<td>45</td>
<td>B</td>
<td>7AF1.1</td>
<td>2001</td>
</tr>
<tr>
<td>46</td>
<td>C</td>
<td>7AF1.2</td>
<td>2003</td>
</tr>
<tr>
<td>47</td>
<td>A</td>
<td>7AF1.2</td>
<td>2001</td>
</tr>
<tr>
<td>48</td>
<td>B</td>
<td>7AF1.5</td>
<td>2003</td>
</tr>
<tr>
<td>49</td>
<td>C</td>
<td>7AF1.5</td>
<td>2002</td>
</tr>
<tr>
<td>50</td>
<td>C</td>
<td>7AF1.5</td>
<td>2002</td>
</tr>
<tr>
<td>51</td>
<td>C</td>
<td>7AF1.5</td>
<td>2002</td>
</tr>
<tr>
<td>52</td>
<td>C</td>
<td>7AF1.5</td>
<td>2001</td>
</tr>
<tr>
<td>53</td>
<td>D</td>
<td>7AF2.1</td>
<td>2002</td>
</tr>
<tr>
<td>54</td>
<td>D</td>
<td>7AF2.2</td>
<td>2002</td>
</tr>
<tr>
<td>55</td>
<td>B</td>
<td>7AF2.2</td>
<td>2001</td>
</tr>
<tr>
<td>56</td>
<td>D</td>
<td>7AF2.2</td>
<td>2001</td>
</tr>
<tr>
<td>57</td>
<td>A</td>
<td>7AF3.1</td>
<td>2003</td>
</tr>
<tr>
<td>58</td>
<td>C</td>
<td>7AF3.1</td>
<td>2001</td>
</tr>
<tr>
<td>59</td>
<td>C</td>
<td>7AF3.3</td>
<td>2002</td>
</tr>
<tr>
<td>60</td>
<td>B</td>
<td>7AF3.3</td>
<td>2002</td>
</tr>
<tr>
<td>61</td>
<td>C</td>
<td>7AF3.3</td>
<td>2001</td>
</tr>
<tr>
<td>62</td>
<td>C</td>
<td>7AF3.3</td>
<td>2001</td>
</tr>
<tr>
<td>63</td>
<td>A</td>
<td>7AF3.4</td>
<td>2002</td>
</tr>
<tr>
<td>64</td>
<td>A</td>
<td>7AF4.1</td>
<td>2002</td>
</tr>
<tr>
<td>65</td>
<td>D</td>
<td>7AF4.1</td>
<td>2002</td>
</tr>
<tr>
<td>66</td>
<td>D</td>
<td>7AF4.1</td>
<td>2001</td>
</tr>
<tr>
<td>67</td>
<td>A</td>
<td>7AF4.2</td>
<td>2002</td>
</tr>
</tbody>
</table>
MEASUREMENT AND GEOMETRY

The following ten California mathematics academic content standards from the Measurement and Geometry strand are assessed on the CAHSEE and are represented in this booklet by 26 test questions. These questions represent only a few of the ways in which these standards may be assessed on the CAHSEE.

