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Abstract

A behavior-based architecture with a connectionist action selection mechanism is introduced that enables
a society of autonomous agents to construct arbitrary structures in their simulated two-dimensional world.
All objects in the environment are colored discs. Agents can move in their environment and sense discs
located around them through distance sensors. An agent can also pick up discs close to them and carry this
disc as it moves to be dropped at another location. Construction in this environment involves the agents
picking up discs, and then moving to incomplete parts of the structure being built and dropping these discs.
The order in which parts of the structure are built affects the completion time of the construction task since
discs can obstruct the paths of agents.

An agent has both reactive behaviors which are used primarily to maintain the viability of the agent and
navigational planning behaviors that are used for construction. The navigational planning behaviors use an
egocentric grid-based representation of the world. Path planning is implemented by spreading activations on
sets of grid-based maps. The shape of the structure to be built is also encoded on an internal spatial map.

The connectionist action selection mechanism can learn to exploit spatial and temporal regularities in
the environment using its reactive behaviors and also learn to perform sequences of navigational planning
behaviors by imitation learning. Each agent monitors its progress to detect deadlocks arising from interac-
tions with other agents and uses unsupervised learning to change its behavior so that the deadlock is broken.
Algorithms are implemented on the spatial maps to decide the order in which discs are to be picked up
and carried to incomplete parts of the structure in order to reduce the time taken to complete construction.
Communication between agents is used to reduce the effect of random sensory and odometry errors on the
accuracy of the spatial maps.

We present simulation results that show how the various algorithms perform as parameters and environ-
mental factors are modified.
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Chapter 1

Introduction

As robot technology improves in the future, groups of robots will be expected to exist autonomously and
provide services that are useful to man. Construction and related repair of physical structures will be one
of the most important of such tasks. For example, a group of robots could build a shelter for humans on
a planet otherwise uninhabitable for man. Since the possible environments in which robots can exist, and
also the actual physical characteristics of the robots (the sensors, effectors, physical size, etc.) can be very
different from each other, this project studies the problem of construction in an artificial two-dimensional
world. Although highly abstracted from the real world (as it is 2-dimensional), the simulated environment
used here has features that are representative of the real world. The “robots” (called agents) are simulated
in this environment and their sensors and effectors are similar to those found in many current physical
robots. The goal of this project is to construct a society of autonomous agents that live in this artificial two
dimensional environment and are capable of building arbitrary structures in the same environment.

The environment contains only colored discs of fixed radius. Agents can move around in this environment
and sense discs around them. They can grab a disc located close to them and carry it as they move. This disc
can also be dropped at the agent’s current location. Construction in this environment involves arranging
these discs to form a specific two-dimensional pattern (We will also refer to such patterns to be built as
structures or configurations). An example is shown in figure 1.1.

This dissertation proposes a series of behavior-based architectures with connectionist action selection
mechanism that enables each agent to perform the construction task. The connectionist action selection
enables the agent to learn to exploit both special features of the environment and also how to learn the
construction sequence itself. For instance, an agent can learn to associate discs of one color with those of
another color if these differently colored discs always appear together in the environment (spatial correlations
in the environment). The agent can also learn to associate following a trail of colored discs to reach another
colored disc (temporal correlations in the environment).
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Figure 1.1: Example construction pattern and distribution of discs. Here, agents are to build two walls by
using the ”pile” (cluster) of discs to the left of the walls.



The architecture also makes use of an egocentric internal spatial representation of the world around the
agent. Thus the agent is able to navigate to parts of the environment that are out of its present sensory
range. This spatial representation also stores a blueprint of the structure to be built. The advantage of
this approach (over hard wiring the agent for one particular kind of structure) is that behaviors learned
while building one kind of structure can be reused to build other structures by just changing the blueprint
provided to the agent. Moreover, the spatial maps are grid-based and thus this blueprint is stored as a
“bird’s eye-view” of the structure to be built. Thus, it is easy for a human to describe the structure in the
form required by the agent (compared to the case where a procedural description of building the structure
has to provided).

The dissertation also describes algorithms that operate directly on the internal spatial representation
to plan the sequence in which parts of the structure are to be built. This is important for efficiency since
certain orders of building the structure can block direct paths to remaining parts of the structure. The
algorithms all use spreading activations on the grid-based representation and therefore all operations are
local computations on the individual grid cells. Thus these algorithms can be parallelized for greater speed.

1.1 Overview of the Chapters

Chapter 2 describes the simulation environment. This includes the sensory and motor capabilities of each
agent and also the actions that are required to perform construction. Chapter 3 describes the architecture
of the agent designed for a single agent scenario. An example illustrating the use of this architecture to
perform construction is shown. Chapters 4 and 5 describe how the connectionist action selection mechanism
can be used for learning. Chapter 4 details the changes required to take advantage of regularities in the
environment using only reactive behaviors. Chapter 5 describes an imitation learning procedure that can
learn sequences of navigational planning behaviors.

Chapter 6 starts the transition into a multi-agent environment. In this chapter, the single agent archi-
tecture is used to learn a deadlock escape mechanism that arises out of interactions between agents. The
next two chapters describe modifications to the architecture so that the construction task can be performed
efficiently by a group of agents. Chapter 7 introduces disc placement strategies that use randomization while
chapter 8 describes a more complex planning algorithm to determine the order in which discs are to be
placed as part of the structure being built.

The algorithms described in these chapters assume that the spatial maps provide an accurate represen-
tation of the locations of the discs around the agent and the shape of the structure being built. Chapter 9
describes the use of communication to reduce the error in spatial maps that are introduced by random errors
in the agent’s sensors and motors.

Each chapter gives simulation results illustrating the performance of the presented techniques and a
discussion of these results. Each chapter ends with references to related work and comparison of these works
with the system presented here.



Chapter 2

Environment, Sensors, and Motors

The agents and the discs exist in a simulated 2-dimensional continuous world, similar to that introduced
in [Crabbe, 2000; Crabbe and Dyer, 2001]. The discs represent objects that are relevant to an agent - “food”,
“water”, and “bricks”. The different kinds of discs are distinguished by their color: green discs are food,
blue discs are water and red discs are bricks. All the discs have the same radius (1 unit). Each simulated
agent is also simulated as a black disc with the same radius as that of the “passive” discs.

Agents are equipped with distance sensors that enable it to sense other discs. There are separate distance
sensors for each color (in multi-agent environments, agents also have sensors that can sense black discs to
identify other agents). The sensors are distributed all around the agent (360° field of vision) and each sensor
is sensitive to its particular sector. The sensors have a limited sensing range, that covers only a small portion
of the environment around them. The maximum range of a sensor can be different for different colors. The
activation of each sensor is inversely proportional to the distance of the nearest disc in its field of vision
(discs that are farther from the nearest disc are occluded). For instance, let G be the set of green sensors
and G; be the activation of green sensor ¢ € G. If R is the maximum sensor range for green sensors and d
the distance from the agent to the center of the nearest green disc present in the sector to which sensor ¢ is

aligned, then

d
Gi=1-3 (2.1)

Thus, G; varies from 0 (no green disc present in the sector within sensor range) to 1. Sensor activations are
illustrated in figure 2.1. Each agent also has a compass and this is used to align all sensor readings in one
global direction.

Errors are an inescapable part of real-world sensors and motors. Random errors are added into the
activation levels of the sensors which are used by reactive behaviors. The random error is proportional to
the distance of the object being sensed. Thus, as the object being sensed gets closer to the agent, it is sensed
more accurately. Another source of sensor error is the use of only a discrete number of distance sensors.
A distance sensor cannot distinguish the presence of more than one disc within its field of vision and also
cannot determine the angle of a disc within this sector. Real-world sensors also exhibit systematic errors
(i.e, not random) [Borenstein et al., 1996]. However, such errors are not modeled in this dissertation.

Repeatedly incorporating sensor data containing errors into the internal spatial map results in inaccuracies
accumulating in the map. Construction requires dropping bricks at pre-defined locations and hence an
accurate map is necessary to provide navigation goal locations. Moreover, the construction environment is
inherently dynamic and not all sensor-world mismatches are caused by sensor errors. Therefore sensor and
odometry data that is incorporated into the spatial maps is assumed to be free of error. Chapter 9 describes
Kalman filtering methods and communication between agents that reduce the impact of random errors on
the internal spatial maps.

The “motors” on the agent enable it to move forward and turn, through motor commands that consist
of the speed and the angle of a turn. The maximum speed of an agent is 1 unit per time-step. The agents
also have inertia and this implies that the motors cannot react instantaneously to the motor commands that
are generated by the architecture (the agent cannot speed up, slow down, or turn by arbitrary amounts in a
single time-step). The distance moved by the agent in each time-step is obtained from the “wheel encoders”.



Figure 2.1: Sensor activations around an agent (throughout, a “pac-man” style icon will be used to indicate
an agent): Discs can have one of three colors: red (R), blue (B), or green (G). Thus there are three distance
sensors oriented toward each of the 12 sectors. The boxes around the agent indicate the activations of each
of these sensors (a filled box indicates a non-zero activation). The sensors are sensitive only to the nearest
disc in their sector (thus though there is a red and a green disc in one of the sectors, only the green sensor
is activated).
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Figure 2.2: Environment with two agents: The sensor range is not long enough for the agent at the right to
sense the two sources of bricks. The agent at the left is close enough to a brick to pick it up.

This reading is called odometry information and is used to maintain the spatial maps (chapter 3). If an
agent attempts to move into a location that is occupied by another agent or disc, it will not succeed (i.e,
the agent will remain in its earlier position). In this case the motors are incapable of following the motor
commands and the odometry information indicates that no movement was made.

An agent has a “gripper” with which it can can pick up a brick (food and water discs can not be picked
up) located near its current position and carry the brick as it moves. Since this work does not focus on the
low-level details of gripper positioning, it is assumed that a gripper can grasp any brick that is within a
pre-specified range from the agent as a single action (i.e, it is not necessary for the agent to turn and face a
brick before attempting to grab it). The agent and the brick that it is carrying occupy the same position.
An agent can carry only one brick at a time. Carrying a brick does not affect the sensory capabilities of the
agent, but bricks being carried by other agents are no longer visible. The agent can also drop the brick at its
current location. One may imagine that after grabbing a brick, the agent slides the brick under its “belly”
(making the brick invisible to other agents) and therefore when the agent drops the brick, it occupies the
same position as that of the agent. After a brick is grabbed, the grippers continue to grip it until the drop
motor activation is generated.

Construction in this world involves moving toward a brick, “grabbing” the brick when the agent is
sufficiently close, moving to one of the designated configuration locations and then “dropping” the brick at
that location. An example is shown in figure 2.2.

The “health” of the agent is represented by internal food and water levels. These levels decrease by a
constant amount in every time-step (does not depend on the agent carrying a disc). The rate at which the
internal food and water levels decrease (per time-step) is denoted by fo and wg respectively. Motivations
are internal sensors that monitor these levels and consist of hunger and thirst. Two thresholds (T and T})
control the activation of these two motivations. When the internal food level falls below threshold 7, the
hunger motivation is activated (the agent becomes “hungry”). To increase the internal food level, the agent
must “eat” by touching a food (green) disc. This is a generalization of the tasks that a physical entity will
have to perform to ensure continuous operation. For instance, mobile robots have to be charged periodically
and they often have to move to a fixed charging station to do so.

The rate at which the internal food and water level increases (per time-step) while eating is denoted by
f1 and w; respectively. As in the case of grasping, the agent does not have to face the food (water) disc
to eat (drink). Touching a food disc in a time-step increases the internal food level by a constant amount
in that time step. When the food level increases above T}*, the hunger motivation becomes inactive (the
agent is “satiated”). This process is illustrated in figure 2.3 which shows the values of the internal food level
and the hunger motivation. Similarly, the internal water level is monitored by the thirst motivation and is
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Figure 2.3: Change in internal food level and hunger motivation: Internal food level against time with rate
fo- When the food level falls below T§ the agent becomes “hungry” (hunger motivation is activated) and the
agent starts moving toward a food (green) disc. When the food level goes above T} the hunger motivation
becomes inactive. Eating (touching a food disc) increases the food level by an amount specified by the rate

fr.

controlled by thresholds T¢ and Tf. The agent “drinks” by touching a water (blue) disc. Eating or drinking
does not change the food or water disc (either in size or location). In addition, there is an avoid motivation
that is always active so that the agent does not collide with objects.

Biological systems have motivational units that indicate when the agent is hungry or thirsty. These
include nerve receptors in the stomach to detect hunger and in the mouth for thirst [Toates, 1986]. It has
also been shown in simulation that organisms can evolve to match the activations on their motivational units
to those behaviors that affect the motivations [Cecconi and Parisi, 1992]. Such organisms also exhibit more
adaptive behavior and have a higher fitness (as defined for the simulated environment of [Cecconi and Parisi,
1992]).

2.1 Simulation vs Physical Implementation

The work has been demonstrated in simulation because the computational time of the algorithms make them
impossible to be executed in real time as would be required if they were to be implemented on physical robots.
The construction task also requires good sensor and effector capabilities since the agents have to get close
to the discs, pick them up and carry them to their destination. Another important reason to require good
sensors and motors is that an accurate internal spatial map has to be maintained not only for navigation as
in most physical systems, but also for constant comparison with the blueprint of the structure to be built. A
large proportion of the current work using physical robots do not manipulate their environment (that is only
navigation is performed; for example, [Mataric, 1992; Kuipers and Byun, 1987]). Physical systems that do
manipulate their environment are often implemented as purely reactive machines (for example, [@stergaard
et al., 2001]). Coarse sensing capabilities are sufficient for reactive robots since they do not maintain an
spatial representation. Moreover, when there are multiple construction agents present, the environment can
significantly change due to the actions of agents that are beyond sensor range. Chapter 9 provides techniques
to maintain the accuracy of the spatial maps in the presence of random sensory and motor errors.



It is much more difficulty to study learning in physical systems compared to simulated systems because
of the time it takes to complete a robot trial. This is one of the main research themes behind the Simulation
League in the RoboCup robotic soccer championships [Stone, 2001]. Rapid progress is being made in the
sensory capabilities of robots. For example, laser range finders which are much more accurate than traditional
sonar range finders are becoming more prevalent on robots. The issues arising from sensing are thus likely
to change in the future.

2.2 Related Work in Construction

Crabbe and Dyer presents a society of autonomous agents that work together to build simple structures
like walls and briar patches in a two dimensional world containing colored discs similar to the one used
in this dissertation [1999a]. The architecture of the agents is completely neural and the sequence of steps
for construction is performed using second-order networks (the architecture is described in more detail in
chapter 3). The agents do not maintain an internal model of the world and hence the steps in construction
are marked by “painting” the discs. For example, to build a wall, agents perform the following steps:

1. Move towards a red disc.

2. Carry red disc to a brown disc (the “pile-marker”) and color the red disc orange (orange discs are
ready to be used as part of a wall).

3. Carry an orange disc to a purple disc. The start of the wall is marked by a purple disc placed initially
by the designer.

4. Color orange disc purple.

These steps are shown in figure 2.4. The wall is built between the (initially placed) purple and brown
discs. Steps 1 and 2 are performed by scavenging agents while steps 3 and 4 are performed by wall-building
agents (the type of an agent is fixed by the designer). Similar steps were shown for constructing corridors,
intersections, and briar patches.

The nest-building abilities of colonies of ants and wasps have inspired construction systems in simulated 2-
and 3-dimensional environments [Therauluz and Bonabeau, 1995; Deneubourg et al., 1992]. The individual
agents behave by following fixed rules that depend on a limited view of the structure being built (for instance,
agents can only see the contents of their neighboring cells in a grid world).

This is an instance of stigmergy which is the indirect coordination between individuals through their
actions on the environment [Beckers et al., 1994]. The emphasis in these works is on building natural looking
structures. For instance, a simulated colony of ants could build pillars and walls using only the concentration
of pheromones to guide their behavior [Bonabeau et al., 1998]. (This is an example of quantitative stigmergy
where agents react only to the magnitude of some stimulus [Theraulaz and Bonabeau, 1999]. Qualitative
stigmergy is exhibited when agents recognize and react to different kinds of stimuli. For instance, by building
new hexagonal cells at the junctions of already placed cells, wasps can construct large nests [Karsai, 1999]).
The main issue is to specify a set of conditions that these local rules must satisfy for the structures to be
built reliably (that is independent of the order in which different agents take their steps). This approach is
different from that in [Crabbe and Dyer, 1999a) in that the behavior of a construction agent is dictated solely
by its local view of the structure being built. The behaviors of the scavengers and wall-builders of Crabbe
and Dyer do not change with the changing shape of the structure being built. However, these two approaches
are similar in that the rules do not make use of a general purpose internal spatial representation and thus
it is not obvious how arbitrary structures can be constructed. The structures built using these systems also
depend on the initial positions of the elements of the environment. Small changes in the environment can
lead to significant changes in the shape of the structure being built. For instance, if an agent approaches a
purple disc from a slightly different direction, the angle of the wall will begin to diverge from its intended
direction [Crabbe and Dyer, 1999a].

The work presented in this dissertation removes some of the inherent limitations of these approaches.
Firstly, an internal spatial representation is used to remove the need for changing the environment for keeping
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Figure 2.4: Steps to build a wall - arranging discs in a line [Crabbe and Dyer, 1999a]. The wall is to be built
between the purple (P) and Brown discs (B). 1. Scavenger agent (s) moves toward a red (R) disc. 2a. Agent
s carries a red disc to a brown disc and drops it. 2b. Agent s colors red disc, orange (O). 3. Wall-builder
agent (b) carries an orange disc to a purple disc and drops it. 4. Agent b colors dropped disc purple. 5.
Repeated application of steps 1-4 results in the wall being extended.



track of the construction sequence (coloring discs). Moreover, this also allows more reasonable sensor ranges
(the sensor ranges were either essentially infinite [Crabbe and Dyer, 1999a] or limited to the immediate
surroundings [Therauluz and Bonabeau, 1995; Deneubourg et al., 1992]). Secondly, the agents are provided
with a blueprint of the structure to be built. This removes the need for specifying the different steps required
to build each different shape — one sequence of steps with goals obtained from the spatial representation can
build all structures. Also, the shape of the structure being built is continuously matched with the blueprint
so that any discrepancy can be removed throughout the construction sequence. Thirdly, the agents can
determine the order in which parts of the structure have to be built for more efficient construction. This
order is determined by performing computations on the internal spatial representation of both the structure
to be built and also the layout of the environment (discussed in detail in chapter 7 and chapter 8). Finally,
the architecture is designed to facilitate learning of the construction sequence from a teacher (chapter 5).

Foraging is the task of first searching the environment for certain objects that when found have to be
moved to a pre-specified “home” area. It is similar to construction in that agents have to move objects
from one location in the environment to another. Though foraging can be performed by one agent, it
can be accomplished more efficiently by multiple agents. For this reason it is used for demonstrating and
comparing various multi-robot architectures [Cao et al., 1997]. Both foraging and construction systems
face some similar issues such as reducing interference and efficiently dividing the task between the many
agents. However, the major difference between foraging and construction is that while in foraging objects
have to be deposited at a general home location, construction agents have to move objects and place them
in a specified pattern. Thus construction agents face the additional issues of representing the structure to
be built and computing different navigational goals at every step of the task (foraging tasks have only one
“home” location). Moreover, construction agents require better sensory capabilities than foraging tasks since
the objects have to be placed in precise locations. (Foraging systems are further discussed in chapter 6).

A more limited form of environment manipulation takes place in tasks such as coordinated object moving.
Mataric et al. present two autonomous robots that with the help of communication, push a box together
towards a goal region [1995]. Khatib describes an architecture that allows groups of mobile arm robots to
interact with each other or with a human to do construction or building tasks [1999]. The robots interact
by grabbing the same piece of construction material (eg., dry wall) and using the forces exerted by each
robot/human to guide the task. The Control Architecture for Multi-robot Planetary Outposts (CAMPOUT)
is a distributed architecture used to coordinate the actions of two mobile robots that together carry a beam
over rough terrain [Pirjanian et al., 2000]. CAMPOUT contains both a deliberative component for task-level
planning (higher-level actions) and a reactive component for executing lower-level behaviors that require close
interactions between sensors and motors. The main focus of all these works is the closely coupled coordination
required between a small number of agents. The effect of the agents’ actions on the environment (such as
where exactly a box has to be pushed to) is not studied. In this dissertation, the fine-grained actions that
would be required to manipulate a physical object are not studied (for instance, an atomic “grab” operation
is assumed to be available to the agents).

Physical systems that can construct large-scale structures in the real world do not exist yet. One of the
important practical applications of autonomous construction robots will be in building habitable structures
for humans on other planets. The CAMPOUT architecture was designed with this long-term goal [Schenker
et al., 2000]. Brooks et al. present a society of simulated agents that jointly perform tasks like digging
trenches and collecting rocks which might be useful in planetary base construction [1990]. The approach
used is inspired by insect colonies as the agents are completely distributed and do not communicate with
each other.

An extreme case of robots that manipulate the environment are robots that can change their own structure
to perform different type of tasks. Cellular Robots (CEBOTSs) are composed of cells, each of which has its own
sensors and perform actions like moving and bending [Kawauchi et al., 1993]. The cells can communicate with
one another and physically couple with other cells to perform different manipulation tasks. The architecture
is distributed, but some cells are designated as master cells and these coordinate sub-tasks. CONRO robots
are reconfigurable robots that are composed of small, inter-connecting, homogeneous modules [Castano et al.,
2000]. The modules can be connected in different ways to create different shaped robots (such as a “snake”
or a ring) and can also form different sized robots (many small robots or one large robot). The different
configurations (shapes) lead to different gaits for movement. Simple physical robots were made to “evolve”



by specifying their generic structure and manufacturing them using rapid prototyping technology [Lipson and
Pollack, 2000]. The robots consisted only of bars connected by ball joints (no sensors). Offspring could have
a different number and configuration of blocks/joints from their parents. Their fitness was measured by how
well they could move. Self-organization has also been studied theoretically using the Tile Assembly Model
[Rothemund and Winfree, 2000]. This model considers a collection of square tiles in a 2-dimensional plane
with different kinds of “glue” on each side. The kind of “glue” determines which tiles can stick together.
The tiles come into contact based on a probabilistic model. The agents described in this dissertation have
no “self-knowledge” and lack the ability to change their internal architecture or structure.
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Chapter 3

Architecture

3.1 Introduction

Traditional robots like Shakey [Nilsson, 1984] had a hierarchical control structure with the planner at the
top. Though Shakey had a good planner, its moves were prone to failure. It also took a long time to plan
even a single step. This was because it is difficult and computationally expensive to maintain a reliable
model of the world from the information provided by the sensors. As the time between sensing and acting
increased, the accuracy of the internal world model decreased. Moreover, real world sensors are inherently
noisy and this noise will be manifested in the internal world model.

In a robot with a behavior-based architecture, every module directly accesses the sensory information and
produces a motor activation. Fach of these modules, called behaviors, performs only a simple computation
on the sensor input and this ensures fast reaction times. The robot is also robust since all behaviors produce
a motor action and the failure of a behavior will not bring down the robot completely. Figure 3.1 shows the
generic layout of a behavior-based architecture as described by Arkin [1998]. f is a function which takes
the motor outputs generated by the behaviors (labeled By, Bs,...,B,) and generates the motor activation
that is sent to the motors. f could either select just one of the motor outputs generated by the behaviors
(“winner-take-all” selection) or some combination of all the motor outputs (for example, all the behaviors
could vote on each of the possible motor actions and the motor action that receives the most votes would be
performed).

The architecture described in this dissertation, called the ConAg architecture, is behavior-based with
connectionist action selection. A grid-based spatial representation is used for planning paths to locations
that are out of sensor range and also to represent the pattern of the structure that is to be built. The

o B2 "
3 .5
8 F B3 f s

[ ]

[ ]

[ ]

i B,

Figure 3.1: Block diagram of a behavior-based architecture. The behaviors are labeled By, Bs,...,By,. fisa
function generates the motor output based on the motor actions generated by the individual behaviors [Arkin,
1998].
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Figure 3.2: Block diagram of the ConAg architecture. The sensory inputs are processed by the Sensory/Motor
and the Navigational Planning behaviors, producing all possible motor actions. They are then concurrently
fed into the Action Selection module, which then chooses one action and sends it to the motors. The current
stage of the construction task is encoded into the internal state nodes while the motivations are indicators
of the health of the agent.

behaviors are divided into two groups:

1. Sensory/Motor Behaviors: The Sensory/Motor module maintains the overall health of the agent by
generating motor actions in response to objects within the sensor range. These behaviors are therefore
purely reactive (the output of each behavior depends only on the current sensory input).

2. Navigational Planning Behaviors: The Navigational Planning module builds and maintains the internal
spatial representation of the environment, learned from the history of sensory inputs. These maps are
then used for both construction and self-preservation goals, by planning paths to desired locations such
as to food discs when the agent is hungry.

The motor activation outputs of these behaviors are then sent to the action selection module which
selects one of them to be sent to the motors. The Action Selection module attaches a higher priority to
those behaviors responsible for maintaining the agent’s health over those required for construction. Since
the behaviors that have to be performed will be different during different stages of the construction task, the
current state of construction is encoded into Internal State nodes. The block diagram of the architecture is
shown in figure 3.2 and the modules are described in detail below.

3.2 Sensory/Motor Behaviors

The reactive behaviors available to the agent are shown in figure 3.3. These include Avoid-x and Approach-z
behaviors where z is a color: Green, Blue, or Red. The “avoid” behaviors take the agent in a direction
away from visible discs of that color (for obstacle avoidance), while the “approach” behaviors take the agent
toward the nearest visible disc of that color. There are also Fat and Drink behaviors, and an Ezplore behavior
that outputs a random motor action.

12
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Figure 3.3: Sensory/Motor behaviors. Activations flow from left to right: from the sensors, through the
behaviors that are regulated by the Hunger (H), Thirst (T) and Awvoid (A) motivations, to the action
selection module.
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Each behavior takes the sensor data concurrently and outputs a motor activation obtained from simple
computations on these sensor activations. For instance, the Approach-Green behavior takes the activations
from the green sensors and outputs the direction which has the maximum sensor activation. Since sensor
activation is inversely proportional to the distance of the sensed disc, this motor activation leads the agent
to the nearest green disc. The avoid behaviors output motor activations that direct the agent away from
discs that are situated close to the current location of the agent. A more detailed description of the approach
and avoid behaviors is given in chapter 4. The Eat (Drink) behavior generates motor activations that enable
the agent to eat (drink) from a green (blue) disc situated near it. The Eat (Drink) behavior is activated
only when the food (water) disc is sensed very close to the agent. The motor activations generated by these
behaviors set the motor speed to zero so that the agent stops moving and remains close to the food or water
disc. The Explore behavior outputs a random motor action and does not depend on sensor activations.

Second-order links between motivations and behaviors are used to excite or inhibit behaviors. The Avoid
motivation excites all the avoid behaviors for obstacle avoidance. Thus, when the agent passes close to a
disc, these avoid behaviors generate motor activations that take the agent away from the disc. The Hunger
motivation excites the Approach-Green behavior and inhibits the Avoid-Green behavior. This results in
the agent moving toward green discs when it is hungry while the inhibitory link suppresses the green disc
avoidance behavior (so that the agent can get close enough to the green disc to eat). Similarly, the Thirst
motivation excites the Approach-Blue behavior and inhibits the Avoid-Blue behavior. Note that there are no
links to the Approach-Red behavior from the motivations. This behavior is needed only during construction
and hence is regulated by one of the Internal State nodes (the connections from the internal state nodes
are learned and this is described in chapter 5). The Hunger and Thirst motivations also excite the Eat and
Drink behaviors respectively. Since these behaviors cause the agent to stop close to a food (water) disc, the
agent eats (drinks) as long as these behaviors are selected. Once the internal food (water) level has increased
beyond T} (T}), the hunger (thirst) motivation becomes inactive, another behavior is selected and the agent
moves away from the food (water) disc and stops eating (drinking). The explore behavior is always excited
and thus this behavior is the “default” behavior if all of the other behaviors are inactive.

3.3 Navigational Planning Behaviors

The Sensory /Motor module responds only to current sensory inputs and is thus completely reactive. To plan
paths taking into consideration regions of the world that are out of sensor range, an internal representation
of the world is necessary. A representation of space is also needed to compare the current layout of the world
with the pattern of the structure to be built. Every agent uses Egocentric Spatial Maps (ESMs) [Chao and
Dyer, 1999] to represent the spatial relationship between the agent and each kind of disc in the environment.

3.3.1 Egocentric Spatial Maps

An ESM divides the area around the agent into a grid of small uniform squares. The area covered by each
grid cell is approximately equal to the size of one disc. The central cell (neuron) in the grid is the cell on
which the agent is currently present. The ESM contains neurons arranged in a grid to correspond to these
squares such that the central neuron in the ESM corresponds to the square on which the agent is located. A
neuron is connected to its eight neighboring neurons and this represents the adjacency relationships between
the areas represented by each ESM cell. The activation of a neuron indicates if a disc is present in the
corresponding square. Thus at every point of time, each agent maintains a “birds-eye” view of the world
around it. The neurons close to the center of the ESM also correspond to the space sensed by the sensors.
At every time step, new sensory input is integrated into the center portion of the map (figure 3.4). Thus
changes in the world, such as the addition or disappearance of discs, are reflected in the ESM.

