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Abstract—Campus dining significantly influences student
health, academic performance, and well-being. Limited access
to nutritional information at the point of purchase complicates
informed dietary choices. This study describes three artifi-
cial intelligence (AI) approaches to automatically classify and
provide nutritional data for campus meals. The approaches
use deep learning neural networks for object recognition that
are trained using a custom-built dataset. Specifically, three
approaches were implemented and evaluated: (1) object de-
tection with Roboflow/YOLO v8, (2) image classification using
MobileNetV2, and (3) Optical Character Recognition (OCR)-
based menu text analysis. The methods were quantitatively
evaluated using information available from public nutrition
information sources for university campus restaurants. Our
evaluation shows that these systems are able to categorize
meals into healthy, moderately healthy, and unhealthy, and can
provide comprehensive nutrition metrics. Preliminary results
demonstrate that the Roboflow/YOLOv8-based object detection
models outperform the other models. These AI-driven solutions
can enable students to make healthier dietary choices at the
point of purchase, potentially improving health outcomes among
university populations.

Index Terms—Computer Vision, Nutrition Assessment, Cam-
pus Dining, OCR, Tesseract, AI-assisted health

I. INTRODUCTION

The nutritional quality of meals consumed by university
students plays a critical role in their overall health, academic
performance, and well-being. However, campus dining en-
vironments often present challenges for making informed
dietary choices due to limited availability of clear nutritional
information at the point of purchase. Although many campus
restaurants provide nutritional information online or through
printed materials, this information is rarely accessible when
students make real-time meal decisions.

Recent studies have highlighted concerning trends in col-
lege students’ dietary patterns, showing a frequent consump-
tion of meals high in calories, saturated fats, and added
sugars, yet low in essential nutrients. Such dietary habits have
been linked to multiple health issues, including weight gain,
decreased energy levels, and poorer academic outcomes.

The rapid development of artificial intelligence (AI) tech-
nologies, particularly computer vision and machine learning,
presents new opportunities to overcome these challenges. AI-
driven systems can potentially recognize meals from images

and instantly deliver accurate nutritional information, helping
students make healthier dietary decisions. However, effec-
tively developing such systems involves addressing multiple
technical challenges, including: (1) creating comprehensive
datasets that accurately reflect campus dining options, (2)
developing robust classification models capable of identifying
various dishes across diverse presentation styles, and (3)
integrating nutritional data into visual recognition systems.

This research aims to develop and evaluate three distinct
AI approaches —object detection, image classification, and
text analysis of menu — to estimate health quality of meals
available on university campus restaurants. By comparing
these approaches, we seek to identify the most effective
methods for automated nutritional assessment.

The contributions of this work include (1) Creating a
comprehensive dataset of campus meals paired with accurate
nutritional data, (2) Developing three AI-based methods
for real-time meal identification and nutritional assessment,
and (3) Evaluating the real-world performance of these
approaches in university campus dining contexts.

II. RELATED WORK

We synthesize key findings from recent studies exploring
AI-driven solutions for dietary monitoring, food quality as-
sessment, and meal analysis.
A. Food Recognition and Classification Systems

Vision-based approaches for automatic food recognition
have shown promising results. Subhi et al. [1] highlighted
challenges in segmentation and mixed-food recognition, un-
derscoring the superiority of deep learning models in dietary
assessment. Transfer learning techniques have been used for
nutrition assessment from images. Mezgec and Seljak [2]
modified the GoogLeNet architecture for food recognition
and dietary assessment, achieving 86.5% accuracy on a
custom image dataset. Rohini et al. [3] integrated the CNN
and VGG16 models, and combined the architecture with
OCR for allergen detection, achieving 97.37% accuracy on
images of fruits and vegetables.
B. Nutritional Content Estimation and Dietary Assessment

Advanced dietary monitoring applications have leveraged
OCR and CNN methodologies. FoodScan [4] utilizes OCR
for simplifying food logging with high usability. goFOOD [5]



integrates CNNs and Structure from Motion for real-time
nutritional analysis. Experimental results indicate that these
approaches are effective in tracking dietary habits.