<table>
<thead>
<tr>
<th>Standard Set 1.0</th>
<th>Students choose appropriate units of measure and use ratios to convert within and between measurement systems to solve problems:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Compare weights, capacities, geometric measures, times, and temperatures within and between measurement systems (e.g., miles per hour and feet per second, cubic inches to cubic centimeters).</td>
</tr>
<tr>
<td>1.2</td>
<td>Construct and read drawings and models made to scale.</td>
</tr>
<tr>
<td>1.3</td>
<td>Use measures expressed as rates (e.g., speed, density) and measures expressed as products (e.g., person-days) to solve problems; check the units of the solutions; and use dimensional analysis to check the reasonableness of the answer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Set 2.0</th>
<th>Students compute the perimeter, area, and volume of common geometric objects and use the results to find measures of less common objects. They know how perimeter, area and volume are affected by changes of scale:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Use formulas routinely for finding the perimeter and area of basic two-dimensional figures and the surface area and volume of basic three-dimensional figures, including rectangles, parallelograms, trapezoids, squares, triangles, circles, prisms, and cylinders.</td>
</tr>
<tr>
<td>2.2</td>
<td>Estimate and compute the area of more complex or irregular two- and three-dimensional figures by breaking the figures down into more basic geometric objects.</td>
</tr>
<tr>
<td>2.3</td>
<td>Compute the length of the perimeter, the surface area of the faces, and the volume of a three-dimensional object built from rectangular solids. Understand that when the lengths of all dimensions are multiplied by a scale factor, the surface area is multiplied by the square of the scale factor and volume is multiplied by the cube of the scale factor.</td>
</tr>
<tr>
<td>2.4</td>
<td>Relate the changes in measurement with a change of scale to the units used (e.g., square inches, cubic feet) and to conversions between units (1 square foot = 144 square inches or [1 ft²] = [144 in²], 1 cubic inch is approximately 16.38 cubic centimeters or [1 in³] = [16.38 cm³]).</td>
</tr>
</tbody>
</table>
Measurement and Geometry

Standard Set 3.0 Students know the Pythagorean theorem and deepen their understanding of plane and solid geometric shapes by constructing figures that meet given conditions and by identifying attributes of figures:

3.2 Understand and use coordinate graphs to plot simple figures, determine lengths and areas related to them, and determine their image under translations and reflections.

3.3 Know and understand the Pythagorean theorem and its converse and use it to find the length of the missing side of a right triangle and the lengths of other line segments and, in some situations, empirically verify the Pythagorean theorem by direct measurement.

3.4 Demonstrate an understanding of conditions that indicate two geometrical figures are congruent and what congruence means about the relationships between the sides and angles of the two figures.

68. One millimeter is—
 A \(\frac{1}{1000} \) of a meter.
 B \(\frac{1}{100} \) of a meter.
 C 100 meters.
 D 1000 meters.

69. A boy is two meters tall. About how tall is the boy in feet (ft) and inches (in.)? (1 meter \(\approx 39 \) inches.)
 A 5 ft 0 in.
 B 5 ft 6 in.
 C 6 ft 0 in.
 D 6 ft 6 in.

70. Juanita exercised for one hour. How many seconds did Juanita exercise?
 A 60
 B 120
 C 360
 D 3,600

71. The actual width (w) of a rectangle is 18 centimeters (cm). Use the scale drawing of the rectangle to find the actual length (l).

 \[
 \begin{array}{c}
 \text{1.2 cm} \\
 \downarrow \\
 \text{3.6 cm} \\
 \end{array}
 \]

 \[w \]

 \[l \]

 A 6 cm
 B 24 cm
 C 36 cm
 D 54 cm
72. The scale drawing of the basketball court shown below is drawn using a scale of 1 inch (in.) = 24 feet (ft).

What is the length, in feet, of the basketball court?

A 90 ft
B 104 ft
C 114 ft
D 120 ft
73. Sixty miles per hour is the same rate as which of the following?
 A 1 mile per minute
 B 1 mile per second
 C 6 miles per minute
 D 360 miles per second

74. Beverly ran six miles at the speed of four miles per hour. How long did it take her to run that distance?
 A \(\frac{2}{3} \) hr
 B \(1 \frac{1}{2} \) hrs
 C 4 hrs
 D 6 hrs

75. In the figure above, the radius of the inscribed circle is 6 inches (in.). What is the perimeter of square \(ABCD \)?
 A \(12\pi \) in.
 B \(36\pi \) in.
 C 24 in.
 D 48 in.

76. The largest possible circle is to be cut from a 10-foot square board. What will be the approximate area, in square feet, of the remaining board (shaded region)? \(A = \pi r^2 \) and \(\pi \approx 3.14 \)
 A 20
 B 30
 C 50
 D 80

77. What is the area of the triangle shown above?
 A 44 square units
 B 60 square units
 C 88 square units
 D 120 square units
78. A rectangular pool 42 feet by 68 feet is on a rectangular lot 105 feet by 236 feet. The rest of the lot is grass. Approximately how many square feet is grass?

