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Abstract—Zero shot time series forecasting is the challenge
of forecasting future values of a time dependent sequence
without having access to any historical data from the target
series during model training. This setting differs from the
traditional domain of time series forecasting, where models
are typically trained using large volumes of historical data,
from the same distribution. Zero shot time series forecasting
models are designed to generalize to unseen time series by
leveraging their knowledge learned from other, similar series
during training. This work proposes two architectures designed
for zero shot time series forecasting: zSiFT and zSHiFT. Both
architectures use transformer models arranged in a Siamese
network configuration. The zSHIiFT architecture differs from
the zSiFT by the introduction of a hierarchical transformer
component to the Siamese network. These architectures are
evaluated on vehicular traffic data in California available from
the Caltrans Performance Measurement System (PeMS). The
models were trained with traffic flow data collected in one
region of California and then are evaluated by forecasting traffic
in other regions. Forecast accuracy was evaluated at different
time horizons (4 to 48 hours). The zSiFT model achieves a
Mean Absolute Error (MAE) that is 8.3% lower than the
baseline LSTM with attention mechanism model. The zSiFT
model achieves an MAE which is 6.6% lower than zSHiFT’s
MAE.

Index Terms—Time Series Forecasting, Zero-shot Forecast-
ing, Traffic Forecasting, LSTM, Attention Mechanism, Transfer
Learning, Sequence Modeling, Support-Based Forecasting, Deep
Learning for Time Series, Transformer Networks, Siamese
Networks.

I. INTRODUCTION

A time-series is a sequence of data points collected at suc-
cessive points in time. Time-series data arise in a number of
domains, especially in finance and environmental studies [1].
With the growth of Internet-of-Things (IoT) technology,
sensors embedded in several different types of environments
continuously produce a time-series of sensor measurements.
One of the most commonly used applications of such data
streams is forecasting future values given a sequence of past
measurements. For instance, sensors embedded in roads can
measure the flow of vehicular traffic over them. Time-series
forecasting in this context is predicting the amount of traffic
over the next few hours.

While statistical models such as Autoregressive Integrated
Moving Average (ARIMA) have traditionally been used for
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forecasting, the prediction accuracy in many applications
is higher with more complex models built using machine
learning from historic data. In particular, recurrent neural net-
works have performed well on this task [2]. The disadvantage
of such machine learning approaches is the need for large
amounts of historical time-series data. Such large datasets
are not available in several applications or in specific regions
due to lack of sensor infrastructure for collecting data. For
instance, rural roads or smaller roads will have fewer sensors
and hence lesser historical traffic data is available.

In order to address this need for data, “few-shot” machine
learning methods attempt to use related datasets for the bulk
of the training, and then use the limited data from the actual
region of interest to fine-tune the model. Thus, few-shot
learning is an instance of transfer learning [3]. In the extreme
case, “zero-shot” learning methods complete all their training
on the related data set and an instance from the true domain
is only considered during prediction.

Several few-shot learning methods have been developed
for classification. These approaches often rely on a siamese
neural network architecture [4]. For classification, the key
idea is to learn a difference vector between inputs instead
of the true class label. This classification approach is not
directly applicable to forecasting. Few-shot learning methods
for time-series forecasting therefore rely on other methods,
such as using a recurrent neural network with an attention
mechanism [5].

In this work, we integrate these two approaches — com-
bining recurrent neural network architectures with attention
mechanism and the use of difference vectors. We propose two
related architectures for zero-shot time-series forecasting:
zSiFT and zSHiFT. Both architectures use transformer mod-
els arranged in a Siamese network configuration. The zZSHiFT
architecture differs from the zSiFT by the introducing a
hierarchical transformer component to the Siamese network.

The zero-shot setting is applicable in real world domains
where collecting historical data is difficult. For instance,
zero-shot forecasting methods can enable traffic prediction
along new roads, or along pedestrian pathways where sensors
designed for vehicles are not useful for detecting pedestrian
traffic. Zero-shot models enable forecasting without needing
to be re-trained.



We evaluated these architectures by forecasting vehicular
traffic traffic using data collected by the California Depart-
ment of Transportation’s (Caltrans) Performance Measure-
ment System Data Source (PeMS). we use this dataset and
traffic prediction application for an extensive evaluation of
the architectures. The models were trained with traffic flow
data collected in one part of California and then evaluated by
forecasting traffic at different regions at varying time horizons
(0 to 48 hours).