Ju et al. [6] developed MenuAI, a menu analysis system
that uses a transformer-based model for dynamic cafeteria en-
vironments. Abdullah et al. [7] describe Food Code Breaker
(FCB) that uses OCR technology and image libraries for
multilingual dietary inclusivity and ingredient analysis.

C. OCR Applications in Food and Nutritional Analysis
OCR has increasingly facilitated extracted of nutrition

data from textual sources. Najam et al. [8] developed a
CNN-LSTM-CTC model for OCR of handwritten text. Their
model also emphasizes the importance of error correction for
nutrition assessments. Myers et al. [9] and Ege and Yanai
[10] have integrated OCR technology with food recognition
systems to estimate nutritional content from images.

III. APPROACH

A. Dataset Creation

Nutritionix.com provided comprehensive nutritional data
for the major campus restaurants—Togo’s, Baja Fresh, Pieol-
ogy, Panda Express, and Carl’s Jr.—available primarily in
PDF format. This required significant pre-processing to en-
sure consistency and convert the data into a structured Excel
dataset. The dataset included detailed nutritional profiles
such as calories, calories from fat, total fat (g), saturated
fat (g), trans fat (g), cholesterol (mg), sodium (mg), total
carbohydrates (g), dietary fibre (g), sugars (g), and protein
content (g).

Each dish was categorized as “healthy,” “moderately
healthy,” or “unhealthy” based on standardized nutritional
guidelines. The classification criteria considered multiple
nutritional factors rather than calories alone, providing
a more holistic health assessment. Healthy meals are
characterized by lower calorie content, reduced saturated fat
and sodium levels, and a high presence of fiber, lean protein,
and essential nutrients. Moderately Healthy meals have
a balanced composition, containing moderate amounts of
calories, fat, and sodium while still offering some beneficial
nutrients. In contrast, Unhealthy meals are identified by
their high levels of saturated fat, trans fat, sodium, and
added sugars, with minimal fiber content, making them less
suitable for a nutritious diet.

Image data was collected from multiple sources including
dish images collected at California State University, Fuller-
ton, restaurant review images from publicly available sources
to represent real-world meal presentations and promotional
photographs directly from the restaurants.

We implemented three distinct approaches each leveraging
different aspects of computer vision and machine learning.:

1) Object Detection (Roboflow/YOLO v8): Our first ap-
proach utilized object detection to identify specific dishes
within images. We employed Roboflow 3.0’s object detection
framework, which is derived from YOLOv8 (You Only Look

Once), a state-of-the-art real-time object detection system.
YOLOv8 utilizes a CSPDarknet-based backbone with Cross
Stage Partial (CSP) connections, which enhance gradient flow
while reducing computational redundancy, ensuring efficient
feature extraction. Its Feature Pyramid Network (FPN) and
Path Aggregation Network (PAN) enable multi-scale feature
fusion, allowing for accurate detection of objects at var-
ious sizes. Additionally, YOLOv8 replaces the traditional
ReLU activation function with SiLU (Swish), which provides
smoother gradients and improves learning in regions with
small gradient updates.

a) Roboflow Architecture: Roboflow’s architecture is
designed to streamline and enhance object detection and
image classification tasks by leveraging deep learning models
trained on large-scale datasets such as Microsoft COCO and
ImageNet.

Microsoft COCO (Common Objects in Context) is a
widely used dataset containing over 330,000 images with
80 object categories, annotated with bounding boxes and
segmentation masks. It serves as a benchmark for object
detection models, providing diverse real-world images that
enhance model generalization. ImageNet, in contrast, is a
large-scale image classification dataset with over 14 million
images spanning 1,000 object classes, primarily used for
training convolutional neural networks (CNNs) for feature
extraction and classification.

