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Abstract—Personalized cooking recipe recommendation sys-
tems offer the potential to improve dietary choices for un-
housed individuals and those transitioning out of homelessness.
However, existing systems often neglect the needs of users with
minimal cooking experience, providing little guidance during
meal preparation. This study proposes the development of
an intelligent cooking assistant system designed to offer real-
time, step-by-step support throughout the cooking process.
The system integrates a Raspberry Pi 5 mini-computer with
a Raspberry Pi AI HAT+ (AI HAT+) and Raspberry Pi
AI Camera (AI Camera), strategically mounted above the
cooking area to continuously monitor culinary activity. At its
core, the assistant utilizes a deep learning image classification
model built on Ultralytics’ You Only Look Once version 11
(YOLO11) framework, trained on a curated dataset of 1,339
images collected during the preparation of chicken teriyaki
and pasta dishes. The model achieved 100% precision and
99% recall of identifying all six cooking states utilized in this
work, resulting in an average confidence accuracy of 91%
during real-time tests. The system is intended to enable greater
culinary independence among individuals with little cooking
experience, such as those affected by long-term homelessness.

Index Terms—Supportive Housing, Machine Learning,
Smart Home, Raspberry Pi, YOLO, Recipe Assistant

I. INTRODUCTION

Cooking is a skill that must be learned. Although most
adults are able to learn basic cooking skills and prepare
meals following a recipe, there exist subpopulations for
whom cooking is a challenge. One such group of people
are those transitioning out of homelessness. Homelessness
is a major concern in the United States and other parts of
the world. Los Angeles County alone was reported to have
75,312 unhoused persons in 2024 [1]. Providing supportive
housing, which is subsidized housing provided along with
personalized wraparound supportive services such as mental
health and substance abuse treatment, is the preferred way
to address the crisis [2]. However, individuals having expe-
riences of homelessness often face barriers that make them
less likely to seek assistance in developing cooking skills,
leading to limited improvements in preparing nutritious
meals even when a kitchen becomes available. The unhoused
individuals who have recently transitioned out of homeless-
ness and are residing in supportive housing can significantly
benefit from personalized guidance in nutrition and cooking.
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Such support is especially critical given common challenges,
including limited income, insufficient cooking skills and
knowledge, and restricted access to affordable, nutritious
food [3], [4].

Recently, personalized cooking recipe recommendation
systems have been developed to offer guidance on nutrition
[5], [6]. Such systems can also be based on emerging
Artificial Intelligence (AI) technologies [7]. However, a
significant limitation of existing recipe recommendation
systems is their inability to deliver real-time feedback during
the cooking process.

This work develops and validates the hypothesis that a
smart “cooking assistant” can be engineered to deliver real-
time feedback and support throughout the cooking process.
This system is therefore intended to be used after a recipe is
recommended by personalized recommendation system. The
intended outcome is to provide a personalized, interactive,
and educational experience that enhances nutritional well-
being among individuals transitioning out of homelessness,
while simultaneously fostering essential culinary skills and
self-sufficiency.

The system has hardware and software components that
together perform as an edge device. The hardware consists of
a camera mounted below the cooking range hood, looking
down on the stove top. The camera points straight down
to ensure the user privacy. The camera is connected to
an embedded computer (Raspberry Pi 5) which processes
the images with a specially trained object recognition and
detection neural network model. The labels of the model
are mapped to the main steps of a particular recipe. (In this
work, we evaluate the system on a Chicken Teriyaki recipe.)
Thus, the system is able to monitor the current step being
performed on the stovetop and prompt the cook to move to
the next step after an appropriate amount of time has passed,
guiding the cook to follow all the steps of the recipe.

The contributions of this work include (1) the design of an
edge device that functions as a smart cooking assistant, (2)
development of a Machine Learning model that is trained on
a custom dataset to monitor in real-time the cooking process
and identify the cooking step of a recipe, and (3) evaluation
of the real-world performance of the system.