As the agent moves in every time-step, the neuron activations are passed to neighboring neurons to
maintain the egocentric nature of the map. The activations on the ESM are passed in a direction opposite
but proportional to the distance moved by the agent in each time-step. The amount moved by the agent
is obtained from the dead-reckoning inputs. In general, the distance moved by an agent will not be an
integral multiple of the ESM grid size. To account for smaller movements, each ESM cell also stores the
(z,y) offsets of the disc represented in that cell. In every time-step, the dead-reckoning input is added to
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Figure 3.4: Updating an ESM from sensors. The central portion (shaded) of the ESM represents the same
space sensed by the distance sensors. These sensor activations are integrated into the ESM to keep the map
current. Activations of neurons that encode space outside the sensor range might not correspond to actual
discs in the environment due to actions of other agents (the ESM shown contains an activated neuron “south”
of the center that has no corresponding disc in the environment). Only connections from each neuron to its
nearest four neighbors are shown for clarity.

the offset stored in each cell. If this offset falls outside the area represented by the cell, the cell activation
is passed to the neighboring cell along with the offset (since the maximum speed of an agent is 1 unit per
time-step, the offset will never fall outside the area represented by the neighboring neurons). The activation
of the original cell is reset to zero to indicate that a disc is no longer present in the area represented by that
cell. Though a cell offset can store continuous values, the ESM still effectively discretizes the space around
the agent because a cell can only store one offset value. In particular, if two or more discs are located within
the space represented by a cell, only the offsets for one will be stored in the cell. Thus, the grid size of an
ESM determines how finely space is represented. The shifting of neuron activations is done procedurally by
purely local computations (the new neuron activation and offset value depend only on the neighboring ESM
neurons). Figure 3.5 shows an agent surrounded with two red discs (only one of which lies completely in an
ESM cell) and the corresponding activations on its Brick ESM. As the agent moves by a distance half the
cell size, the activation of one of the ESM neurons is passed to a neighboring cell while the activation on the
other neuron remains the same.

If the activation of a neuron is moved out of the map’s range, then the agent “forgets” about the
corresponding disc. This process is illustrated in figure 3.6.

3.3.2 Integrating Multiple ESMs

Each agent has a separate ESM for each kind of disc in the environment: the Food ESM, Water ESM, and
the Brick ESM. The structure to be built is also represented in a ESM called the Configuration ESM. Like
the other ESMs, the activations on this map are also shifted as the agent moves so that egocentricity of
the map is preserved, but the initial activations on the Configuration ESM (that encode the structure to be
built) are set a priori and are not updated by the sensors.

Paths are computed by spreading activation on Navigation maps which also consist of a grid of neurons.
Activation spreads from nodes representing goal locations while nodes representing obstacles inhibit this
activation (equivalently, nodes representing obstacles and their interconnections are removed from the grid).
Let n denote an arbitrary neuron in a Navigation map and nb(n) the set of neighboring neurons of n. Let
an(t) be the activation of n at time ¢.
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Figure 3.5: Updating an ESM with agent’s movement: The arrangement of bricks at time ¢ and corresponding
ESM (darkened circles represent firing neurons). The dashed lines indicate the discretization of space by the
ESM neurons. As the agent moves diagonally by about half the grid size (time ¢ + 1), the ESM activations
are shifted in the opposite direction. Only the activation of one neuron is shifted to a neighboring neuron;

the offset of the other neuron remains inside the same grid cell at both times ¢ and ¢ + 1.
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Figure 3.6: Forgetting activations as discs move out of range: The arrangement of bricks at time ¢ and
corresponding ESM (darkened circles represent firing neurons). As the agent moves to the right (time ¢+ 1),
the ESM activations are shifted to the left to reflect the change. The two discs to the left are out of ESM
range at time ¢ + 1 and their corresponding activations are “forgotten”. Only connections from each neuron
to its nearest four neighbors are shown for clarity.
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1, if n represents a goal location

a,(0) = { —1, if n represents an obstacle (3.1)
0, otherwise

an(t+1) = max (an(t) —d(n,m)),an(t) >0 (3.2)

menb(n)

where d(m,n) is proportional to the Euclidean distance between the locations represented by nodes m
and n. d(m,n) encodes the distance relationship between neighboring nodes and can take only two values:

d(n,m) = { 1/M,  if n,m are horizontal/vertical neighbors

V2/M, if n,m are diagonal neighbors (3.3)

where M is a large number such that activations of non-obstacle nodes do not take negative values. Since
the maximum distance between two nodes cannot be larger than the number of nodes in the grid, M can be
chosen such that it is larger than the total number of nodes.

Equation 3.2 is iterated until the activations stop changing:

an(t+1) = a,(t)Vn (3.4)

Spreading activation is a parallel implementation of Dijkstra’s shortest path algorithm [Cormen et al., 1990].
The gradient created by the activation is the planned path to the nearest goal location. Let n and m be
neighboring nodes. Then, the gradient at n in the direction from n to m, gradient(n,m), is given by

Qm — Gn

gradient(n,m) = Amom)

(3.5)

To reach this goal from its current location, the agent should move along the maximum gradient of activation
at the center of the Navigation map. This is achieved by moving toward the area represented by that node
¢* from central node ¢, where

gradient(c*,1) = max (gradient(c,i)) (3.6)

ienb(c)

The motor commands based on the maximum gradient will only be in one of the eight compass directions
(corresponding to each of the eight neighboring nodes of the central node). However, the path of an agent
will be smooth because of the inertia of the agent (the motors cannot immediately turn the agent in the
direction given by the maximum gradient of activation).

The spreading activation algorithm actually calculates the shortest path to the nearest goal location
from any node, not just the central node. At iteration 4, the activation is set on all nodes from where a goal
location can be reached by passing through exactly i cells. Thus, once the activation of a node is set in an
iteration, that node’s activation will not change in later iterations. Therefore the iterations can be stopped
once the activation has reached the central node. The shortest path from a goal node to the central node
can contain between 0 and N nodes, where N is the total number of nodes. Thus, equation 3.2 has to be
iterated at most N times. However, in non-maze like environments, the number of nodes in the shortest
path is of the order of v/N nodes and therefore the spreading activation can be terminated earlier.

An example illustrating spreading activation from two goal locations is shown in figure 3.7. The maximum
gradient at the center is available after two iterations. Further iterations will only set the activations of those
nodes that were not set in the first two iterations but will not change the maximum gradient at the center.

If there is more than one node that satisfies equation 3.6, then any one of those nodes may be chosen
arbitrarily. This is shown in figure 3.8. In this case, one of the goal locations is behind a “wall” of obstacles.
The activation flows around this wall and reaches the center from either end of the wall. Thus, there are
two shortest paths, and the agent can move either to the area represented by the upper-right or lower-right
nodes.

Every ESM is associated one-to-one with a Navigation Map i.e, each node in the ESM has an excitatory
link to its corresponding node in the Navigation map. The excitatory links from active nodes represent the
goal nodes for computing a path to the nearest disc of the color represented in the ESM. Inhibitory links from
the active nodes in other ESMs represent obstacles in this path. For instance, the Food ESM is associated
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Figure 3.7: Spreading activation from two goal locations: The agent is surrounded by two blue discs (goal
locations). The darkness of a circle indicates the magnitude of activation. The activations of the neurons
at consecutive iterations of spreading activation are shown. At ¢ > 2, the maximum gradient at the central
node is toward the upper-left node. The planned path (sequence of maximum gradient nodes) is shown
superimposed on the grid at t = 3.
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Figure 3.8: Spreading activation from two goal locations: Spreading activation in the presence of obstacles:
The agent is surrounded by two blue (B) discs (goal locations) and a “wall” of three bricks (R; obstacles).
The darkness of a circle indicates the magnitude of activation while circles with filled centers indicate nodes
with negative activation. The activation flows on either side of the wall and there are two shortest paths
from the center to the goal location at the right. The planned path (sequence of maximum gradient nodes)
is shown superimposed on the grid at ¢t = 4.
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Figure 3.9: Food Navigation map: (a) A wall of three bricks separating agent from a food disc (G). (b) Food
ESM, Brick ESM and Food Navigation Map. Only the excitatory (from Food ESM to the Food Navigation
map) and inhibitory (from Brick ESM to the navigation map) connections for four of the nodes are shown
for clarity. The Water ESM has also been omitted for clarity. The nodes on the Food Navigation map
compute a spreading activation (a red node indicates negative activation while the darkness of shaded circles
indicate magnitude of activation) and the maximum gradient at the center is the motor output of the Food
navigation behavior.

with the Food Navigation Map that computes a path to the nearest green disc. The active neurons from
the Food ESM represent the goal locations and activate their corresponding neurons in the Food Navigation
Map. All other types of discs are obstacles in this path (for instance, water discs become obstacles when the
agent is planning a path toward food) and therefore inhibitory links are projected from the Water and Brick
ESMs to the corresponding nodes on the Food Navigation Map. This is illustrated in figure 3.9 which shows
the Food and Brick ESMs and the Food Navigation Map. There is a food disc behind a “wall” of three
bricks. To plan a path to the food disc, the activated node in the Food ESM excite its corresponding node
in the Food Navigation Map. At the same time, the three activated nodes in the Brick ESM inhibit their
corresponding nodes in the Food Navigation Map. Spreading activation is carried out on the Navigation
Map and the maximum gradient at the center of the Food Navigation map gives the motor activation that
has to be taken to move towards the food disc. Similarly, the Water Navigation Map receives excitatory
links from the corresponding nodes in the Water ESM and inhibitory links from the Food and Brick ESMs.

The Configuration Navigation Map is used to compute a path to locations where bricks should be dropped.
Hence, every node is activated by the corresponding node from the Configuration ESM and inhibited by the
activations from the nodes on the Food and Water ESMs (since food and water discs are obstacles). The
Configuration Navigation Map is also inhibited by the Brick ESM because if a brick is already present at a
desired location, then the agent should not place another disc there. The same idea is extended to generate
the activations on the Brick Navigation Map, which is used to compute a path to a brick that is available
for construction. It is excited by the nodes on the Brick ESM and inhibited by the nodes on the Food and
Water ESMs. Moreover, there are inhibitory links from the Configuration ESM that distinguish available
bricks from ones that compose parts of the structure that are already built.

Figure 3.10 shows the interconnections between the ESMs and the Navigation Maps. The Configuration
ESM has seven activations in the shape of a “C” (representing the structure to be built). The Brick ESM
has three activations that align with three of the activations on the Configuration ESM. These represent
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Figure 3.10: Interconnections between ESMs and Navigation maps (i) The agent is surrounded by a food
(F), a water (W) and three brick (B) discs (where two of them are already in their goal positions). The
dashed circles indicate the structure to be built. (ii) The four ESMs and their corresponding Navigational
Maps. Darkness of shaded circles indicate the magnitude of activation while circles with filled centers
indicate negative activation (obstacles). For clarity, only one connection from each ESM to its corresponding
Navigation Maps is shown and only the connections from Brick, Water, and Food ESM to Configuration
Navigation Map is shown. The direction to the nearest goal is listed under the maps. Note that since the
two bricks south of the agent are already part of the structure, the Brick Navigation map plans a path to the
brick in the north. There are five goal locations for Configuration navigation; however, the goal nodes that
are horizontally and vertically above the central node are chosen as they have a greater gradient compared
to the diagonal goal nodes. If the agent is hungry then it will go west; if thirsty it will go north-west.

bricks that already form part of the structure. The mismatches between the ESMs represent the location
of a brick that is available for construction and the missing parts of the structure. These “misalignments”
activate the corresponding nodes on the Configuration Navigation and Brick Navigation maps. Activations
spread from these nodes to the center and give the direction the agent should move to reach the unbuilt part
of the structure (two equidistant locations: north and east) and to reach the brick available for construction
(north). The activations from the Food and Water Navigation maps give the directions to reach the closest
food (west) and water disc (north-west). The agent then has to properly choose the right action given the
status of its internal state.

3.4 Internal State Nodes

While motivations monitor the vital internal “energy” levels of the agent that are essential for its survival,
Internal State Nodes are used to keep track of the current stage of the construction task:

e Holding-Brick: Is active when the agent is carrying a brick.
e At-Drop-Site: Indicates if the agent is on a cell where it can drop off a brick.

e At-Brick: Is active when the agent is next to a cell from where it can pick up a brick.

The activations of the At-Drop-Site and At-Brick internal state nodes can be computed directly from the
navigation maps. For instance, if the central node of the Configuration Navigation map is active, then this
implies that the agent is currently at a location where the structure is missing a brick. Hence, the activation
of the At-Drop-Site internal state node is set from the central node of the Configuration Navigation map.
Similarly, if the central node of the Brick Navigation map is active, then the agent is currently at a location
where there is a brick that is not part of the structure being built. This brick is therefore available to be
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grabbed and carried to a drop-site. Hence, the activation of the At-Brick state node is set from the central
node of the Brick Navigation map. The activation of the Holding-Brick state node is directly available from
the current position of the grippers (grasping or open). These three internal state nodes do not recognize
the completion of the construction task. In chapter 5, more internal state nodes are introduced that capture
this aspect of the construction task.

3.5 Action Selection

The Action Selection module selects one of the motor actions from the Sensory/Motor and Navigational
Planning behaviors to be sent to the motors. The Action Selection module implements a fixed priority
selector - all the behaviors are prioritized and the behavior with the highest priority is chosen. Behaviors that
are crucial to the survival of the agent, eating and drinking, have the highest priority, followed by avoiding
obstacles, and finally approaching food and water. The prioritizing of these behaviors is implemented by
lateral-inhibition links from the high priority behaviors to all of the lower ones. Therefore, if a higher priority
behavior is active, all other lower priority behaviors are silenced (“winner-takes-all” kind of selection). The
lateral-inhibition connections are assumed to be innate and are not modified.

If none of the self-preservation goals are active, then the agent attends to the construction task. Con-
struction for an agent is a repeated sequence of moving to the location of a brick that is not part of the
structure, picking it up, moving to a location that requires a brick and dropping it there. The internal state
nodes correspond to these steps and the action selection module selects the behavior currently required for
the construction task based on the activations of the internal state nodes. The agent performs the Config-
uration Navigation behavior if the Holding-Brick state node is active, else the Brick Navigation behavior is
performed. If Holding-Brick and At-Drop-Site internal state nodes are both active, then the agent drops the
brick. If Holding-Brick is inactive but At-Drop-Site is active, then the agent attempts to grab the disc near
it.

Excitatory and inhibitory connections from the internal state nodes to the outputs of the Navigational
Planning behaviors are used to select the motor action. In chapter 5 it is shown how weights can be assigned
to these connections and the construction sequence can be learned by imitation learning. Figure 3.11 shows
how the internal excitatory and inhibitory connections select one of the reactive and navigational planning
behaviors for execution.

3.6 An example

In figures 3.12-3.17, screen shots of a sample construction run are shown. All the discs and the construction
sites are confined within an area of 50 x 50 units. The size of each ESM is 50 x 50 nodes (it is possible for the
agent to “forget” locations of discs if the agent goes to the edge of the world since the maps are egocentric).
The sensor range is 20 units (same for food, water, and bricks). The thresholds controlling the hunger and
thirst motivations (T} = T¢ = 0.2, Th = T{ = 1.0), and the rate at which energy/water is consumed in each
step is set such that the agent becomes hungry every 800 steps and thirsty approximately every 500 steps
(fo = —0.001, wo = —0.0015). Eating and drinking each take 10 steps to complete (f; = wy = 0.1).

The initial arrangement of discs consists of a wall made of food and water discs that acts as an obstruction
and five bricks (labeled B1 through B5) scattered around the environment (figure 3.12(a)). Initially, there is
no activation on the nodes of the Food, Water, and Brick ESMs. The agent’s Configuration ESM has node
activations set to represent the structure to build, in this case a diamond consisting of four widely spaced
bricks (figure 3.12(b)). The four construction sites are shown as dashed circles in the figures. Portions of
the simulation program are shown on the left side, displaying the current sensor activations, motivations of
the agent, and time-step.

In figure 3.12(a), the agent has located brick B1 (path in lighter grey) and moved it to the closest
corner of the structure (path in darker grey). After properly relocating another disc and en route to place
the third, the agent became thirsty and thus suspended construction (at point A) to reach the water disc
(figure 3.13(a)). Resuming the high-level task after drinking, the agent goes around the wall of green discs
to pick up brick B3 and begins moving to the third drop-site (figure 3.14(a)). On the way, it gets hungry
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Figure 3.11: Action selection network showing links between internal state nodes and behaviors. Only one
set of the lateral inhibition links for prioritizing is shown.

24



War-1d

= J 75 Agent B1
Time; 73 h

avold-red

Iw ' B4® #B2

S

[

il
ul
ne
=

W

ne

B5#@ # B3

(a) (b)

Figure 3.12: Example construction task: (a) Configuration of discs at time 73. The light grey line shows the
agent’s path when not carrying a brick. The darker line indicates when the agent is carrying a brick. At first
the agent moves East toward brick B1 because it has the strongest gradient. Then it picks up the brick and
drops it at the nearest goal location. Construction sites are marked by dashed circles. The “wall” is made of
food (F) and water (W) discs. (b) Activations of ESMs at time 73. Some of the food is still within sensing
range (within circle) but food out of range is remembered within the Food ESM as it is shifted while the
agent moves. Brick Bl is in the center of its ESM since that is where the agent currently is located. Brick
B2 is sensed to the south while bricks B3, B4, and B5 do not appear in the Brick ESM because there were
out of sensory range throughout the path taken by the agent so far. The activations on the Configuration
ESM show the “diamond” to be built.

and moves to the nearest green disc while continuing to carry brick B3. This is because as described in
chapter 2, the grippers continue to grip a brick until a drop activation is generated. The Approach-Green
behavior does not generate this drop activation (neither does the Approach-Blue behavior). At this point,
only one green disc is visible (the one it is eating); all other green discs are occluded behind this one.

In figure 3.15(a), the agent’s ability to repair is demonstrated. When the agent was carrying brick B3
to its drop-site, the author removed brick B1 which was out of the agent’s sensor range. However, when
the agent became thirsty (location C in figure 3.16(a)), it navigated to the blue disc to drink. From that
location, the missing brick location is within sensor range and the Brick ESM is updated. After drinking, it
drops the brick it was carrying at the location that was initially occupied by brick B1.

In figure 3.17(a), the agent’s ability to take advantage of unexpected changes in the environment is
demonstrated. When the agent moved to pick up brick B5, the author removed two green discs, thus
creating a gap in the wall. When this gap came into sensor range, the ESMs were updated and the path to
the northern most drop site was recomputed to navigate the agent through the gap. On its way to the last
drop-site, the agent became both thirsty and hungry. It therefore moved to blue disc and then to the green
disc next to it (while continuing to carry brick B5). The corresponding ESMs show that the agent’s belief
about disc locations are not completely accurate. This is because the sensors are unreliable at long range.

The four navigation maps that were used to plan a path for the time-steps shown in figures 3.12-3.17 are
displayed in figure 3.18. The spreading activation flows around the obstacles which are marked as yellow
squares (negative activation). When inhibiting an obstacle node, all its neighboring nodes are inhibited to
account for the size of the agent (whose width is equal to the side of a grid cell). This is required to prevent

25



™ Waorld

y

73 W Bl
Time; 262 b 3
avoid=hlue
?@g B2~
Water B4 A :\“w"
| et Y EEERE]

ps# #pB3

(a) (b)

Figure 3.13: Example construction task (cont.): (a) Configuration of discs at time 262. After picking up and
dropping brick B2 at a construction site and on its way to brick B4, the agent became thirsty (at point A)
and moves to the water (blue) disc to drink. (b) Activations of ESMs at time 262. The central node of the
Water ESM is active because the agent is close to the blue disc and drinking. The agent now has knowledge
of the positions of all the bricks in the Brick ESM as all bricks and food are currently within sensory range.
Two goal sites are out of sensory range but are remembered on the Configuration ESM.
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Figure 3.14: Example construction task (cont.): (a) Configuration of discs at time 564. The agent goes
around the wall of green discs (since it is an obstacle) to pick up brick B3 and begins moving to the third
drop-site. At point B it gets hungry and moves to the closest food disc while continuing to carry the brick.
(b) Activations of ESMs at time 564. Only one of the green discs can be sensed from the agent’s current
location - the others are occluded behind the nearest green disc.
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Figure 3.15: Example construction task (cont.): (a) Configuration of discs at time 675. The agent drops
brick B3 at a drop-site. Meanwhile, the author has removed brick B1. (b) Activations of ESMs at time 675.
Since brick B1 that was removed is out of sensor range, the Brick ESM continues to have an activated node
for B1. The Food ESM contains activations for all the food discs again.

an agent from colliding with an obstacle disc because the accuracy of the ESMs is limited to its grid size.
Collision avoidance by “growing” obstacles is often used as a simple (but sub-optimal) method to model the
size of the robot (for example, in [Zelinsky and Yuta, 1993], the obstacles are “grown” by half the width
of the cylindrical robot for efficient obstacle avoidance). The spreading activation was stopped as soon as
activation reached the center node (the current location of the agent).

3.7 Discussion

3.7.1 Action Selection

A behavior-based architecture with connectionist action selection has several features that make it suitable
for an environment where agents have to survive autonomously and adapt to changing situations. The
behavior-based approach ensures that though the agent has a large number of behaviors, the number of
levels of processing between sensors and motors remains the same. Thus, this approach scales well and the
time taken for the agent to react to the sensors remains small.

Implementing the action selection mechanism as a connectionist system offers the advantages associated
with artificial neural networks such as smooth integration, ease of incremental learning, and biological plau-
sibility [Rumelhart et al., 1986]. The Action Selection module chooses the actions specified by the reactive
behaviors if they are active over that of the Navigational planning behaviors. This is a simple yet effective
way of integrating low-level behaviors with higher ones - the reactive behaviors operate directly on sensor
information, and hence the actions specified by them are more likely to succeed. However, high-level tasks
can also override these reactive behaviors such as when the agent is close to an available brick (Near-Brick
internal state node is active), Approach-Red behavior is chosen while Avoid-Red is inhibited. Moreover, by
selecting the behavior with the highest activation, actions that are most likely to succeed are chosen over
others (the activation of a behavior is proportional to how strongly the sensors are activated, which in turn
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Figure 3.16: Example construction task (cont.): (a) Configuration of discs at time 1194. The agent picks
up brick B4 and gets thirsty at location C. It then moves to the water disc. From that point, the initial
location of brick B1 was within sensory range and the agent realizes that brick B1 is missing. Therefore,
after drinking it drops brick B4 at that location and moves to pick up brick B5 after navigating around the
wall. Meanwhile, the author removed two green discs, creating a short-cut. (b) Activations of ESMs at time
1194. The Brick ESM again shows activations of three bricks that are in their final positions.

29



B5

: B3
Time; 1644
avold—red e
'li L]
aaa it

(a) (b)

Figure 3.17: Example construction task (cont.): (a) Configuration of discs at time 1644. The construction
task has been completed. The agent made use of the short-cut created by the author to move to the northern
most drop-site and dropped brick B5. On the way, the agent became both hungry and thirsty. It moved to
the blue disc and then to the green disc next to it (while carrying brick B5). (b) Activations of ESMs at
time 1644. The activations of the Brick and Configuration ESMs match at the end of construction.
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Figure 3.18: Activations on navigation maps that provided the final motor activation: (a) Brick Navigation
map at time 73. (b) Configuration Navigation map at time 262. (c¢) Configuration Navigation map at time
564. (d) Configuration Navigation map at time 675. (e) Configuration Navigation map at time 1194. (f)
Brick Navigation map at time 1644. Square blocks indicate obstacle nodes and the brightness of a cell is
proportional to the magnitude of its activation.
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depends on how close the discs are to the agent), i.e, consummatory behaviors are chosen over appetitive
behaviors. Consummatory behaviors are those that directly affect a motivation [McFarland, 1981]. For
example, eating would immediately reduce the hunger motivation. Appetitive behaviors are those that do
not directly affect any motivation. For example, performing the Approach-Green behavior does not cause a
decrease in an agent’s hunger motivation. The preference for consummatory behaviors over appetitive ones
is one of the requirements for an action-selection mechanism [Tyrrell, 1993a].

The action selection mechanism in ConAg is “winner-take-all” (WTA) because only one behavior, trig-
gered by one motivation, is active at any given time. Werner proposed a neural architecture for an agent that
has to look for food, water and avoid predators [1994]. The architecture is based on the work by Braitenberg
where motors are controlled by direct connections from sensors [1984]. A part of the architecture is shown
in figure 3.19 (no spatial representation is maintained). Nodes representing hunger and thirst motivations
control direct links from sensor nodes to motor nodes through second-order connections. Since, all the mo-
tor nodes can be active simultaneously, the overall action of the agent is determined by the state of all its
motivations.

Food L eft Move Left Leg

Food Right /Q Move Right Leg

Water Left

Water Right

Find
Hunger Q% Food

Thirst Find Water

Figure 3.19: Action selection that combines behavior outputs [Werner, 1994]. Motivations (hunger and
thirst) control links from sensor nodes (Food Left etc.) to motor nodes (Motor Left Leg, Motor Right Leg)
through second-order connections. If the hunger node is active and food is sensed to the left (Food Left node
is excited), the Move Right Leg node is activated due to the second-order connection from Find Food node
causing the agent to turn toward the food source.

Werner’s architecture is compared to the WTA action selection of the ConAg architecture along the
following metrics:

1. Persistence: An action selection mechanism is said to be persistent if it continues to perform a consum-
matory action even after it is not the most important behavior to an agent [Tyrrell, 1993a). Consider
the situation depicted in figure 3.20. An agent that is both hungry and thirsty senses food and water.
It moves toward the food as it is closer and begins eating. This reduces its hunger level to a point that
moving toward water becomes more desirable than continuing to eat. However, on the way to water,
its hunger level could rise to a point where eating again becomes more desirable. Thus, the agent will
repeatedly attempt to move toward water only to move back to food without drinking. The ConAg
architecture is persistent because consummatory behaviors are always preferred over other behaviors
due to the fixed hierarchical ordering of behaviors (i.e, the agent would continue to eat until the internal
food level drops below threshold). Werner’s architecture is also persistent because “the sensory input
to the agent is proportional to the ... distance of the object being sensed. This causes nearby objects
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to be more important in behavioral selection than distant objects, unless the internal motivation to
approach the distant objects is much stronger than for close objects”[Werner, 1994]. This “internal
motivation” is controlled by the “Find Food” node (figure 3.19) which converts the continuous hunger
level into a binary signal. Thus, though the input and output nodes can take continuous values, the
architecture only considers a discrete number of choices (hungry or not hungry).

______________ Path of agent
F ) \\\\\
9 @
ASH L

Figure 3.20: Situation when persistence of action selection is necessary. An agent that is both hungry and
thirsty senses both food (F) and water (W).

2. Length of Paths: WTA action selection takes the agent on a direct path to the selected goal while if
actions are composed then the path will be drawn toward secondary goals giving rise to sub-optimal
paths. This is illustrated in figure 3.21. Combining actions works well in cases such as escaping
from a predator while moving toward food. However, in cases where there are two nearby goals, the
resulting path could be significantly longer than the direct path (the case where two goals are exactly
equidistant from the agent causing the agent to miss the goals completely by moving between them is
only of theoretical interest since in nature randomness will prevent such a situation). This is illustrated
in figure 3.22.

WTA
............ = =
.......................... =

-
-
-

-

--"

Combining multiple goals

(W

Figure 3.21: Length of path for WTA selection and when actions are composed: WTA selection takes the
agent on a direct path even if there are multiple goals (food (F) and water (W)).

3. Parallel actions: As long as actions do not interfere with each other, they can be executed in parallel
in both the ConAg and Werner’s architecture. For example, a ConAg agent can Approach-Food
and Drop at the same time while in Werner’s architecture can enable an agent to “produce signals
while moving” [Werner, 1994]. However, coordinating dependent actions is a difficult problem and is a
weakness of both these architectures.

4. Smooth actions: When the motor output of an agent is a result of a sum of behaviors that each produce
continuous valued outputs, the agent can exhibit “natural” looking behavior. However, as described
for persistence, the internal motivations take on binary values in Werner’s architecture. Moreover, even
in WTA action selection, smooth movement of the agent is observed due to the inertia of the agent.
Thus, summing motor actions from different sources is not essential for smooth movement.

5. Opportunism: Consider an environment in which are present predators that constantly threaten the
agent, forcing the agent to constantly move away from the predators for survival. Using a WTA
architecture will cause an agent to starve since the agent would always be pre-occupied with running
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Figure 3.22: Path of agent when there are two goals. (A) Food (F) and predator (P): both the goals take
the agent in the same direction. (B) Two food sources: the goals pull the agent in different actions resulting
in an inefficient path.

away from the predators. However, combining the escape behavior with the approach food behavior
will enable the agent to move toward food if it on an escape route. In these situations, Werner’s
architecture out-performs the ConAg architecture.