Roboflow integrates pretrained models from both datasets,
allowing for transfer learning to enhance detection accuracy
and efficiency. Models trained on COCO are optimized for
object detection, enabling them to recognize multiple objects
within an image using architectures like YOLO (You Only
Look Once) and Faster R-CNN. These models benefit from
COCO’s fine-grained annotations, making them ideal for real-
world applications such as food recognition, medical imag-
ing, and autonomous systems. On the other hand, ImageNet-
trained models, such as ResNet, MobileNet, and EfficientNet,
provide robust feature representations that are useful for im-
age classification tasks. Roboflow enables developers to fine-
tune these models on custom datasets, leveraging ImageNet’s
hierarchical classification structure to improve recognition
performance in domain-specific applications.

b) Model Implementation: The implementation fol-
lowed these steps:
i. Dataset Preparation: Images were annotated with bounding
boxes around individual dishes. The annotations included
dish name, calorie count, and health category. The COCO
format was used as the checkpoint for initial model training,
with pretrained weights initialized from the COCO dataset,
which includes 80 classes and 330,000 images.

ii. Preprocessing Operations: Images were normalized with
pixel values scaled to [0,1] range and standardized to µ=0,
σ=1 using ImageNet statistics. Systematic adjustments to
hue (±10°), saturation (0.5-1.5×), and brightness (0.5-1.5×)
were performed to correct photometric distortion. We used
a progressive Training Strategy. We initially trained using
93 annotated images. In the second phase, we expanded the



training dataset to 154 images. In the final phase, we added
all 305 images.

iii. Model Configuration: The base architecture used was
YOLO v8n (nano version for efficiency) with a batch size of
16 and learning rate of 0.01 with cosine decay. Augmenta-
tions performed included random rotation, zoom, brightness
adjustment, contrast, color, horizontal flips, crops, etc.

2) Image Classification with MobileNetV2: Our second
approach treated dish identification as an image classifica-
tion problem using transfer learning with MobileNetV2 on
actual food images, where each dish category corresponds
to a class label. It connects food images to nutritional data
loaded from an Excel file, trains a model on real images,
and saves predictions, along with dish details, into a CSV
file. MobileNetV2 pre-trained on ImageNet (a huge general-
purpose image dataset) was chosen due to its efficiency for
embedded applications and to leverage its existing knowledge
about general image features. The base layers were freezed
to prevent altering pretrained weights during initial training.

i. Dataset Preparation and Preprocessing:
Images were organized into class directories based on
dish names. Preprocessing included resizing all images to
224×224 pixels and rescaling pixel values to [0,1]. We
implemented data augmentation for the training set where
rotation range was set to 20 degrees, width and height shifts
to 0.2, shear range to 0.2, zoom range to 0.2, horizontal flip
was set to True, and fill mode was set to ’nearest’.

ii. Model Architecture
We employed transfer learning using MobileNetV2, a
lightweight CNN architecture designed for mobile and em-
bedded vision applications.

Fig. 1. Architecture Block Diagram for MobileNetV2

The model architecture is built on MobileNetV2, a pre-
trained convolutional neural network (CNN) with ImageNet
weights, serving as the base model for feature extraction. It
processes input images of size (224, 224, 3) while keeping
its base layers frozen during the initial training phase to
retain pre-learned features. The extracted features are passed
through a custom classification head, which includes a Global

Average Pooling layer to reduce spatial dimensions, fol-
lowed by a fully connected (Dense) layer with 128 neurons
and ReLU activation for feature transformation. To prevent
overfitting, a Dropout layer (0.5) is applied before the final
output layer, which uses softmax activation with neurons
corresponding to the number of dish classes for multi-
class classification. The model is compiled using the Adam
optimizer, with categorical cross-entropy as the loss function
and accuracy as the evaluation metric.

iii. Training and Evaluation
The model was trained with epochs set to 10, batch size to
32 and the train-validation split was 80%-20%. During eval-
uation, predictions with confidence below 0.5 were labeled
as ”Uncertain Prediction” to prevent misclassification.
iv. Metadata Retrieval
After classification, the system retrieved nutritional informa-
tion by mapping the predicted class to the corresponding dish
name, then looking up the dish in the Excel dataset to obtain
calories and health category and returning ”Unknown” for
metadata when no exact match was found.