II. RELATED WORK

Artificial Intelligence (AI) techniques, particularly ma-
chine vision and image processing, have been widely applied
across various aspects of food processing. These methods



are primarily used for tasks such as identifying food types
and quality, grading food products, and detecting defects
or foreign objects [8]. A notable contribution in this area
is the development of a dataset of Chinese recipes, which
includes multiple images representing different stages of
cooking. Distinct models were trained independently for
specific categories, including the initial, intermediate, and
advanced stages of food preparation [9].

However, these approaches do not directly correspond
to the core steps involved in home cooking for personal
use. Research specifically focused on assistive cooking
systems remains limited. One notable project, the Cognitive
Orthosis for coOKing (COOK), is a smart tablet application
connected to a stove, designed to assist individuals with
cognitive impairments during meal preparation [10], [11].
Monitoring and tracking objects during cooking within
COOK utilize real-time detection and tracking techniques
such as You Only Look Once (YOLO) and the Kernelized
Correlation Filter (KCF). The system addresses several chal-
lenges, including object disappearance and reappearance, oc-
clusion, and motion blur. Evaluations have demonstrated that
combining object detection and tracking data significantly
improves the system’s ability to trace and identify kitchen
utensils [12].

Similarly, the study by Jelodar et al. [13] created a dataset
of cooking-related images representing 11 common object
states, using a deep learning model based on ResNet for
object identification. These systems often require retrain-
ing their object detection models to accurately recognize
cooking-specific items.

In previous work [14], we had developed a version of the
smart “cooking assistant” that incorporated a Raspberry Pi
Camera Module 2, a thermal camera, an infrared temperature
sensor, and ambient temperature and humidity sensors on a
Raspberry Pi 4 with a Coral USB accelerator. The system
was also trained to identify the stages of cooking only a
simple dish - boiling pasta. These were: (1) Empty Burner,
(2) Empty Pot, (3) Pot with Water, (4) Pot with Boiling
Water, (5) Pot with Pasta, and (6) Pot with Cooked Pasta.
The full dataset comprised 330 images. That system used a
Machine Learning model that is deployed remotely (Vertex
AI) and was thus not a true edge device. An Edge AI version
of the trained model was developed using Vertex AI but
had high deployment costs. In this work, we describe a
fully local solution capable of supporting model training
and deployment on an edge device, thereby removing the
dependency on continuous cloud connectivity and signifi-
cantly reducing operational cost. The current system is also
trained to assist in the cooking of more complex dishes
and is correspondingly trained on a much larger dataset of
images.

III. SYSTEM DESIGN

A. Hardware Design

This work focuses on developing a fully local solution ca-
pable of supporting model training and deployment directly

Fig. 1: Hardware setup enclosed in a metal box (with
exposed sides), mounted below a range hood using magnets.

on an edge device. As an edge system, it must be both
cost-effective and accurate to reliably monitor the cooking
process and provide real-time, step-by-step guidance to
the user. Furthermore, the design must be unobtrusive and
uphold user privacy.

1) Selected Hardware
1) Raspberry Pi 5: An affordable and versatile mini-

computer capable of running custom operating sys-
tems with multiple camera and display options. It can
operate headless or with a custom OS, and is well-
suited for AI and machine learning at the edge. We
utilized the default Raspberry Pi OS.

2) Raspberry Pi Active Cooler: An official cooling ac-
cessory designed for the the Raspberry Pi 5, featuring
a heatsink and a fan that clips onto the board to
actively dissipate heat and maintain optimal perfor-
mance.

3) Raspberry Pi AI HAT+ (AI HAT+): An add-on
board for the Raspberry Pi 5 that provides enhanced
AI processing capabilities using an integrated Hailo-8
AI accelerator, with 26 Tera Operations Per Second
(TOPS).

4) Raspberry Pi AI Camera (AI Camera): A high-
resolution camera module designed for AI applica-
tions, featuring 12 MP Sony IMX500 Intelligent Vi-
sion Sensor and integrated low-power inference engine
for real-time image recognition and computer vision
tasks.