3.7.2 Spatial Representation

The spatial maps enable the agent to construct a representation of the environment and use it for path
planning. All the computations involved in path planning by spreading activation are local and hence they
can be carried out in parallel. Localization (locating oneself on the map) is easy on a ESM since the center of
the map always corresponds to the agent’s current location. This is particularly important for construction
tasks, since the agent has to match the given target pattern (the Configuration ESM) to the actual locations
of the building blocks (the Brick ESM) to identify what discs are not part of the structure and what parts
of the structure are yet to be built. Since the maps are always aligned due to their egocentricity, the
aforementioned matching can be done easily.

The spatial map uses only a prefixed number of nodes and interconnections. In this respect, it shares a
common feature with biological systems. This method also provides a reasonable solution to the issue of how
should a fixed number of neurons be allocated. All the neurons are allocated to the space that immediately
surrounds the agent and this is the space that is most crucial to the survival of the agent. In fact, the density
of neurons (the number of neurons allocated per unit area of space) in an egocentric map could be designed
to gradually decrease with distance from the agent. The drawback to this cell-based representation is that
the number of nodes is proportional to the area mapped irrespective of the actual density of discs in the
environment. This is an inefficient use of neurons since sparse or less important areas use equal amount of
nodes as denser areas.

3.7.3 Exploration

An agent or robot that has to build a spatial map needs an exploration strategy. Typically, the robot should
move to those areas of the environment that have not yet been mapped (or mapped with low confidence).
Thus, Yamauchi et al. program their robot to move to a location that are on the “frontier” between mapped
and unexplored areas [1999]. In case of a grid-based representation, each cell in the grid could store the
confidence in the occupancy of that area. The robot could then propagate these confidence measures from
each cell to the current location cell (spreading activation) and then move in the direction of the nearest
unexplored cell [Thrun and Biicken, 1996].
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Figure 3.23: Example of Subsumption architecture. The output of a higher level behavior (for example,
Align) can over-ride that of a lower level behavior (for example, Stroll). The increasing capabilities of the
robot as more behaviors are added are shown to the right [Mataric, 1992].

In the ConAg architecture, the Explore reactive behavior is implemented as a random wander behavior
(i.e, it does not use its ESMs). This simple behavior is sufficient since the agent starts with an initialized
Configuration ESM to provide it navigation goals. Moreover, the agent has to eat and drink periodically
and while the agent moves toward food and water discs, the ESMs get updated, thus mitigating the need
for a sophisticated exploration strategy.

3.8 Related Work

3.8.1 Behavior-based Architectures

Behavior-based architectures for robots were first introduced to solve problems that arose due to elaborate
planning on internal world models. The first behavior-based architecture was the Subsumption architecture
of Brooks[1986]. Behaviors are arranged in layers and are implemented as augmented finite state machines.
A behavior can modify the data on the inputs and outputs of its lower-level behaviors (i.e, higher-level
behaviors subsumed the function of the lower-level behaviors). An example from [Mataric, 1992] of an
architecture built using this philosophy is shown in figure 3.23. There are four behaviors: Stroll, Avoid,
Align, and Correct with Stroll being the most basic behavior and Correct the most sophisticated. The Stroll
behavior causes the robot to move forward and to stop and back up if an obstacle is detected in front. The
Avoid behavior enables the robot to turn away from obstacles on either side. The Stroll and Avoid behaviors
together enable the robot to wander without colliding into obstacles. The Align behavior is used to turn
the agent such that it is parallel to any walls at its side. These three behaviors together enable the agent
to follow convex boundaries. The Correct behavior prevents the robot from moving away from a wall when
it is near a sharp turn in the wall. All these four behaviors together enable the robot to follow arbitrarily
shaped boundaries (the increasing capabilities of the robot are shown to the right in figure 3.23).

The original formulation of the subsumption architecture did not create any internal representation [Brooks,
1991] and thus limited its applications. Mataric first integrated spatial information into the subsumption
architecture [1992]. The robot represents each landmark as a behavior (landmarks are features such as walls,
corridors in an indoor environment). Interconnections between landmarks encode neighborhood relation-
ships (i.e, the landmarks form the nodes of a graph) and enable the agent to navigate from one landmark
to another. Path planning is done by spreading activation from the goal landmark (as in our work). The
collection of such landmark behaviors form a coarse-grained topological map and these behaviors are added
on top of those shown in figure 3.23. The resulting architecture is shown in figure 3.24.

The subsumption architecture is not “fine-grained” in the sense that individual behaviors implement
a non-trivial capability. Since the internal state of a behavior cannot be accessed, this limits the ability
of the architecture to arrive at compromise solutions [Rosenblatt and Payton, 1989]. In general, a system
will be unable to exploit unforeseen opportunities if relevant information is abstracted away [Payton, 1990].
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Figure 3.24: Integrating representation into a behavior-based architecture [Mataric, 1992). The boundary
tracing behaviors (described in figure 3.23) are reactive. The map-learning module contains one behavior
for each detected feature such as walls or corridors. The landmark detection module activates that node
(behavior) in the map which most closely matches the currently detected landmark. (figure from [Mataric,
1991]).

Rosenblatt and Payton propose a fine-grained variant of the subsumption architecture in which each behavior
is composed of simple functional units (both inputs and outputs are in the range [—1,1]) [1989]. The output
of a unit is connected to the input of another, but unlike in a connectionist system [Rumelhart et al., 1986,
each unit represents a behavior-specific concept and hence links need not exist between every pair of units.
Also, behaviors added later do not completely suppress behaviors already present unlike in the Subsumption
architecture.

Maes presents the Agent Network Architecture — a distributed, non-hierarchical action-selection mecha-
nism [1991; 1990]. It selects one behavior from a pool of candidate behaviors. The applicability of a behavior
at any time is indicated by its activation level. When the activation level of a behavior exceeds a threshold,
that behavior is executed. Every behavior has a set of pre-conditions that should hold true before it can be
executed. Behaviors are connected to each other through predecessor, successor, and conflicter (directed)
links. There is a predecessor link from behavior A to behavior B if executing B will make some of the
conditions required for executing behavior A come true. Successor links work conversely and two behaviors
are connected by a conflicter link if executing one will cause some of the pre-conditions for executing the
other to become false. These links are used to excite and inhibit the activations of behaviors. The agent also
has motivations as in the ConAg architecture and activation flows from the motivations to those behaviors
that can directly satisfy these motivations. When the activation settles, the most appropriate behavior will
have the highest activation.

The ability of the behaviors to directly affect each other make Maes’s Agent Network Architecture a
more general-purpose action selection mechanism than the ConAg architecture. However, this inter-behavior
interactions reduce the reaction time of the agent since the activations will have to settle before a behavior
can be selected. Tyrrell showed that Maes’ action selection mechanism can get into a deadlock in situations
similar to that discussed in the previous section (persistence of action selection) [1994]. Decugis and Ferber
proposed extensions to overcome these problems [1998]. In particular, goals are arranged hierarchically
and each such goal is associated with an underlying network of behaviors to provide persistence. This
hierarchical ordering of conflicting goals eliminates the “thrashing” seen when the action selection is not
persistent. Tyrrell has compared these action selection mechanisms in a simulated environment and has
found that hierarchical action selection out-performs flat mechanisms [1993b; 1993a].

The PerAc (Perception-Action) architecture [Gaussier and Zrehen, 1995] is a neural architecture that
can learn sensory-motor associations. The architecture consists of two pathways — perception and action
(figure 3.25). Sensory input triggers a reflex action that activates the motors. The reflex system is innate
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Figure 3.25: Block diagram of the PerAc architecture [Gaussier and Zrehen, 1995]. The links between the
“input pattern recognition” block and the “motor output” block are modified when reinforcement is received.
Figure based on [Revel et al., 1998].

as in the ConAg architecture. At the same time, the perception pathway recognizes sensory input patterns.
When reinforcement is received, links between these two pathways are strengthened. The PerAc architecture
has been used for both landmark-based navigation [Gaussier et al., 1997] and for navigation by building a
topological map [Revel et al., 1998].

3.8.2 Spatial Navigation

Traditional robotics has tried to represent the robot and all other obstacles in the environment using polygons
and then define translations and rotations of these polygons that will move the robot to its target without
hitting any of the obstacles. This is a computationally expensive process and the need for precise information
make it unsuitable for situated robots. Latombe gives an overview of this approach [1991].

Configuration Space

Lozano-Perez introduced the concept of Configuration spaces as a means of providing a common formal
model on which to plan paths for different robots and environments[1983]. The Configuration vector is a
vector of parameters that uniquely specify the location and orientation of the robot. For example, in the
case of a robotic arm (fixed to a stationary base), the components of the vector might be the angles of
the joints on the arm. The configuration space is the set of all possible configuration vectors. The current
location of the robot is a point in this space, as is the final goal location. Obstacles get mapped on to
those areas of the space that represent the corresponding physically unrealizable configuration vectors. Path
planning is now reduced to finding a path for the point representing the current location of the robot on
the configuration space and that avoids the obstacle regions. To calculate a path on the configuration space
efficiently, the free configuration space is first discretized into a grid and a path linking neighboring grid cells
is returned [Latombe, 1991]. Other methods for fast calculation of paths use potential fields [Khatib, 1986]
and randomization [Barraquand and Latombe, 1991].

The concept of configuration spaces has been extended to include movable objects. This enables the sys-
tematic study of manipulation planning, that is deciding on a plan of action that will re-arrange the movable
objects into some desired pattern. Motion planning in the presence of movable objects is PSPACE-hard
[Wilfong, 1988]. Planning algorithms have been developed to solve restricted versions of the manipulation
problem [Alami et al., 1995; Ben-Shahar and Rivlin, 1998).

These approaches assume complete knowledge of the surroundings at all times and the algorithms that
are developed are computationally intensive. This makes these methods unsuitable for autonomous agents
with limited sensing capabilities in dynamic environments. Hence this direction of research is different from
that followed in this dissertation.
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Cell-based Representations

Cell-based representations divide space into many small regular regions that are adjacent to each other. The
cells are small enough that all relevant aspects of the environment can be represented, but large enough that
the number of cells does not become prohibitively large. Moravec and Elfes presented the first successful
application of a real robot that used a cell based representation (called evidence grids) to store the structure
of the world [1985]. Each cell on the evidence grid stores the probability that that cell is occupied. The
robot is equipped with sonar sensors and a probabilistic model of the sensor. Every measurement of the
sonar sensors is incorporated into the evidence grid using Bayes rule (described more fully in chapter 9).

Chao and Dyer [1999] and Lagoudakis [1998] describe egocentric maps similar to the ESMs used in the
ConAg architecture. Concentric Spatial Maps (CSMs) are egocentric maps in which the neurons representing
the space around the agent are arranged in concentric circles (compared to the rectangular grids in an ESM)
[Chao and Dyer, 1999]. Moreover, the agent does not have a 360° field of vision. Therefore, the agent has
to explicitly rotate the CSMs to keep track of the heading of the agent. Lagoudakis also suggests other
arrangements of grids (such as hexagons) [1998].

Path planning in cell-based representations is most efficiently performed using spreading activation to
calculate the shortest path as in ConAg. A related method is diffusion where the activation at each cell
is the average of the activation at its neighboring cells (instead of the maximum) [Stopp and Riethmiiller,
1995]. These methods can also be extended to 3-dimensional grids.

Classification of Navigation Systems

Trullier et al. classify artificial navigation systems into a four level hierarchy [1997]. Though this classification
was proposed for biologically-based navigation systems, it is used here with examples of systems that do not
necessarily have a biological basis. The classification is based on the amount of information that is used to
navigate to the goal and thus each class shows progressively more complex behavior.

At the lowest level is guidance or local navigation where all the information required to move to the
goal is always visible. An example is the robot developed by Chesters and Hayes where a gradient of light
from a single source is used as an always visible landmark and the path to the goal is stored in a recurrent
network [1994].

The second level is place recognition-triggered response where the environment is divided into places.
Each place is assigned an action that would take the agent to the goal from any point belonging to that
place. Since this action is goal dependent, such systems can store only one goal. An example of such a
system is described by Gaussier et al. [1997]. A robot in an indoor environment learns to navigate to a
goal by storing the visual image corresponding to a few places close to the goal and associating with each
such image the direction to the goal. The robot then can navigate from any place to the goal by comparing
the current image with the stored images and moving toward the place corresponding to the best matched
image. This is implemented on the PerAc architecture [Gaussier and Zrehen, 1995]. Navigation in maze
environments often falls into this category since there is usually only one goal in the maze [Pipe et al., 1994;
Duchon, 1996].

To handle more than one goal, systems at the third and fourth levels do not associate each place with a
goal specific action, but the places are represented in such a way that they reflect their spatial relationship
to each other. Goal specific actions are then planned on this representation. The third and fourth levels
differ depending on whether only topological or metric information is stored. Topological representations are
often graph-based where nodes represent places and edges represent adjacencies between places. Since no
position information is maintained, the nodes contain information that disambiguate places and the edges
store action that will take the agent from one place to the other [Kuipers and Byun, 1991; Mataric, 1992].
Systems that store only topological information are incapable of discovering shortcuts in their representation.

The most straightforward metric representation is one which specifies places relative to some coordinate
frame. Most navigation systems with spatial representation that are implemented on real robots use such a
metric representation (for instance, evidence grids [Moravec and Elfes, 1985; Elfes, 1987], CSMs [Chao and
Dyer, 1999]). Gallistel’s theory of cognitive maps in animals assume a global Euclidean representation of
space around the animal [1990]. Artificial navigation systems with a biological basis represent this Euclidean
information in different ways. For instance, Worden divides space into triangles defined by unique landmarks
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at its corners [1992]. The direction to a goal triangle can be calculated by summing the vectors that define
the triangles that lie between the goal triangle and the current location of the agent (figure 3.26).

Figure 3.26: Navigating by fitting triangles [Worden, 1992]. The internal representation divides space into
triangles defined by three unique landmarks. To reach a goal (G) that is not visible from the current
location, the agent “fits” triangles until a continuous area is discovered from the visible to goal landmarks.
The planned path is obtained by vector additions of the position vectors of the individual landmarks.

The ESMs used in the ConAg architecture store a metric map of the discs around the agent. Moreover,
the representation of goals is separate from the spatial representation. Thus, the navigation in ConAg is at
the highest level in the hierarchy of Trullier et al.. This enables the agents to exploit short-cuts that were
not traversed when the map was created.

Biologically-based Navigation Systems

Biological systems have been used as the basis for many artificial navigation systems. Franz and Mallot
give a survey of navigational systems based on biological models [2000]. The place cells in the hippocampus
of the rat is sensitive to the location of the rat and has led to the hypothesis that these cells encode
a spatial map [O’Keefe and Nadel, 1978]. Various models of the hippocampus have been proposed and
demonstrated on artificial navigation systems [Mataric, 1991; Burgess et al., 1994; Gerstner and Abbott, 1997;
Trullier and Meyer, 1998)]. For instance, Trullier and Meyer model the hippocampus as a hetero-associative
network that learns sequences of visited places [1998]. These places are then represented in a topological
representation. The representation of goal locations is independent of the spatial representation and the
agent can navigate to multiple goals in a continuous environment containing obstacles.

Bees appear to be using optic flow as a measure of distance traveled [Srinivasan, 1992]. Optic flow is the
amount of shift in consecutive images caused due to the movement of the observer. The closer the objects
to the moving observer, the greater is the optic flow. Thus, the magnitude of optic flow can be used as an
indicator of distance to obstacles and has been used for obstacle avoiding navigation in artificial systems
[Sobey, 1994; Coombs et al., 1995]. Duchon integrates optical flow with a spatial representation to solve
maze navigation [1996]. The spatial representation stores the sequence of actions (the parameters in the
optical flow equation at various points in the maze) that leads to the goal.

Foraging honey bees and ants are also capable of navigating large distances, but it is not yet clear if insects
maintain an explicit cognitive map [Gould, 1986; Gallistel, 1990; Wehner and Menzel, 1990]. Roboticists
have however used spatial maps when building navigation systems based on insect behaviors because of its
advantages such as efficient path planning [Walker et al., 1993]. In case no explicit spatial map is maintained,
other strategies are used. For instance, the desert ant Cataglyphis uses the polarization of sunlight to keep
track of direction [Wehner, 1994] (the desert ant does not lay pheromone trails). When landmarks are visible,
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the direction to the nest is calculated by comparing the current landmark view with a snapshot taken when
the ant was close to its nest [Wehner et al., 1996] (bees perform a similar comparison when landmarks are
visible [Cartwright and Collett, 1983]). Moller et al. simulate these strategies on a mobile robot [1998].
Navigation systems based on comparing landmark snapshot fall into the Guidance level of the classification
of Trullier et al. [1997].

Various other data structures have been used to store spatial information. These include encoding the
space explored by the robot as a list of production rules [Donnart and Meyer, 1996] and using fuzzy logic
operators to integrate sensor information to the built map [Oriolo et al., 1995]. Kuipers and Byun take a
“qualitative” approach by building a topological map of only “distinctive places” (using features such as
symmetry and sudden change in sensor readings) [1987]. Control strategies such as Follow-midline that take
the agent from one place to another link these distinctive places. On the other hand, Connell take the path

of minimal representation by storing only those locations where the robot has a choice of actions (such as
doors) [1988].
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Chapter 4

Learning Spatial and Temporal
Correlations

4.1 Introduction

If the agent is to take advantage of features it has seen during exploration, but are not visible through
its sensors from its current position, it has to build some internal representation of the world around it.
[Mataric, 1992] claims that “any solution superior to random walk necessitates an internal model of the
robot’s current location, the desired goal location, and the relationship between the two”. However, an
“internal model” does not necessarily have to be a topological model of the environment. If there is some
regularity in the way discs are arranged in the world, an agent can learn to move to discs outside its sensor
range by exploiting the relationship between the locations of the visible discs and the goal disc(s). For
instance, if food (green) discs are always situated close to red discs, then the agent should learn that moving
to a red disc (Approach-Red behavior) will probably lead to food though the agent might never even have
visited that part of the environment before and green discs are not visible from its current location. Once
the desired food discs are in sensor range, the agent’s Approach-Green behavior becomes active. Thus the
agent learns to apply its innate behaviors in situations that were not foreseen when these behaviors were
created. This is particularly useful in environments where it is easier to recognize locations of landmarks
(the red discs) than locations of food.

The correlations between disc locations can be in many forms. For instance, red and green discs may be
always located close together (figure 4.1(a)). This is an example of “spatial correlation”. A more complex
pattern is a “trail” of red discs leading to a food disc (shown in figure 4.1(b)). In this case, the red and
green discs are not seen together, but if an agent “follows” this trail of red discs, then the Approach-Green
behavior will be activated at the end of the follow behavior (assuming that it is possible to identify the correct
direction). This is called “temporal correlation”. In this chapter, extensions to the reactive component of
the agent’s architecture are described that enable the agent to take advantage of such correlations in the
environment. The resulting architecture is called ConAg-ST.

4.2 Reactive Behaviors

In addition to the Approach and Avoid behaviors introduced in chapter 3, “Follow” behaviors are added
to the range of innate reactive behaviors available to the agent. These are Follow-Red, Follow-Green, and
Follow-Blue. These behaviors enable the agent to follow a “trail” of discs and are useful in learning temporal
correlations. The symbols used for these behaviors in the figures and equations are listed in table 4.1.

The input to behavior B; is the vector of sensor activations and the output is a motor activation,
(mSB”ieed,m%:‘gle), computed from the sensor activations. In addition, sensory ezcitation sp, is computed
that is a measure of the confidence in that behavior. This confidence is greatest when the activation on
the sensors is strong (indicating discs are present close to the agent) and when the current behavior of the
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Figure 4.1: Examples of spatial and temporal correlations: (a) Spatial correlation: red (dark circles) and
green discs (lightly shaded circles) are located together. (b) Temporal correlation: trails of red discs (dark
circles) lead to green discs (lightly shaded circles).

Table 4.1: Symbols of reactive behaviors used in equations

| Behavior | Symbol |
Avoid-Red VR
Avoid-Blue VB
Avoid-Green VG
Approach-Red AR
Approach-Blue AB
Approach-Green AG
Follow-Red FR
Follow-Blue FB
Follow-Green FG
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agent agrees with the motor actions that would have been taken by behavior B;. This comparison therefore
requires examining the current sensor inputs and the direction in which the agent is currently moving. The
sensory excitation of a behavior serves two purposes. Firstly, if the sensors are not activated sufficiently,
then that behavior should not be performed (how much sensor activation is “sufficient” depends on the type
of behavior). In this case, the sensory excitation is set to zero (s, = 0). Secondly, if the motor outputs of
behavior B; matches with the current action of the agent, then behavior B; should be reinforced. This forms
the basis of the correlation learning algorithms. Thus if the actions match, then the sensory excitation of
behavior B; is set to a high value (sp;, = 1.0).

For instance, the Approach-Green behavior produces a motor output to move the agent towards a visible
green disc. Since more than one green disc may be visible, the behavior selects the closest disc. Let green
sensor ¢ € G be directed at angle 6; and its activation be G;, where G is the set of green sensors. Let green
sensor k € G have the greatest activation:

Gi = max(Gi) (4.1)

Then, the motor outputs of the Approach-Green behavior are

m%d'e = 6, (4.2)
speed __ 1,Gp < 0.8
Mag = { 0.2,Gj, > 0.8 (4.3)
1.0,Gy, > 0.8 or [m%y' —g| < 21
SAG = 0,G, =0 (4.4)

0.5,else

where 6 is the current direction of the agent’s movement.

Recall from chapter 2 that the activation of a sensor varies from 0 to 1 and is inversely proportional to
the distance from the agent to the sensed disc. For instance, if G; = 0.4, then a disc is present at a distance
0.6R from the agent where R is the sensor range for green sensors. The speed is high when the agent is far
from the nearest green disc (G, < 0.8) and reduces to 0.2 when the agent is close to a disc as it has to slow
down to stop. If the agent is close to a green disc or if the agent is facing a disc (|mi{é§le — 6] < 31), the
sensory excitation sag is set to 1. Therefore, even if the agent is moving closer to a green disc because of a
behavior other than Approach-Green, the sensory excitation of the Approach-Green behavior will be high.
sAq is thus an indicator of how applicable the Approach-Green behavior is in the current situation and is
used in learning the spatial and temporal correlations in the environment.

The avoid behaviors output motor activations that direct the agent away from discs within sensor range.
Since the Avoid-Green behavior is used for obstacle avoidance, the behavior only reacts to green discs that
are very close to the agent. Let G' be the set of green sensors that indicate the presence of a disc close to
the agent:

G' ={i|G; > 0.9,i € G} (4.5)

However, the agent has to avoid all discs that are close to it, so the agent moves in a direction away from the
sum of angular displacements of all nearby discs. The output motor activations of the Avoid-Green behavior

are: 5 0
. , SINU;

my g’ = — tan™! (FE (4.6)
i€G’ 2

miPet =1 (4.7)

The sensory excitation of the Avoid behaviors is also active only when the agent is very close to a disc:

| 1.0,G > 0.9
fva = { 0,Gr < 0.9 (4.8)

The Follow behaviors enable an agent to move alongside a row of discs of the same color in a particular
direction. A “trail” of red discs leading to a blue (water) disc is shown in figure 4.2. Since the direction
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Figure 4.2: Trail of red discs leading to a blue disc (B). Every group of three red discs is a “trail-marker”
indicating the direction of the trail.

of the trail has to be distinguished, every set of three discs may be considered as a “trail marker” with the
direction of the trail being from the two closely spaced discs towards the third disc (two discs of the same
color are sufficient to uniquely specify a line on the 2-dimensional world and a third disc is necessary to give
the line a direction). The follow behavior checks the activations on the sensors for the presence of three such
collinear discs (the “trail marker”) and if they are present, outputs motor activations to take the agent in
the direction specified by this trail marker. Since discs can be occluded, it is necessary for the agent to be in
a position from which all three discs are visible (for instance, if the agent is collinear with the discs, the trail
marker cannot be identified). Testing for the presence of a trail marker given the activations on the sensors
is implemented procedurally. The sensory excitation of the follow behavior is set to 1 if the angle between
the agent’s direction of motion and the detected trail marker is less than %, and set to 0.5 otherwise. This
sensitivity to the agent’s direction of motion is important when learning temporal correlations.

Since the needs of the agent are regulated by its motivations, the output of a behavior is gated by
these motivations before being sent to the action selection module, i.e, there are second-order connections
(excitatory and inhibitory) between motivations and behaviors (as shown in figure 3.3). Let the activations of
excitatory and inhibitory motivations of behavior B; be m§5°°" and mig " respectively. The motivations

take only positive values:
0 S mgcitOT’mghibitor S 1 (49)

Then, the total gating for behavior B;, g, is

9B, = meBzicitor X (1 _ miBn,hibitOT) (410)

ap;, = 8B; X gB; (4.11)

where ap; is the activation of behavior B; that is sent to the action selection module. Thus, a behavior is
active only if it is activated by the sensors, excited by some motivation, and not inhibited by any motivation.
As described in chapter 3, the avoid behaviors are excited by the avoid-obstacle motivation, Approach-Green
is excited by hunger and Approach-Blue is excited by thirst. The Avoid-Green behavior is also inhibited
by hunger and the Avoid-Blue behavior is inhibited by thirst. For example, the Avoid-Green behavior is
active only if a green disc is visible (sensory activation), the avoid-obstacle motivation is present (excitatory
motivation), and the agent is not “hungry” (inhibitory motivation). There are no excitatory motivations to
the Follow behaviors and hence these behaviors will never be selected by the action selection module. The
learning algorithm that is described next introduces weighted links between behaviors which enable these
Follow behaviors to be activated even in the absence of direct motivation.

4.3 Learning Correlations between Behaviors
As described above, the activations of the behaviors are regulated only by the gating connections from the

motivations. These connections are innate and do not change over the lifetime of the agent. To enable the
agent to incorporate any correlations present in its environment into its behaviors, weighted second-order
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Figure 4.3: Weighted second-order links (indicated by curved arrows) between three behaviors, By, Bs, and
Bs.

links are introduced between every pair of behaviors except the Avoid behaviors. This allows the activation
of one behavior to regulate the activations of other behaviors, in addition to the motivations.

Let w;; be the weight on the second-order link from behavior B; to B;. Behavior B; may be excited by
motivation meB””iCitOT also. Since there are no inhibitory motivations to an Approach or Follow behavior B;,
the total gating gp, and activation ap, can be now redefined as (removing inhibitory motivations and adding
second-order links from other behaviors):

gB; = threshold(max(wi;gp; ), mégeiter) T9) (4.12)
J

threshold(z,T) = { (l]’i E ; (4.13)

ap; = 8B; X gB; (4.14)

where 7Y is some threshold. The maximum activation on the second-order links from other behaviors
B; and the excitatory motivation m?f“‘” is used to gate the sensory activation sp, (earlier, only the
excitatory motivation could gate the sensory activation). Figure 4.3 shows the second-order links between
three behaviors.

The weights are learned to enable the agent to change its behavior to take advantage of both spatial and
temporal proximity of discs in the environment.

4.3.1 Spatial Proximity

If two features occur together in the environment, then moving towards one of the features will take it to the
other feature as well. For example, food discs may always be present along with bricks. So, if the agent is
hungry it should select Approach-Red behavior even though it might not initially perceive green discs near
it.

The agent discovers spatially proximal features of the environment when the corresponding behaviors
are simultaneously active. Thus if one of the behaviors is excited (through some motivation), then it should
spread its activation to the other behavior too. This can be accomplished by increasing the weight on the
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second order link between the two behaviors using a Hebbian learning rule. Let B; and B; be two behaviors
and the weight of the second-order link from B; to B; at time ¢ that represents the spatlal correlation
between ¢ and j be wz] P(t) (wtmp the weight that corresponds to temporal correlations is introduced later).
Let the sensory excitations of the behaviors be sp;, and sp;, T°? be some threshold and n°? the learning
rate. Then the spatial proximity learning rule is as given in ﬁgure 4.4.

Spatial proximity learning rule:
1: if (sp, > T*P) and (sp; > T*P) then
2w+ 1) =w? () + (1 — w ()
3: if ((sB; > T*P) and (sp; < T*P)) or

((sB; <T°P) and (sp; > T°P)) then
L WP+ 1) = w(E) + 0P 0 — wl ()

Figure 4.4: Spatial proximity learning rule.

4.3.2 Temporal proximity

If a goal is reached by executing a sequence of behaviors, then the agent should enable all these behaviors
if it wants to attain the goal. For example, the agent may have stumbled upon food by following a trail
of red discs. Therefore, to satisfy hunger, the agent should enable the Follow-Red behavior along with the
Approach-Green behavior.

In the case of temporally proximal features, the corresponding behaviors are not simultaneously active.
Instead, they are active one after the other. Hence the Hebbian learning rules are different for learning

temporal proximity and a different weight, w , on the second order link between behaviors B; and B; is

used when learning temporal correlations. wf;-”p should be increased only when behavior B; is excited T
time steps after behavior B;. Thus, the sensory excitation of behavior B; is delayed before being compared

with the sensory excitation of behavior B;. The temporal proximity learning rule is given in figure 4.5.