A 2,100
B 2,800
C 21,000
D 28,000

80. One-inch cubes are stacked as shown in the drawing below.

What is the total surface area?

A 19 in.2
B 29 in.2
C 32 in.2
D 38 in.2

79. What is the volume of the shoebox shown above in cubic inches (in.3)?

A 29
B 75
C 510
D 675

81. In the figure shown above, all the corners form right angles. What is the area of the figure in square units?

A 67
B 73
C 78
D 91
82. What is the area of the shaded region in the figure shown below?

A 4 cm²
B 6 cm²
C 8 cm²
D 16 cm²

83. A right triangle is removed from a rectangle as shown in the figure below. Find the area of the remaining part of the rectangle.

A 40 in.²
B 44 in.²
C 48 in.²
D 52 in.²

84. The short stairway shown below is made of solid concrete. The height and width of each step is 10 inches (in.). The length is 20 inches.

What is the volume, in cubic inches, of the concrete used to create this stairway?

A 3000
B 4000
C 6000
D 8000
85. The two circles shown above have radii of 3 cm and 6 cm.
What is \(\frac{\text{Circumference of Circle } x}{\text{Circumference of Circle } y} \)?

- A \(\frac{1}{4} \)
- B \(\frac{1}{2} \)
- C \(\frac{\pi}{4} \)
- D \(\frac{\pi}{2} \)

86. The width of the rectangle shown below is 6 inches (in.). The length is 2 feet (ft).

What is the area of the rectangle in square inches?

- A 12
- B 16
- C 60
- D 144

87. One cubic inch is approximately equal to 16.38 cubic centimeters. Approximately how many cubic centimeters are there in 3 cubic inches?

- A 5.46
- B 13.38
- C 19.38
- D 49.14
88. Which of the following triangles $R'S'T'$ is the image of triangle RST that results from reflecting triangle RST across the y-axis?

A

\[\begin{array}{c}
\begin{array}{c}
T' \\
R' \\
S'
\end{array}
\end{array} \]

B

\[\begin{array}{c}
\begin{array}{c}
S' \\
R' \\
T'
\end{array}
\end{array} \]

C

\[\begin{array}{c}
\begin{array}{c}
T' \\
R' \\
S'
\end{array}
\end{array} \]

D

\[\begin{array}{c}
\begin{array}{c}
S' \\
R' \\
T'
\end{array}
\end{array} \]
89. The points \((1, 1), (2, 3), (4, 3), \) and \((5, 1)\) are the vertices of a polygon. What type of polygon is formed by these points?

A. Triangle
B. Trapezoid
C. Parallelogram
D. Pentagon

90. What is the value of \(x\) in the right triangle shown below?

\[\text{5 feet} \quad \text{13 feet} \quad x\]

A. 8 feet
B. 12 feet
C. 18 feet
D. 23 feet

91. The club members hiked 3 kilometers north and 4 kilometers east, but then went directly home as shown by the dotted line. How far did they travel to get home?