Our contributions are as follows: (1) We introduce and
evaluate four neural network architectures for zero shot time
series forecasting: An LSTM model with Attention, a Differ-
ence LSTM with Attention (DLA), a Siamese Transformer
(zSiFT), and a Siamese Hierarchical Transformer (zSHiFT);
(2) We propose the use of element-wise difference vectors
combined with a support series to guide forecasts in the
absence of a target series history; and (3) We evaluate each
model on a real-world dataset, showing that zSiFT which
uses a single resolution transformer encoder outperforms the
more complex zSHiFT across most forecasting horizons.

II. RELATED WORK

Recently extensive work has been done to improve the
performance of zero shot time series forecasting models.
For example a recurrent neural network (RNN) based model
proposed in [6] addresses both zero shot and few shot fore-
casting by learning a shared latent embedding across multiple
quantized time series. Experimental results on benchmark
datasets show that this approach consistently outperforms
Gaussian Processes and AR-based models in the zero shot
setting. In parallel, efforts have been made to evaluated
and enhance the capabilities of zero-shot time series foun-
dations models (FMs). However, Toner et al. [7] report
that FMs fail to generalize on certain types of data. Zeng
et al. [8] critically examine the use of transformer based
architectures for long term time series forecasting (LTSF).
Their results reveal that despite their popularity, transformer
models often inadequately capture temporal dependencies
due to the permutation invariant nature of self attention, even
when using positional encodings. Gruver el at. investigated
the use of using Large Language Models (LLMs) for zero
shot time series forecasting [9]. Their findings indicate that
while LLMs are capable of performing zero shot time series
forecasting, they suffer from limitations including as limited
context windows. Merrill et al. investigated LLMs abilities
to reason about time series in the zero shot setting, finding
that highly capable models still struggle to answer questions
about time series [10]. Furthermore the high inference cost
of LLMs make them more difficult for use in time series
forecasting [11].

Complementary to these works, Tran and Panangadan [12]
proposed a few-shot time series forecasting approach based
on Siamese neural networks with LSTM units. Their model
learns to predict a difference vector between time series pairs
rather than directly forecasting future values, thus allowing
the models to generalize to unseen time series with only a

few reference instances. This method also does not require re-
training when exposed to new data types, making it useful for
low-data or dynamic domains such as traffic forecasting. Our
current work improves on this model by using transformer
components in the architecture, and enabling zero-shot (as
compared to few-shot) learning.

III. APPROACH

The problem of zero-shot forecasting can be stated as:

yt+1:t+H = fH(Xt7W+1:t78)7 (D

where x;_ w414 € RW is the input sequence, ¥ii1.4+H €
RH is the forecast, fo is the forecasting model, and S is an
optional support set used in zero-shot settings.

We describe four zero shot time-series forecasting models.
The first two models are meant to be used as baselines for
performance comparison to our two new proposed archi-
tectures. Each model takes as input a time-series of length
W, xi—w41.+ (also called the query series) and produces
a forecast of length H, ¥;11.4+m. H is the length of the
forecast horizon. The models are trained on a dataset Z of
L instances, ZEQW+1:t?j =1,2,..., L. Note that the train-
ing instances (z9)) are drawn from a different distribution
from the query series (x). Thus, the forecast z is a zero-
shot prediction of the input query. The above formulation
describes univariate time-series and our evaluation also uses
univariate time-series dataset. However, the architectures can
be modified for multivariate time-series in a straightforward
manner.

A. LSTM with Attention

This baseline model is a Long short-term memory (LSTM)
architecture with an attention mechanism. LSTMs are a type
of recurrent neural network (RNN) that has been shown to
work particularly well with sequence data [13]. The Attention
mechanism modifies the LSTM architecture by allowing the
model to build its own internal varying length representation,
enabling it to focus on only the most relevant parts of the
input sequence when generating the output. The attention
mechanism allows the model to understand and dynamically
weigh the importance of different time steps in the input
sequence, enabling it to capture patterns and dependencies.
During forecasting, this model relies solely on the temporal
dependencies learned through its recurrent structure and
attention mechanism,i.e., it does not use training data directly
during output generation.