Temporal proximity learning rule:
1: if (sp(t —7) > T"P) and (sp, (t) < T*"?) and (sp,(t) > T*"?) then

2: Wi (¢ + 1) = Wl (8) + (1 — Wl (1))

@

if (sp,(t—7) >T""?) and (sp, (t) < T*™?) and (s, < T"™P) then
4: wiP(t+1) = wiP(t) + '™ (0 — wi P (t))

Figure 4.5: Temporal proximity learning rule.

The condition sp,(t —7) > T'™P and sp,(t) < T?™? (lines 1 and 3 in figure 4.5) is true when the sensory
excitation of behavior B; is decreasing (activation of B; was above threshold at time ¢ — 7, but is below
threshold at time ¢). If sensory excitation of behavior B; is also active at time ¢ (line 2), then the weight
wi™ is increased, else decreased (line 4). 5™ is the learning rate.

Figure 4.6 shows the sensory excitations of behaviors B; and B; with time and the period when temporal
learning occurs. The figure also shows how learning rate is affected by the choice of 7. A larger value of
7 allows for a longer learning period but there is also a period when the weights are erroneously decreased
(t = 5 compared to 7 = 1). Thus, as the interval between the end of the first behavior and the beginning of
the second increases, so should the value of 7. This also means that learning becomes slower as the interval
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Figure 4.6: Temporal learning with 7 = 1,5,20. The bar shows the period when learning or unlearning can
occur (sp,(t —7) > TP and sp,(t) < T*™P). The filled portion shows learning (s, (t) > T*™), while the
unfilled portion shows unlearning (sg, (t) < T*™P).

between the two behaviors increases (because of the erroneous decrease in weights involved with large 7).
However, an excessively large value of 7 will lead to large periods of erroneous decrease in weights as shown
in the figure for 7 = 20.

The spatial learning rule is not a special case of the temporal learning rule for 7 = 0. This is because
for temporal correlation, learning occurs only during the short period when the activation of behavior B; is
decreasing. For spatial correlation, learning or unlearning occurs when the activations of at least one of the

behaviors B; and B; are above the threshold. Moreover, the spatial learning rule is symmetric because wf]’-’

tmp

and w;f’ increase or decrease at the same time. In the case of temporal learning, w is independent of

ij
wj-znp . For these reasons, the agent maintains both the weights w;; and wZ-"p separately on the link between
behaviors B; and B;. To calculate the activation on the link, the weight used is the maximum of these two
components:

wij = max(wif , wi"™) (4.15)

The maximum is used because behavior B; can either be spatially or temporally correlated with behavior
B;.

4.4 Experiments with Learning Rules

This section describes experiments that show how the agent can use the spatial and temporal learning rules
to adapt to regularities in its environment. These experiments also show learning correlations improve the
ability of the agent to satisfy its hunger and thirst motivations. The usefulness is measured by the average
number of time-steps during which the agent was hungry or thirsty after learning compared to the case when
the sensor range is infinite (optimal situation) and to random exploration.

The world is restricted to 100 x 100 units. The agent is provided with 60 distance sensors of each color
that are spaced evenly all around it (each sensor is sensitive over a sector of angle 6 degrees). A random error
of £1% is added to the sensor activations. The range of the green and blue sensors are 5 units while that
of the red sensors is 10 units. The thresholds are TP = T*™P = (.6, T9 = 0.6, learning rates n°? = 0.005,
n'™P = 0.01 and the delay time for temporal learning, 7 = 5. Initially, only the weights from hunger
motivation to Approach-Green and from thirst motivation to Approach-Blue are above threshold and all
other weights are set to zero.

If some feature of the environment (for example, a green disc) is always present at the end of a trail of discs,
then the temporal learning rule can associate the corresponding Follow behavior to that feature only if the
agent follows the trail to the end (until the feature is reached). During random exploration, a trail will often
not be followed to its end and thus the temporal learning rule will decrease the weights to the Follow behavior.
To learn such correlations that require a behavior to be sustained over a period of time, an omniscient
“parent” is used to guide the learning agent to the nearest green or blue disc when hungry or thirsty
respectively. The “parent” does not physically exist in the environment. Learning temporal correlations
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require that the right sequence of behaviors be performed repeatedly and omniscience when hungry or thirsty
is used to reduce the time spent randomly moving in the environment. Note that random explorations (when
the agent is not hungry or thirsty) still cause the learning agent to follow trails incompletely and that the
path followed by the “parent” does not necessarily follow a trail - the agent moves along a straight line to
the closest food or water disc. The use of a “parent” just increases the chances that the correct behavior
(following a trail to its end) will be exhibited.

4.4.1 Spatial Proximity

To test the spatial proximity learning rule, the agent was placed in an environment in which a red disc
was always present close to a green disc (figure 4.7). The positions of the (20 green and 20 red) discs in
the world were set randomly. The internal food thresholds are set such that the agent’s hunger motivation
becomes active every 350 steps (Tg* = 0.1, T} = 0.7, fo = —0.002, f; = 0.05) and at this time it is led by
its “parent” to the nearest green disc until the agent’s own Approach-Green behavior becomes active (green
disc in sensor range). The spatial proximity learning rule is applied to every pair of behaviors at every
time-step. Figure 4.8 shows the increase in wif 4, over 8000 time-steps (averaged over 50 trials). This
spatial correlation between red and green discs can also be learned through random exploration (without
the need for a “parent”) and the increase in weight of w{, 4 in this learning scenario is also shown in
figure 4.8. The rate of learning is slower compared to the case when the “parent” was present.

Once wff& Aq has increased beyond the threshold, the agent can approach a red disc when its hunger
motivation becomes active even if no green disc is within sensor range. The performance after learning is
compared to the case when an omniscient parent is present to lead the agent to food when hungry (optimal)
and to random exploration (the situation before learning) in figure 4.9. The graph shows the average number
of time-steps out of 8000 during which the agent was “hungry” for the three cases (the actual values are
dependent on the environment and agent parameters such as average distance between discs, sensory range,
and how frequently hunger motivation becomes active; the numbers in the graph are for comparison to each
other).

To show that spatial correlations can be learned even when the distance between the correlated discs
varies by larger amounts, the spatial correlation rule was applied in environments where the distance between
red and green discs varies randomly between 2 and 3 units (figure 4.10). The corresponding changes in the
weight from Approach-Green to the Approach-Red behavior is shown in figure 4.11. Since the sensory range
of the green sensors is only 5 units, the rate of increase of weights decreases as the distance between the
correlated discs increase. When the distance between red and green discs can vary as much as 3 units, the
weight wi,pR’ Ac just goes above the threshold. Further increases in distance between the correlated discs will
not cause spatial correlations to be learned. Notice also that since the disc pairs are randomly distributed
there are instances when the agent can perceive more than one correlated pair at the same time. In fact,
it was observed that increasing the density of correlated disc pairs did not have a significant impact on the
learning of the spatial correlations (in other words, it is more important that a red disc is perceived along
with every green disc compared to whether more than one pair is simultaneously visible).

4.4.2 Temporal Proximity

To test the temporal proximity learning rule, the agent was placed in an environment where “mini-trails”
(each consisting of only two sets of trail markers) of red discs led to a blue disc as shown in figure 4.12. The
distance between the last red disc of a mini-trail and a blue disc is too large for the Follow-Red and Follow-
Blue behaviors to be simultaneously active. Thus the spatial proximity learning rule cannot be applied here.
However, the application of the temporal learning rule increases the weight of the link between these two
behaviors. The agent’s thirst motivation becomes active every 70 steps (T¢ = 0.1, T{ = 0.7, wog = —0.01,
wy = 0.1) and at this time it is led by its “parent” to the nearest blue disc until the agent’s own Approach-
Blue behavior becomes active (blue disc in sensor range). The link between Follow-Red and Approach-Blue
behaviors cannot be learned through random exploration (as in the spatial proximity case) because during a
random walk the number of times a mini-trail is partially followed, without leading to a blue disc, is greater
than the number of times a mini-trail is followed to its end (leading to a blue disc).
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Figure 4.7: Spatial proximity: portion of the environment showing green and red discs that appear together.
A portion of the agent’s path is also shown. The agent becomes hungry at A and moves to the closest food
(green) disc (at B) under the influence of the omniscient “teacher”).
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Figure 4.8: Spatial proximity results: increase of weights wZPR’ A When “parent” is available and during
random exploration. Data averaged over 50 trials.
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Figure 4.9: Spatial proximity results: Performance of agent with omniscient “parent”, after learning, and
random exploration (before learning). Data averaged over 50 trials; Error bars indicate 1 standard deviation.
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Figure 4.10: Spatial proximity (varying distance): portion of the environment showing green and red discs
that appear together. The distance between the red and green discs varies between 1 and 3 units (the sensory

range of the green sensors is only 5 units).
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Figure 4.11: Spatial proximity weights (with varying distance): increase of weight w’{, 4 When the distance
between green and red discs is less than 2 units and less than 3 units. Data averaged over 50 trials.

Figure 4.13 shows the second-order weights w?’}{j AB> w%‘{f Ap»> and wi"}{j g at 8000 time-steps (averaged

over 50 trials). Only w?’;{ p increases over threshold. The weights stop increasing after they reach a certain
value because with larger weights the rate of increase of a weight decreases (and conversely the rate of
decrease goes up). At equilibrium, the rate of weight increase (due to activating the corresponding behaviors
sequentially) is equal to the rate of decrease (during random exploration, the mini-trail is not followed to
the end).

Once w?’}{ ap has increased beyond the threshold, the agent has learned to follow a trail of red discs
when its thirst motivation becomes active even if no blue disc is within sensor range. The performance after
learning is compared to the optimal case (when an omniscient parent is present to lead the agent to a blue
disc when thirsty) and to random exploration (situation before learning) in figure 4.14. The graph shows
the average number of time-steps out of 8000 during which the agent was “thirsty” for the three cases.

Figure 4.15 shows an environment where the trails leading to blue discs are longer and curved. The agent
learns the temporal correlation between the Follow-Red behavior and the Approach-Blue behavior in this
environment too though the rate of learning is slower compared to the mini-trails environment (corresponding
weight increases shown in figure 4.16). To test the robustness of the Follow behavior, the agent after having
learned the temporal correlation, was placed in an environment where a long trail with many curves led to
a water disc (figure 4.17). The agent is able to follow the trail and reach the water disc at the end. The
behavior is robust only if the discs are placed at regular specific distances. If they are too far apart, then the
agent will lose sight of trail markers and will not be able to complete the trail (the distances between the
three discs that make up a trail marker cannot be changed since the relative positions encode the direction
in which the agent has to move). These rigid constraints arise due to the simplicity of the environment (only
discs are present) and the limited sensing capabilities of the agent and not due to any inherent limitation in
the temporal correlation learning algorithm.

4.4.3 Spatial and Temporal Proximity Together

Figure 4.18 shows an environment where green discs are always close to red discs and blue discs are present
at the end of a trail of red discs. To take advantage of this peculiarity of the environment, the agent has to
link the Follow-Red and the Approach-Blue behaviors together (through temporal learning, since these are
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Figure 4.12: Temporal proximity results: environment contains “mini-trails” (consisting of two sets of trail
markers made of red discs) leading to a blue disc (B).
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Figure 4.13: Temporal proximity results: weights w%”}{j AB> w%{: > and meR’: g at 8000 time-steps. Data
averaged over 50 trials.
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Figure 4.14: Temporal proximity results: Performance of agent in optimal case (with omniscient “parent”),
after learning temporal correlation, and random exploration (before learning). Data averaged over 50 trials;
Error bars indicate 1 standard deviation.
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Figure 4.15: Temporal proximity results: environment contains trails (made of three sets of trail markers)
that curve before leading to a blue disc (B).
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Figure 4.16: Temporal proximity: weights learned from curvy trails. Increase in wi 45 when the trails
are straight (“mini-trails” containing two trail markers) and when trails are curvy (containing three trail
markers) over 8000 time-steps. Data averaged over 50 trials.

not simultaneously active) and also link the Approach-Red and Approach-Green behaviors (through spatial
learning). The agent’s hunger and thirst motivations become active every 350 and 70 steps respectively (the
agent is made to drink more often since the temporal correlation between red trails and blue discs is learned
slower than the spatial correlation). When either of these motivations become active, it is led by its “parent”
to the nearest green or blue disc until the disc appears within the agent’s sensor range. Figure 4.19 shows
the weights wp 4> w?’}{ AB» WAG PR wi"gj R and wfﬂ{ 4p at 8000 time-steps (averaged over 50 trials).
Only w{y 4 and w%’%’: ap increases over threshold (w)y 4 oscillates because red and green discs appear
at periodic intervals on the “trails”). The weights between Follow-Red and Approach-Green also increase
since red and green discs appear together. However, these weights do not reach the threshold because they
decrease during the time the agent moves along the “trail” in a direction opposite to that indicated by the
“trail-markers” (the sensor activation of Follow-Red is dependent on the direction in which the agent is
moving with respect to the trail). wfﬁ{j g also does not increase beyond the threshold for the same reason
- when the agent moves along a “trail” in the opposite direction, Approach-Red is active but this does not
lead to a blue disc.

Figure 4.20 shows those links of the agent that increased to over the threshold value after learning. The
performance of such an agent is compared to the case when an omniscient parent is present to lead the agent
to a green or blue disc when hungry or thirsty respectively and to random exploration (situation before
learning) in figure 4.21. The graph shows the average number of time-steps out of 8000 during which the
agent was “hungry” or “thirsty” for the three cases. Comparing this graph with that in figure 4.14 indicates
that the agent spends most of its time searching for water discs when thirsty (which can be reached after
the Follow-Red behavior is triggered).

4.4.4 Dynamic Environments

To test the ability of the agent to adapt its weights to a changing environment, the positions of the discs
were changed during learning. Initially, red discs were close to green discs (as in figure 4.7). After 3000
time-steps, the positions were changed so that green discs were located at the end of red trails (similar to
figure 4.12). The agent’s hunger motivation becomes active every 150 steps. When this motivation becomes
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Path of agent

Figure 4.17: Temporal proximity: agent following a long curvy trail to reach a water (blue) disc.
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Figure 4.18: Learning Spatial and Temporal proximity together: portion of the environment containing trails
of red discs leading to a blue disc; green discs are located close to red discs. A portion of the agent’s path
is also shown. The agent “ate” at point A and is moving toward water (blue disc at point B).
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Figure 4.19: Learning Spatial and Temporal proximity together: weights wip 4, Witk 45 Wiy pr> Wae pRs

and wfﬂ{ 4p at 8000 time-steps. Data averaged over 50 trials.

@ Motivations

a
e AG
J
w®
ARAG
N\ ‘A8,
V) — AB 5
o 5
3 | 2
a (@]
AR
% — AR
tmp
W
FR,AB
a
FR
R )

Figure 4.20: Learning Spatial and Temporal proximity together: links with weights over threshold (79 = 0.6)
at the end of spatial and temporal learning phase.
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Figure 4.21: Learning Spatial and Temporal proximity together: performance of agent after spatial and
temporal learning compared with omniscient “parent” (optimal) and random exploration (before learning).
Data averaged over 50 trials; Error bars indicate 1 standard deviation.

active, it is led by its “parent” to the nearest green disc. Figure 4.22 shows the weights ', ¢ w%"}z’j AGH

and wi}? 4 at 8000 time-steps (averaged over 50 trials). Initially, w’}; 4 increases to reflect the spatial

correlation between red and green discs. After the environment changes, this weight decreases and thTg’j AG
increases due to the new temporal correlation between red and green discs. Thus, the agent will initially
learns to move toward red discs when hungry. But when the world changes, it learns to follow trails of red
discs to reach green discs when hungry.

4.5 Discussion

Since the learning rules are Hebbian, the agent can learn every time the behaviors are activated by the
sensors without any kind of reinforcement. This is particularly important for agents that have to survive in
a real world environment, since positive reinforcement occurs rarely and negative reinforcement can be fatal.

The learning rules do not create new behaviors, it only strings together innate behaviors. [Steels, 1997]
presents a method of creating new behaviors by considering all combinations of possible perceptions, actions
and the relationship between the two. Each new behavior that is created is then tested for fitness and is
retained if it improves the overall health of the agent. [McFarland and Spier, 1997] provides a theoretical
basis for multiplying motivations and activations. These are called “deficit” and “cues” respectively in that
work.

The weights between links settle into a steady state that is dependent on environmental parameters.
Thus, the threshold used to gate behaviors is also dependent on the environment. An alternative to using
a threshold is to only gate that behavior with the maximum gating of all behaviors. The learning rule does
not change weights on the inhibitory links. The addition of “pain” motivations could be used to learn these
weights.

An agent that has learned to exploit correlations in the environment using the ConAg-ST architecture
and learning rules will fail to survive in the presence of exceptions to these correlations. For instance, in an
environment where most, but not all, green discs are located close to red discs, the agent will learn to move
toward the nearest red disc when hungry even if that particular red disc happened to be far from a green
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at 8000 timesteps. Data averaged over 50 trials.

disc. A mechanism that enables the agent to detect when it is not making progress toward satisfying its
goals would be useful for handling exceptions (chapter 6 describes an unsupervised learning algorithm that
uses the distance moved as reinforcement to learn to escape deadlocks).

4.6 Related Work

Chapter 3 described the Agent Network Architecture (ANA) of Maes[1990]. This architecture links behaviors
through predecessor, successor, and conflicter links which spread activation among behaviors. In this initial
formulation, the links between behaviors were unweighted. A learning mechanism was later introduced that
enabled these links to be learned [Maes, 1992]. The links were given weights which represented the certainty
with which performing the first behavior would affect the second behavior. Every behavior monitors the
activation of its pre-conditions. When the activation on a pre-condition changes, the link between the pre-
condition and behavior is modified. Jung and Zelinsky provides an alternate formulation of the ANA [1999].
The learning rules is slightly more sophisticated since each link keeps track of four kinds of activation changes
and the weight on the link is dependent on these four counts. This kind of learning is similar to the ConAg-
ST architecture in that learning identifies correlations between behaviors but does not change the behaviors
themselves. Moreover, the learning is based on the changes in the activation levels of the behaviors. The
activation also has two kinds of sources: behaviors and motivations in ConAg-ST, competence modules and
conditions respectively in [Maes, 1992], competence modules and feature detectors respectively in [Jung and
Zelinsky, 1999].
However, there are significant differences between the ANA and the ConAg-ST architecture:

1. The issue of identifying active behaviors: ANA was demonstrated with behaviors such as “wandering
around”, “recharging”, and “ask human”. Since these behaviors are very different from each other (they
are expressed using different effectors), it is easy to identify an active behavior from an inactive one.
In the ConAg-ST architecture, all the behaviors access the same set of sensors and produce outputs
that can affect the same motors (for instance, both the behaviors Follow-Red and Approach-Red are
activated when red discs are in sensor range). Hence, it is necessary to explicitly compute the Sensory
excitation of a behavior before the learning algorithm can be invoked. The Sensory excitation also
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enables the ConAg-ST architecture to learn correlations between behaviors, several of which may be
active and applicable at any time.

2. ConAg-ST separates the learning of spatial and temporal correlations (ANA’s learning rules may be
considered to be only temporal). Having a separate spatial learning rule (and associated weights)
improves the learning efficiency of the agent since spatial correlations may be learned faster than
temporal correlations.

3. In ConAg-ST, the spreading activation is thresholded at every behavior and the activation of every
behavior is the maximum of the activations that arrive at it. This ensures that the activation of a
behavior cannot affect itself by following the weighted links through a path of behaviors, i.e, activations
settle down after one pass through the behaviors. In ANA, activation at a behavior can accumulate
from different sources and the time to settle down is significant (there could be a maximum of (2n+1)m?
links where m is the number of behaviors and n is the average number of pre-conditions of a behavior
[Maes, 1992]).

4. The conflictor links in ANA connect behaviors that inhibit one another. There is no equivalent in-
hibitory links in ConAg-ST. However, learning of inhibitor links in ANA makes the strong assumption
that the when a behavior becomes inactive it is because of the behavior that was active most recently.
This assumption becomes less reliable as the number of behaviors increases.

The ability of place cells in the hippocampus of the rat to respond to spatial locations has led to the
hypothesis that they may be used as a topological map [O’Keefe and Nadel, 1978]. Artificial navigational
systems have been built to exploit the temporal correlations between the firing of these place cells [Gerstner
and Abbott, 1997]. [Trullier and Meyer, 1998] also stores the topological map in a model that is based on
the rat’s hippocampus. [Singh, 1991] uses reinforcement learning techniques to learn to satisfy sequences of
subgoals of a structured navigational task. [Mataric, 1994] gives a criticism of such techniques in unstructured
real-world domains. Sequences of actions have been learned in robot systems using imitation learning [Billard
and Mataric, 2000] and vicarious learning [Crabbe and Dyer, 2001].

Reinforcement learning [Kaelbling et al., 1996b] has been used to learn sequences of actions. Most of
this work has been performed in synthetic domains (for instance, the “box-pushing”world [Mahadevan and
Connell, 1992] and grid worlds [Singh, 1991]). However, reinforcement learning has met with limited success
in unstructured real-world domains [Mataric, 1994]. The main problems include the difficulty for a robot to
unambiguously identify its state with inherently faulty sensors, and the fact that the environment can change
independent of the robot’s actions (especially in multi-agent systems). These factors invalidate the Markov
property which is assumed for reinforcement learning techniques like Q-learning [Watkins and Dayan, 1992].
Moreover, Q-learning requires that the state space be discretized while sensor data is often continuous. The
large dimension of the state space (due to the number of sensors on a robot) also makes reinforcement
learning perform slowly in such environments. Shackleton and Gini give a more detailed description of the
application of reinforcement learning in behavior-based robots [1997].

Suggestions to speed up reinforcement learning include grouping similar states [Connell, 1988], partition-
ing the state space based on discovered features [Drummond, 1998], and dividing the task into sub-tasks
[Stone and Veloso, 2000]. Learning correlations in the environment may be used as another means of re-
ducing this large state space before applying reinforcement learning techniques. Another method to exploit
structure in the environment is to consider only partial views instead of all the sensor readings [Porta and
Celaya, 2000). A partial view of the environment is one in which only a subset of the sensors are considered.
The assumption is that in most real-world environments, only a few of the sensors will be relevant for de-
ciding on an action at a time. A different unsupervised learning approach is that of treating the sensor data
as being generated by a Markov chain and then clustering this data based on similar transition probabilities
[Ramoni et al., 2001]. Rao and Fuentes also maintain only a sparse subset of the sensor-motor space using
sparse distributed memory (they use a behavior-based architecture and a “teaching-by-showing” approach
similar to the temporal learning in ConAg-ST).

It has been found that temporal correlations encoded in the firing patterns of the place cells in the
hippocampus may be used as the basis for a spatial map [Gerstner and Abbott, 1997]. For instance, unsu-
pervised Hebbian learning is used to construct such a spatial map composed of neurons with overlapping
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place fields (modeling place cell activity) [Arleo and Gerstner, 2000]. These models use temporal correlations
in the firing patterns to build an explicit topological map, unlike in the ConAg-ST architecture where no
topological map is built and only correlations between behaviors are identified for navigation.
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Chapter 5

Sequence Learning

5.1 Introduction

The links in the action selection mechanism described in chapter 3 enable an agent to perform the construction
task. One of the main advantages of a connectionist action selection module is that the sequence of steps
that have to be repeated for construction can be learned, i.e, the interconnections between the internal
state nodes and the navigational planning behaviors do not have to be set a priori. The spatial maps also
indicate in which phase of the construction task the agent is currently in, including whether the task has
been completed. This chapter describes how the weights in the action selection module can be learned and
the internal state nodes extended to identify the end of the construction task.

5.2 Internal State Nodes

In addition to the Holding-Brick, At-Drop-Site, and At-Brick internal state nodes introduced in chapter 3,
three other state nodes are added:

1. Near-Brick: Becomes active when a brick is sensed close to the agent.

2. Brick-Awvailable: TIs active if the spatial maps indicate a brick that is not part of the structure being
built.

3. Drop-Site-Available: Is active if the spatial maps indicate that there are parts of the structure that
still require a brick to be placed.

The Brick-Available and Drop-Site-Available state nodes indicate if the construction task is complete or
that there are no more bricks that can be moved to drop-sites. The activations on these state nodes can
also be set directly from the navigation maps. For instance, if the structure is complete, then there will be
no active node on the Configuration navigation map. Thus, the Drop-Site-Available state node is set from
the sum of activations on the nodes of the Configuration navigation map. Similarly, if there are no bricks
that are not part of the structure, then none of the nodes on the Brick navigation map will be active. Thus
the activation of the Brick-Available state node is set from the sum of activations on the nodes of the Brick
navigation map. The activation of the Near-Brick internal state node is set from the activations of the red
disc sensors.

5.3 Construction Sequence

If none of the self-preservation goals are active, then the agent can attend to the construction task. This
task requires an orchestration of both Sensory/Motor and Navigational Planning actions, summarized in the
action sequence given in figure 5.1.
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1:  while construction is incomplete

2: Locate an available disc:

2a: if close to a brick, select Approach-Red

2b: else if bricks are available, select Brick navigation

2c: else select FEzplore behavior

3: If brick is within reach, Grab

4: Navigate to the location where the structure is missing a brick:
4a: select Configuration navigation

5: If at a drop-site, Drop the brick

Figure 5.1: Sequence of actions required to perform construction.

Based on sensory inputs and internal State nodes, this sequence can be performed by the action selection
module through the connections and weights shown in figure 5.2. Each node in the action selection module
may have both excitatory (arrows) and inhibitory (dots) connections from the internal state nodes. Weights
range from 0 to 1 for excitatory and 0 to -1 for inhibitory, and all activations are summed and thresholded:

a; = () (W x a; + wiih® x q;), TP) (5.1)

i
where a; is the activation at node j, 1 is the step function and TP is the threshold.

ven)={y 727 (52)

The excitatory links activate a node when a set of conditions is met, such as enabling Grab when (a)
the agent is at a disc (At-Brick internal state node is active) and (b) the structure is missing discs (Drop-
Site-Available internal state node is active). Therefore, 0.5 is assigned to both weights to ensure that Grab
is active only when both input nodes are firing to surpass the threshold T2 of 0.7. However, if the agent
already has a disc (Holding-Brick is active), then the Grab node should be inhibited so the agent does not
try to grab another disc. This is achieved by the inhibitory weight of -1.0, more than sufficient to prevent
the activation from surpassing the threshold. Since self-preservation goals have higher priority, the reactive
response of avoiding the disc must be turned off when the agent needs to grab a red disc. This is achieved
by the inhibitory link of -1.0 from the Near-Disc internal state node to the Avoid-Red behavior.

By using this combination of excitatory and inhibitory connections, shown in figure 5.2, the Action
Selection module selects the correct action based on its currently active goals and the construction status.
The issue of learning this construction sequence through weight adjustment is first discussed, followed by
the demonstration of this capability in the Results section.

5.4 Learning the Construction Sequence

An agent adjusts the weights on the links in its action selection module through a process of imitation
learning. The agent learns to mimic the actions of a “teacher” agent that is already capable of performing
the construction sequence. The teacher agent is not physically situated in the environment, but it has access
to the same sensory input as the learner agent and the teacher’s actions are determined by the ideal action
selection network shown in figure 5.2. The teacher then monitors the student’s external actions and generates
two positive or negative reinforcement signals, one for the arm action and the other for the motor action
of the student. These signals are generated by comparing the student’s external actions with the actions
the teacher would have taken. This is analogous to the case where the teacher agent is closely following the
learner and is able to compare the learner’s outputs with its own ideal output at every step. The student
only has access to the teacher’s actions, but not to its internal state.
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Figure 5.2: The Action Selection module with ideal connections and weights for construction. The shaded
circles indicate the output nodes, the weights to which are learned (described in section 5.4). The outputs
from the Sensory/Motor and Navigational Planning components are fed in from the left and regulated by
the Motivation and Internal State nodes. The actions chosen are then sent to the motors on the right.
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The student begins with a fully connected network, and since the links between any two nodes can be
either excitatory or inhibitory, two weights have to be learned simultaneously. Through immediate rewards,
the sequence of actions to carry out construction is learned by adjusting the weights to minimize error. The
equation for weight adjustments for both the excitatory and inhibitory weights are the same and are as
follows: .

wfjmite t+1)= wff”te () x (1+ R; X wff“te (t) x a; x e—lwit e M n%e?) (5.3)

wZLhz’bz’t (t + 1) — w;,;lhzbzt(t) x (1 + R; % wZLhibz’t (t) X a; X e*\w;;’f’“b’t(tﬂ x nseq) (54)

where ng is the weight between i and j at time ¢, a; is the activation of node i, and R§. is the reinforcement
signal at node j. The exponential term is used to restrict the range of the weights to between —1 and 1.
7*¢? is the learning rate (a real number between 0 and 1). The duration of a learning trial is determined by

the size of the structure to be built and in successive learning trials °¢? is reduced by a decay factor p®¢?:
n°*(n+1) =n°*(n) x p> (5.5)

where 1°¢9(n) is the learning rate at trial n. The reinforcement signal R generated by the teacher takes only
two values: —1 and +1. If a positive reinforcement of 1 is received, the excitatory weights between a pair of
firing neurons at time ¢ is strengthened, while the complementary inhibitory weights are weakened. However,
a negative reinforcement of —1 causes the opposite adjustments to occur, reducing the likelihood of firing
given the same inputs. Due to the nature of having both weights adjusted simultaneously, this learning rule
is referred to as Positive/Negative (P/N) Hebbian learning. With a positive reinforcement, all excitatory
weights that activated j are increased and the inhibitory weights decreased. However, if a node is incorrectly
activated in the student, a —1 reinforcement from the teacher causes opposite adjustments and reduces
future activations under the same inputs. To learn the action selection sequence for construction, P/N
Hebbian learning is used on two sets of weight matrices of 6 inputs - Holding-Brick, At-Brick, Near-Brick,
Brick-Available, Drop-Site-Available, and At-Drop-Site by 7 outputs - Grab, Drop, Configuration navigation,
Brick navigation, Explore, Avoid-Red, and Approach-Red, representing the fully connected network of both
excitatory and inhibitory links.