A. 4 km
B. 5 km
C. 6 km
D. 7 km
92. What is the value of x in the triangle shown above?

A 11
B 13
C 17
D 169

93. Which figure is congruent to the figure shown above?

A
B
C
D
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Standard</th>
<th>Year of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>A</td>
<td>7MG1.1</td>
<td>2003</td>
</tr>
<tr>
<td>69</td>
<td>D</td>
<td>7MG1.1</td>
<td>2002</td>
</tr>
<tr>
<td>70</td>
<td>D</td>
<td>7MG1.1</td>
<td>2002</td>
</tr>
<tr>
<td>71</td>
<td>D</td>
<td>7MG1.2</td>
<td>2002</td>
</tr>
<tr>
<td>72</td>
<td>C</td>
<td>7MG1.2</td>
<td>2001</td>
</tr>
<tr>
<td>73</td>
<td>A</td>
<td>7MG1.3</td>
<td>2002</td>
</tr>
<tr>
<td>74</td>
<td>B</td>
<td>7MG1.3</td>
<td>2002</td>
</tr>
<tr>
<td>75</td>
<td>D</td>
<td>7MG2.1</td>
<td>2002</td>
</tr>
<tr>
<td>76</td>
<td>A</td>
<td>7MG2.1</td>
<td>2001</td>
</tr>
<tr>
<td>77</td>
<td>B</td>
<td>7MG2.1</td>
<td>2001</td>
</tr>
<tr>
<td>78</td>
<td>C</td>
<td>7MG2.1</td>
<td>2001</td>
</tr>
<tr>
<td>79</td>
<td>D</td>
<td>7MG2.1</td>
<td>2001</td>
</tr>
<tr>
<td>80</td>
<td>D</td>
<td>7MG2.2</td>
<td>2002</td>
</tr>
<tr>
<td>81</td>
<td>A</td>
<td>7MG2.2</td>
<td>2002</td>
</tr>
<tr>
<td>82</td>
<td>A</td>
<td>7MG2.2</td>
<td>2001</td>
</tr>
<tr>
<td>83</td>
<td>B</td>
<td>7MG2.2</td>
<td>2001</td>
</tr>
<tr>
<td>84</td>
<td>C</td>
<td>7MG2.3</td>
<td>2003</td>
</tr>
<tr>
<td>85</td>
<td>B</td>
<td>7MG2.3</td>
<td>2001</td>
</tr>
<tr>
<td>86</td>
<td>D</td>
<td>7MG2.4</td>
<td>2003</td>
</tr>
<tr>
<td>87</td>
<td>D</td>
<td>7MG2.4</td>
<td>2001</td>
</tr>
<tr>
<td>88</td>
<td>B</td>
<td>7MG3.2</td>
<td>2001</td>
</tr>
<tr>
<td>89</td>
<td>B</td>
<td>7MG3.2</td>
<td>2001</td>
</tr>
<tr>
<td>90</td>
<td>B</td>
<td>7MG3.3</td>
<td>2003</td>
</tr>
<tr>
<td>91</td>
<td>B</td>
<td>7MG3.3</td>
<td>2002</td>
</tr>
<tr>
<td>92</td>
<td>B</td>
<td>7MG3.3</td>
<td>2001</td>
</tr>
<tr>
<td>93</td>
<td>B</td>
<td>7MG3.4</td>
<td>2002</td>
</tr>
</tbody>
</table>
MATHEMATICAL REASONING

The following six California mathematics academic content standards from the Mathematical Reasoning strand are assessed on the CAHSEE and are represented in this booklet by 12 test questions. These questions represent only a few of the ways in which these standards may be assessed on the CAHSEE.

NOTE: Each question in this strand also addresses a standard in one of the other five strands and is classified by that strand for purposes of reporting student scores. For example, the first question in the following set is classified as 7MR1.1 and also 7MG1.3.

<table>
<thead>
<tr>
<th>Standard Set 1.0</th>
<th>Students make decisions about how to approach problems:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Analyze problems by identifying relationships, distinguishing relevant from irrelevant information, identifying missing information, sequencing and prioritizing information, and observing patterns.</td>
</tr>
<tr>
<td>1.2</td>
<td>Formulate and justify mathematical conjectures based on a general description of the mathematical question or problem posed.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Set 2.0</th>
<th>Students use strategies, skills, and concepts in finding solutions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Use estimation to verify the reasonableness of calculated results.</td>
</tr>
<tr>
<td>2.3</td>
<td>Estimate unknown quantities graphically and solve for them by using logical reasoning and arithmetic and algebraic techniques.</td>
</tr>
<tr>
<td>2.4</td>
<td>Make and test conjectures by using both inductive and deductive reasoning.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Standard Set 3.0</th>
<th>Students determine a solution is complete and move beyond a particular problem by generalizing to other situations:</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Develop generalizations of the results obtained and the strategies used and apply them to new problem situations.</td>
</tr>
</tbody>
</table>
94. Chris drove 100 kilometers from San Francisco to Santa Cruz in 2 hours and 30 minutes. What computation will give Chris’ average speed, in kilometers per hour?

