
Few-shot Time-Series Forecasting with Application
for Vehicular Traffic Flow

Victor Tran
Department of Computer Science

California State University, Fullerton
Fullerton, California 92831, USA
victorvantran@csu.fullerton.edu

Anand Panangadan
Department of Computer Science

California State University, Fullerton
Fullerton, California 92831, USA

Telephone: +1-657-278-3998
Fax: +1-657-278-7168

apanangadan@fullerton.edu

Abstract—Few-shot machine learning attempts to predict
outputs given only a very small number of training examples.
The key idea behind most few-shot learning approaches is to
pre-train the model with a large number of instances from a
different but related class of data, classes for which a large num-
ber of instances are available for training. Few-shot learning has
been most successfully demonstrated for classification problems
using Siamese deep learning neural networks. Few-shot learning
is less extensively applied to time-series forecasting. Few-shot
forecasting is the task of predicting future values of a time-
series even when only a small set of historic time-series is
available. Few-shot forecasting has applications in domains
where a long history of data is not available. This work describes
deep neural network architectures for few-shot forecasting. All
the architectures use a Siamese twin network approach to
learn a difference function between pairs of time-series, rather
than directly forecasting based on historical data as seen in
traditional forecasting models. The networks are built using
Long short-term memory units (LSTM). During forecasting,
a model is able to forecast time-series types that were never
seen in the training data by using the few available instances
of the new time-series type as reference inputs. The proposed
architectures are evaluated on Vehicular traffic data collected
in California from the Caltrans Performance Measurement
System (PeMS). The models were trained with traffic flow
data collected at specific locations and then are evaluated by
predicting traffic at different locations at different time horizons
(0 to 6 hours). The Mean Absolute Error (MAE) was used as
the evaluation metric and also as the loss function for training.
The proposed architectures show lower prediction error than a
baseline nearest neighbor forecast model. The prediction error
increases at longer time horizons.

Index Terms—Vehicular traffic, one-shot classification, time-
series, Siamese twin networks

I. INTRODUCTION

Time-series forecasting is the task of predicting future
values of a measurement given a sequence of past mea-
surements. Time-series forecasting methods have been ex-
tensively studied and has been applied in several domains,
notably in finance, business, and environmental studies [1].
Time-series forecasting has grown in importance in recent
years with the Internet-of-Things (IoT) and the large amount
of time-series data continuously produced by the embedded
sensors.

A common feature of most time-series forecasting methods
is that the forecast model is learned from a long record of
historical data. Thus, forecasting can only be applied in areas
where sufficient historical data is available. Though often,
such copious amounts of data may not be feasible due to
lack of infrastructure or means of data collection. “Few-shot”
learning approaches attempt to predict outputs given only a
very small number of training/historical examples. The key
idea behind most few-shot learning approaches is to pre-train
the model with a large number of instances from a different
but related class of data.

Few-shot learning has been most successfully demon-
strated in classification using deep learning neural networks.
For instance, a one-shot face classification system can rec-
ognize a face of a new person given only one image of that
person’s face. This is enabled by pre-training the system with
several images of other persons’ faces. The lower layers of
the deep neural network then learn the features common to
all faces and only a few images from a new class (i.e., the
new face) are sufficient to distinguish an instance of the new
class from other classes.

However, few-shot learning has not been extensively ap-
plied to time-series forecasting, with a few notable excep-
tions [2]. Few-shot forecasting is the task of predicting future
values of a time-series even when only a small set of historic
time-series is available. Few-shot forecasting has applications
in domains where a long history of data is not available
or where the data set changes sporadically. For instance,
time-series forecasting methods are used in Vehicular traffic
prediction. Few-shot forecasting methods can enable traffic
prediction along new roads, along rural roads where traffic
records are sparse, or along pedestrian pathways where
sensors designed for vehicles are not applicable. Even more,
these roads may be out of service for weeks at a time due to
construction. Old roads may be demolished. New roads may
be built elsewhere. In these scenarios, few-shot forecasting
can ensure that neural network models does not need to be
re-trained.