If the student performs the correct actions, the weights that resulted in these actions are reinforced. If
a wrong action is performed, one could simply weaken the weights that produced the erroneous activation.
However, this form of “blame assignment” is flawed since the agent could potentially never learn because
the correction action is never activated and thus never positively reinforced. The correct node that is
supposed to fire should also be trained. However, the reinforcement signal does not identify the correct
node. Instead of having the student agent randomly guess the correct action, all actions except the one just
executed are treated as correct (even though only one is correct). As a result, the incorrect node receives a
negative reinforcement while all others receive a positive one. With sufficient training, the correct node will
prevail while all the incorrect nodes cease to activate under the same inputs, increasing the chance of future
activation of the correct node with the same inputs. Through P/N Hebbian learning, the student’s weights
are adjusted to activate the right nodes in the right sequence, thus resulting in the student performing the
construction task as specified by the teacher.

5.5 Results and Discussion

Learning to construct a configuration of discs was evaluated by having one student agent trained in the
environment shown in figure 3.12(a), where five discs were used to construct a structure composed of 4
widely separated discs. The student was repeatedly placed in the same environment until it no longer
made any mistakes, at which point it was placed into a novel environment to validate that the learning is
generalized and adaptive to other construction scenarios. The student agent was given no other a priori
knowledge except for the structure to be constructed, i.e., the activations on the Configuration ESM. All
other ESMs are initially empty and the action selection network has all of its weights randomly initialized
to be between 0 and 0.5 (excitatory) or 0 and -0.5 (inhibitory).

The two learning parameters, learning rate 7°¢? and decay factor p®¢? of the learning rate between trials,
were varied to test their effects. The results from two sets of parameters are shown in figure 5.3 (as well as the
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Figure 5.3: Errors during sequence learning: the number of errors made by the student agent versus the
learning trial using two different learning algorithms. The two P/N Hebbian learning (parameters: n;°? = 0.8,
p1¢? = 0.4, and 757 = 0.6, p5°? = 0.8) results are compared to Q-learning (parameters: a = 0.3, v = 0.5,

e = 0.05)

results from using Q-learning [Watkins, 1989; Sutton and Barto, 1998] to learn and perform the same task).
The number of errors (calculated as the number of time-steps when the output actions of the learner did
not agree with those of the teacher, i.e, the time-steps during which a negative reinforcement was generated)
during training by the student agent versus the trial number is shown, with the error bars showing the
standard deviation from 10 independent runs. Each trial consists of 1000 time-steps, and between each trial
the learning rate 1*¢? is reduced by the decay p®¢? for P/N Hebbian learning.

The Q-learning used in this evaluation learns two action-value functions, one for Grab/Drop actions and
the other for motor actions. Instead of using function approximators, the two Q-functions are implemented
using tables since the state space is small (2°). The same training and evaluation scenario, teacher-agent,
and reinforcement signals are used for Q-learning, repeating the learning trials until no mistakes are made.
The learning rule at every step is given by [Sutton and Barto, 1998]:

Q(s,a) + Q(s,a) + afr + ymaxQ(s',a) — Q(s, a)] (5.6)

where Q(s, 1) is the learned value of taking action a from state s, r is the reinforcement received, « is the step-
size, and -y is the discount factor. Actions are chosen at every step using a e-greedy method (with probability
€ a random action is performed, otherwise the action suggested by the current @) value is performed). The
€ parameter is halved between trials to improve the rate of convergence.

As shown in figure 5.3, P/N Hebbian learning makes fewer mistakes and converges faster than Q-learning.
For P/N Hebbian, the higher learning and decay rates produced faster learning and convergence. In 7 out
of 10 runs the student learned the task in 4 trials or less. With a lower learning and decay rate, the learning
is slower and takes longer to converge, as expected. For Q-learning, the student agent makes more mistakes
and requires more time to converge. The parameters for Q-learning were chosen to achieve a balance between
the number of errors and the convergence rate.

A benefit of P/N Hebbian learning is that the weight matrices can be easily interpreted for the action
sequence learned. As an example, learning of the weights to Brick navigation behavior is shown in figure 5.4.
An agent should activate this behavior when there are bricks missing from the structure (state node Drop-
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Figure 5.4: Weights during sequence learning: P /N Hebbian learning of the weight pairs between four of the
input nodes to the Go to Disc node versus the number of time steps

Site-Available is active) and there are bricks available within the environment (Brick-Available is active).
However, if the agent is holding a brick (Holding-Brick is active), this node should be inhibited and the
agent should proceed to the location where a disc is missing from the structure (Configuration navigation
behavior). These three pairs of weights are plotted over time using thick lines in figure 5.4. The excitatory
weight from Drop-Site-Available state node is strengthened while the inhibitory one approaches zero, as
expected. Similarly, the inhibitory weight from Holding-Brick increases and the excitatory one decreases
with time. The weights from At-Drop-Site and Brick-Available state nodes are similar (unlike the teacher’s
weights). This is due to the following scenario: the Brick navigation behavior is activated immediately after
the agent drops off a brick so it would continue the building process. However, the At-Drop-Site state node
is still active from the last goal since it has not yet moved away far enough to stop this state node from firing.
Therefore, the weight from At-Drop-Site to Brick navigation behavior tends to be strengthened alongside the
weight from Brick-Available. Nevertheless, the student does learn to properly activate the Brick navigation
behavior, even though it is with weights different from the human-engineered teacher network.

The complexity of P/N Hebbian learning is linear for space and time (for each update), both requiring
O(n; X n,), where n; and n, are the number of inputs and outputs, respectively. However, Q-learning, when
implemented using tables as in our model, is exponential with respect to n, for time per update and n;
and n, for space (since the table has to store Q values for every possible state-action combination) This is
significant for scalability, since if the agent is to learn other complex tasks that require more input and output
nodes, using Q-learning with tables can become too cost prohibitive. However, if function approximators
are used in place of tables, then Q-learning would not perform nearly as well since the ideal Q-functions
that describe the construction task consist of multiple sharp discontinuities and hence are difficult to learn
and approximate accurately. Hebbian learning is more suited to this task since in a single-layer network the
links to an output node do not affect the activation of other output nodes and therefore the weights can
be adjusted independently of the weights on links to other output nodes. However, a single layer network
can only threshold a linear combination of the input activations and cannot learn more complex relations
between inputs and outputs. Moreover, in this learning environment, the agent was given reinforcement at
every step and thus an error term could be provided to the action selection network immediately after an
action was taken. Q-learning can be used even in situations where only a delayed reinforcement is available.
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5.6 Related Work

Crabbe and Dyer use higher order links to control the sequence of actions required to perform construc-
tion [1999a]. Figure 5.5 shows the network structure used to perform sequences. The detection nodes are
similar to the internal state nodes in ConAg and are set from the sensors. An example of a detection node is
“Touching-Red-Disc” which would be active if the agent was currently touching a red disc. Detection nodes
in turn set Goal nodes which encode steps of the construction sequence (such as “Approach-Red-Disc”).
These goal nodes then gate the links between sensor and motor nodes. The order in which these goal nodes
become active is controlled by sequence sub-networks (for example, “Scavenge”).

Q Sensor Node
Q Detection Node
D Goal Node
A Motor Node

]
OC O Sequence Node
=S

Figure 5.5: Network of nodes for a construction agent [Crabbe and Dyer, 1999a). Goal nodes modulate the
links between sensor and motor nodes using second-order links. The Goal nodes are set from the detection
nodes which are in turn set from the sensor nodes. Sequence nodes control the order in which goal nodes
are excited.

This network of nodes accomplish the same sequencing performed by the ConAg architecture. Figure 5.6
shows the corresponding flow of activations in both systems. The ConAg architecture is simpler since each
behavior internally implements how the motors respond to sensor activation. This enables a single layer
of higher order links from the internal state nodes to implement the construction sequence. In both the
ConAg architecture and that of Crabbe and Dyer, the transition from one behavior (or goal) to another
is brought about by a change in the environment (as encoded by the internal state or detection nodes).
Thus, an unexpected failure of a behavior will cause the agent to repeat its behaviors. For instance, the
agent will perform the Configuration navigation behavior only when the Holding-Brick internal state node
is active. If the agent unexpectedly drops the brick, Holding-Brick becomes inactive, causing the agent to
repeat the Brick navigation behavior (the agent will move to the nearest brick which is the unexpectedly
dropped brick).

Crabbe and Dyer present the MAXSON (MAX-based Second Order Network) architecture that is capable
of learning to associate correct responses to objects in a 2-dimensional environment that consists of food,
water and poison discs [1999b; 2001]. For instance, a MAXSON agent could learn to avoid eating poison. The
architecture contains two networks: a second-order policy network and a first-order value network (figure 5.7).
The policy network is responsible for activating the motors based on the current sensor readings. The agent
receives reinforcement whenever it eats or drinks. The value network calculates reinforcement for the policy
network and the policy network weights are adjusted based on this reinforcement. The weights in the value
network are itself adjusted based on the external reinforcement. The purpose of having a separate value
network to calculate reinforcement (instead of directly applying external reinforcement to the policy network)
is to distribute the rarely received reinforcement over time. In the ConAg architecture, the second-order links
from the motivations to the reactive behaviors responsible for survival (such as Approach-Green) are innate.
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Figure 5.6: Corresponding nodes in (a) [Crabbe and Dyer, 1999a] and (b) ConAg architectures.

This enables a ConAg agent to learn the construction sequence while carrying out its survival behaviors.

The MAXSON architecture was extended to the MAXSON-VT architecture that can learn sequences of
goals through imitation [Crabbe and Dyer, 2000]. Teacher agents in the environment are already endowed
with the ability to respond correctly to the different colored discs. Learner agents observe the actions of
these teacher agents and consider the teacher’s actions as reinforcement in adjusting their internal sequence
networks so that after learning is complete, the learner will replicate the teacher’s responses. One of the main
issues in imitation learning is the perspective problem or associating the teacher’s actions (sensed through
the learner’s sensors) to the learner’s actions [Crabbe and Dyer, 2000]. The MAXSON-VT architecture solves
this problem by having dedicated nodes within the learner that can detect the teacher’s actions and state and
linking these special nodes with the corresponding motor or detection node (figure 5.8). For instance, there
is a link from the “Teacher-Eat” node to the learner’s “Eat” motor node. In this way, a teacher’s eating is
equivalent to the student performing the same action. However, this approach works only for those actions
that can be unambiguously distinguished by the sensors. For example, it is reasonable to expect the sensors
to detect another agent eating but it is difficult for the sensors to determine to which particular disc an agent
is moving to (and hence there can be no “Teacher-Approach-Red” sensor node). Thus, a MAXSON-VT agent
can learn only during the detection of these distinguishable interaction events (such as “eating”).

In a ConAg agent, all links between sensors and motors are encapsulated within behaviors and an agent’s
motor output at every time-step is the output of exactly one behavior. Thus, the actions of the teacher
and the learner can be compared directly by checking if their respective actions agree or not (i.e, Teacher
Detection nodes are not required in the learner). This comparison of actions then provides reinforcement at
every step which is used for sequence learning (unlike learning only during interaction events as in MAXSON-
VI). However, the ConAg learning mechanism assumes that the teacher has the same motivations and sensor
information as the learner at every instant. This approach of the “learner riding on the teacher’s back”
so that they share the same sensor information has been used in other imitation learning work [Cecconi et
al., 1995]. Moreover, the sequence learning in MAXSON-VI is “one-shot”, i.e, one observable sequence of
a teacher with a particular colored disc is sufficient for the student to learn the appropriate response. This
is possible because the agent always recruits an unused goal node for every new interaction. In ConAg,
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Figure 5.7: The MAXSON architecture [Crabbe and Dyer, 2001]. The architecture contains two networks:
the Policy network that activates motor nodes from sensor activations through second-order connections and
the Value network that generates reinforcement for the Policy network Crabbe and Dyer.

multiple training instances are required before the student can learn the entire sequence. However, ConAg
does not recruit any new nodes which is more biologically plausible. Also, in MAXSON-VI, the learner
learns the sequence of goals, not just the sequence of actions as there are nodes that explicitly corresponds
to every goal. In ConAg, there is no explicit representation of goals. The internal state nodes and behaviors
are present innately and the agent learns sequences of actions by changing the weights between these nodes.

Imitation has been used elsewhere as a means of sequence learning especially to learn fixed trajectories in
robots [Hayes and Demiris, 1994; Dautenhahn, 1995; Gaussier et al., 1998]. The Per-Ac [Gaussier and Zrehen,
1995] architecture that was briefly described in chapter 3 was extended to facilitate imitation learning [Moga
and Gaussier, 1999]. Bakker and Kuniyoshi give a review of imitation learning in robots [1996].
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SEQUENCE NETWORK
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Figure 5.8: Linking teacher’s and learner’s actions in the MAXSON-VT architecture [Crabbe and Dyer, 2000].
The Teacher Detection (TD) nodes in the learner detect interaction events (for example, “eating”) performed
by the teacher. There are innate one-to-one links between these TD nodes and the corresponding Detection
(D) nodes. Thus, actions performed by the teacher can be used as reinforcement to adjust the weights in
the Sequence network (which set the Goal (G) nodes).
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Chapter 6

Learning Social Rules

6.1 Introduction

The ConAg architecture described in chapter 3 was designed for the single agent environment. There is no
mechanism to detect or predict the locations of other agents in the environment. In this situation, individual
paths could interfere with one another and in the extreme case, there could arise a deadlock between two or
more agents. For instance, an agent tries to move to a location occupied by another agent. If the other agent
is similarly trying to move to the location of the first agent then a deadlock occurs. This is illustrated in
figure 6.1. Agent B (holding a brick) is trying to move to the drop site at the left. At the same time, agent
A is trying to get to the source of bricks at the right. Since the paths that each agent is trying to follow
to get to its goal cross each other, both the agents get into a deadlock. Such a situation can be common in
narrow passageways where the chance of encountering another agent is higher.

Bricks

Drop site
() AgentA € @9 AgentB .....

L "Corridor" wall

Figure 6.1: An example of a deadlock: Each agent is trying to move across the other to reach the other
side (to pick a brick or to drop the brick that it is holding). This has resulted in a deadlock in the narrow
corridor.

A solution to this situation is for agent B to drop its brick at its current location for agent A to pick up.
Agent A can then go to the left to drop it off and B can move to the right to pick up another brick. If more
than one agent is involved in a deadlock then this strategy will lead to a “bucket brigade”. If more than
two agents are trapped in a narrow “corridor”, the agents will exhibit a bucket brigade behavior effectively
moving bricks from one point to another without the agents themselves moving from their positions.

In this chapter, a learning mechanism is introduced to the ConAg architecture, resulting in the “ConAg-
DL” architecture. The ConAg-DL architecture can be used in the multi-agent scenario without extending
the sensory capabilities of the agents. The learning algorithm enables the agents to learn to drop any “brick”
being carried in case of a deadlock so that the other agent can pick it up and replan its path, thus breaking
the deadlock. The learning is unsupervised as an agent uses the distance that it has moved since a deadlock
was detected to provide a reinforcement signal.
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Figure 6.2: New “frustration” internal state node regulates the four behaviors required for construction along
with the Holding-Brick, At-Drop-Site, and At-Brick state nodes. The dashed lines indicate the newly added
links.

6.2 Learning to Break Deadlocks

The idea is to have a new internal state node that measures the “frustration” of the agent and which will
trigger the learning phase. The modified action selection part of the architecture is shown in figure 6.2.
Only the navigational planning, grab, and drop behaviors and the Holding-Brick, At-Drop-Site, and At-
Brick internal state nodes that are essential for construction are used. If the agent is unable to move in a
time-step, the activation on the Frustration node increases. When this activation exceeds a threshold, then
the agent tries to perform a random behavior (grab, drop, move toward brick, move toward drop site). Like
all other internal state nodes, there are weighted links between the Frustration node and the construction
behaviors. If the agent is able to get out of the deadlock, then the weights of the connections are changed
to reinforce this action. If the agent remains deadlocked, then that action is penalized. Since the action
selection network is a single layer network, the Perceptron learning rule can be used.

Let I denote the set of internal state nodes and a; the activation on internal state node ¢ € I. Let
f(t) denote the amount of frustration at time ¢ and TF represent the threshold of frustration that triggers
a random behavior to be performed. Let ap denote the activation of the Frustration internal state node.

Then,
_J1, fo>T1"
o= {0, ) <T*F (6-1)

Let B denote the set of possible behaviors and let w;;(¢) denote the weight on the link from internal state
node ¢ € I to behavior node j € B at time ¢{. Then, the activation of behavior node j € B, a;, at time ¢ is
set by the state nodes (analogous to equation 5.1):

aj = (Y wij(t)ai, T?) (6.2)
iel
where 1)() is the step function defined in equation 5.2 and T2 is the threshold of behavior activation. As
in the ConAg architecture, these behavior activations are sent to the action selection module which gives
higher priority to the grab and drop behaviors over the navigation planning behaviors.
Let J(t) represent the position of the agent at time ¢t. The algorithm, Frustration_Learning, to learn to
escape from deadlocks is given in figure 6.3. The sign() function is defined as:

1, z>0
sign(z) = { 0, =z=0 (6.3)
-1, z<0
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Algorithm Frustration_Learning
At time t: if (ap = 1)
then perform a behavior b € B randomly with probability p;
set f(t+1)«0
At time (¢ + 6): if |d(t) — d(t + 6)| > d
then wip(t + 1) = wip () + sign(1l — ap)n aze Fwi®
wi (£ + 1) = wi (t) + sign(0 — a;)n"aie ™5 j € B,j #b
else wp(t + 1) = wip (t) + sign(0 — ap)nF aze=Fwi®)

Figure 6.3: Algorithm learnFrustrated to learn to escape from deadlocks.

In step 2 of algorithm Frustration_Learning (figure 6.3), a behavior b is randomly selected with probability
pp. Once a random behavior is performed, the frustration is reset to 0 (line 3). To reduce the chance that
both agents are taking random actions at the same time, an agent can choose not to perform any behavior
at all in step 2 (i.e, an agent does not perform any behavior with probability 1 — 3, 5 ps). This is useful
because if both agents perform a random behavior at the same time and the deadlock gets broken, one of
the agents will erroneously reinforce its action though the deadlock was resolved by the other agent’s action.
Line 4 is the test of whether this random action was successful. This test is carried out at some later time
t + d by checking if the change in the agent’s position is greater than some distance d. § is the time taken to
determine if the deadlock was broken or not (it is not possible to determine if a deadlock has been broken
immediately after a behavior was performed since there could be many actions that only take the agent
temporarily out of deadlock, such as moving back only to move forward in the next step). However, if ¢
is large, then the agents will have to wait longer before trying a different random action. This results in a
longer time spent in trying to break deadlocks during the learning stage. Lines 5-7 are the learning rules
for a successful and unsuccessful behaviors. 5" is the learning rate. sign() indicates the direction in which
the weights are adjusted. The exponential term is present to bound the weights w;;(t). Moreover, since the
base construction sequence is encoded with weights (set a priori) that are close to the threshold, the rate at
which these weights change is lower than that of the weights that start at 0.

6.3 Generalizing Learned Behaviors

Applying the learning algorithm described in the previous section, an agent learns that if it is holding a
brick and is in a deadlock, then it should drop the brick. However, this behavior is triggered only when the
agent is caught in a deadlock. Since the agent also has a spatial representation of the world around it, it is
possible for it to associate the deadlock breaking behavior with the environmental conditions that existed
when it entered a deadlock. It could then apply this behavior anytime its spatial map indicates that the
world around the agent is similar to this learned pattern, even if the agent is not currently in a deadlock.

For instance, if deadlocks tend to occur in “corridors” (two closely placed parallel rows of bricks), then the
agent should learn to drop bricks whenever it finds itself in a narrow passageway (provided that a sufficient
number of such examples were available during learning). If this brick is later picked up by another agent,
then a mechanism develops whereby agents pass bricks from one to another in constricted spaces (as opposed
to trying to pass each other). This behavior is beneficial only if there are at least two agents participating
in the constriction task and these agents are of two types: those responsible for moving bricks to narrow
corridors and those that move bricks from the corridors to the drop-sites. The agents can automatically
divide themselves into these two types of agents due to the nature of the environment: the agents nearer
the drop-sites will try to pick up bricks from the corridor (which is closer to it than the original source of
bricks) while the agents situated nearer the bricks will move them to the corridor (which is closer to it than
the drop-sites).

Since ESMs are used as the spatial representation, the agent does not need to have any pre-defined
notion of a “corridor”. The egocentric nature of the spatial maps ensures that approximately the same ESM
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neurons get activated every time the agent finds itself between two rows of bricks. Thus, the agent only
has to learn to associate the pattern of activations on these ESM neurons to deadlocks and then apply the
deadlock escape behavior whenever the ESM activations match the learned pattern. The learned pattern is
stored in a Deadlock Pattern Map (DPM). Let a; denote the activation of Brick ESM cell 4 and let d; be
the activation on the corresponding node of the DPM (the activations on the DPM are not shifted with the
movement of the agent unlike the ESM activations since the DPM represents the status of the environment
around the agent only during deadlocks). A simple update rule to learn the pattern of DPM neurons is given
below:

Ad; = nP(a; — di)e*% (6.4)

where Ad; is the change that is added to d; at the end of every application of this rule. This rule is applied
each time the agent’s frustration is above the threshold T (i.e, it is in a deadlock). n® is the learning rate
and the exponential term (k is a constant) is used to retain values learned from previous time steps (with
high d;).

The pattern stored in the DPM can be matched with the current set of activations on the ESM neurons
using the following match function, match(d, a):

Ei w(dla TD) maX; cnb(i) (a;)
Ei w(dlv TD)

where () is the step function defined in equation 5.2 and TP is the threshold used to identify those nodes
in the DPM that indicate a disc. nb(i) is the set of all neighboring cells of an ESM cell i. The summation
is over all cells i in the central portion of the ESM (since discs farther away from the agent are less likely to
be a part of any constriction).

After the agent has learned a deadlock escape behavior, it applies equation 6.5 to match DPM activations
(d) with the ESM activations (a) at every step. The result of this match is used to set the central node of
the Configuration navigation map which encodes the locations where bricks are to be dropped. Thus the
agent selects the drop behavior not only when it is at a drop-site specified by the Configuration ESM, but
also when the agent is in a location where deadlocks are likely to occur (as indicated by match(d, a)).

match(d, a) = (6.5)

6.4 Results

The performance of the learning algorithms was analyzed and the effect of varying the parameters is described
in this section. The world was restricted to a square of 100 x 100 units. The ESMs are grids consisting of
100 x 100 cells with each cell covering a unit square. The size of the ESM relative to the size of the world
does not affect the frustration learning algorithm or the match function provided the ESM is not so small
that it cannot represent the pattern of activations that encode a “passageway” or other structure where
deadlocks are likely to occur.

The sensor range of an agent corresponds to a square of 30 x 30 units centered at the location of the
agent, i.e, the central 30 x 30 square of the ESM is set from the sensor activations in every step (a square
sensor range was used instead of the circular sensor range as in the ConAg architecture solely for ease of
implementation— none of the behaviors that are used in ConAg-DL are reactive and hence they are relatively
insensitive to the shape and size of the sensor range). An agent can move up to 0.5 units in one time-step
(slows down to drop bricks).

Agents are initially set at random locations within the world. The ESMs were initialized with the
positions of the discs around each agent to remove the need for an exploration phase (the ESMs get updated
normally during construction and learning). Moreover, the deadlock escape mechanism of dropping bricks
to be picked up by the other agent in the deadlock works only if the location of the closest drop-site/brick
is the same in both the agents’ ESMs (otherwise, two agents both trying to move toward different brick
sources can get into a deadlock which cannot be broken by the actions of either agent). Initializing the ESM
with the initial positions of the discs ensures that different agents carry out their path planning on similar
representations of the world when they are caught in a deadlock. The initial location of the discs in the
world is shown in figure 6.4(a) and the world after the structure has been built is in figure 6.4(b).
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Figure 6.4: Environment for learning deadlock breaking behavior: The world (a) near the beginning of
construction and learning. The two agents are in a deadlock and are performing random behaviors. (b) after
construction is complete.

Table 6.1: Initial weights of links

INITTAL Grab | Drop | Config. Nav. | Brick Nav.
Holding-Brick | -0.6 0.6 0.6 -0.6
At-Drop-Site 0 0.6 -0.6 0
At-Brick 0.6 0 0 -0.6
Frustration 0 0 0 0

The initial weights of the links in the Action Selection module responsible for sequencing the construction
task are shown in table 6.1. Though there are many values of weights that capture the sequence of behaviors
for construction, values close to the threshold (T2 = 0.7) were chosen so that the pre-defined construction
sequence that the agent performs when not frustrated would not be unlearned. The activations of Holding-
Brick, At-Drop-Site, and At-Brick internal state nodes are +1, except for Frustration which is 0 or 1. The
weights from the “frustration” internal state node to the output nodes are initially zero.

6.4.1 Two learning agents

Two agents were released in the world to simultaneously learn an appropriate response to deadlocks. The
weights at the end of one learning run is shown in table 6.2. The learning rate n¥ was kept constant at
0.05. The agent retains the normal construction sequence when the frustration state node is inactive. When
frustration is active and the agent is holding a brick, it will drop it even if it is not at a drop site (indicated
by increasing wgyust, brop i column 2 of table 6.2). If the agent is not holding a brick and is “frustrated”,
then it will not choose any behavior (indicated by decreasing wg,yst, BrickNav i column 4 of table 6.2).
The evolution of the weights from the Frustration state node to each of the four behaviors over time is
shown in figure 6.5. The time in the data includes that spent in performing construction though learning
occurs only during deadlocks. When choosing a random behavior, an agent selects one of the four behaviors
with probability 0.1 (i.e, it will not select any behavior with probability 0.6). This conservative choice is to
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Table 6.2: Final weights of links

FINAL Grab | Drop | Config. Nav. | Brick Nav.
Holding-Brick | -0.598 | 0.613 0.580 -0.591
At-Drop-Site -0.05 | 0.585 -0.590 0.251
At-Brick 0.598 | -0.344 0.233 -0.591
Frustration 0.05 0.344 -0.284 -0.251
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Figure 6.5: The weights from Frustration state node to the four output behaviors when there are two agents
in the environment (averaged over 5 trials).

reduce the chance that an agent erroneously reinforces its behavior when it was another agent’s behavior
that broke the deadlock. As expected, the weight on the link from Frustration to the Drop behavior is the
highest because performing the other behaviors in a deadlock will not break the deadlock always and thus
the corresponding weights will not be reinforced.

Figure 6.6 shows the case when an agent chose each behavior with probability 0.25 when it had to perform
a random behavior. Since less time is now spent performing no behavior, learning occurs faster. However,
the weight wgryst,gras has also increased since an agent is now likely to reinforce its selected behavior even
when it did not contribute to breaking the deadlock.

6.4.2 Five learning agents

Figure 6.7(a) shows the same learning algorithm performed with five agents in the same environment. The
weights learned are similar to that of the two agent case. This is because the environment is relatively
unconstrained except for the short corridor and most deadlocks involve only two agents. Figure 6.7(b) shows
the weights when five agents learned in a more constrained environment (shown in figure 6.9). In this case,
more than two agents are often involved in deadlocks and the time to break such deadlocks will depend on
the number of agents in it. Since the learning algorithm tests the progress of the agent after a fixed number
of steps, the proper reinforcement will not be given even if the agent has performed the correct behavior.
Therefore, the learning occurs slower than in unconstrained environments.
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Figure 6.6: The weights from Frustration state node to the four output behaviors when each behavior is
chosen with probability 0.25 when a random behavior has to be performed (averaged over 5 trials with two
learning agents).

6.4.3 A learner and a previously trained agent

In the next experiment, an agent was released into the environment along with an agent that was already
trained as described above. The results are shown in figure 6.8. The weight wrryst,Drop increases, but
WFrust,BrickNov d0€s not decrease as before. As a result, the agent learns to drop its brick when frustrated
and holding a brick, but continues to attempt the brick navigation behavior when it is not holding a brick
and deadlocked. This is because the already trained agent immediately performs the Drop behavior when
it is holding a brick, and therefore does not give the learning agent an opportunity to explore its choice
of behaviors (the learning agent continued to perform the pre-defined brick navigation behavior in this
circumstance).