A Divide 100 by 2.5.
B Divide 100 by 2.3.
C Multiply 100 by 2.5.
D Multiply 100 by 2.3.

95. What other information is needed in order to solve this problem?

A The average speed traveled in miles per hour
B The cost of gasoline per gallon
C The average number of miles per gallon for the van
D The number of different deliveries the van made

A flower shop delivery van traveled these distances during one week: 104.4, 117.8, 92.3, 168.7, and 225.6 miles. How many gallons of gas were used by the delivery van during this week?

96. If \(n \) is any odd number, which of the following is true about \(n + 1 \)?

A It is an odd number.
B It is an even number.
C It is a prime number.
D It is the same number as \(n - 1 \).

97. The table below shows the flight times from San Francisco (S.F.) to New York (N.Y.).

<table>
<thead>
<tr>
<th>Leave S.F. Time</th>
<th>Arrive N.Y. Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:30 A.M.</td>
<td>4:50 P.M.</td>
</tr>
<tr>
<td>12:00 noon</td>
<td>8:25 P.M.</td>
</tr>
<tr>
<td>3:30 P.M.</td>
<td>11:40 P.M.</td>
</tr>
<tr>
<td>9:45 P.M.</td>
<td>5:50 A.M.</td>
</tr>
</tbody>
</table>

Which flight takes the longest?

A The flight leaving at 8:30 A.M.
B The flight leaving at 12:00 noon
C The flight leaving at 3:30 P.M.
D The flight leaving at 9:45 P.M.

98. The table below shows the number of visitors to a natural history museum during a 4-day period.

<table>
<thead>
<tr>
<th>Day</th>
<th>Number of Visitors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday</td>
<td>597</td>
</tr>
<tr>
<td>Saturday</td>
<td>1115</td>
</tr>
<tr>
<td>Sunday</td>
<td>1346</td>
</tr>
<tr>
<td>Monday</td>
<td>365</td>
</tr>
</tbody>
</table>

Which expression would give the BEST estimate of the total number of visitors during this period?

A \(500 + 1100 + 1300 + 300 \)
B \(600 + 1100 + 1300 + 300 \)
C \(600 + 1100 + 1300 + 400 \)
D \(600 + 1100 + 1400 + 400 \)
99. Which is the best estimate of 326×279?
 A. 900
 B. 9,000
 C. 90,000
 D. 900,000

100. Using the line of best fit shown on the scatterplot above, which of the following best approximates the rental cost per video to rent 300 videos?
 A. $3.00
 B. $2.50
 C. $2.00
 D. $1.50
101. The graph below shows the value of Whistler Company stock at the end of every other year from 1994 to 2000.

From this graph, which of the following was the most probable value of Whistler Company stock at the end of 1992?

A –$10
B $1
C $10
D $20
102. The table below shows values for x and corresponding values for y.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>28</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Which of the following represents the relationship between x and y?

A $y = \frac{1}{7}x$

B $y = 7x$

C $y = x - 6$

D $y = x - 18$

103. The winning number in a contest was less than 50. It was a multiple of 3, 5, and 6. What was the number?

A 14

B 15

C 30

D It cannot be determined.

104. Lia used the following process to find the slope of the line described by the equation $3y + 5x = 12$.

Step 1: Subtract $5x$ from each side.

$3y = -5x + 12$

Step 2: Divide each side by 3.

$y = \frac{-5}{3}x + 4$

Step 3: The slope of $y = mx + b$ is m.

According to Lia’s method, which expression gives the slope of the line described by the equation $ax + by = c$?