Fig. 1 illustrates the complete hardware setup, enclosed in
a metal box and mounted below a range hood using magnets.

B. Data Acquisition

With no existing dataset aligning with our unique use
case, a smart cooking assistant, and selected recipe, chicken
teriyaki, we collected the data ourselves. The chicken



(a) Empty burner (b) Empty pot

(c) Pot with oil (d) Pot with main ing. uncooked

(e) Pot with main ing. cooked (f) Pot with all ingredients

Fig. 2: Samples of representative images of the six classes
of the stovetop environment

teriyaki recipe includes these ingredients; oil, chicken,
brown sugar, soy sauce, and optional sesame seeds.

Using the default Python library for the AI Camera,
we configured the system to simultaneously record video
(in one-minute segments) and capture still images (at one-
second intervals). Data collection was conducted over the
course of a month at various times of day, resulting in
approximately 1,300 images along with corresponding video
footage. Sample images are shown in Fig. 2.

C. Data Pre-Processing

With the collected data, to closely simulate a real-world
deployment scenario, we deliberately chose not to apply
any data transformations beyond annotation. Our objective
was to evaluate the system’s performance - and that of
the trained model - using raw, unprocessed input. This
approach minimizes computational overhead on the edge
device during runtime, as it eliminates the need for real-time
data transformation. Instead, the device directly feeds raw
camera frames into the model, which is solely responsible
for interpreting the cooking state. It is important to note that
the current work and model development are based solely on
the collected images. Although videos were recorded during
data acquisition, they were not utilized in this phase and
have been preserved for future enhancements and iterations
of the system.

1) Data Annotation
Since no pre-processing is applied to the data, annotation

becomes a critical component of the workflow. Using the
collected dataset, we segmented the cooking process into

Open Source, https://github.com/raspberrypi/picamera2/tree/main

Fig. 3: Distribution of the training dataset for the six classes
of the stovetop environment

six distinct stages (classes), each representing a clearly
observable state of the stovetop environment:

1) Empty Burner
2) Empty Pot
3) Pot with Oil
4) Pot with Main Ingredient Uncooked
5) Pot with Main Ingredient Cooked
6) Pot with All Ingredients
We annotated the dataset using the labelImg tool, assign-

ing each image to one of the defined classes. This process
generated corresponding .txt label files, containing both the
class identifier and bounding box coordinates.

Following annotation, the dataset was prepared for model
training by partitioning it into training and validation sub-
sets. In accordance with standard machine learning practices,
the dataset was split using an 80:20 ratio. This resulted in
1,071 images allocated to the training set. The distribution
of training data across the six annotated classes is illustrated
in Fig. 3.

D. Model Development

Among popular object detection models, YOLO has
gained particular prominence. Unlike traditional object de-
tection methods, YOLO uses a single unified network to
simultaneously detect and classify objects, greatly simplify-
ing the detection pipeline compared to earlier approaches
[15]. Our smart “cooking assistant” system builds upon
YOLO11S, demonstrating promising results, as discussed
below.

YOLO version 11 was selected as it is specifically opti-
mized for deployment on resource-constrained devices such
as the Raspberry Pi. The model was trained for 80 epochs
on a locally available PC equipped with an internal GPU.
Due to hardware constraints, the number of training epochs
was capped at 80.

The YOLO11S model comprises 181 layers, with ap-
proximately 9.4 million parameters and an equivalent num-
ber of trainable gradients. With training, 493 out of 499
components from the pretrained weights were successfully

Open Source, https://github.com/HumanSignal/labelImg



Fig. 4: Confusion Matrix (Normalized) for the six classes
of the stovetop environment

transferred. This effective weight transfer enables the model
to leverage prior knowledge, thereby improving fine-tuning
efficiency and reducing overall training time. The fine-tuning
process, over 80 epochs, required approximately 3.4 hours
and resulted in the generation of two sets of model weights,
best and last, as outlined previously. Notably, the best set of
weights was utilized.