B. Difference LSTM with Attention

The Difference LSTM with Attention (DLA) is an enhanced
version of the LSTM with Attention model designed for
zero shot forecasting and is employed as a baseline model.
The DLA incorporates two additional components: a support
series and a difference vector. This approach sets aside
a randomly sampled proportion of the training dataset Z,
called the Support dataset (SV, S C Z), for use during
forecasting. The support series is the one instance in the



Support dataset that is most similar to the query series. In
this work, we quantify similarity by selecting the instance
with the smallest squared Euclidean distance from the query
series. Specifically, the support series of input z, S(x), is
defined as:

S(z) = 2%, d(z, %) = mind(z, 2)

z€S

The function of the support series is to provide the model
with an approximation for what an accurate forecast will
resemble. In order to accommodate for the fact that the query
and support vectors are drawn from different distributions, the
model also incorporates a difference vector. The difference
vector is the vector of element-wise differences between the
support and query series. Specifically, the difference vector
of input &, DV (x), is defined as

DV(z) =2 — S(z)

By explicitly modeling both the similarity and the differ-
ences, the DLA model enhances its ability to accurately
forecast the query series.
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Fig. 1: The proposed zSiFT architecture

C. Siamese Transformer

The Siamese Transformer for zero shot time series fore-
casting architecture (zSiFT) uses two transformers arranged
in a Siamese network configuration to capture complex
temporal dependencies through their multi-head self-attention
mechanism. This model also incorporates the above-defined
support vector. The Siamese network is composed of twin
transformer models, where model 1 takes as input the data
points from the query series, and model 2 takes as input data
points from the support series. The Siamese-twin network
creates an encoding of each series, and then calculates the
element-wise difference of the two vectors. Finally, the query
series, the support series, and the element-wise difference of
the two transformer encodings are used as inputs into the
LSTM decoder, which generates the final forecast. The zSiFt
architecture is shown in Figure 1.
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Fig. 2: The proposed zSHiFT architecture

D. Siamese Hierarchical Transformer

The Siamese hierarchical transformer network for zero
shot time series forecasting (zZSHiFT) builds upon the zSiFT
architecture by introducing a hierarchical transformer compo-
nent to the Siamese network. Instead of taking the element-
wise difference of two identical transformers from the
Siamese network, SHiFT uses multiple pairs of identical
transformers. Each pair encodes information at a different
temporal resolution. Finally, the query series, the support
series, and the vector of element-wise difference at each
resolution are used as inputs into the LSTM decoder, which
generates the final forecast. The zSHiFT architecture is
shown in Figure 2.

Although Transformers generally excel at capturing com-
plex dependencies in sequential data, our initial experiments
indicated that employing Transformers directly as decoders
resulted in inferior performance compared to using LSTMs.
Therefore, we opted to utilize LSTMs for the final decoding
step in the zSiFT and zSHiFT architectures rather than Trans-
formers. All four models are trained using Mean Absolute
Error (MAE) as the loss function, which is commonly used
in time series tasks due to its robustness to outliers and
interpretability [14].

1 n
MAE = = » |y — i, 2

2 2l
where y; is the true value, g; is the predicted value, and
n is the number of forecasted time steps. Minimizing the
MAE encourages the models to produce forecasts that more
closely align with the ground truth values while treating all
errors equally, regardless of magnitude.

IV. DATASETS

1) Dataset Creation: Our training, validation, and testing
datasets are created from California Department of Trans-
portation (Caltrans) Performance Measurement System Data
Source (PeMS) [15]. The Caltrans data is collected from
nearly 40,000 individual detectors across the state of Califor-
nia. The data is collected in 5 minute intervals and aggregated
into the Data Clearinghouse. We used this data to train,
validate, and test each forecasting model.
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Fig. 3: Map of California showing station locations: red
dots indicate test stations (District 4) and blue dots indicate
training stations (District 12).