In this work, we developed and evaluated three deep
neural network architectures for few-shot forecasting. All the
architectures use a Siamese twin network approach to learn

a difference function between pairs of time-series, rather
than directly forecasting based on historical data as seen in
traditional forecasting models. The networks are built using
Long short-term memory units (LSTM). The addition of this
difference function step enables the model to forecast time-
series types that were never seen in the training data by using
the few available instances of the new time-series type as
reference inputs.

We evaluated the proposed architectures by forecasting
Vehicular traffic using data collected in California. While
few-shot forecasting has relatively little value in data-rich
domains such as traffic forecasting in California, we use this
data and traffic prediction application to enable extensive
evaluation of the proposed architectures. The models were
trained with traffic flow data collected at specific locations
and then are evaluated by predicting traffic at different loca-
tions at varying time horizons (0 to 6 hours). Our evaluation
shows that our straightforward Siamese twin architecture
does not produce accurate forecasts in a few-shot setting.
However, our two more complex architectures show lower
prediction error than a baseline nearest neighbor forecast
model. As expected, the prediction error increases at longer
time horizons.

The main contributions of this work are: 1) novel deep
learning neural network architectures that implement few-
shot time-series forecasting, and 2) evaluation of the pro-
posed architectures on large real-world datasets for vehicular
traffic forecasting.

The rest of the paper is organized as follows. Section II
lists related work in time-series forecasting. Section III
describes the problem of few-shot forecasting and the ar-
chitectures associated with our approach. Section IV gives
detailed information on the Vehicular traffic dataset used to
evaluate this work. We present our results in Section V and
give our conclusions in Section VI.

II. RELATED WORK

Deep learning methods based on Long Short Term Mem-
ory (LSTM) have been found to produce accurate forecasts
from time-series data (e.g., [3]). However, these methods
are not designed for few-shot learning. The concept of one-
shot and few-shot learning has been proposed mostly for
classification models. Koch et al. [4] propose a one-shot
learning model for image classification of written characters.
Specifically, their approach trains a Siamese Convolution
Neural Network (CNN) to learn a difference function, rather
than traditionally training on images and labels. The Siamese
CNNs would share the same weights during training, and
their purpose was to encode two input images into a large,
flattened layer. The intuition is that the flattened layer would
capture differentiating features of the two compared character
images. Then the two flattened layers is fed into an element-
wise difference layer. Finally, the difference layer is fully-
connected into a single neuron, activated by the Sigmoid
function. A value of 0 would indicate that the two images
differ. A value of 1 would indicate that the two images

are the same. Using an n-way one-shot comparison, their
Siamese model was able to accurately classify new sets of
characters that were not included in the training set [4].
In our approach, instead of having a single output node
that represents a difference score, our proposed architectures
output a difference vector instead.

As in this work, LSTMs are used in the few-shot time-
series model proposed by Iwata and Kumagai [2]. However,
they do not use a Siamese network approach but add an
attenuation mechanism to a recurrent neural network. They
reason that time series data used as the training set may
carry similar features for forecasting a completely different
test set. They introduce an attention mechanism that captures
patterns based on support windows fed into the model called
a support set along with the test window. One of our proposed
models also includes an attenuation mechanism that aims to
generalize the patterns of all traffic data in the training set,
with the notion that the test set will follow these patterns too.

Transfer learning is another approach to forecasting given
insufficient historical data [5]. Transfer learning involves
taking a model trained with an abundance of certain data and
further retraining it with similar data. The main difference
from our approach is that our architectures do not require
re-training with a large collection of instances from the
new time-series type. The time savings from not requiring
retraining is useful in Vehicular traffic forecasting application
as traffic patterns often change as new roads are built,
destroyed, or are under reconstruction.

Finally, the concept of meta-learning through neural net-
works has been proposed for time-series forecasting [6].
The goal of meta learning is to train on a diverse dataset,
understand overarching knowledge shared within the dataset,
and apply the knowledge to a different task without any
auxiliary references (zero-shot) [7]. Our model is not to be
zero-shot as it requires a reference instances to achieve a
higher forecasting accuracy.