IV. RESULTS AND DISCUSSION

A. Model Test and Evaluation

Following model training and fine-tuning on the annotated
dataset, the initial evaluation metric analyzed was the con-
fusion matrix, as shown in Fig. 4. Notably, Class 1 (empty
burner) exhibited lower performance, which was anticipated
due to the visual similarity between the induction stovetop
surface and the background. However, this limitation is not
critical, as the model still effectively identifies the absence
of a cooking pot - an outcome sufficient for maintaining the
integrity of the cooking step classification.

In addition to the confusion matrix, we evaluated the
model using standard object detection metrics: precision,
recall, F1, mean Average Precision at Intersection over
Union (IoU) threshold 0.5 (mAP50), and mean Average
Precision calculated at varying IoU thresholds, ranging from
0.50 to 0.95 (mAP50-95). mAP50 is a measure of the
model’s accuracy considering only the “easy” detections
while mAP50-95 gives a comprehensive view of the model’s
performance across different levels of detection difficulty.
All of these metrics provide a comprehensive understanding
of model performance across all six cooking states. As
shown in Table I and Fig. 5, the model achieved a precision
of at least 0.92 at confidence of 0.8. The recall is 0.55 for
Class 1 (empty burner) at confidence of 0.8 while the recall
is at least 0.93 for the other classes. These values indicate
a strong ability to correctly identify most cooking stages
with minimal false positives or negatives. The mAP@0.5
score, calculated across all classes, was 0.96, which reflects
a high level of accuracy in both object localization and
classification.

TABLE I: Precision, Recall, F1, and Confidence Evaluation
Metrics results

Classes
Metric 1 2 3 4 5 6

Prec.@IoU=0.5 0.83 1.00 0.99 0.99 0.98 1.00
Prec.@Conf.=0.8 0.92 1.00 1.00 1.00 1.00 0.97

Recall@Conf.=0.8 0.55 1.00 0.93 1.00 0.98 1.00
F1@Conf.=0.8 0.69 1.00 0.96 1.00 0.99 0.98

(a) Recall-Confidence Curve (b) Precision-Confidence Curve

(c) Precision-Recall Curve (d) F1-Confidence Curve

Fig. 5: Precision, Recall, and F1 Scores at all values of
confidence levels

These results suggest that the YOLO11S model, even
when trained on a dataset without pre-processing, performs
robustly and generalizes well across the selected cooking
scenarios. The use of pre-trained weights, combined with
focused fine-tuning, played a significant role in achieving
these outcomes.

Fig. 6 presents the model’s performance across 80 epochs,
highlighting key metrics including precision, recall, mAP50
and mAP50-95. The results indicate that performance sta-
bilizes as training progresses, plateauing toward the final
epochs. Notably, all four metrics consistently exceed 0.90,
demonstrating the high accuracy and overall quality of the
model.



Fig. 6: Metrics progression by training epochs

TABLE II: Confidence Levels (%) of classes detection
during UAT

Classes
Test 1 2 3 4 5 6

Real time test env. 54 95 76 93 91 90
External media sources 75 95 - - - -

B. User Acceptance Test and Deployment

While the training results and evaluation metrics for the
model were promising, it is essential to conduct User Ac-
ceptance Testing (UAT) to assess the system’s performance
in real-world scenarios. We converted the trained model to
the NCNN format to optimize inference performance on
our edge system. The converted model was subsequently
deployed to our hardware system.

To carry out UAT, we executed a series of structured
evaluation steps, as detailed below.

1) Real Time Cooking Process Analysis in Controlled
Test Environment: We deployed the system to ana-
lyze the complete chicken teriyaki recipe in real time,
within the same controlled environment where the
training data was originally collected. The process was
successful, with representative results shown in Fig. 7
and Table II.