2) Data Pre-Processing: We downloaded data from the
PeMS Data Clearinghouse for training and evaluation. The
Data Clearinghouse datasets contain a variety of features
collected at a 5-minute sampling interval for each station.
For our work, we selectively retained only the timestamp,
station identifier (a unique identifier for each station), and
total flow. During this stage, we discard all other features.
To reduce data noise and enhance forecasting reliability, we
down sampled the data from its original 5-minute intervals
into 30 minute intervals. This aggregation was performed
by summing the traffic flows recorded within each 30-
minute interval, therefore reducing the dataset’s resolution.
Our training dataset consists of data from Orange County,
California (Caltrans District 12), covering the full year of
2023. The testing dataset includes data from the Bay Area
and Oakland (Caltrans District 4) for the first three months
of 2023. This intentional geographic separation allows us
to evaluate the models’ ability to perform under zero-shot
conditions, assessing their generalization to locations not seen
during training.

Furthermore, the training and testing datasets are com-
prised solely of stations which are a part of a Mainline as
determined by Caltrans. Stations with incomplete or missing
data were identified and removed from the datasets to ensure
data integrity and model reliability. Figure 3 shows the
locations of the stations used for training and testing.

3) Dataset Windowing: The dataset consists of four-day
time series, each containing 192 data points. Each data point
represents the flow at a given station over a 30 minute
interval. The data points within each four-day period must

form a continuous, uninterrupted sequence. We utilize the
sliding window method to create the four-day time series,
ensuring that the windows are each 4 continuous days starting
at midnight on the first day and ending at midnight on the
fifth day. We opt for a 30 minute traffic flow forecast to
reduce the amount of noise in the dataset.

4) Dataset Partitioning: We create two datasets: one con-
taining all of the data from District 12 in 2023, and the other
comprising data from the first 3 months of 2023 for District 4.
The District 12 dataset is further partitioned into training and
validation datasets based on station IDs utilizing a 70/30 split.
Each of the three resulting datasets — training, validation, and
testing — are then further subdivided into query and support
sets using an 85/15 split.

V. RESULTS AND DISCUSSION

Our models are trained using the National Research Plat-
form (NRP) Nautilus Hypercluster. Training was performed
using an Intel(R) Xeon(R) Gold 6230 CPU, and an NVIDIA
GeForce RTX 2080 Ti. All four models were implemented
using PyTorch v2.2.1. Other libraries used in this work
include Pandas v2.2.3, NumPy v1.26.3, Scikit-Learn v1.6.1,
Python 3.10.13, Selenium v4.25.0.

We evaluated the performance outcomes of the forecasting
models using standard regression metrics: Mean Absolute Er-
ror (MAE), Mean Square Error (MSE), Root Mean Squared
Error (RMSE), Mean Absolute Percentage Error (MAPE),
and the coefficient of determination (R?). Each of these
metrics are calculated using the previously described test
dataset. Table I provides a comparison of each forecasting
model’s performance metrics.

TABLE I: Forecasting Model Performance Comparison

Model MAE MSE RMSE MAPE (%) R?

LSTM*  144.89 48151.62  219.43 17.42 0.9482
DLA 146.89  50632.10  225.01 17.51 0.9454
zSiFT 132.88  42630.77 206.47 14.74 0.9533
zSHiFT 14231 47723.11  218.45 17.10 0.9486

“ LSTM with Attention mechanism.
MAE and RMSE are measured in number of vehicles per 30 minutes.

The baseline LSTM with Attention model performs well
with an MAE of 144.89 and a relatively high R? of 0.9482.
However, this model does not leverage any external context
or support series, relying solely on the input series. Despite
this limitation, its performance provides a strong benchmark.

The Difference LSTM with Attention (DLA) model uses
additional inputs of the support and difference vectors. The
intended effect of these additional inputs is to improve the
model’s ability to generalize to new inputs. However, its
performance metrics such as MAE of 146.89, and MSE of
50632.10 suggest that this model is not able to take advantage
of the additional support and difference vectors.

The zSiFT model significantly outperforms both the LSTM
with Attention and the Difference LSTM with Attention.
Specifically, the zSiFT model achieves an MAE of 132.88,
as opposed to 144.89 for the LSTM with attention, marking
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Fig. 4: Mean Absolute Error (MAE) [Vehicles] across different forecasting horizons for all evaluated models. On the x-axis
lies the forecasting horizon, whereas the y-axis indicates the corresponding MAE values.

an 8.3% reduction in MAE. This model effectively highlights
the benefit of utilizing a Siamese Transformer architecture to
encode and compare query and support vector relationships.
Through the combination of the transformers self-attention
mechanism, and the explicit modeling of the difference
vector, the zSiFT model is able to better capture the temporal
dependencies in the data, and better generalize patterns across
the regions and stations in the dataset.