A $\frac{-a}{b}$

B $\frac{a}{b}$

C $\frac{b}{a}$

D $\frac{b}{a}$
Len runs a mile in 8 minutes. At this rate how long will it take him to run a 26-mile marathon?

105. Which of the following problems can be solved using the same arithmetic operations that are used to solve the problem above?

A Len runs 26 miles in 220 minutes. How long does it take him to run each mile?
B A librarian has 356 books to place on 18 shelves. Each shelf will contain the same number of books. How many books can the librarian place on each shelf?
C A cracker box weighs 200 grams. What is the weight of 100 boxes?
D Each basket of strawberries weighs 60 grams. How many baskets can be filled from 500 grams of strawberries?
ALGEBRA I

The following ten California mathematics academic content standards from the Algebra I strand are assessed on the CAHSEE and are represented in this booklet by 25 test questions. These questions represent only a few of the ways in which these standards may be assessed on the CAHSEE.

<table>
<thead>
<tr>
<th>Standard Set 2.0</th>
<th>Students understand and use such operations as taking the opposite, finding the reciprocal, and taking a root, and raising to a fractional power. They understand and use the rules of exponents.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Set 3.0</td>
<td>Students solve equations and inequalities involving absolute values.</td>
</tr>
<tr>
<td>Standard Set 4.0</td>
<td>Students simplify expressions before solving linear equations and inequalities in one variable, such as $3(2x-5) + 4(x-2) = 12$.</td>
</tr>
<tr>
<td>Standard Set 5.0</td>
<td>Students solve multistep problems, including word problems, involving linear equations and linear inequalities in one variable and provide justification for each step.</td>
</tr>
<tr>
<td>Standard Set 6.0</td>
<td>Students graph a linear equation and compute the x- and y-intercepts (e.g., graph $2x + 6y = 4$). They are also able to sketch the region defined by linear inequality (e.g., they sketch the region defined by $2x + 6y < 4$).*</td>
</tr>
<tr>
<td>Standard Set 7.0</td>
<td>Students verify that a point lies on a line, given an equation of the line. Students are able to derive linear equations by using the point-slope formula.*</td>
</tr>
<tr>
<td>Standard Set 8.0</td>
<td>Students understand the concepts of parallel lines and perpendicular lines and how their slopes are related. Students are able to find the equation of a line perpendicular to a given line that passes through a given point.*</td>
</tr>
<tr>
<td>Standard Set 9.0</td>
<td>Students solve a system of two linear equations in two variables algebraically and are able to interpret the answer graphically. Students are able to solve a system of two linear inequalities in two variables and to sketch the solution sets.</td>
</tr>
<tr>
<td>Standard Set 10.0</td>
<td>Students add, subtract, multiply, and divide monomials and polynomials. Students solve multistep problems, including word problems, by using these techniques.</td>
</tr>
<tr>
<td>Standard Set 15.0</td>
<td>Students apply algebraic techniques to solve rate problems, work problems, and percent mixture problems.</td>
</tr>
</tbody>
</table>

* The crossed-out portion of this standard is not assessed on the CAHSEE, but is still included in grade-level standards.
106. If \(x = -7 \), then \(-x = \)

A \(-7\)

B \(-\frac{1}{7}\)

C \(\frac{1}{7}\)

D \(7\)

107. The perimeter, \(P \), of a square may be found by using the formula \(P = \sqrt{A} \), where \(A \) is the area of the square. What is the perimeter of the square with an area of 36 square inches?