6.4.4 Bucket Brigading behavior

To study if the behavior that was learned to get out of deadlocks can exhibit a “bucket brigade” among
many agents, the following experiment was conducted. Five agents, that were trained in pairs to exhibit the
deadlock escape mechanism, were placed in an environment where the source of bricks and drop sites were
separated by a long “corridor”. Figure 6.9 shows the five agents deadlocked in the corridor (¢ = 270) with
the three agents holding the bricks (A, B, and C) at the north end of the corridor trying to move south,
while the other agents are trying to move north to reach the source of bricks. The Frustration state node
of B is active which causes it to drop its brick to be picked up by D (¢ = 272). B and D have now changed
their goals and are free to move north and south respectively. Meanwhile C is in a deadlock with E and A
is deadlocked with C. C drops its brick which is picked up by E (¢ = 276). In the next few time-steps, the
deadlock between A and C is also resolved similarly (¢ = 280).

Disc exchanges can take place simultaneously at more than one point in a long corridor. This is exhibited
in the run shown in figure 6.10. Four agents are involved in moving red discs from the top to the bottom of
the corridor whose walls are made of green discs. At ¢t = 5, there are two deadlocks (between agents A and
B, and between C and D). At ¢t = 8, the deadlock between A and B is broken (A picks the disc dropped
by B) and at ¢t = 9, the deadlock between C' and D is similarly broken. At ¢ = 13, a new deadlock develops
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Figure 6.7: The weights from frustration state node to the four output behaviors when there are five agents
(averaged over 5 trials) learning in (a) an unconstrained environment and (b) a constrained environment.
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Figure 6.8: The weights from Frustration state node to the four output behaviors when only one of the
agents is learning and the other has already been trained (averaged over 5 trials).
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Figure 6.9: “Bucket brigade” behavior exhibited by 5 agents (A, B, C, D, and E) confined in a long corridor
made of green discs. Agents are indicated by small black circles; a black circle within a red disc indicate
that the agent is carrying a disc. The sequence of drops and pick ups that eventually move the three bricks
down the corridor is shown to the right.
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between B and C' (agents A and D are free to move to drop and pick a disc respectively). This deadlock is
broken (not shown) but A and D get into two separate deadlocks at ¢ = 24. The deadlock between C' and
D is broken at ¢ = 31 (allowing D to move to the top to pick up another disc) but C joins the deadlock
between A and B at t = 33. B drops its disc at ¢ = 34 to be picked up by A which then moves to drop it off
(B and C continue to be in a deadlock). Notice that during this time only agent A moved to drop bricks at
drop-sites and only agent D moved to pick up discs from the initial locations at the top. Thus, the deadlocks
between agents ensured that the agents were confined in their own “territory” within the corridor while still
enabling the transport of discs through the corridor. Though this reduced the total distance traveled by an
agent (agents did not have to move around one another as would have been necessary if the disc passing
mechanism were not available), the time taken to move a disc from its initial location to a drop-site is long
since most of the time is spent waiting for the frustration level to increase to the point where a deadlock is
detected and the deadlock escape behavior is triggered.

6.4.5 Map association

In the environment in figure 6.11(a), most deadlocks occur within the narrow corridor. Figure 6.11(b) shows
DPM readings learned by an agent after 10,000 steps (learned only when “frustrated”, i.e, ar = 1). Two
agents were then released into the environment of which one had the learned DPM pattern. This agent
moved bricks from the source and dropped them in the shaded region in figure 6.11(a) (those locations its
sensor readings matches the learned activation pattern). The other agent picks up these bricks from the
shaded region since it is closer to the structure being built than the source of bricks. Thus, the agents do not
try to cross each other in the narrow corridor. As discussed in section 6.3, at least two agents are necessary
to exhibit this behavior. Since ConAg-DL agents do not have the ability to detect other agents, the designer
has to ensure that there are at least two agents in the environment.

6.5 Increasing the number of Behaviors

The ConAg-DL architecture that was used for the experiments described earlier contained four behaviors
and there was only one action (Drop) that could be performed that would break the deadlock. However,
if one of the agents that is in a deadlock has a goal that cannot be satisfied by the picking up of a brick
that was dropped by the other agent, then the deadlock cannot be broken by performing the drop behavior.
This is the case when agents are allowed to become thirsty and blue (water) discs are also present in the
environment. For instance, consider two agents, neither of which are holding a brick but one is thirsty. In
this case, the thirsty agent will try to move toward the nearest water disc while the other agent tries to move
toward the nearest brick. If their paths cross one another, these agents will enter in to a deadlock which
cannot be broken by dropping a brick (since neither agent is even holding a brick).

To study how the ConAg-DL architecture can be extended to take into account situations where agents
might be trying to satisfy unrelated goals, two new behaviors, “LieDown” and “ClimbOver” are introduced.
Performing the LieDown behavior causes an agent to crouch in its place. Performing the ClimbOver behavior
causes an agent to move past an agent in front of it, provided the other agent is crouching (i.e, performing
the LieDown behavior). These behaviors do not need input from the sensors. If an agent performs these
behaviors in the absence of another agent, there is no change in position. Since agents in a deadlock face each
other, a deadlock can be broken if one of the agents performs the LieDown behavior and the other performs
the ClimbOver behavior simultaneously. The agents no longer block each other and they can continue on
their planned paths. If both agents perform the same behavior simultaneously (both crouch, or both try to
climb over each other), the deadlock remains in place. Also, if one of the agents performs these behaviors
while the other agent remains stationary, the deadlock is still not broken These cases are illustrated in
figure 6.12. The two new behaviors are contrived behaviors since it is not physically possible to crouch or
climb over in a 2-dimensional world. Thus, the simulation environment explicitly shifts the agents’ positions
if these behaviors are used to break a deadlock.

The environment in which agents are placed to learn the use of LieDown and ClimbOver behaviors is
shown in figure 6.13. The water discs are spread throughout the environment while the source of bricks and
the location of the structure to be built is at opposite ends of the corridor made of green discs. In such an
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Figure 6.10: Disc exchange at more than one point: Four agents (small dark circles) 4, B, C, and D are
confined in a corridor made of green walls. The dashed circles indicate drop-sites. A black disc within a
red disc indicates that that red disc is being carried by an agent. The positions of the discs and agents are
shown at times ¢ = 5,8,9,13, 24, 31, 33, 34. Two simultaneous deadlocks are visible at t = 5 and ¢t = 24.
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(a) (b)

Figure 6.11: (a) Environment with narrow corridor used for associating sensor readings with deadlocks. The
shaded area indicates the locations where sensor inputs will match the learned readings. The source of bricks
are at the top and the built structure is at the bottom. (b) The DPM activations after 10,000 steps.
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Figure 6.12: Breaking deadlocks with LieDown and ClimbOver behaviors. In figure a, one of the agents
performs the LieDown behavior while the other performs the ClimbOver behavior and the deadlock is broken.
In figures b and c, both agents perform the same behavior simultaneously and the deadlock continues.
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Figure 6.13: Environment used for learning LieDown and ClimbOver behaviors. Dashed circles indicate the
location where bricks are to be placed. Water (blue) discs are scattered throughout the environment.

environment, agents can be moving to either a water disc (when thirsty), a brick (when it is not holding a
brick) or a drop-site (when it is holding a brick). Two agents that are trying to move toward different types
of bricks can get into a deadlock if their paths cross. Some of these deadlocks can be broken by one agent
dropping a brick and the other picking it up (in the case of agents moving toward bricks and drop-sites), while
others can be broken only with coordinated execution of the LieDown and ClimbOver behaviors. Table 6.3
lists the different behaviors that can be performed by two agents in different kinds of deadlocks. Each
cell lists the possible pairs of simultaneous behaviors (Crouch and Climb represent LieDown and ClimbOver
respectively) that will break the deadlock for different internal states of the agents (T, B, T, and B indicate if
the agent is thirsty, holding brick, not thirsty, and not holding brick respectively). Note that performing the
LieDown and ClimbOver behaviors will break any deadlock including those between agents trying to move
toward drop-sites and bricks (where the Drop behavior can break deadlocks as described earlier). Deadlocks
are not possible between two agents moving toward the same type of disc or drop-site location. These cases
are indicated by an “x” in table 6.3.

The agent has to learn to apply the correct deadlock breaking behavior depending on its current internal
state and also that of the other agent. For this purpose, the agent is given three new internal state nodes:

1. Thirsty becomes active only when the agent becomes thirsty (as described in chapter 2).
2. OtherAgentThirsty becomes active only when the other agent in a deadlock is thirsty.
3. OtherHoldingBrick becomes active only when the other agent in a deadlock is holding a brick.

The OtherAgentThirsty and OtherHoldingBrick state nodes are inactive when the agent is not in a deadlock.
One can think of these state nodes as “touch” sensors that can sense the state of another agent only when
it is extremely close.
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Table 6.3: Simultaneous behaviors that can break deadlocks

Agent 2
Agent 1
TB TB TB TB
Grab, Drop Crouch, Climb Grab, Drop
TB X Crouch, Climb | Climb, Crouch | Crouch, Climb
Climb, Crouch Climb, Crouch
Drop, Grab Drop, Grab Crouch, Climb
TB Crouch, Climb X Crouch, Climb | Climb, Crouch
Climb, Crouch Climb, Crouch
Crouch, Climb Grab, Drop
TB Climb, Crouch | Crouch, Climb X X
Climb, Crouch
Drop, Grab Crouch, Climb
TB Crouch, Climb | Climb, Crouch X x
Climb, Crouch

The agent has to use its OtherAgentThirsty and OtherHoldingBrick internal state nodes and LieDown
and ClimbOver behaviors only when it is caught in a deadlock. Therefore, a separate network (“Frustration
Network”) is used to learn which behaviors are to be performed when in a deadlock depending on its
internal state. The modified ConAg-DL architecture is shown in figure 6.14. The “Construction Network”
is a single layer network that enables the internal state nodes to control the behaviors using second-order
links from its outputs to the behaviors. The weights on this network are innate and are used to perform the
construction sequence and move toward water when thirsty (as described in chapter 3). Since this sequence
is to be performed only when the agent is not in a deadlock, all the outputs from the Construction Network
are inhibited by the Frustration internal state node. The outputs of the Frustration Network control the
behaviors through second-order links when the agent is in a deadlock and hence the outputs are excited by
the Frustration internal state node. The Frustration Network is a single layer network and the weights are
learned (described below) to enable the agent to break deadlocks.

After learning, the agents should be able to simultaneously perform one of the pairs of deadlock breaking
behaviors listed in table 6.3 depending on the internal states of the two agents. There is no unique behavior
that an agent has to perform to escape the deadlock; the behavior that has to be performed is dependent
on that performed by the other agent. Thus, the agents have to learn to agree on one pair of behaviors that
they will perform for each possible combination of internal state node activations.

To ensure that the agents converge to perform a coordinated set of behaviors, the agents perform both
random behaviors and the currently learned behaviors (chosen by the Frustration Network) during deadlocks
in the learning phase (as opposed to trying out only random behaviors in the Frustration_Learning algorithm
of figure 6.3). As the learning phase progresses, the agent reduces the number of times it performs a random
behavior when frustrated. This learning algorithm, called Coordination_Learning, is shown in figure 6.15.
When the agent becomes frustrated (frustration level goes over threshold, line 2), it first tries the behavior
output by the Frustration Network (line 5). If this behavior leads to the deadlock being broken at later
time ¢ 4+ 6 (line 11), then the weights contributing to this behavior in the Frustration Network is reinforced
(lines 12-13). n*" is the learning rate. If however the agent continues to remain in a deadlock, the weights
are negatively reinforced (line 16) and the agent performs a random behavior with probability p, (line 7), or
with probability 1 — p,., perform the behavior output by the Frustration Network (line 8). The value of p,
determines the number of random trials explored compared to using the output of the Frustration Network.
The probability p, is decreased with decay rate p, in the case of the behavior breaking the deadlock (line
15). Thus, as learning progresses, the learned behaviors are performed more often compared to random
behaviors. This process of trying a learned behavior and then a random behavior is repeated until the
deadlock is broken. The variable nAttempts is used to keep track of the number of attempts (performing
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Figure 6.14: Extended ConAg-DL architecture with new behaviors and internal state nodes. The LieDown
and ClimbOver behaviors can be used to escape deadlocks if used in a coordinated manner with another
agent. The Water Navigation behavior takes the agent toward the nearest water (blue) disc. The two
new internal state nodes, OtherAgentThirsty and OtherHoldingBrick, indicate if the other agent in the
deadlock is thirsty or holding a brick respectively. The Frustration state node selects the outputs of either
the Construction or the Frustration Network to gate the behaviors depending on whether the agent is in a
deadlock or not.
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both random and learned behaviors) that the agent has made to try to break the deadlock. nAttempt is
initialized in line 1 and reset after the deadlock has been broken (line 14).

Algorithm Coordination_Learning

1: Initialize: nAttempts < 0

2: At time ¢: if (ap = 1)

3 nAttempts < nAttempts + 1

4: if (nAttempts % 2 = 1) {odd attempts}

5: b + behavior output by Frustration Network

6: else {even attempts}

7 with probability p,, b + randomly selected behavior
8: with probability 1 — p,., b + behavior output by Frustration Network
9: set f(t+1)« 0

10:  perform behavior b

11: At time (¢ + 6): if |d(t) — d(t + 6)| > d

12:  then wy(t + 1) = wy(t) + sign(1 — ap)n¥a;

13: wij(t+ 1) = w;; (t) + sign(0 — a;)nFa;, j € B,j #b
14: nAttempts « 0
15: Pr < pr X Dr

16:  else wip(t + 1) = wip(t) + sign(0 — ap)nt a;

Figure 6.15: Algorithm Coordination_Learning to learn to escape from deadlocks.

6.5.1 Results with Two Agents

Two agents were released into the environment shown in figure 6.13. The weights in their Frustration Network
are initialized to zero. The initial value of p, is 0.5 and p, = 0.99. The learning rate n¥" = 0.2. Trials were run
for 10,000 time-steps. Each trial converges to one of the multiple sets of coordinated actions that the agents
can take to escape deadlocks (listed in table 6.3) depending on the random behaviors that were performing
during learning. Table 6.4 gives two solutions that were arrived at by the agents from two trials (each cell in
the table lists the first and second agent’s behaviors for the corresponding internal state). Figure 6.16 shows
the number of attempts the first agent made to escape a deadlock at that time-step (nAttempts in algorithm
Coordination_Learning). After about 6000 time-steps, the agent has learned to escape a deadlock as soon as
it is detected. The corresponding decrease in the value of p, is plotted in figure 6.17.

Learning to Drop and Grab Bricks

In the trials performed above, the agents failed to ever learn to perform the Drop behavior even in those
circumstances where dropping a brick to be picked up by the other agent in the deadlock would have
broken the deadlock. This is because performing the LieDown and ClimbOver behaviors simultaneously
always breaks a deadlock and the Frustration Network generalizes to perform these behaviors even in those
situations where dropping a brick would have broken a deadlock. To demonstrate that the Frustration
Network can learn to perform different kinds of behaviors depending on the context (internal state of the
agent and that of the other agent in the deadlock), the interaction between deadlocked agents was explicitly
modified so that simultaneously performing the LieDown and ClimbOver behaviors would break deadlocks
only if both agents were holding bricks or both agents were not holding bricks (i.e, if only one agent is holding
a brick, then only dropping that brick to be picked up by the other agent can break the deadlock). After this
modification in the environment, the Coordination_Learning algorithm was applied to both the agents using
the same parameters as in the previous trial. The agents are now able to learn the Grab/Drop behaviors
along with the LieDown/ClimbOver behaviors as shown in table 6.5. The complementary Grab behavior is
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Table 6.4: Simultaneous behaviors learned using Coordination Learning

Agent 2
Agent 1
TB TB TB TB
TB x Climb, Crouch | Climb, Crouch | Climb, Crouch
TB Crouch, Climb X Crouch, Climb | Climb, Crouch
TB Crouch, Climb | Crouch, Climb X X
TB Crouch, Climb | Crouch, Climb X X
Agent 2
Agent 1
TB TB TB TB
TB x Crouch, Climb | Climb, Crouch | Crouch, Climb
TB Climb, Crouch X Climb, Crouch | Climb, Crouch
TB Crouch, Climb | Crouch, Climb X X
TB Crouch, Climb | Crouch, Climb X X
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Figure 6.16: Number of attempts the first agent made to escape a deadlock at that time-step (nAttempts in
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Figure 6.17: Decrease in the value of p, during Coordination_Learning.
pr = 0.99.

Initially, p, = 0.5 and decay rate

not learned as a response to the Drop behavior because the innate connections in an agent already cause it
to grab the dropped disc in the time-step after it is dropped (provided it is not already holding a brick).

6.5.2 Results with Three Agents

When three agents are present in the environment, deadlocks may involve all three agents, i.e, the third
agent can be blocked by the first two agents caught in a deadlock. In such a case, any action of the third
agent will not contribute to breaking the deadlock (since it is between the other agents). Therefore, all
behaviors learned earlier by the third agent are unlearned and the agents do not converge to any set of
behaviors that are capable of breaking deadlocks between any pair of agents. In the following experiment,
deadlocks between three agents were explicitly prevented to enable the behaviors performed by an agent to
directly affect the deadlock. During learning with three agents, the behaviors learned by an agent while

Table 6.5: Learning Drop and Step behaviors using Coordination Learning

Agent 2
Agent 1
TB TB TB TB
TB X Climb, Drop | Climb, Crouch | Climb, Drop
TB Drop, Climb X Drop, Climb | Crouch, Climb
TB Climb, Crouch —, Drop X X
TB Drop, Climb | Crouch, Climb X x
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Figure 6.18: Breaking deadlocks with StepLeft and StepRight behaviors. In figure a (b), both the agents
perform the StepLeft (StepRight) behavior and the deadlock is broken. In figure c, the agents perform
different behaviors and the deadlock continues.

caught in a deadlock with one agent might not be able to break deadlocks with the other agent. Moreover,
the agents do not have the ability to detect the identity of the other agent in a deadlock and hence cannot
learn a different set of behaviors for interacting with different agents. This implies that an agent will have to
relearn behaviors during the course of the learning phase. For instance, consider three agents A, B, and C.
Assume that agents A and B learned to perform the LieDown and ClimbOver behavior respectively when
caught in a deadlock. If agent C' performs the LieDown behavior in a deadlock, then if agents A and C are
caught in a deadlock, one of these agents will have to relearn its behavior. On the other hand if agent C'
performs the ClimbOver behavior in a deadlock, then if agents B and C' are caught in a deadlock, one of
these agents will have to relearn its behavior. Hence, this set of three agents can never agree on a fixed set
of behaviors that will break all deadlocks between any pair of agents.

To demonstrate a fixed set of behaviors in the case of three agents, two behaviors “StepLeft” and
“StepRight” replace the LieDown and ClimbOver behaviors in this experiment. If two agents are in a
deadlock, then this deadlock can be broken if both agents perform StepLeft (or StepRight) behaviors simul-
taneously. These behaviors may be thought of as causing the agents to “step aside” creating sufficient space
for the agents to pass each other (however, if only one agent performs this behavior, there is no change in
position). This is summarized in figure 6.18

To enable the learning to converge, the learning rate (7 in algorithm in figure 6.15) is decreased every
time an agent performs a behavior while in a deadlock. The Coordination Learning algorithm for multiple
agents is presented in figure 6.19. The difference between this algorithm and that in figure 6.15 is the use
of different learning rates depending on whether a behavior is successful in breaking a deadlock or not (pf+
and ¥~ respectively) in lines 12, 13 and 16 and the decrease of these learning rates after each behavior is
performed (by decay rates pf'+ and p¥~ respectively) in lines 13a and 16a.

As in the case with two agents, the weights in their Frustration Network are initialized to zero and the
initial value of p, = 0.5 and p, = 0.99. The initial values of the learning rates n** = nf~ = 0.2 and
the decay rates are pf+ = 0.9995 and p™~ = 0.9999. Trials were run for 200,000 time-steps. Table 6.6
lists the behaviors that were learned by the three agents after one such learning trial (“Left” and “Right”
denote StepLeft and StepRight respectively). For example, consider agents 1 and 2 are caught in a deadlock
and that agent 1 is thirsty but does not hold a brick (and hence is trying to move toward the nearest
water disc) while agent 2 is not thirsty and holds a brick (and hence is trying to move toward the nearest
drop-site). Thus, agent 1’s internal state nodes are Thirsty=1, Holding-Brick=—1, OtherAgentThirsty=—1,
and OtherHoldingBrick=1. Upon detecting a deadlock Agent 1 will perform the StepLeft behavior after
learning (row 3, column 2 of Agent 1’s table of behaviors in table 6.6). Similarly, agent 2’s internal state
nodes are Thirsty=—1, Holding-Brick=1, Other AgentThirsty=1, and OtherHoldingBrick=—1 and it will also
perform the StepLeft behavior thus breaking the deadlock (row 2, column 3 of Agent 2’s table of behaviors
in table 6.6). Any behavior of an agent when performed simultaneously with the corresponding behavior of
either of the other agents breaks a deadlock between these two agents. For this reason, the three matrices

F
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Algorithm Coordination_Learning for three agents

1: Initialize: nAttempts < 0

2: At time ¢: if (ap =1)

3 nAttempts < nAttempts + 1

4 if (nAttempts % 2 = 1) {odd attempts}

5: b + behavior output by Frustration Network

6 else {even attempts}

7 with probability p,, b + randomly selected behavior
8 with probability 1 — p,, b « behavior output by Frustration Network
set f(t+1)« 0

10:  perform behavior b

- -

11: At time (¢ +0): if |d(t) — d(t + )| > d
12:  then wip(t + 1) = wy (t) + sign(1 — ap)nfta;

13: wij(t+ 1) = w;j (t) + sign(0 — a;)nFTa;, j € B,j #b
13a: nft « pft x pft

14: nAttempts < 0

15: Pr < T X Pr

16:  else wi(t + 1) = wip(t) + sign(0 — ap)nt ~a;

16a: nF= « = x pf'—

Figure 6.19: Algorithm Coordination_Learning for three agents to learn to escape from deadlocks.

of behaviors shown in table 6.6 are symmetric matrices (as explained in section 6.5.1, the complementary
Grab behavior is not learned as a response to the Drop behavior).

Figure 6.20 shows the number of attempts the first agent made to escape a deadlock at that time-step
(nAttempts in algorithm Coordination Learning for three agents in figure 6.19). After about 160,000 time-
steps, the first agent has learned to escape a deadlock as soon as it is detected, irrespective of the identity of
the other agent in the deadlock. The corresponding decrease in the value of p, for the first agent is plotted
in figure 6.21, and the decrease in the learning rates (p* and n¥'~) are shown in figure figure 6.22.

6.6 Discussion

The connectionist nature of the action selection mechanism enables the agent to apply simple learning rules
to adapt its behaviors (that were learned in a single agent environment) to novel situations (deadlocks are a
result of the agent existing in an autonomous multi-agent system). This adaptation took place as the agent
continued to perform its construction task. The agents only used information regarding the goals of other
agents (such as if they were holding a brick or were thirsty) with which it is physically in contact. However,
the agents are unable to detect the actions of other agents and they have to use the distance moved as a
measure of the outcome of their joint actions. Thus, adaptation took place solely by utilizing the feedback
provided by the environment and does not require external supervision.

The “bucket brigade” mechanism is an example of a socially useful behavior that is learned from purely
local interactions. It is exhibited only when there is close interactions between the agents (the agents have
to be close enough to pick up another agent’s dropped brick) and the environment (if the world was not
constraining there would not be a global direction to the movement of bricks). Variations of this behavior
may arise if costs are attached to each action. While adapting to novel situations (deadlocks), the agent
has to make sure that previously learned behaviors (construction sequence) are not forgotten. Connectionist
systems are suited to such relearning tasks as they are better able to degrade gracefully.

Learning was faster when there were two agents learning simultaneously compared to the case when one
agent was already trained. Also, in the experiments with the learned sensor readings, only one of the agents
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Table 6.6: Behaviors learned using Coordination_Learning for three agents. HdBrck, OThirsty, and OHdBrck
denote Holding-Brick, OtherAgentThirsty, and OtherHoldingBrick internal state nodes respectively.

OThirsty=—1 | OThirsty=—1 | OThirsty=1 | OThirsty=1
Agent 1 OHdBrck=—1 | OHdBrck=1 | OHdBrck=—1 | OHdBrck=1
Thirsty=—1
HdBrck=-1 X Left Left Left
Thirsty=—1
HdBrck=1 Drop X Left Left
Thirsty=1
HdBrck=-1 Left Left X X
Thirsty=1
HdBrck=1 Drop Left X X
OThirsty=—1 | OThirsty=—1 | OThirsty=1 | OThirsty=1
Agent 2 OHdBrck=—1 | OHdBrck=1 | OHdBrck=—1 | OHdBrck=1
Thirsty=—1
HdBrck=-1 X Drop Left Left
Thirsty=—1
HdBrck=1 Drop X Left Left
Thirsty=1
HdBrck=-1 Left Left X X
Thirsty=1
HdBrck=1 Drop Left X X
OThirsty=—1 | OThirsty=—1 | OThirsty=1 | OThirsty=1
Agent 3 OHdBrck=—1 | OHdBrck=1 | OHdBrck=—1 | OHdBrck=1
Thirsty=—1
HdBrck=-1 X Drop Left Left
Thirsty=—1
HdBrck=1 Drop X Left Left
Thirsty=1
HdBrck=-1 Left Left X b
Thirsty=1
HdBrck=1 Drop Left b X
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Figure 6.20: Number of attempts the first agent made to escape a deadlock at that time-step (nAttempts in
algorithm Coordination_Learning for three agents). After about 160,000 time-steps, the agent has learned
to escape a deadlock as soon as it is detected.

could use the learned readings (as otherwise both agents would try to fill the intermediate goals dictated
by the learned sensor readings). These conditions were explicitly satisfied by the experimenter. Learning to
exhibit diverse behavior has been studied by Balch [2000]. Teams of simulated soccer agents were provided
with either local or global reinforcement. In local reinforcement, an agent’s actions are reinforced only if it
scores a goal, while in global reinforcement all agents in a team are rewarded for a goal scored by any member
in the team. Teams which received only local reinforcement remained homogeneous, but members of teams
which received global reinforcement diversified to perform different behaviors. Such a heterogeneous team
also performed better than a homogeneous team of agents. Balch also gives an information-theoretic metric
for quantifying the heterogeneity of a group of agents [2000].

The drawbacks of this method of social learning concern scalability and efficiency. All deadlocks arising
in the system cannot be resolved using the above approach. If an agent is trying to perform a life-preserving
action (for instance moving to a food disc) and is blocking the path of another agent, then dropping or
picking discs will not resolve the conflict. It is an interesting issue to study if altruistic behavior can be
learned in such situations. As the number of possible motor actions increases, randomly trying all possible
actions (and their combinations) will become infeasible.

The map activation learning rule (to recognize environments that cause deadlocks) and the associated
matching rule did not consider different orientations of the sensed world compared to the learned activation
pattern. For instance, the agent considers two corridors that are oriented at different angles as two completely
different features. This arises because all sensor readings are aligned in one global direction. If on the other
hand, the ESMs changed orientation along with the heading of the agent, the learned activation pattern
would match “corridors” aligned in any direction.

The agents involved in the “bucket brigade” behavior spend a significant amount of time waiting for their
“frustration” to increase before they drop their brick. Moreover, when a brick is dropped by an agent in the
corridor it could be picked up by any agent near it - even the agent that passed the brick in the previous
time-step. There is no directionality in space in the actions of the agents. Hence, efficiency is an issue for
long lines of agents.

The task of two agents performing the LieDown and ClimbOver behaviors together (or either the StepLeft
and StepRight behaviors) is an instance of a purely collaborative matriz game. In a matrix game, each agent
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Table 6.7: Pay-off matrices to escape from deadlocks

LieDown | ClimbOver StepLeft | StepRight
LieDown 0 1 StepLeft 1 0
ClimbOver 1 0 StepRight 0 1

(or player) can perform one of a finite set of actions and associated with each agent is its pay-off matriz.
The pay-off matrix gives the reward obtained by an agent for every pair of actions performed by the two
agents. A matrix game is called purely collaborative if the pay-off matrices for both the agents are the same.
A matrix game is called purely competitive if the two players’ matrices are negatives of each other; these
are also called zero-sum games. Other kinds of games are called general sum games. The pay-off matrix
for the two agents to escape from a deadlock is shown in table 6.7. The agents in fact have to collaborate
on multiple instances of this game: one for each possible combination of the internal state nodes of the two
agents that can exist during a deadlock (for example, one agent is thirsty and holding a brick, while the
other is not thirsty and holding a brick). The adaptation of the behaviors of the ConAg-DL agents can thus
be studied from a game-theoretic perspective. Myerson presents detailed descriptions of the major results
in game theory including those in repeated games [1991].