2) Evaluation with External Media Sources: To assess
the model’s generalizability, we recorded images and
videos of various cooking steps using an iPhone, inde-

(a) Class 1 detection with 54% Con-
fidence

(b) Class 2 detection with 95% Con-
fidence

(c) Class 3 detection with 76% Con-
fidence

(d) Class 4 detection with 93% Con-
fidence

(e) Class 5 detection with 91% Con-
fidence

(f) Class 6 detection with 90% Con-
fidence

Fig. 7: Images with the confidence Levels (%) of the
detected class during UAT

pendent of the system’s native camera. These external
media files were then processed through the deployed
system. The results were successful, as demonstrated
in Table II.

C. Assumptions and Limitations

Several key assumptions underlie the development of
this project, each significantly influencing its overall scope.
Foremost among these is the issue of privacy. Given the
unique experiences and vulnerabilities of the target popula-
tion, it is challenging to predict their perceptions of privacy



accurately. For example, if a hardware malfunction occurs
that requires in-person technical support and the affected
individual declines access, the smart cooking assistant would
become inoperative. Furthermore, there exists a persistent
stigma that government entities may use such devices for
surveillance, a perception that can be difficult to dispel. At
this stage, the project proceeds under the assumption that a
majority of users will be willing to adopt and incorporate
the smart cooking assistant into their daily routines.

Another critical assumption concerns the availability of
Wi-Fi and user access to a smartphone. As the system cur-
rently lacks a physical display, user interaction is designed
to occur exclusively through a smartphone application. This
strategy also complements other initiatives funded under the
same grant, such as the development of a smart “medicine
dispenser,” supporting a centralized and cohesive user expe-
rience across devices.

Additionally, the design assumes the presence of a range
hood situated directly above the stove, providing a stable
location for mounting the smart “cooking assistant”. It is
also assumed that the camera will have a clear, square view
of the stovetop area where cooking activities occur, which
is essential for accurate monitoring and feedback.

The project also faces two primary limitations. The first
involves hardware constraints. The prototype is built on a
Raspberry Pi 5 mini-computer, which offers limited process-
ing and memory capabilities. As the system evolves, these
resource limitations must be carefully managed to maintain
consistent performance. The second limitation pertains to
the training dataset. The current YOLO11 model has been
trained on a relatively small and narrowly focused dataset.
As a result, if users deviate significantly from predefined
recipe steps, the model’s performance may degrade. More-
over, the limited dataset constrains the range of recipes
the system can currently support. Addressing this limitation
through dataset expansion and diversification is a key goal
for future system iterations to enhance adaptability and user
experience.

V. CONCLUSIONS AND FUTURE WORK

This research presents the design, development, and eval-
uation of a smart “cooking assistant” system, intended to
enhance the home cooking experience through AI-powered
visual recognition and real-time guidance. Leveraging the
capabilities of the Raspberry Pi 5, AI HAT+, and AI Cam-
era, we developed a cost-effective, privacy-conscious edge
device capable of recognizing critical stages of a cooking
process without reliance on continuous cloud connectivity.
The system was trained using a custom-collected and an-
notated dataset, and the YOLO11S model was selected and
optimized for edge deployment.

All model inference and state recognition are executed
entirely on the system, ensuring the system remains a self-
contained, closed-loop solution that prioritizes user privacy.
Comprehensive evaluation - including model performance
analysis, and user acceptance testing in real-world scenarios

- demonstrated the system’s reliability in classifying cooking
states and delivering seamless, real-time guidance.

While results from this study are promising, several
avenues for improvement have been identified. Feedback
from live demonstrations emphasized the need to expand
the dataset, refine model performance in visually ambiguous
scenarios, and introduce greater personalization through a
user interface. Future work will include the incorporation of
additional recipes, improved model robustness under varying
lighting conditions and kitchen layouts, and integration of
the previously collected video data. Additionally, thermal
imaging data is to be incorporated to improve detection
of more nuanced cooking states, such as, empty burners,
pot with water or pot with boiling water, particularly where
visual cues are insufficient.
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