3) Menu Text Analysis with OCR: Our third approach
focused on extracting and analyzing text from menu im-
ages to identify dishes and their nutritional attributes. We
developed an OCR-based system using Tesseract, embedded
within a Flask web application. Images underwent prepro-
cessing (grayscale conversion and thresholding), and text
was cleaned and matched against nutritional data. Extracted
menu items were classified into health categories with caloric
data. Recognizing the challenges posed by visual similarity,
lighting variations, and potential image quality issues, the
OCR system also allows manual input of dish names.
i. Tesseract OCR Implementation
We implemented a Flask-based web application using Tesser-
act OCR for text extraction. Image Preprocessing included
conversion to grayscale and binary thresholding (threshold
value: 150). Text was extracted using Tesseract OCR engine
(version 4.1.1). Finally text cleaning and processing included
removal of non-alphanumeric characters, elimination of mul-
tiple spaces, removal of dietary indicators (VG, Vegan, GF,
etc.) and case-insensitive matching

ii. Dish Classification Methodology
The extracted text was processed to identify dishes. Clean
text was compared against entries in the dish categories.xlsx
file. For each match, the system retrieved the Dish name,
Health category (healthy, moderately healthy, unhealthy) and
Calorie count. The results were returned as a JSON response
with a list of identified dishes with their categories and
calories, status indicator (success/error) and raw extracted
text for verification purposes iii. Web Application Integration
The OCR system was wrapped in a Flask web application
allowing users to upload their menu images, receive imme-
diate analysis results, and view both the uploaded image and
the classified dishes. Results were color-coded by respective
health category (red for unhealthy, yellow for moderately
healthy and green for healthy)



IV. RESULTS AND DISCUSSION

A. Roboflow 3.0 Object Detection Model

Out of the three successive models trained on the Panda
Express dataset, the final version had Mean Average Preci-
sion (mAP) of 55.3%, Precision of 72.4%, and Recall of
49.2% showing significant improvement compared to the
previous two models. Figure 2 shows the precision scores
for the 4 models.

Fig. 2. Comparing successive Roboflow models by their Precision Scores.

Fig. 3. Loss curves and Performance Metrics (Baja Fresh).

Results shown in Figure 3 show that Train Box, Class, and
DFL Losses steadily decrease, indicating the model learns
effectively from training data. Validation Box Loss initially
decreases as shown in Figure 3, but later becomes noisy and
slightly increases, signaling potential overfitting or difficulty
in predicting boxes accurately on new data. Validation Class
Loss consistently decreases sharply and remains stable, in-
dicating strong classification performance. Validation DFL
Loss initially decreases but then rises significantly over time,
suggesting bounding box accuracy deteriorates, again hinting
at slight overfitting.

Precision and Recall rise and stabilize at moderate to high
levels, indicating decent prediction performance. The mean
Average Precision at 0.5 Intersection over Union (mAP@50)
measures the accuracy of predicted bounding boxes when
they overlap with ground truth boxes by at least 50%,
commonly used in object detection tasks. mAP50 rapidly in-
creases and stabilizes around 0.6 ( 60%), showing reasonable

object detection accuracy. mAP50-95 stabilizes around 0.3-
0.4 ( 30-40%), indicating that while the model performs well
at IoU of 50%, it struggles at stricter thresholds (common for
most models).

Overall, the model demonstrates effective training behav-
ior, successfully learning robust classification skills. Valida-
tion metrics indicate reasonable detection accuracy; however,
there are signs of slight overfitting, as evidenced by gradually
increasing box and Distribution Focal Losses (DFL) on the
validation set. Additionally, the model shows strong perfor-
mance at standard detection thresholds (mAP50) but exhibits
weaker accuracy at stricter thresholds (mAP50-95), which is
typical in practical, real-world object detection scenarios.

Overall performance:
• Validation mAP@50: 79%
• Test mAP@50: 79%
The model performs consistently and strongly overall, with

identical validation and test set performance of 79% (see
Figure 4 and Table II .