In a static environment (where there is only one learning agent), the task of the learner is to discover the
action that needs to be performed that will lead to maximum pay-off. However, in a multi-agent environment
with multiple learners, the “optimal” actions of an agent depend on the actions that are being performed
by the other agents and hence the optimal actions will change as other agents change their actions during
learning. Thus, a new definition for “optimality” in multi-agent environments is required. A strategy for an
agent determines its action. Strategies can be pure or mized. A pure strategy is one in which the action is
chosen deterministically while a mixed strategy selects an action from a probability distribution [Bowling
and Veloso, 2002]. A Nash equilibrium for a matrix game is a set of strategies for each agent such that no
agent can improve its pay-off by changing its strategy while other agents keep their strategies unchanged.
All matrix games have at least one Nash equilibrium [Nash, 1997; Myerson, 1991]. Converging to a Nash
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equilibrium strategy with the maximum pay-off is used as the optimality criterion for multi-agent learning
algorithms.

A purely competitive (zero-sum) game has a unique Nash equilibrium, possibly a stochastic (mixed)
strategy [Myerson, 1991]. A purely collaborative game, such as the problem for construction agents that
need to escape deadlocks with their LieDown/ClimbOver behaviors, has deterministic (pure) equilibrium
strategies [Claus and Boutilier, 1998]. In a neural network implementation as in the ConAg-DL architecture,
the actions of an agent are chosen deterministically (the output nodes depend only on the weights in the
Frustration Network and the activations on the input nodes). The learning algorithm should converge to
the equilibrium strategy with maximum payoff. The main difficulty in converging to a solution is that there
could be more than one set of actions that give equal pay-off. For instance, the agents could either decide
to perform the LieDown or ClimbOver behaviors.

Reinforcement learning algorithms such as Q-learning assume a static environment for convergence [Watkins
and Dayan, 1992]. For reinforcement learning to converge in a multi-agent setting, the environment (i.e,
the state of all the learners) should gradually settle into a steady state. This requirement translates into a
trade-off between exploration and exploitation. Initially, the agents are more likely to explore different be-
haviors (high p,.) during deadlocks. As the learning phase progresses, p, decreases and the agents are more
likely to exploit their learned behaviors. Thus, the “steady” state is one in which both the agents perform
their learned behaviors. However, the probability of performing a random behavior should not become zero
to enable the agents to break out of non-optimal combinations of actions [Claus and Boutilier, 1998]. Note
that for Q-learning to converge in a static environment, it is sufficient if the exploration strategy tries every
possible action eventually; no “exploitation” of the learned Q-values is necessary [Watkins and Dayan, 1992].

6.7 Related Work

Dstergaard et al., study the performance of the bucket brigading behavior with variations on the structure
of the environment [2001]. The task that the simulated robots have to perform is foraging - robots first
search their world for certain objects that when found have to be moved to a pre-specified “home” area.
In any environment, there is a certain optimum number of robots that can perform the foraging task most
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efficiently. If the number of robots is greater than this number, then the effects of interference between robots
over-weigh the benefits of performing the task in parallel. This notion of “critical mass” is shown for the
foraging task by Fontdn and Mataric[1996]. Ostergaard et al. use bucket brigading to reduce the interference
between robots and thus improve the efficiency of foraging [2001]. Both maze-like and open environments
are studied. The size and number of the simulated robots is also changed. The bucket brigading behavior
significantly improves the efficiency of foraging in maze-like environments but does not show any advantage
in open environments (this agrees with the results observed in our work). The bucket brigading behavior is
also relatively insensitive to the size of the robots compared to the case when foraging is performed without
the bucket brigading behavior. Bartholdi III et al. studies the use of a bucket brigading system to coordinate
workers on an assembly line [2001]. Workers are arranged along the assembly line from the most to the least
efficient. A worker (w;) carries work down the assembly line until she meets the next worker on the line
(wit1) at which time worker w; transfers her job to w;;1 (provided w;y1 does not have a job). Worker w;
then moves up the assembly line until she meets her predecessor (w;_1) and receives a job from w; 1 (the first
worker picks up a new job). This results in a self-balancing distribution of jobs in that more efficient workers
cover a larger area of the assembly line resulting in minimal time being wasted waiting for a slow worker
to finish a job. This leads to the maximum possible rate of production in both a deterministic model of
job arrivals [Bartholdi IIT and Eisenstein, 1996] and a stochastic model [Bartholdi III et al., 2001] (provided
there is a sufficient number of jobs and workers).

(stergaard et al. also provide a taxonomy of foraging tasks [2001]. This taxonomy distinguishes foraging
tasks based on the number of agents, sources (objects to be picked up; bricks), sinks (locations where objects
are to be dropped; drop-sites) and on the number of different types of agents and items to be collected,
distribution of items in the environment, layout of the environment, and the ability to communicate. If
foraging is considered to be a special case of the construction task, our work using ConAg-DL agents would
fall into “multiple robot, multiple sources, multiple sinks, constrained space environment, single type of
item to be collected, items sprinkled around environment, homogeneous agents, without communication”.
Fontdn and Mataric uses bucket brigading as a means to spatially separate robots in a foraging task [1998].
Bucket brigading in this context has the advantage that the separation between agents adapts to failure of
an individual robot. In all these works, the bucket brigading behavior was hard-coded into the robots. The
issue of learning to perform bucket brigading was not studied as in our work. Moreover, since the ConAg-DL
agents have an internal spatial representation, an explicit search for objects to be picked up is not necessary.
Arkin et al. consider communication between foraging agents [1993]. Communication allows multiple agents
to carry a single object, increasing the speed at which that object can be moved. Communication between
ConAg agents is introduced in chapter 9; however this communication is used only to improve the accuracy
of the spatial maps and not for coordination.

Methods other than bucket brigading to reduce interference between agents have also been proposed.
Vaughan et al. resolves interference between two simulated robots whose paths cross each other in a narrow
corridor by choosing an “aggressive” policy - the robots have an internal aggression trait that is communicated
to the other agent in the narrow corridor; the robot with the lower aggression backs away while the other robot
continues on its way. Thus, symmetry between the robots is broken and deadlocks are prevented. If resource
contests are always won by the same agents, then the group exhibits a dominance hierarchy or caste [Goldberg
and Mataric, 1997]. There is no benefit to using a caste system to break resource contention between
identical agents [Mataric, 1993]. Aggressive behavior is observed in nature (for example, leaping at the same
spot by gazelles on sensing a predator) presumably as a signal of the fitness of the signaler [Zahavi, 1975;
Enquist, 1985].

Mataric describes a more general approach to reducing interference between greedy homogeneous agents
by learning social rules: rules that are beneficial to the group but not necessarily to an individual imme-
diately. Each agent receives social reinforcement while foraging. This social reinforcement is a mixture of
individual reinforcement (received when an agent makes some progress in foraging) and vicarious reinforce-
ment (obtained by observing the actions of other agents). Using only individual reinforcement was not shown
to converge. This work is similar to the ConAg-DL architecture in that agents learn to reduce interference.
However, vicarious reinforcement is not possible for ConAg-DL agents since they lack the ability to sense
other agents. Since, deadlocks could always be broken only by performing a single action (Drop brick), the
ConAg-DL learning converges though it uses only individual reinforcement. Measuring the distance moved to
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reinforce an agent’s actions during a deadlock is an instance of a progress estimator - an internal critic associ-
ated with a single goal [Mataric, 1994]. Distance measurements are used as progress estimators in [Mataric,
1994] to learn a group foraging task. Using a critic associated with a single goal was shown to increase
the rate of group learning compared to the use of a single critic for all the agent’s goals (as in [Whitehead,
1992]). This is because global reinforcement occurs less frequently than self-generated reinforcement.

Impasse driven learning in the Soar cognitive architecture [Laird et al., 1987] is similar to the use of
“frustration” to trigger learning in ConAg-DL agents. An impasse in a cognitive architecture occurs when
there is insufficient knowledge to make a decision. In a general purpose cognitive architecture such as Soar,
an impasse triggers an examination of the cause of the impasse and the creation of new subgoals. The ConAg-
DL architecture does not have the ability to reason about its internal representation (planning efficient paths
for construction is introduced in chapter 8). Hence during deadlocks an agent can only try out behaviors
randomly and reinforce those behaviors that break the deadlock. The appropriate behavior for an agent
when given a stimulus depends on the surrounding context.

The ConAg-DL architecture represents context on the activations of the learned map, [, and this enabled
an agent is able to learn to associate occurrence of deadlocks with narrow corridors. However, there can
be only one such context at a time. Balkenius and Morén describe a computational model that learns to
recognize contexts from a sequence of sensor stimuli [2000]. The model can learn multiple contexts associated
with different locations. A matching function similar to equation 6.5 is used to compare the input stimulus
to the expected stimulus.

Claus and Boutilier compare two methods of applying Reinforcement Learning to purely collaborative
games [1998]. In the first method, called Independent learning, agents do not consider the actions of the
other agent while applying reinforcement. This is similar to the approach taken in ConAg-DL since an agent
reinforces any action that breaks a deadlock irrespective of the action of the other agent in the deadlock.
In the other method, called Joint Action learning, Q-values are learned for every possible state-action pair
where the action is a combination of both the agent’s actions. Convergence is shown in both cases provided
the probability of exploration is gradually reduced such that the agents’ actions settle into a steady state.
Reinforcement learning has also been applied to purely competitive stochastic games [Littman, 1994]. A
stochastic game is a matrix game in which the state of an agent is not deterministically determined by its
actions but rather from a probability distribution.

Cooperation among more than two agents is demonstrated by having n robots solve the iterated prisoner’s
dilemma for n players [Birk and Wiernik, 2000] (the prisoner’s dilemma has often been used to study
cooperation in more general contexts such as arms races [Axelrod, 1984]). However, learning still proceeds
by repeated interactions between different pairs of robots. Each of the robots use strategies such as “Tit-for-
Tat” [Sandholm and Crites, 1995] and raise-the-stakes where the amount of cooperation offered by an agent
is increased gradually if reciprocated [Roberts and Sheratt, 1998]. In our environment, deadlocks can occur
between more than two agents and hence these techniques cannot be directly applied. Moreover, strategies
like raise-the-stakes assume that agents can offer a variable amount of cooperation, a requirement that does
not hold in the case of LieDown/ClimbOver behaviors (an agent can only choose to either perform or not
perform these behaviors).
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Chapter 7

Improving Construction Efficiency
with Randomness

7.1 Introduction

The ConAg architecture of an agent described in chapter 3 does not take into consideration the presence of
other agents or the order in which bricks have to be added to the structure being built. If this architecture
is used for every agent in a multi-agent environment, each agent always moves to the nearest brick not part
of the structure (to pick it up) and moves to the nearest section of the structure that is still incomplete (to
drop a brick) - a greedy approach. However, interference between agents and the order in which bricks are
placed do affect the efficiency with which construction is carried out. Efficiency is measured as the time
taken by the agents to place bricks at all the unfilled parts of the structure.

For instance, two agents might try to drop a brick at the same location. However, only one of these
agents will succeed, forcing the other agent to move towards another unfilled part of the structure. Thus,
the time spent by this agent to navigate toward the original drop-site was wasted. Interference between
agents can also occur on the path to dropping or picking up discs. If the paths of two agents cross, then the
agents will have to “side-step” each other thus increasing the distance traveled by each agent.

The order of placing bricks determines the total distance traveled by the agents while performing con-
struction because after a disc is dropped at a drop-site, it can block direct paths to other drop-sites. An
example is shown in figure 7.1. The fastest way to build the three walls is to build the right-most wall first,
then the middle wall and finally the wall closest to the source of discs. If the nearest wall was built first,
this would block straight paths from the disc sources to the other two walls.

In this chapter, randomization is used in two ways to select those unfilled drop-sites where the agent will
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Figure 7.1: Structure where order of placing discs is important.
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drop a brick. The two random placement strategies are implemented by selectively activating the neurons on
the Configuration Navigation map. The performance of these randomized placement strategies is compared
with the greedy approach.

7.2 Disc Placement Strategies

The three goal placement strategies that are studied are:

e Greedy Placement: The agents pick the closest available brick and place it at the closest drop-site. This

is the placement strategy that is achieved with the interconnections between the ESMs as described
in chapter 3 (the ConAg architecture). To implement this, the agent activates all the goal nodes in
the Configuration Navigation Map. Thus, the Navigation map always plans the path to the nearest
drop-site as a result of the gradients produced by spreading activation.

Random Placement: The agents pick the closest available brick and place it at a random drop-site
requiring a brick. This placement strategy is implemented by randomly activating one of the goal nodes
in the Configuration Navigation Map. Thus, the Navigation map plans the path to that particular
drop-site, ignoring closer drop-sites. The resulting architecture is called ConAg-R.

Localized Placement: Each agent places bricks only in a small randomly chosen area of the environment.
An agent activates only those goal nodes that are neighbors of a randomly chosen goal node in the
Configuration Navigation map. (The neighborhood size is fixed a priori.) Thus the agent plans
paths only to drop-sites within the area represented by these chosen nodes. This placement strategy
adds some of the features of greedy drop-site selection to that of random placement. Unlike random
placement, in which an agent can decide to drop a brick at a site far away from the first drop-site, the
neighborhood criterion forces the agent to drop bricks close to each other (unless there are no nearby
drop-sites in which case a new random location is chosen). The aim is to get the agents to localize
themselves (and thus reduce interference) but without blocking off direct paths to goal locations. Each
agent counts the number of times it comes into contact with other agents in that area and if the count
exceeds a threshold it chooses a new area in which to build. In this way, there is no overcrowding of
agents in a given area. The resulting architecture is called ConAg-L.

7.3 Results

A series of simulation runs was carried out to compare the performances of the different goal placement
strategies. The parameters that determine the time to complete construction are:

1.
2.

The number of agents: varied from 1 to 4 agents

The shape of the structure to be built: The structure to be built is shown in figure 7.2(b). This
particular shape was chosen since building the rows at the sides first forces agents to move around
them to place subsequent bricks for the top row.

Initial arrangement of bricks: The bricks are initially clustered together in one group, two groups, or
are scattered all around (figure 7.2 shows an environment with two clusters of bricks).

. Initial positions of agents: Agents are introduced at a random location in the environment and initially

explore their world until a brick becomes visible. From that point, construction begins. The initial
activations on the Configuration ESM were offset manually for each agent to account for the different
starting positions of agents (as otherwise, the agents will each try to build the specified structure at a
different location).

Positions of Food and Water discs: The hunger and thirst thresholds (g, T}, T¢, and T}) and the
rates affecting the internal food and water level of an agent (fo, f1, wo, and w;) are set such that an
agent becomes hungry/thirsty every 2000 time-steps.
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Figure 7.2: Environment for comparing brick placement strategies: (a) Environment at 7' = 1000. Initially
all bricks are clustered at the two sides. (b) The three agents have completed construction at T' = 2471.
The bricks are in the desired configuration (the width of an agent is approximately equal to the gap between
two neighboring bricks; however an agent cannot pass through these gaps because all neighboring nodes of
an obstacle node in a ESM are inhibited while path planning to account for the size of the robot and the
inaccuracy in the spatial representation as mentioned in chapter 3 as the Avoid-Red behavior becomes active
when close to a brick).

The reported data for each case is obtained from one simulation run. Results from different simulation
runs vary slightly depending on the initial positions of the agents (and hence the time taken to explore), but
the trends across parameters are similar. Figures 7.3-7.6 shows the number of time-steps taken to complete
the construction task using the three placement strategies for each of the three initial environments: building
blocks in one cluster, two clusters or randomly distributed. When the building blocks are in one cluster
(figure 7.3), the greedy placement blocks off direct paths to drop-sites by constructing the side “walls” first
(figure 7.2(a)). Thus, randomly choosing goal locations works better since gaps exist for the agents to move
directly to their goal locations. When the number of agents is small, the localized placement strategy is
similar to random placement. However, as the number of agents increases to 4, localized placement works
significantly better as it tries to keep the goal locations of different agents separate.

As the brick sources get more widely distributed (figures 7.4-7.5), the greedy placement strategy does
not suffer from the blocked path problem. Agents do not have to move around a wall of already placed discs
to approach any goal location - there is almost always a direct path. Thus, the difference in performance
between the strategies is less marked in this case. The time taken to complete the task decreases as the
number of clumps increases because the total distance that has to be covered decreases. The speedup
obtained by adding more agents increases when the bricks are scattered because the agents tend to localize
around the clumps of building blocks leading to reduced interference.

Figure 7.6 shows the number of bricks placed over time by four agents when the bricks were initially in
one cluster. The number of bricks placed per time-step (the slope of the curves) decreases with time for
greedy placement, but is relatively constant for the other two strategies.

7.4 Discussion and Related Work

The relative performance of the different placement strategies varies with the nature of the environment. In
unstructured environments (such as those in which the bricks are scattered), the greedy approach works best
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Figure 7.3: Comparison of disc placement strategies - single source: The time to complete construction task
when all bricks are initially in one cluster; N = number of agents.
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Figure 7.4: Comparison of disc placement strategies - two sources: The time to complete construction task
when all bricks are initially in two clusters; N = number of agents.
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since dropping a brick does not block of all paths to other drop-sites. In structured environments (such as
those having only a single source of bricks and the structure is composed of rows of bricks), the randomized
algorithms work best since these approaches do not construct an entire row of bricks that can block off direct
paths to other drop-sites, i.e, “gaps” are left between the bricks being dropped.

As the number of agents increases, the interference between agents becomes an important factor in
determining efficiency. Thus, the randomized placement strategy works well even in structured environments
with increasing number of agents. The localized placement strategy, resulting in the ConAg-L architecture,
is the best strategy overall since it incorporates the benefits of both greedy (successive bricks are dropped at
nearby locations) and randomized (bricks are not placed to become walls in the beginning that block direct
paths to other drop-sites) placement strategies.

Distributed construction is a complex task and simple local strategies will not work for all cases. Thus it
is important for the architecture to allow for easy implementation of different placement strategies. All the
placement strategies were implemented using ESMs, thus demonstrating the benefits of a simple grid-based
representation of space.

Several architectures have been proposed to enable explicit coordination in multi-robot systems. Cao
et al. provide a general survey of cooperative multi-robot systems [1997]. Some of these architectures are
described below and compared to the ConAg-R architecture.

o ALLTIANCE

The ALLIANCE architecture is a distributed behavior-based architecture that was designed for fault-
tolerant coordination among a group of robots [Parker, 1998]. The robots have similar capabilities to
perform a “hazardous waste cleanup” task in an indoor environment). Each robot maintains internal
impatience and acquiescence motivations. These motivations enable an agent to keep track of the
progress that is made on the task by other robots. If progress is not detected, “impatience” increases
and the robot takes over that task. The set-up is similar to the ConAg-R architecture in that each agent
or robot is capable of completing the task by itself (construction or waste cleanup) and coordination is
used for efficiency purposes. However, in ALLTANCE, robots broadcast messages about their current
actions to let other robots know of the current tasks they are trying to perform. In ConAg-R, there is
no communication; agents do not explicitly consider the actions of others and it is only when a change
in the environment is sensed (and ESMs updates) is the behavior of an agent altered.

o Basis behaviors

Mataric proposes a methodology to design basis behaviors for multi-robot systems [1995]. Basis behav-
iors are those minimal behaviors of a robot that can be combined with those of others to enable the
group of robots to exhibit interesting social coordination and reduce interference. This is an extension
of the principle of behavior-based robotics to multi-agent systems. Five basis behaviors were described
for spatial interactions:

1. Safe-wandering: moving while avoiding collisions

2. Following: follow behind another agent

3. Dispersion: move while maintaining a minimum distance from other agents
4

. Aggregation: converse of dispersion; move while maintaining a maximum distance from other
agents

5. Homing: move to a particular region

These were combined to exhibit group behaviors such as flocking and herding. The agents do not
explicitly broadcast their actions (as in ALLIANCE); each behavior is implemented by considering the
position of only the neighboring robots. In this respect (amount of communication among agents), the
use of basis behaviors is closer to ConAg-R than ALLIANCE. However, though the basis behaviors
can be used for navigating without interference, the choice and order of goal locations is not specified.
In ConAg-R, the ESMs are used to provide these goal locations.
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e Motor-schema

Arkin proposed navigation using motor schemas [1989]. Motor schemas are similar to the reactive
behaviors in ConAg-R as they produce a motor action based on current sensor input. However, unlike
in ConAg-R, the outputs are summed before being sent to the motors (i.e, it is not winner-take-all).
The motor schema approach was used to enable a group of four robots to move to a particular goal
while avoiding obstacles and maintaining a particular formation (such as a line or a column) [Balch
and Arkin, 1995; 1999]. The formations are comparable to those exhibited by using basis behaviors
but each robot determines its position based on the locations of all robots in the group (for instance,
based on the centroid of all the robot positions).

The main difference between these architectures and ConAg-R is that they do not have an internal spatial
representation and hence the exhibited behaviors are purely reactive. In fact, these architectures are used
for the foraging task where it is not necessary that objects be moved to precise locations in a particular
order. ConAg-R agents, on the other hand, have an internal spatial map and and an agent can use its map
not just for determining the locations of bricks and drop-sites but also to select these navigation goals in
such a way to reduce interference between agents. Thus, the ConAg-R architecture uses the internal spatial
representation and a randomized approach for multi-robot coordination.
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Chapter 8

Improving Construction Efficiency
with Path Planning

8.1 Introduction

The disc placement strategies studied in chapter 7 do not consider the shape of the particular structure being
built or its relation to the initial positions of bricks. Certain orders of placing bricks can make it impossible
to complete the construction task. For instance, in figure 8.1, the structure to be built consists of a square
inside a larger square. The greedy approach to placing bricks would cause the agents to build the outer
square before completing the inner one, blocking all paths from the bricks source to the remaining unfilled
positions of the inner square.

Besides the order concerning which parts of the structure are to be built, the assignment of bricks to
drop-sites also affects the distance traveled by the agents. For instance, in figure 8.2 the agent(s) should use
the upper source of discs to build the upper parts of the walls and the lower source for the lower parts of
the walls. This minimizes the total distance between the initial and final positions of the discs. The agents
should also build the rightmost wall first.

In this chapter, an algorithm that explicitly computes which drop-sites block paths to others is described
so that agents can drop bricks at those drop-sites that block the least number of paths. This algorithm is
implemented using spreading activations on ESMs and hence automatically takes into account the presence
of obstacles. Implementation using ESMs also enables this drop-site selection algorithm to be integrated into
the existing ConAg architecture. The resulting path planning architecture is termed ConAg-TS (for temporal
sequencing) because each ConAg-TS agent plans the temporal order in which it will fill goal locations.

8.2 Theoretical Formulation of the Construction Task

The construction environment can be described as a weighted undirected bipartite graph. The vertices of
one partition represent the initial locations of bricks and the vertices of the other partition represent the
final drop-site locations (the pattern of the structure to be built). The weights on the edges represent the
distances of the paths between these two kinds of locations. If there is only one agent, the task is to determine
the shortest path that visits all the vertices representing drop-sites and no vertex is visited more than once.
Since the graph is bipartite, the edges of this path represents a route that alternates between an initial
location of a brick and a construction site. If the number of vertices in the two partitions are the same (the
number of bricks is equal to the number of drop-sites) this problem becomes one of computing the shortest
Hamiltonian path (a path that visits every node exactly once) in this graph. The problem of calculating the
shortest Hamiltonian path in an undirected graph is NP-complete [Garey and Johnson, 1979).

This characterization assumes that the length of the path between two locations (the edge weight) will
not change during the construction task. However, in the general case, the order in which bricks are placed
affects the distance traveled by agents to place the remaining bricks. Since bricks dropped off earlier in
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Figure 8.1: Concentric squares to be built: the order of placing bricks is important; if the outer walls are
built first, the inner square becomes inaccessible.
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Figure 8.2: Assigning bricks to drop-sites: the agent(s) should move the upper source of discs to the upper
parts of the walls and the lower source to the lower parts of the walls to minimize total distance traveled.
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Figure 8.3: Shortest Hamiltonian path for a construction task: (a) 4 bricks (filled red discs) and 4 drop-
sites (unfilled circles). If there were two agents, they might divide the construction task among themselves
as indicated by the dashed areas. (b) Shortest Hamiltonian path of the construction task. Filled nodes
correspond to bricks and unfilled nodes correspond to the drop sites.

the construction task can block direct paths to other drop-sites. The characterization for multiple agents is
even more complex. Moreover, in the case of multiple agents, there is interference between agents since only
one agent can occupy a location at any given time. If the paths of agents cross each other, the chances of
such interference increase. Thus, for efficient construction with multiple agents, the agents have to plan the
temporal sequence of drop-site locations where bricks have to be moved to and also work on different parts
of the environment. However, the path indicated by the shortest Hamiltonian path will take the agent to all
parts of the environment thus increasing the chances for interference. An example is shown in figure 8.2.

Another approach to characterizing the construction task is to model it as a minimum weighted perfect
matching (MWPM) or assignment problem for bipartite graphs. The MWPM problem is to compute a one-
to-one mapping between the vertices in the two sets such that the sum of the edge weights between matched
pairs is minimum. If the number of vertices in the two partitions (number of bricks and drop-sites) are not
equal, the graph can be augmented with dummy nodes with a very large weight. An example is shown in
figure 8.4. In an optimal solution to the MWPM problem with Euclidean weights, edges between matched
pairs do not cross, reducing interference between agents. This is illustrated in figure 8.5. If a matching of
the graph contains two edges AB and C'D that cross each other at Z, then those edges can be removed and
replaced with edges AD and BC' with smaller total weight since all edge weights are Fuclidean distances
and the triangle inequality holds.

AB+CD

(AZ+ZB)+ (CZ + ZD)
(AZ+ZD)+ (CZ + ZB) (8.1)
AD + BC

AVARI

An optimal solution to the MWPM problem can be calculated in O(n®) time where n is the number of
vertices in each set using the Hungarian algorithm [Kuhn, 1955] or more efficiently by using an augmenting
path approach to solve a maxflow formulation of the assignment problem [Jonker and Volgenant, 1987]. The
greedy approach as implemented by the ESMs is a distributed neural implementation of the “matrix scan”
heuristic for the MWPM [Kurtzberg, 1962]. Avis gives a comparison of the average-case bounds for the

109



(a) (b)

Figure 8.4: MWPM characterization of a construction task: (a) 4 bricks (red discs) and 3 drop-sites (unfilled
circles). (b) Bipartite graph of the construction task. Filled nodes correspond to bricks and unfilled nodes
correspond to the drop sites. The dashed circle indicates a node representing a dummy drop-site. The lines
represent edges between nodes (dashed lines indicate edges with a large weight to the dummy node). The
edges that are in the solution to the MWPM are shown by thick lines.

greedy MWPM heuristic with others [1983].

Unlike the shortest path solution, the MWPM characterization does not determine the order in which
bricks are to be moved to drop-sites. To prevent dropped bricks from blocking direct paths to other drop-
sites, the agents have to plan the temporal sequence of goal locations such that the path from every disc to
its drop site is a straight line (not blocked by any previously dropped disc). The algorithm described below
determines such a sequence in two steps. Each agent first computes a matching (an approximate solution
to the MWPM) between discs and drop sites represented in its ESMs using a greedy heuristic. It then
determines which of the drop sites are not on any of the paths (between a disc and its matching drop site)
and proceeds to fill these first.

Initial Match

- - - - Smaller Weighted Match

C

Figure 8.5: Edge crossings in a solution to the MWPM: an optimal solution contains no edges that cross
each other.
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Figure 8.6: ConAg-TS architecture: the lines between the matching grid and the ESMs represent links be-
tween every corresponding pair of neurons. Three internal state nodes are also shown: At-Brick (marked “B”)
is set from the Brick navigation map, At-Drop-Site (marked “D”) is set from the Configuration navigation
map, and Holding-Brick (marked “H”).

8.3 Matching Algorithm

The algorithm, calculate_matching(), is implemented on a grid of neurons called the Matching grid that can
spread activations among neighboring cells. There is a one-to-one correspondence between the neurons on
the matching grid and those on the Brick and Configuration ESMs. The obstacles for brick or configuration
navigation (the locations of bricks that are already part of the structure) inhibit activations on the matching
grid. Currently, activations from Food and Water ESM neurons that can represent food and water disc
obstacles have not been incorporated into the matching grid. The interconnections between the matching
grid and the ESMs in the ConAg-TS architecture are shown in figure 8.6 and are described in more detail
in figure 8.12.