III. PROBLEM STATEMENT AND APPROACH

The problem of Few-shot time-series forecasting can be
stated as follows:

Let l(w) denote the length of a time-series w. Given a
set of time-series, W, and and a much shorter time-series, x,
where l(x) << l(w),w ∈ W , forecast the future values of
x at time l(x) + h, xl(x)+h, where h is called the forecast
horizon.

A. Few-Shot Forecasting Models

We describe three Few-Shot Forecasting Models (FSFMs).
All three models use Long short-term memory units
(LSTM) [8]. The main advantage of LSTM as compared
to a standard cell in a Recurrent Neural Network is the
addition of an update gate and a forget gate to control the
flow of temporal information whilst keeping a hidden state
within the network [9]. Each model is structured as a Siamese
neural network – given pairs of historical time-series data,
it attempts to predict the difference between their forecasts.

Thus, the FSFM models learns through a difference function,
rather than directly forecasting based on historical data seen
in traditional forecasting models.

1) Difference FSFM: The Difference FSFM is created by
first simply taking an element-wise difference of the
total flow between the reference historical data and the
test historical data. The vector is then immediately fed
to a simple four-stacked LSTM network. The output
is the difference vector. One advantage of this model
is the ability to generalize any two comparative time-
series data. However, by taking the difference of the
historical data initially, the model loses information of
the general shape of the input window. Therefore, this
model cannot capture specific features of the historical
data such as rises, falls, and plateaus to make more
accurate forecasts. The high bias and low variance of
the predictions indicates that this model is under-fitted
when compared to the Siamese FSFM.

Fig. 1. The difference between h⃗ref and h⃗test is initially taken and then
fed to the LSTM network to output the difference vector d⃗.

2) Siamese FSFM: The Siamese FSFM is created using
the Siamese-twins model to learn a difference function
(Fig. 2). Each sibling of the Siamese twins architec-
ture share the same weights throughout training. The
components for each sibling include four stacked CNN
layers with Max-Pooling followed by four stacked
LSTM layers. The CNN component attempts to capture
particular, short-segment features from the input data.
Hence, a kernel size of three is used for all CNN layers.
The MaxPooling layer helps generalize the network by
down-sampling the historical data to the most prevalent
features. This also reduces the dimension of the input
feature-map, which improves generalization to unseen
but similar traffic flow data. The vector is fed into the
bidirectional LSTM component that attempts to capture
hierarchical features and forecast with the addition of
feedback. The model avoids using the common ap-
proach of flattening the last layer and fully-connecting
it to a forecast-sized vector. That approach created too
many parameters for the last layer, which undermined
influence of the previous CNN-LSTM components and
over-fitted the training data. The weights created from
the Flatten and Dense layer overcompensates towards
matching the target difference vectors from the training
dataset that it would overfit.

Fig. 2. The Siamese CNN in yellow holds a CNN component that is fed into
a LSTM component. A pseudo-forecast is calculated based on the historical
reference and test data. This forecast is subtracted to yield a difference
vector: ⃗forecastref - ⃗forecasttest.

B. Pair-wise Training

The inputs to the models are pairs of historical time-
series, (⃗href , h⃗test) called the reference window and the
test window respectively. The reference window acts as a
baseline to compare its traffic flow with the test window.
The fluctuating differences between the historical data will
reveal the fluctuating differences between their forecasts.
By knowing the difference between the forecasts, d⃗, one
would only need to additionally know the forecast of the
reference window, f⃗ref , to estimate the forecast of the test
window, f⃗test. Therefore, given just the historical data of a
test window that is similar to the reference window, the model
can predict a difference vector of their forecasts rather than
an actual forecast. Then, the difference can be subtracted
from the known forecast of the reference window to achieve
the predicted forecast of the test window: f⃗test = f⃗ref − d⃗.
Learning how to predict differences allows the model to (1)
generalize to other windows that were never seen in the
training data before and (2) require only a few instances of a
new class of time-series, used as reference windows, to make
predictions for a given test window.