The model’s performance was evaluated based on mean
Average Precision (mAP@50) for both validation and test
datasets across different food categories. Black Beans (150
cal) achieved a perfect detection score of 100% on both
validation and test sets, indicating excellent and highly reli-
able recognition. Lettuce (5 cal) showed strong performance,
with a validation score of 79% and a perfect 100% on
the test set, reflecting notable improvement during testing.
Similarly, Lettuce Cabbage Mix (5 cal) improved from 69%
in validation to 87% in testing, demonstrating moderate
enhancement. Chicken (280 cal) maintained consistently high
accuracy, scoring 92% in validation and 100% in testing,
confirming its robustness across datasets. Mexican Rice (130
cal) was only evaluated in the test set, achieving 83%, which
suggests good reliability despite the absence of a validation
score. Overall, these results highlight the model’s strong
generalization capability and strong potential for accurate
practical implementation.

Fig. 4. Validation and test performance on dishes in Baja Fresh.

Table I shows that the Roboflow 3.0 object detection
models trained for Panda Express demonstrated progressive
improvement in performance through successive training



TABLE I
PERFORMANCE COMPARISON OF ROBOFLOW OBJECT DETECTION MODELS

Model Name mAP Precision Recall Total Images Model Type Checkpoint
Panda Express 1 22.8% 67.1% 17.2% 93 Roboflow 3.0 Object Detection COCOn
Panda Express 2 20.3% 69.0% 15.3% 154 Roboflow 3.0 Object Detection Panda Express 1
Panda Express 3 55.3% 72.4% 49.2% 302 Roboflow 3.0 Object Detection Panda Express 1
Baja Fresh 1 68.3% 71.8% 64.4% 220 Roboflow 3.0 Object Detection COCOn

TABLE II
CLASS-WISE PERFORMANCE ANALYSIS (MAP@50)

Class (Category) Validation
mAP@50 (%)

Test mAP@50
(%)

Black Beans - 150 cal 100 100
Lettuce - 5 cal 79 100
Lettuce Cabbage Mix - 5 cal 69 87
Chicken - 280 cal 92 100
Mexican Rice - 130 cal - 83

iterations and incremental dataset expansion. The initial
Panda Express model (Panda Express 1), trained on 93
images using a COCO checkpoint, achieved a mean Av-
erage Precision (mAP) of 22.8%, precision of 67.1%, and
recall of 17.2%. The subsequent iteration (Panda Express
2), despite being trained on a larger dataset of 154 images
initialized from Panda Express 1, showed a slight drop in
performance (20.3% mAP, 69% precision, 15.3% recall),
likely reflecting increased dataset complexity or challenging
new examples. However, this incremental training approach
ultimately proved beneficial, as the third model iteration
(Panda Express 3), trained on an expanded dataset of 302
images, significantly improved performance to 55.3% mAP,
72.4% precision, and 49.2% recall, indicating successful
adaptation and generalization. Additionally, the Baja Fresh
model, trained independently with 220 images and initialized
from the COCO checkpoint, achieved strong results (68.3%
mAP, 71.8% precision, and 64.4% recall), further validating
the effectiveness of data quality and adequate representation
of object classes in improving object detection performance.

B. Tesseract OCR

1) Dish-level Accuracy Analysis: The overall accuracy of
the Tesseract OCR model at the dish-level was calculated as:

Overall Accuracy = (Total Correctly Detected / Total
Dishes) × 100

With a total of 55 correctly detected dishes out of 64 total
dishes (see Table III), the computed accuracy is:

Overall Accuracy = (55/64) × 100 = 85.94%
The model is precise with a perfect Average Precision

score of 1.0, which means that it did not generate any
incorrect dishes, but it missed some actual dishes which
lowered the recall (0.812) and F1-score (0.850).