The zSHiFT model, which includes a hierarchical multi-
resolution component in its Siamese network, performs worse
than the zSiFT model. We used 4 pairs of transformers as
the hierarchical component in our evaluation. In our testing,
the zSiFT model achieves an MAE of 132.88, which is
6.6% lower than zSHiFT’s MAE of 142.31. While zSHiFT
extends the capabilities of zSiFT to allow the model to
capture temporal dependencies at multiple resolutions, this
added complexity likely introduced overfitting. Nonetheless,
zSHIFT still slightly outperforms the baseline LSTM with
Attention and DLA models.

Figure 4 displays the MAE across the different tested fore-
casting horizons for all four models. The forecast error of all
models initially increase with horizon length but then show
a general downward trend in MAE as the forecasting hori-
zon further increases; this reflects the strong daily seasonal
component in the dataset. Before the horizon=48 data point
mark (one day), all the models show relatively high forecast
error. This indicated that short-term forecasts of vehicular
traffic is particularly sensitive to random fluctuations in the

zSiFT vs zSHIFT: MAE by Dataset Size
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Fig. 5: Performance (MAE) and for zSiFT and zSHiFT as a
function of training dataset size.

series. While zSHiFT performs better than all other models
at horizon length less than 40, zSiFT retains the lowest
MAE after this horizon further reinforcing the advantage
of its transformer-based Siamese architecture. These results
indicate that zZSHiFT may perform better than zSiFT and all
other models for short horizon forecasting.

Figure 5 displays test MAE of the zSiFT and zSHiFT
models as the size of the dataset increases. The zSiFT model
demonstrates improved generalization performance as the
training set size increases, with the test MAE decreasing
from 136.72 at 25% of the data to 132.88 at 100%. This
suggests that zSiFT is able to utilize larger training sets
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Fig. 6: Training time (seconds) for zSiFT and zSHiFT as a
function of training dataset size.

to refine its temporal representations and produce more
accurate forecasts. In contrast, zZSHiFT exhibits a consistent
degradation in its test performance as the size of the training
set increases. As the dataset grows from 25% to 100%,
the test MAE of the zSHiFT model increases from 137.84
to 142.31. This decrease in performance suggests that the
increased complexity introduced by zSHiFT’s hierarchical
Siamese architecture may lead to overfitting that becomes
more prominent at larger input data size.

Figure 6 highlights the training time of the zSiFT and
zSHIiFT models as the size of the dataset increases. As
expected, the training time increases linearly with the size of
the training dataset. Note that zSHiFt requires substantially
more training time compared to zSiFT at all training set sizes.

VI. CONCLUSIONS

This work described two architectures designed for zero
shot time series forecasting: zSiFT and zSHiFT. Both ar-
chitectures used transformer models arranged in a Siamese
network configuration. These architectures were evaluated on
vehicular traffic data in California collected from the Cal-
trans Performance Measurement System (PeMS). Forecast
accuracy was evaluated at different time horizons (4 to 48
hours) using multiple metrics, including MAE, MSE, MAPE,
and the coefficient of determination (R?). These models
were compared with baseline LSTM models with attention
mechanism, modified to take advantage of a support set for
zero-shot forecasting. The zSiFT model achieves an MAE
that is 8.3% lower than the baseline LSTM with attention
mechanism model. This shows that the Siamese configuration
of the transformer components is required to take advantage
of the support dataset for zero shot forecasting. The zSiFT
model achieves an MAE which is 6.6% lower than zSHiFT’s
MAE. The added complexity of zSHiFT likely introduced
overfitting. Nonetheless, zSHiFT still slightly outperforms the
baseline LSTM with Attention models.

This work focused on zero-shot time series forecasting.
One immediate direction for future work is to extend both
the zSiFT and zSHiFT architectures to handle multivariate

time series. This could allow these models to capture inter-
dependence between multiple signals. Incorporating multiple
signals could improve the results of the models by providing
a richer temporal context and improve the generalization
performance on unseen data. Another direction for future
work involves improving the mechanism by which the models
select similar time series from the support set. In this work,
the similarity between time series was calculated using Eu-
clidean Distance. We propose to incorporate Dynamic Time
Warping (DTW), in order to allow the models to select better
support series.
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