The reference and test window pairs are restricted to the
same station and the same days of the week. For example,
given an arbitrary station called Station A, all its windows
spanning 72 hours from Friday through Sunday and 12 hours
of a Monday are paired. After that, a 6 hours stride is taken
for the next set of window pairs. The process is continued
until all possible 84-hour time spans for the windows are
paired for each station of a single year. The size of the dataset
is O

(
n2 ·m

)
, for n is the number of windows created from

the station through the sliding windows method, and m is
the number of stations in the dataset.

The magnitude of the data values between instances of
different classes can vary widely, yielding a high standard
deviation. For example, Vehicular traffic at some locations
is much heavier than others. Normalizing features with
high standard deviations significantly improves model accu-
racy [11]. Every window pair is therefore normalized by Min-
Max Scaling based on the test window using the formula:

hi − hmin

hmax − hmin

Fig. 3. This graph shows the component of a Siamese sibling (Fig. 2).
Specifically, the component initially uses four Conv1D layers. The param-
eters of the Conv1D layers are the same: the filter size is 8, the kernal
size is 3, the stride is 1, and the activation function is Rectified Linear
Unit. ReLU prevents vanishing gradients when training on deep networks
with uninitialized weights such as in our architecture [10]. Between the
Conv1D layers are MaxPool1D layers with a pool size of 2 and a stride
of 2. The parameters of the first three LSTM layers are the same: they are
bidirectionally-wrapped, with 4 units, and return sequences is set to true.
The parameter of the last LSTM layer is: 24 units (the same size as the
forecast horizon) with return sequences set to false.

where hi is the value at timestep i of h⃗ref and h⃗test, hmax

and hmin are the maximum and minimum value of the test
window’s historical data, h⃗test, respectively. Inverting the
Min-Max scale after prediction is necessary as the window
pairs are the model’s input data. The model’s output data
is the difference between the forecast data of the respective

window pairs given by: d⃗ = f⃗ref − f⃗test. The models are
trained with pair-wise inputs: (⃗href , h⃗test) and target output:
d⃗.

All the FSFM models are trained under the same param-
eters. The batch size is 256, which is chosen for the main
purpose of reducing training time. Although, large batch sizes
with respect to the small size of a training instance leads
to poor generalization. A smaller batch size closer to 32
introduces noise to the gradients, which improves finding flat
minimizers in the loss function [12]. The Adam Optimizer is
chosen with an initial learning rate of 0.0001 ·

√
batchsize.

The initial learning rate of 0.0001 is empirically chosen as
it produced the quickest descent in loss within 100 epochs.
The learning rate is further scaled by

√
batchsize to further

reduce training time [13]. The loss function for training is the
Mean Absolute Error (MAE). The MAE is chosen instead of
the commonly used Mean Squared Error (MSE)to reduce the
impact of outliers in the real-world data.

IV. DATASET

California Department of Transportation’s (Caltrans) Per-
formance Measurement Systems (PeMS) collects real-time
traffic data using approximately 40,000 loop detectors hidden
throughout the freeway system pavements [14]. The data
is then sent to a central database over the Caltrans Wide
Area Network to be archived. We use the archived data in
this work to evaluate the time-series forecasting methods.
The data represents the mobility (the average point-to-point
travel time) and reliability (the day-to-day variability between
the expected average travel time and the actual travel time)
of traffic at different time-resolutions and therefore can be
considered a large repository of time-series. PeMS data
can be analyzed to monitor traffic congestion at individual
freeway segments at varying time intervals such as a certain
time of day, day of the week, season, and year.

A. Data pre-processing

We next describe the steps to prepare the 5-minute reso-
lution traffic data retrieved from PeMS’s Data Clearinghouse
for training and evaluation. The dataset is composed of daily
features for a station, sampled every 5-minute period. PeMS
provides data that measures traffic speed, the number of cars
in a segment, vehicle-miles traveled, vehicle-hours traveled,
and hours of delay. In this work, the training dataset consists
of only one feature — Total flow. Total flow is defined as the
sum of vehicles over a 5-minute period across all lanes of a
station. Data from the entirety of 2019 from the over 2000
stations in District 12 (Orange County in southern California)
is used for training. Stations with data quality issues are
removed from the training dataset. For instance, stations that
record zero traffic flow for many weeks and months at a time.
This happens when a station is either located in a rural area,
is under construction, or is even removed entirely.