Figure 5 shows the total number of dishes versus the
number of correctly detected dishes using the Tesseract
OCR model across 10 distinct images. This visualization
clearly highlights strong performance on most images, with
several images (Img 2, Img 5, Img 7, Img 10) achieving

TABLE III
IMAGE DETECTION PERFORMANCE BY TESSERACT

# Image Name (Characteristics) Total
Dishes

Correctly
Detected

Accuracy
(%)

1 PE M5 (tilted image, clear text) 8 7 87.5
2 PE M3 (tilted image) 5 5 100
3 Entrees (white text) 3 0 0
4 Entrees4 (yellow tint, blurred) 8 7 87.5
5 PE Broccoli Beef 1 1 100
6 PE MM3 6 4 66.7
7 PE M2 (clear) 3 3 100
8 M1 (clear text) 20 19 95
9 M5 (glare, blurred text) 4 3 75
10 M3 (glare, unclear text) 6 6 100

perfect accuracy (100%). Other images, despite challenges
such as glare or blurring, also displayed good performance,
while a few (notably Img 3) demonstrated poor performance
due to significant readability issues. Figure 6 illustrates the

Fig. 5. Total and correctly detected dishes for 10 sample images.

relationship between the total number of dishes present
in each image and the OCR model’s accuracy percentage.
The trend depicted shows generally high accuracy, typically
ranging from 75% to 100%, with one prominent dip at Img 3
(0%), indicating that severe image-quality issues significantly
impacted model accuracy. Notably, the number of dishes in
an image does not directly correlate to performance, as both
small and large numbers of dishes produced high accuracy
in clear conditions.

The Tesseract OCR model demonstrated strong overall
robustness, achieving an accuracy of approximately 86%. The
results highlight that clear and adequately captured images
consistently resulted in near-perfect accuracy (95–100%),
whereas declines in accuracy were predominantly due to poor
image quality and readability.



Fig. 6. Total number of dishes per image for 10 sample images vs Accuracy.

C. MobileNetV2 model

During initial training epochs, the MobileNetV2-based
model achieved approximately 92% training accuracy and
around 89% validation accuracy. However, upon deeper
evaluation using precision, recall, and F1-score metrics,
performance significantly declined. Specifically, due to
the limited size of the validation dataset. The model
showed poor class-level predictive capabilities, reflected
by precision, recall, and F1-score metrics nearing zero
in 2 out of 5 classes. Only one class, ’Super Greens,’
achieved moderate accuracy (precision, recall, and F1-score
= 0.50). This discrepancy indicates the validation accuracy
initially reported was inflated by the small sample size
and insufficient to represent true model performance or
generalizability.
Due to initial limitations observed in dataset size and class
imbalance, additional images per class were collected, and
model fine-tuning was implemented (97.5% accuracy during
second training epochs but validation accuracy dropping to
56.14%). These adjustments resulted in slightly improved
classification accuracy clearly indicating the effectiveness
of transfer learning combined with fine-tuning and proper
dataset management. However, the overall accuracy of
approximately 30% was still significantly low compared to
the alternative approaches.

V. CONCLUSIONS

This study demonstrates the feasibility of employing AI-
driven methods for campus meal recognition and nutritional
assessment, highlighting the significant potential to improve
dietary choices among university students. Among the three
approaches tested—YOLOv8-based object detection, Tesser-
act OCR for menu text analysis, and MobileNetV2-based
classification—object detection exhibited moderate to high
mean Average Precision (mAP upto 79%), successfully iden-
tifying specific dishes across varying presentation styles. The
Tesseract OCR approach provided robust text extraction and
dish identification whenever image clarity and lighting con-
ditions were adequate, proving particularly useful for menu-

based analysis. Although the MobileNetV2 model showed
high training accuracy (more than 90%), it suffered from
overfitting and class imbalance within a smaller dataset,
underscoring the importance of additional data collection and
more rigorous fine-tuning of the architecture.

A. Limitations

Although promising, our approaches have certain
limitations. The current dataset is restricted to a few campus
dining vendors, which may limit generalizability. The
MobileNetV2 classifier suffered from class imbalance and
small dataset size, and OCR results were highly sensitive
to image clarity. Additionally, object detection methods
like YOLOv8 require significant computational resources
compared to the other two approaches. Finally, ethical
considerations, such as potential biases in AI-based dietary
guidance, protecting user-uploaded images, and meal data
for data privacy, can be explored in future work.
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