A 9 inches

B 12 inches

C 24 inches

D 72 inches

108. If \(x \) is an integer, what is the solution to \(|x - 3| < 1|?\)

A \(-3\)

B \(-3, -2, -1, 0, 1\)

C \(3\)

D \(-1, 0, 1, 2, 3\)

109. Assume \(y \) is an integer and solve for \(y \).

\[|y + 2| = 9 \]

A \{-11, 7\}

B \{-7, 7\}

C \{-7, 11\}

D \{-11, 11\}

110. If \(x \) is an integer, which of the following is the solution set for \(3|x| = 15\)?

A \(0, 5\)

B \(-5, 5\)

C \(-5, 0, 5\)

D \(0, 45\)

111. Which of the following is equivalent to \(4(x + 5) - 3(x + 2) = 14\)?

A \(4x + 20 - 3x - 6 = 14\)

B \(4x + 5 - 3x + 6 = 14\)

C \(4x + 5 - 3x + 2 = 14\)

D \(4x + 20 - 3x - 2 = 14\)

112. Which of the following is equivalent to \(9 - 3x > 4(2x - 1)\)?

A \(13 < 11x\)

B \(13 > 11x\)

C \(10 > 11x\)

D \(6x > 0\)
113. Which of the following is equivalent to the equation shown above?

A \(x(x - 5) = 80 \)
B \(20(x - 5) = 4x \)
C \(20x = 4(x - 5) \)
D \(24 = x + (x - 5) \)

114. Which of the following is equivalent to \(1 - 2x > 3(x - 2) \)?

A \(1 - 2x > 3x - 2 \)
B \(1 - 2x > 3x - 5 \)
C \(1 - 2x > 3x - 6 \)
D \(1 - 2x > 3x - 7 \)

115. Colleen solved the equation \(2(2x + 5) = 8 \) using the following steps.

Given: \(2(2x + 5) = 8 \)

Step 1: \(4x + 10 = 8 \)

Step 2: \(4x = -2 \)

Step 3: \(x = -\frac{1}{2} \)

To get from Step 2 to Step 3, Colleen—
A divided both sides by 4.
B subtracted 4 from both sides.
C added 4 to both sides.
D multiplied both sides by 4.

116. Solve for \(x \).

\[5(2x - 3) - 6x < 9 \]

A \(x < -1.5 \)
B \(x < 1.5 \)
C \(x < 3 \)
D \(x < 6 \)

117. What is an equation of the line shown in the graph above?

A \(y = -\frac{3}{2}x + 3 \)
B \(y = -\frac{2}{3}x + 2 \)
C \(y = \frac{3}{2}x - 3 \)
D \(y = \frac{2}{3}x - 2 \)
118. Which of the following is the graph of \(y = \frac{1}{2} x + 2 \)?
119. What is the y-intercept of the line $2x - 3y = 12$?
 A (0, -4)
 B (0, -3)
 C (2, 0)
 D (6, 0)

120. What are the coordinates of the x-intercept of the line $3x + 4y = 12$?
 A (0, 3)
 B (3, 0)
 C (0, 4)
 D (4, 0)

121. Which of the following points lies on the line $y = x$?
 A (-4, -4)
 B (-4, 4)
 C (4, -4)
 D (-4, 0)

122. Which of the following points lies on the line $4x + 5y = 20$?
 A (0, 4)
 B (0, 5)
 C (4, 5)
 D (5, 4)

123. What is the slope of a line parallel to the line $y = \frac{1}{3}x + 2$?
 A -3
 B $\frac{1}{3}$
 C $\frac{1}{3}$
 D 2

124. Which of the following statements describes parallel lines?
 A Same y-intercept but different slopes
 B Same slope but different y-intercepts
 C Opposite slopes but same x-intercepts
 D Opposite x-intercepts but same y-intercept

125. Which of the following could be the equation of a line parallel to the line $y = 4x - 7$?
 A $y = \frac{1}{4}x - 7$
 B $y = 4x + 3$
 C $y = -4x + 3$
 D $y = -\frac{1}{4}x - 7$
126. What is the solution to the system of equations shown above?

\[
\begin{align*}
7x + 3y &= -8 \\
-4x - y &= 6
\end{align*}
\]

A \ (–2, –2)
B \ (–2, 2)
C \ (2, –2)
D \ (2, 2)

127. What is the solution of the system of equations shown above?

\[
\begin{align*}
y &= 3x - 5 \\
y &= 2x
\end{align*}
\]

A \ (1, –2)
B \ (1, 2)
C \ (5, 10)
D \ (–5, –10)

128. Simplify.

\[
(x^2 - 3x + 1) - (x^2 + 2x + 7)
\]

A \ \ x - 6
B \ \ -x + 8
C \ \ -5x - 6
D \ \ 2x^2 - x + 8

129. The length of the rectangle above is 6 units longer than the width. Which expression could be used to represent the area of the rectangle?