We also adjust the training dataset to account for daylight
savings time. The PeMS dataset includes one hour of repeated
data during the spring forward hour and excludes one hour

of data during the fall back hour of daylight savings time.
To handle the case of repeated data, the extra hour of data is
simply removed. To handle the case of missing data, a simple
imputation technique estimates the missing data by averaging
the sampled total flow from the hour before and the hour
after. Other anomalies such as unusually high traffic flow
(magnitudes higher than the previous and future timesteps)
due to invalid sensor data have already been vetted by PeMS.
At the end of these pre-processing steps, the total number of
stations in the dataset is 1793.

B. Creating the Training Instances

Each station represents a ”class” in this application. An
instances of the class is a window representing its traffic flow
for 84 hours: 72 hours of historical data and 12 hours of the
known forecast. A week’s worth of traffic flow data can be
split into multiple windows via the sliding window method.
The size of the sliding window is 84 hours and the stride
is 6 hours. The traffic flow data is re-sampled from every
5 minutes to every 30 minutes. A period of 30 minutes is
chosen because a higher resolution would introduce too much
variance that does not carry meaningful patterns conducive
to generalizing to multiple stations [15]. Also, prior work
has shown that a period of 15 to 30 minutes leads to higher
accuracy in ARIMA models when forecasting 12 hours, as
the number of horizon time-steps is reduced to 24 [16]. The
historical data of 72 hours (144 time steps) is chosen due
to the limited amount of memory available when training
the models. However, this amount of historical data still
introduces seasonality reflecting the morning and evening
rush-hour traffic recorded by the vast majority of stations.

Common historical data lengths with a 12 hour forecast (24
time steps) are usually several days to a week. One problem
with such a short historical data length in this approach
is the lack of context within a week. A window may not
differentiate a weekday that forecasts into another weekday,
a weekday that forecasts into a weekend, or a weekend that
forecasts into a weekday. Thus, in addition to the total flow,
the day of the week is added to the dataset as a feature. The
day of the week is represented as an integer between 0 and
6 (denoting Sunday through Saturday respectively).

V. RESULTS AND DISCUSSION

The Few-shot Forecasting Models (FSFM) are imple-
mented using the Keras library. The training environment
involves the libraries: Python v3.9.12, TensorFlow-GPU v2.6,
Numpy v1.21.5, Pandas v.1.4.1, and Matplotlib v.3.5.1. Train-
ing is performed with an Intel® Core™ i7-4790K CPU and
a NVIDIA GeForce GTX 1070 GPU.

The models are trained on the PeMS dataset, specifically
data from the stations of District 13, which covers Orange
County. Data from the stations of District 3, which covers
all counties in North Central California, is used to test the
accuracy of the FSFMs.

Tracking the accuracy of the model during training is
based on the accuracy of forecasting the validation set. The

validation set is commonly a subset of the training dataset
in traditional neural networks. However, the validation set of
FSFMs should be exclusive from the training dataset. In this
case, the training dataset is built from the stations of District
13, and the the validation dataset is built from the stations
of District 3.

We evaluate model performance using the Mean Absolute
Error (MAE) metric:

MAE(p,a) =

∑n
i=1 |ai − pi|

n

where n is the number of stations, ai is the actual forecast
of the total flow of vehicles for stationi at a given timestep,
and pi is the predicted forecast of the total flow of vehicles
for stationi at the same given timestep. This equation is
be calculated 24 times for each of the 24 timesteps of the
forecast horizon. Such error measurements are taken after
inverting the normalization from the Min-Max Scaling.

The Nearest Neighbor Model (NNM) was implemented to
provide a baseline when comparing prediction accuracy to
the Difference and Siamese FSFMs. For its prediction, the
NMM takes the exact forecast from the reference window
whose historical data matches closest to the test window’s
historical data measured via Euclidean distance. Also, a
simple ARIMA model was implemented as another baseline
to compare classical forecasting methods to neural networks.

Fig. 4. Comparing the validation loss of two models: the Difference FSFM
and the Siamese FSFM. The Difference FSFM has a minimum of 0.03833
at epoch 9 before diverging. The Siamese FSFM has a minimum of 0.03727
at an epoch of 123 before diverging. The Nearest Neighbor Model training
history is omitted from the graph, as it is more appropriately categorized
as an algorithm that has no training procedure. However, it can be modeled
with a neural network with a constant validation MAE of 0.04380.

Fig. 4 compared the decrease in loss while training the
different models. The loss is the MAE of the difference vec-
tor, which is normalized during training with the Min-Max
Scaling method described in Section III-B. This validation
loss is automatically calculated by the Keras library after
every epoch during training. The validation data is composed
of over 900 stations from District 3 as to not bias towards
a few number of stations. The Siamese FSFM eventually

has a slightly lower validation MAE before increasing due
to over-fitting through 150 epochs of training. Such im-
provement infers that the Siamese FSFM is not expected to
outperform the Difference FSFM for every arbitrary station
data. Rather, the Siamese FSFM will provide more averaged
accurate results amongst a large number of windows from
900 stations. In fact, in many windows, the Difference FSFM
would have often similar or even more accurate forecasts than
the Siamese FSFM.

Fig. 5. A MAE is taken for each timestep of the 24-timestep forecast
horizon. Both the Difference FSFM and Siamese FSFM have a lower MAE
than the NNM and the ARIMA model. The Difference FSFM has a slightly
lower MAE than the NNM, indicating the the model underfits.

We next compare the prediction error of the different
approaches at different forecast horizons. Fig. 5 shows these
errors. A one week window is used as a reference to forecast
10 different future windows for each of the 250 random
stations chosen in District 3. However, stations can vary in
traffic flow. Stations with too few traffic flow would yield a
lower MAE, biasing the average MAE lower. Stations with
too much traffic flow would yield a height MAE, biasing the
average MAE higher. Therefore, the 250 stations are limited
to having a similar magnitude of maximum traffic flow —-
between 100 and 2500 vehicles. The average maximum traffic
flow of the 250 stations is 1128 vehicles. The MAE of
the Difference FSFM, Siamese FSFM, and NNM almost
converge for bigger forecast horizons. However, both the
Difference and Siamese FSFMs have noticeably lower MAEs
for the first 15 timesteps.

We next show the actual forecasts made by the baseline
NNM model, the Arima model, the Difference FSFM, and
the Siamese FSFM for a 84-hour window using the data
from a randomly selected station (Figure 6). The baseline
models provided the worst forecast accuracy compared to

the neural network models. As expected, the Arima model
performed the worst due to the limited amount of data failing
to yield micro-seasonalities of traffic. The Difference FSFM
generalizes reasonably well; however, having the model miss
the overall pattern of the historical data limits its forecasting
accuracy. The Siamese FSFM provides the greatest fore-
casting accuracy by having the lowest MAE. These results
indicate that calibrating the amount of contribution between
the attenuation mechanism and the historical data difference
before concatenation could offer the higher forecast accuracy.

Fig. 6. The top plot shows a single 84-hour window taken at a random
time in 2019 for Station 320331, which happens to measure a mainline lane
along California State Route 267. The left of the dotted vertical line shows
the historical data of the test window. The right of the dotted vertical line
shows the comparison between the Naive NNM, Difference FSFM, and the
Siamese FSFM. The bottom plot shows a zoomed in view of the 12-hour
forecast. The Naive NNM had the farthest average prediction to the Actual
Forecast, while the Siamese FSFM has the closest.

VI. CONCLUSIONS AND FUTURE WORK

We presented a method of extending few-shot classification
to time-series forecasting. We introduced two models that
learn to predict a difference vector, rather than a direct
forecast. These models were evaluated by their ability to
forecast vehicular traffic at different locations only from a
few instances of past vehicular flow data at that location.
The evaluation showed that the model that had the highest
forecasting accuracy, based on having the lowest MAE, is the
CNN-LSTM Siamese FSFM. Using three stacked layers of
CNN along with MaxPooling to focus on the most significant

and generalized patterns allows for greater model complexity
than simply taking the difference of historical data.