A \ \ x^2 + 6x
B \ \ x^2 - 36
C \ \ x^2 + 6x + 6
D \ \ x^2 + 12x + 36

130. Mr. Jacobs can correct 150 quizzes in 50 minutes. His student aide can correct 150 quizzes in 75 minutes. Working together, how many minutes will it take them to correct 150 quizzes?

A \ \ 30
B \ \ 60
C \ \ 63
D \ \ 125
Algebra I

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Correct Answer</th>
<th>Standard</th>
<th>Year of Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
<td>D</td>
<td>1A2.0</td>
<td>2002</td>
</tr>
<tr>
<td>107</td>
<td>C</td>
<td>1A2.0</td>
<td>2002</td>
</tr>
<tr>
<td>108</td>
<td>C</td>
<td>1A3.0</td>
<td>2002</td>
</tr>
<tr>
<td>109</td>
<td>A</td>
<td>1A3.0</td>
<td>2001</td>
</tr>
<tr>
<td>110</td>
<td>B</td>
<td>1A3.0</td>
<td>2001</td>
</tr>
<tr>
<td>111</td>
<td>A</td>
<td>1A4.0</td>
<td>2002</td>
</tr>
<tr>
<td>112</td>
<td>B</td>
<td>1A4.0</td>
<td>2002</td>
</tr>
<tr>
<td>113</td>
<td>B</td>
<td>1A4.0</td>
<td>2001</td>
</tr>
<tr>
<td>114</td>
<td>C</td>
<td>1A4.0</td>
<td>2001</td>
</tr>
<tr>
<td>115</td>
<td>A</td>
<td>1A5.0</td>
<td>2003</td>
</tr>
<tr>
<td>116</td>
<td>D</td>
<td>1A5.0</td>
<td>2002</td>
</tr>
<tr>
<td>117</td>
<td>A</td>
<td>1A6.0</td>
<td>2003</td>
</tr>
<tr>
<td>118</td>
<td>D</td>
<td>1A6.0</td>
<td>2002</td>
</tr>
<tr>
<td>119</td>
<td>A</td>
<td>1A6.0</td>
<td>2001</td>
</tr>
<tr>
<td>120</td>
<td>D</td>
<td>1A6.0</td>
<td>2001</td>
</tr>
<tr>
<td>121</td>
<td>A</td>
<td>1A7.0</td>
<td>2003</td>
</tr>
<tr>
<td>122</td>
<td>A</td>
<td>1A7.0</td>
<td>2002</td>
</tr>
<tr>
<td>123</td>
<td>C</td>
<td>1A8.0</td>
<td>2002</td>
</tr>
<tr>
<td>124</td>
<td>B</td>
<td>1A8.0</td>
<td>2001</td>
</tr>
<tr>
<td>125</td>
<td>B</td>
<td>1A8.0</td>
<td>2001</td>
</tr>
<tr>
<td>126</td>
<td>B</td>
<td>1A9.0</td>
<td>2002</td>
</tr>
<tr>
<td>127</td>
<td>C</td>
<td>1A9.0</td>
<td>2001</td>
</tr>
<tr>
<td>128</td>
<td>C</td>
<td>1A10.0</td>
<td>2003</td>
</tr>
<tr>
<td>129</td>
<td>A</td>
<td>1A10.0</td>
<td>2001</td>
</tr>
<tr>
<td>130</td>
<td>A</td>
<td>1A15.0</td>
<td>2002</td>
</tr>
</tbody>
</table>