The proposed architectures have several hyperparameters.
Hyperparameters that could be fine tuned are batch size,
learning rate, the size of the training data, the length of the
historical time-series, and the length of the forecast horizon.
The layers of the architecture can also be modified such as
the amount of LSTM cells, CNN cells, Dropout layers, and
the Subtraction layer. Further calibration of hyperparameters
and layers used within the Siamese FSFM is necessary based
on the size of the initial training data to offer greater fore-
cast accuracy. Other types of architectures that use LSTMs
such as the Encoder-Decoder model could also be explored,
especially for sequence-to-sequence prediction [17].

The current approach was evaluated only on univariate
time-series data, disregarding the minor feature of days
of the week. Adding features, or a spatial component for
temporal forecasting, are avenues for future work. Also, the
Siamese FSFM can be extended to better correlate other
complementary, multivariate data such as traffic accidents and
the weather forecast. We intend to augment this method to
create an FSFM that can be used for other types of time-
series data such as stream-flow data from rivers.

ACKNOWLEDGMENT

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 2125654.

REFERENCES

[1] J. G. De Gooijer and R. J. Hyndman, “25 years of time series
forecasting,” International journal of forecasting, vol. 22, no. 3, pp.
443–473, 2006.

[2] T. Iwata and A. Kumagai, “Few-shot learning for time-series forecast-
ing,” arXiv preprint arXiv:2009.14379, 2020.

[3] N. Laptev, J. Yosinski, L. E. Li, and S. Smyl, “Time-series extreme
event forecasting with neural networks at Uber,” in International
conference on machine learning, vol. 34. sn, 2017, pp. 1–5.

[4] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks
for one-shot image recognition,” in ICML deep learning workshop,
vol. 2. Lille, 2015, p. 0.

[5] A. Hooshmand and R. Sharma, “Energy predictive models with lim-
ited data using transfer learning,” in Proceedings of the Tenth ACM
International Conference on Future Energy Systems, 2019, pp. 12–16.

[6] C. Lemke and B. Gabrys, “Meta-learning for time series forecasting
and forecast combination,” Neurocomputing, vol. 73, no. 10-12, pp.
2006–2016, 2010.

[7] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio,
“Meta-learning framework with applications to zero-shot time-series
forecasting,” CoRR, vol. abs/2002.02887, 2020. [Online]. Available:
https://arxiv.org/abs/2002.02887

[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[9] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recur-
rent neural network architectures for large scale acoustic modeling,”
Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, pp. 338–342, 01 2014.

[10] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in ICML Workshop on Deep
Learning for Audio, Speech and Language Processing, 2013.

[11] J.-M. Jo, “Effectiveness of normalization pre-processing of big data to
machine learning performance,” The Journal of the Korea Institute of
Electronic Communication Sciences, vol. 14, pp. 547–552, 06 2019.

[12] N. S. Keskar, D. Mudigere, J. Nocedal, M. Smelyanskiy, and P. T. P.
Tang, “On large-batch training for deep learning: Generalization
gap and sharp minima,” CoRR, vol. abs/1609.04836, 2016. [Online].
Available: http://arxiv.org/abs/1609.04836

[13] D. Granziol, S. Zohren, and S. Roberts, “Learning rates as a function
of batch size: A random matrix theory approach to neural network
training,” Journal of Machine Learning, p. 30, 2020.

[14] C. Chen, K. Petty, A. Skabardonis, P. Varaiya, and Z. Jia, “Freeway
performance measurement system: mining loop detector data,” Trans-
portation Research Record, vol. 1748, no. 1, pp. 96–102, 2001.

[15] D. Levinson, “Spatiotemporal short-term traffic forecasting using the
network weight matrix and systematic detrending,” Transportation
Research Part C Emerging Technologies, pp. 38–52, 2019.

[16] R. Martoglia and G. Savoia, “Towards multi-model big data road traffic
forecast at different time aggregations and forecast horizons,” in 8th
EAI International Conference on Mobility, IoT and Smart Cities. EAI,
2022.

[17] Z. Wang, X. Su, and Z. Ding, “Long-term traffic prediction based on
lstm encoder-decoder architecture,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 10, pp. 6561–6571, 2020.