The calculate_matching algorithm is shown in figure 8.7. At the end of the algorithm, match[n] = 1 for
all nodes n that are on a path between a matched disc and any drop-off location. Let N be the set of all
nodes on the Matching grid and S, T be the set of nodes representing initial brick locations and unfilled drop
sites respectively. The matching grid spreads two different activations: the a activation spreads from nodes
representing bricks while the b activation spreads from nodes representing drop-sites. Both the activations
together determine the match value at a node. Denote by a, and b, the a and b activation respectively
at an arbitrary node n. Define succ(n) to be the neighboring node of n along the strongest gradient of a
activation:

succ(n) = argmaz,, cpp(n) (ay,) (8.2)

In line 2, the a activation is initiated from all nodes representing brick locations. This activation flows around
nodes representing bricks that are already placed as these are obstacles. In lines 4-6, every drop-off location
t spreads activation b against the gradient of the a spreading activation initiated in line 2. Thus b, = 1 for
all nodes n that lie on a path between some two nodes that represent a brick and drop-site location. When
this b activation reaches a brick location s (condition in line 7), another b activation is started (distinguished
from the first by setting b, to 2) from s that is spread along those nodes n that already have b, = 1 (line
9). At the same time, as is reset to 0 (step 11) so that the spread of the b activation initiated in step 6 is
stopped (since the b, = 1 activation spreads against the gradient created by the a activation). Thus, though
activation from more than one drop-site might reach s in step 7, only the activation that reaches s first is
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calculate_matching (S, T)
returns match[n] € {0,1},Vn € N
1:  match[n] :=0Vn € N
2: spread activation a from all s € S (as = 1)
3:  while there are unmatched nodes in T’
4: for all unmatched nodes t € T
5: {set by, := 1 for all nodes n on path from ¢ to nearest disc}
6: bsucc(t) = 1;if (bn = ].) then set bsucc(n) =1
T if(bs=1)A(as=1),s€ S
8: {match s to ¢, where ¢ initiated b activation that reached s}
9: bs := 2; if (b, = 2) then set by :=2,Yn' € nb(n) Ab, =1
10: set match[n] := 1 for all nodes n on path from s to ¢
11: as:=0
12: end if
13:  end for
14: end while

Figure 8.7: Algorithm calculate_matching

reinforced with the b, = 2 activation. This ensures that b, = 2 only for those nodes that lie on a path from
a brick source to the nearest drop-site. In this way, a node representing a brick is “matched” to the nearest
drop-site (indicated by setting match[n] = 1 only for those nodes n where b, = 2 in line 10).

8.3.1 Example of calculate_matching Algorithm

An example illustrating the calculate_matching algorithm is shown in figures 8.8-8.9. Figure 8.8(a) shows an
environment containing three bricks and three drop-sites and figure 8.8(b) shows the cells on the matching
grid corresponding to these bricks and drop-sites. The spread of activation a from the three nodes repre-
senting bricks is shown in figure 8.8(c). The activation b, = 1 that spreads from the nodes representing
drop-sites against the gradient of the a activation is shown in figure 8.8(d). Note that though drop-site D2 is
closer to brick B1 than to B2, the activation from D2 did not reach B1 since nodes representing B1 and B3
stopped spreading a activation when the b activation reached them (line 11 in figure 8.7). Thus, b,, = 2 only
for those nodes that lie between B1 and D1, and between B3 and D3 (figure 8.8(e)). The new a activation
(only from the remaining unmatched brick B2) is shown in figure 8.9(a). Now the b, = 1 activation from D2
reaches B2 (figure 8.9(b)) and the b, = 2 activation from D2 back to B2 matches this brick and drop-site
to each other. The final values in the matching grid are shown in figure 8.9(c) indicating the three matched
brick and drop-site pairs.

8.4 Sequencing Algorithm

In the example described above, the paths between the three pairs of matched bricks and drop-sites did not
cross each other and hence the three bricks may be moved to their corresponding drop-sites in any order.
This section describes how to determine the order in which drop-sites are to be filled such that a dropped
brick will not block paths between other bricks and drop-sites. Note that the spread of the b activation
starts from a neighboring node of a drop-site node (byycc() := 1 in line 6 of the calculate_matching algorithm
(figure 8.7), not the drop-site node itself. Thus, if a drop-site is not present on the path between another
drop-site and its matched brick (as is the case in figure 8.9(c)), then its match value is 0. However, if a
drop-site D; is present on the path between a drop-site Dy and its matched brick, then match[D;] = 1 and
D; must be filled with a brick only after D, is filled as otherwise the brick dropped at D; will block the
path to Ds. In other words, bricks must be dropped at drop-sites whose corresponding match value is 0.
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Figure 8.8: Example illustrating algorithm calculate_matching. (a) Environment containing three bricks
(B1, B2, and B3) and three drop-sites (D1, D2, and D3). (b) The cells in the matching grid corresponding
to the bricks (filled squares) and drop-sites (squares with dark edges) (¢) Activation a spreading from nodes
representing bricks (d) Activation b: nodes n where b, =1 (e) Activation b: nodes n where b, = 2.
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Figure 8.9: Example illustrating algorithm calculate_matching (contd.). (a) Activation a spreading from last
unmatched brick (b) Activation b: nodes n where b, =1 (c¢) Activation b: nodes n where b, = 2. These are
also the nodes where match[n] = 1 and shows which bricks should be moved to which drop-sites.
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Figure 8.10: Example illustrating goal sequencing. (a) Environment containing two bricks and two drop-
sites, D1 and D2. (b) The corresponding matching grid. The path from the bricks to drop-site D2 passes
through the drop-site, D1. Filled black squares indicate cells representing bricks, squares with thick edges
indicate drop-sites D1 and D2, filled gray squares indicate cells with match value of 1.

For instance, consider the two bricks and two drop-sites in figure 8.10(a) and the nodes in the corre-
sponding matching grid that have a match value of 1 (figure 8.10(b)). The path from the bricks to the
farther drop-site D2 passes through the nearer drop-site, D1. Therefore, only the match value of the node
corresponding to D1 is 1. Thus, in this case, drop-site D2 should be filled before D1.

The agent also has to decide which brick to pick up to be moved to a drop-site. Bricks that are matched
to some drop-site have their corresponding nodes on the matching grid set to one (dark filled squares in
figure 8.10(b)). Also, given a brick, the drop-site matched to that brick can be identified by following the
path of nodes with match value 1 originating from the node on the matching grid corresponding to that
brick. For example, starting from the node corresponding to brick B2 (of the world shown in figure 8.8(a))
in figure 8.9(c) and following the shaded squares, one reaches the cell corresponding to drop-site D2. In
general, one may reach more than one drop-site by following an activated path on the matching grid from
a brick node since paths between different matched brick and drop-site pairs may cross. For instance, in
figure 8.10(b), one reaches the nodes corresponding to both D1 and D2 starting from the brick nodes at the
left. However, only those drop-site nodes with match value 0 are filled first.

After a brick is dropped, it becomes an obstacle for all future path planning and the activations on the
matching grid change; algorithm calculate_matching is run again, the match values are recomputed, and the
next set of drop-sites with match value 0 is chosen to be filled. This sequencing algorithm that determines
which bricks are picked up and moved to which drop-sites is described in figure 8.11. Line 3 identifies the
closest brick node ¢ that is matched to some drop-site. Line 4 spreads activation from node ¢ to identify its
matching drop-site. Activation may reach more than one drop-site node (due to crossed paths), but only a
drop-site with match value 0 is chosen (represented by node t).

The sequencing algorithm is implemented by having inhibitory connections from the nodes in the matching
grid to the corresponding nodes in the Configuration navigation map and excitatory connections to the
corresponding nodes in the Brick navigation map. Recall that the Configuration navigation map is used
for path planning to drop-sites and therefore the inhibitory connections prevent those drop-sites that block
paths between some matched brick and drop-site (i.e, drop-sites whose corresponding node on the matching
grid has match value 1) from being considered as goal locations. Similarly, the excitatory connections to the
Brick navigation map ensures that only those bricks that are matched to some drop-site (i.e, bricks whose
corresponding node on the matching grid has match value 1) will be considered as goal locations. Since,
path planning is carried out by spreading activation on the navigation maps, the agent moves toward the
closest selected brick or drop-site. These interconnections are shown in figure 8.12.
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sequence ()
1:  while there are unfilled drop-sites (T # {})
2: match = calculate_matching (S, T)

3: pick up closest brick with corresponding matching grid node s € S
such that match[b] =1

4: spread activation from s along nodes with match value 1.

5: drop brick at nearest drop-site with corresponding matching grid

node t € T such that match[t] = 0 and activation has reached
a neighboring cell of ¢

Figure 8.11: Drop-site sequencing algorithm
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Figure 8.12: Interconnections between Matching grid, ESMs, and navigation maps: the lines between the
matching grid and the ESMs represent links between every corresponding pair of neurons. The Configuration
ESM shows that a row of bricks have to be built, while the Brick ESM shows that bricks are in two clusters.
The activations on the matching grid show the paths between the clusters of bricks and the row of drop-
sites. These activations inhibit the corresponding nodes in the Configuration navigation map and excite the
corresponding nodes in the Brick navigation map.
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Figure 8.13: Environment with one brick source and three walls to be built. (a) The agents have already
built the bottom-most wall, and parts of the other two walls. (b) match values on the nodes of the matching
grid of an agent at the start of construction. Black filled squares indicate locations of bricks, squares with
thick edges indicate locations of drop-sites, and lightly filled squares indicate neurons n where match[n] = 1.

8.4.1 Example 1 of Sequencing Algorithm

Figure 8.13(a) shows an environment where three parallel walls are to be built and there is one source of
bricks. Two of the bricks were placed a priori. Figure 8.13(b) shows the final match values after running
the calculate_matching algorithm on the matching grid of an agent at the start of construction. The match
activation flowed around those nodes representing the two bricks placed a priori since these are obstacles to
paths between the source of bricks and drop-sites.

The sequencing algorithm fills the farthest wall first (since all the nodes corresponding to this wall have
match value 0 as indicated by the unfilled squares with thick edges in figure 8.13(b)), then the middle wall
and finally the nearest wall (nodes corresponding to this wall have match value 1 as indicated by the filled
squares with thick edges in figure 8.13(b)). The greedy algorithm would have filled these rows of drop-sites
in the reverse order requiring the agents to move around the walls placed first. Figure 8.13(a) shows that
the agents have already built the bottom-most wall, and parts of the other two walls.

8.4.2 Example 2 of Sequencing Algorithm

Figure 8.14(a) shows an environment where three parallel walls are to be built and there are two sources
of bricks on either side. Figure 8.14(b) shows the final match values on the matching grid of an agent at
the start of construction. Some of the drop-sites on the middle wall were matched with bricks from the
top source, while the other drop-sites were matched with bricks from the bottom source since both the
brick sources are equidistant from the middle row of drop-sites. The paths between the drop-sites in the
middle row and their matched bricks pass through the central portions of the top and bottom row of drop-
sites. Thus, the nodes corresponding to the central portions of the top and bottom row of drop-sites have
their match values set to 1 (indicated by filled squares with dark edges in figure 8.14(b)) while the match
value of the nodes corresponding to the middle wall is 0 (indicated by unfilled squares with dark edges in
figure 8.14(b)). Therefore, in this environment, the sequencing algorithm fills the middle wall first, runs the
calculate_matching algorithm again to recompute the activations on the matching grid and then fills the top
and bottom walls (in figure 8.14(a) the agents have already built the middle wall, and parts of the other two
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Figure 8.14: Environment with two brick sources and three walls to be built. (a) The agents have already
built the middle wall, and parts of the other two walls. (b) Activations on the matching grid of an agent at
the start of construction. Black filled squares indicate locations of bricks, squares with thick edges indicate
locations of drop-sites, and lightly filled squares indicate neurons n where match[n] = 1.

walls). The greedy algorithm would have filled the two outer walls first requiring the agents to move around
these outer walls to reach the middle wall.

The simulation results show that planning the sequence of disc placement reduces the total distance
traveled to complete the construction task. Implementing good heuristic solutions to the MWPM problem
with Euclidean weights directly on the spatial representation is a convenient way of reducing interference
between agents without the need for communication. The algorithm also takes into account obstacles on
paths between discs and drop-sites. All computations are performed using only local interactions between
neighboring nodes and hence this algorithm can be efficiently implemented in parallel systems. In this work,
the environment contained only bricks (no food or water discs were present). An extension of this work could
include food and water discs as obstacles when spreading activation in the calculate_matching algorithm of
figure 8.7.

8.5 Related Work

Neural networks have been proposed to solve combinatorial optimization problems such as the matching
problem and the Traveling Salesman problem. The neural networks are in the form of continuous valued
Hopfield nets [Tank and Tank, 1985], stochastic simulated annealing [Kirkpatrick et al., 1983], and mean-
field annealing [Peterson and Anderson, 1987]. For example, to solve the minimum matching problem, each
node in a Hopfield network would represent a possible matched pair of elements [Kung, 1993]. The weighted
links between the nodes encode the constraints of the problem. The dynamics of the networks then minimize
a function that contain terms corresponding to the total weight of matched pairs and the constraints (an
element can be matched to exactly one element from the other set). These techniques require the weights
to be calculated a priori for every problem instance. The number of nodes in such networks is equal to
the square of the number of elements in each set (since a node represents a possible mapping between two
elements). In the system presented in this report, each ESM has 100 x 100 = 10* neurons and hence it is
infeasible to solve the perfect matching problem by any of the above methods. Moreover, these networks
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do not give good solutions as the problem size increases — Wilson and Pawley show that Hopfield networks
often give solutions far from optimal [1988]. This is due to the presence of hard constraints in the energy
function [Gee et al., 1993]. Also, none of these techniques are guaranteed to give optimal or even feasible
solutions.

Ants (and other social insects) build complex structures though each ant only has limited perception and
there is no centralized control structure. Moreover, the behaviors exhibited by these creatures are robust
to unexpected changes to the structures being built and to individual failures [Deneubourg and Goss, 1989;
Bonabeau et al., 1997]. The main features of such groups that make these tasks possible are positive
feedback (good solutions like short paths are reinforced), distributed computation (prevents the group from
settling too quickly into a poor solution), and greedy heuristics (which lead to acceptable solutions rapidly)
[Dorigo et al., 1996]. These principles have led to Ant Colony Optimization methods to provide solutions for
combinatorial optimization problems such as the Traveling Salesman problem [Dorigo et al., 1996] and the
assignment problem [Gambardella et al., 1999], and for other problems like sorting [Deneubourg et al., 1991;
Holland and Melhuish, 1999] and network routing [Caro and Dorigo, 1998]. (Sorting was demonstrated by
having a group of robots with minimal sensing capability separate randomly scattered objects into separate
piles based on their type. This is similar to the behavior of ants who group their larvae together). However,
these are all stochastic approaches (similar to simulated annealing) and will not always lead to optimal
solutions.

The collective laying of pheromone by ants while searching for food can be considered as a form of
spreading activation. Shorter paths are reinforced with larger amounts of pheromone more than longer
ones and the gradient of pheromone gives a path leading to home. Spreading activation initially in all
directions and then reinforcing the most desirable paths is used in applications that require some form of
path planning such as data dispersion in sensor networks [Intanagonwiwat et al., 2000]. Similar to the
ConAg-TS architecture, activation is spread in the forward direction from a single source node and a reverse
activation is then directed against the gradient of the forward activation.

Spreading activation is also used when large numbers of agents (physical or simulated robots) are to be
controlled. For instance, Lewis and Bekey present a simulated 2-dimensional grid world which is an abstrac-
tion of a biological brain [1992]. Micro-robots in this world have to detect an irregularly shaped “tumor”.
This “tumor” is initially recognized during a random walk by an agent which then spreads a chemical en-
abling other agents to move to the tumor site directly. In [Payton et al., 2001], physical robots first spread
themselves in an unknown environment. The robots then spread activation to neighboring robots by broad-
casting messages until the activation reaches a human who is then able to navigate through the environment.
Explicit communication between robots was used because of the distance between robots. However, if robots
are very close together, then only minimal sensing capabilities are sufficient for communication. Werger and
Mataric describe a society of robots that has only contact sensors and uses each others’ physical bodies to
forage — robots arrange themselves to form chains between “home” and “food” destinations so that other
robots can follow this chain to move the food to home [1996]. The robots forming the chain also maintain
statistics on the number of food objects that have been foraged so that the position of the chain can be
modified over time.

A shared localization space between agents is a representation of an agent’s position within the shared
environment such that the representations of different agents are correlated [Vaughan et al., 2000b]. The
ESMs in the ConAg-TS architecture are a shared localization space because each agent maintains its ESM
independently of the other agents but the positions of discs in the ESMs of different agents are correlated
since they share the same space (the positions do not correspond exactly due to the limited sensing range and
sensor and odometry errors). Though the ConAg-TS architecture uses spreading activation to coordinate
the actions of the agents, the main difference from the systems described earlier is that the activation is
spread on the ESMs (the shared localization space) and not directly with other agents or the environment.
These two approaches are compared below:

1. If agents do not have the ability to explicitly communicate with each other, then they will have to
modify the environment as a form of stigmergetic communication (for example, laying pheromone trails
or coloring discs [Crabbe and Dyer, 1999a]). Moreover, in some cases it is disadvantageous to mark the
environment (for example, coloring a disc requires new behaviors from the agent; robots with touch
sensors will have to be close to each other) and in such cases it is preferable to spread activation on
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the ESM rather than among the agents themselves.

. Complex structures can be built by distributed agents without a spatial representation. Deneubourg et
al. present a simulated 2-dimensional grid world where a swarm of agents build structures whose shapes
are inspired by wasp’s nests. These construction agents have purely reactive behaviors that depend
only on the occupancy of the four neighboring cells of an agent (there is no internal representation).
In this respect, these creatures are simpler than ConAg-TS agents. However, when the shape of the
structure to be built is encoded within each agent (the Configuration ESM), the resulting structure is
not dependent on the number of agents. But if only local rules are used, then the shape of the structure
varies with the number of agents [Therauluz and Bonabeau, 1995; Deneubourg et al., 1992].

. In ConAg-TS, it is easy for the designer to specify the shape of the structure to be built by just
exciting the corresponding nodes in the Configuration ESM. However, in systems that rely only on local
interactions it is not clear what individual behaviors will collectively lead to a particular structure.
Moreover, using the Configuration ESM any arbitrary 2-dimensional shape can be specified.

. The greedy heuristic that is used in stigmergetic systems leads to good solutions only in certain cases
(such as collectively finding shortest paths in an ant colony). In the case of construction, a greedy
approach leads to inefficient construction for certain shapes (such as that in figure 8.1). Planning the
order in which bricks have to be placed requires knowledge of the current positions of all the discs and
this is available in the internal spatial representation.
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Chapter 9

Communication to Reduce Map
Errors

9.1 Introduction

All the algorithms described for construction depend on the accuracy with which discs in the environment
are represented in the environment. An agent with inaccurate information in its maps will not be able to
navigate safely, i.e, without colliding with discs present around it. Moreover, for the construction task in a
multi-agent scenario, accuracy of the spatial maps is important for two reasons:

1. To identify parts of the structure that are missing bricks, or bricks that are not part of the structure,
an agent matches its Configuration and Brick ESM at every time-step. If these ESMs are not aligned
(corresponding cells on the ESMs do not represent the same location in the environment), then not all
matching brick and drop-site pairs will be identified. Thus, the agent will erroneously pick up bricks
that are already part of the structure or try to drop bricks at locations that already contain a brick.

2. In a multi-agent system, all the agents are trying to build the same structure. Hence, the Configuration
ESMs (that encode the shape of the structure to be built) of the different agents should always agree
in the locations of the drop-sites of the bricks. Thus it is not enough for an agent to maintain the
relative shape of the structure to be built in its Configuration ESM, but the locations of each of the
drop-sites will have to match with the corresponding locations of other agent’s Configuration ESMs.

Agents get information about their surroundings from two kinds of sources: sensors and odometry infor-
mation from their motors. However, both these sources supply spatial information with a certain amount
of error. Some of these errors can be reduced by careful calibration of the sensors and motors, but this
reduces the agent’s ability to perform well in new environments. Also the physical aspects of real world
sensors make it impossible to eradicate errors from their readings completely. Thus, if the raw sensory and
odometry information is incorporated into the spatial maps, these errors will be added to the locations of
discs represented in the maps. Hence, a mechanism that reduces the effect of sensor and motor errors on the
accuracy of the spatial map is necessary.

The problem of map building and localization in noisy environments has been extensively studied in the
robotics field [Elfes, 1987; Kaelbling et al., 1996a; Burgard et al., 1996]. However, most of this work has
been done for static environments. The approaches dealing with dynamic environments [Fox et al., 1999b]
assume that the bulk of the sensor readings are obtained from interaction with static objects and that the
dynamic objects introduce noise and ambiguity into the system. However, the construction environment
is highly dynamic since all discs may be moved by agents. In this scenario, it is not possible to globally
recalibrate the position of the agent based on the stored map. Moreover, a “fuzzy” representation of space
(such as evidence grids [Moravec and Elfes, 1985]) cannot be used since the positions of discs have to be
continuously matched to the specified pattern to identify goal locations to which the agent has to navigate
(i.e, they are not used only for obstacle avoidance).
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In this chapter, communication between agents is added so that agents can exchange their spatial maps.
The spatial maps received from other agents are incorporated into the agent’s own maps to improve accuracy.
The locations of the discs are stored as precise points on the map with an associated expected deviation.
The sensor and odometry information is incorporated into the map using a Kalman filter. The resulting
architecture is termed ConAg-COM.

9.2 Random Errors

The sensors add random errors that are normally distributed around the true position of the sensed disc.
The deviation increases linearly with the distance. The information returned by the sensors is represented in
a grid. Let the space that can be sensed by the sensors be divided into a grid of size S x S of uniform square
cells. Let S = 2s + 1 and the cells be labeled from (—s, —s),...,(0,0),...,(s,s) where cell (0,0) contains
the agent’s current position. The occupancy of each cell (i, j) is denoted by o0j;. of; = 1if a disc is sensed
in the space represented by cell (i, j) and 0 otherwise. The position of the disc in each cell is returned as a
two-dimensional vector p5; (if of; = 0, pj; is the midpoint of the cell). The sensors cannot return the position
of more than one disc within a cell; thus the cell size specifies how finely space is sensed. The expected
standard deviation of the position is of; = 05[p};| where o5 is a measure of the accuracy of the sensors.
Thus, three pieces of information are returned for each cell (i, j): of;, p;, and o};.

The motors return the distance and direction, d, moved in every time step (dead reckoning input). The
dead reckoning data also has random errors normally distributed around the true distance moved by the
agent. The uncertainty increases with the distance moved: the deviation is o4|d| where o4 is a measure of
the accuracy of the motors.

Agents can exchange their spatial maps with other agents that are within communication range. The
distance and direction of the sending agent (B) is measured by the receiving agent (A). This measurement
has a normally distributed random error with deviation cp4 that is proportional to the distance between
the agents: opa = o.|Ppa|, where Pp4 is the position of B as measured by A and o, is a measure of the

accuracy with which the distance and direction to B can be sensed.

9.3 Updating Spatial Maps

Let the size of an ESM grid be M x M, where M = 2m+1 and the cells be labeled (—m, —m), ..., (0,0),..., (m,m)
(cell (0,0) corresponds to the center of the space represented by the map and the agent’s current location).
Each cell of an ESM m in a ConAg-COM agent stores three pieces of information o}, py}, and of} corre-
sponding to those on the sensors. o7} is thus a measure of the confidence in the occupancy of cell (z,9)-

The spatial map is updated from three sources: sensors, dead reckoning data and exchange of maps
with other agents. Each of these sources has an associated normally distributed random error with known
deviations. The uncertainty in the locations of discs in the ESM is also represented as a deviation. If the
three sources of data are assumed to be independent, a Kalman filter [Kalman, 1960] can be used to merge
this data into the spatial map. Let two independent measurements of the location of a disc return vectors pj
and p3 with corresponding standard deviations, o1 and o3. Then the best estimate of the position § given
these two measurements also has a normal distribution with deviation o given by [Maybeck, 1979]:

2 = 2 =
03P1 + 01D
ot + 03

ﬁ: merge(p-i7017p—§702) = (91)

0102
\Voi+ o3

The update rules for each source of spatial information are described in this section. The difference
between these update rules and those described for ESMs in chapter 3 is the use of the standard deviation in
the sensor, odometry reading, and ESM cells as a measure of confidence in the measured or stored positions.

In other words, in chapter 3 the ESM update procedures assumed that the sensors and odometers returned
data with no errors (deviation of 0) and hence the ESM used these values directly. Since random errors

o = decrease(o1,02) = (9.2)
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are added in to the sensor readings, the accuracy of the ESMs decreases with time. The errors in the
ESM could increase to a point where the activations in the Brick and Configuration ESMs are not aligned
with each other causing the agent to move to bricks that already form part of a structure. The techniques
described in this section reduce the effect of random sensory and odometry errors on the accuracy of the
ESMs (the effect of sensory errors is less pronounced on reactive behaviors since these do not depend on an
internal representation that can accumulate errors over time and readings from different color sensors are
not compared to each other).

9.3.1 Sensor Update

The environment for the multi-agent construction task is inherently highly dynamic since agents actively
move discs. Thus, sensory readings may not match the stored position information either due to sensor and
odometry errors or due to an actual change in the position of a disc. Any procedure that updates the spatial
map has to distinguish between these two cases. A simple update procedure is obtained if it is assumed that
the errors are small enough that if a disc has not been moved then the location of that disc returned by the
sensors at different time-steps will all fall in neighboring cells and this is described below for all three sources
of information. Denote by nb((4, 7)) the set of cell (¢,7) and all its eight neighboring cells:

nb((i,5)) ={(—1,5 - 1),...,(,5),-., (i + 1,7 + 1)} (9.3)

At every time-step, the sensors take a snapshot of the world around the agent and the activations on the
sensor grid, s, are integrated into the center portion of a disc ESM, m. The procedure for integrating the
sensor activations is given in figure 9.1 and illustrated in figure 9.2. The updated values of o}, o7}, and py;

after sensing are denoted by oz’-;?', ag“, and 15';’;-' respectively. The position of a disc whose coordinates are
stored in cell (4,7) of ESM m is updated with the position vector that is closest to py; from all the sensor
grid position vectors in nb((¢, j)) (line 9) and o7} is decreased (confidence in occupancy of cell increases; line
10). If all the sensor grid cells in nb((i, 7)) are unoccupied, then this implies that the disc was moved (line
3). of} is set to 0 and of} is set to the sensor deviation, of; (lines 5, 6). Similarly, if of; = 1 but all ESM
cells in nb((i, j)) are unoccupied (line 20), then a disc was moved into the cell and of}, p}, and o]} are set

from the corresponding sensor grid cell to reflect this change (lines 21-23).

9.3.2 Odometry Update

The dead reckoning information from each time-step, cZ is used to maintain egocentricity of both the disc
and Configuration ESMs. d is subtracted from pyy for all cells (i,j) in m. If pf} + d is not contained in
(i,7), then it is assigned to the appropriate neighboring cell. Thus, the activations on each cell are passed to
neighboring cells in a direction opposite to which the agent has moved. This is illustrated in figure 9.3. To
account for the uncertainty in cZ: the variances are added (a{]“-I is the confidence after the movement update):

(07 )* = (0})* + (0ald])? (9-4)

9.3.3 Communication Update

Including a spatial map sent from another agent into an ESM is similar to incorporating sensory data.
However, the areas represented by the received and stored maps are different and the cells are offset by an
amount proportional to the distance between the two agents. Let the receiving agent be labeled A and the
sending agent, B. Let ppa denote the position of B with respect to A as sensed by A. The deviation in this
measurement is op4 = o.|pga|- Consider a disc whose location is included in both A’s ESM, m4 and B’s
ESM, mp. Let this disc be present in the area represented by cell (i,j) of mp and in the area represented
by cell (k,1) of ma (figure 9.4).

Let the updated values of of;*, o7;*, and fj;* after including mp be denoted by o?;l“, UZL;‘, and p‘gi‘
respectively. The update procedure is given in figure 9.5. It is assumed that the error in pp4 is small
enough that the location of a disc as calculated from both the received (mp) and stored map (m4) fall in
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Input: OZ;‘: 0-%17 p’i";'J (17.7) € {(—m, _m)7 RS (070)7 RS (mam)}
ofjl, afj,lﬁfj, I(z,y) € {(-s,—5),...,(0,0),...,(s,9)}
OUtput: OZ} ) 0—;‘? ) p‘;’? ) (Z,]) € {(_m7_m)7' "7(070)7' "J(me)}

1:  for (4,j) in {(—s,—$),...,(0,0),...,(s,s)} do

2 if (o = 1)

3 if (0f; = 0V(¢',j") € nb((¢,7)))

4: {all neighboring cells are empty; remove disc}

5: o =0

6: oy =0y

7 else {update p}} from closest vector in nb((i,))}
8 og’}“’ =1

9 (im’,jm) = aTgmi"(i',j')Enb((i,j))(|I5;"? _ﬁf’j’l)
10: ol = decrease(o}},0f ;

11: p}?l = merge(pyy, 00, B3, i s Tinjm)

12: end if

13:  endif

14: if (of, = OV(i', j') € nb((4,4))) {surrounded by unoccupied cells}
150 if (o3, = O¥(7, ) € nb((i, )

16: {corresponding sensor grid cells are unoccupied}
17: oz’;’ =0

18: O'ZL’ = decrease(aﬁ,afmjm)

19: end if

20: if (of; = 1) {disc in sensor grid cell; add disc}
21: o,.";’, =1

22: o:’;l =0}

23: p’z’? — ﬁfj

24: end if

25:  end if

26: end for

Figure 9.1: Procedure for update from sensors.
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Cell (ijjof m S m’ m S m’

G S e e

(A) Change position of disc (B) Removedisc
+ |® — |0 + —
(C) Add disc (D) No disc in map and sensor

Figure 9.2: Sensory update rules: Occupancy of corresponding cells in the ESM (m), sensor grid (s) and
updated ESM (m') obtained from incorporating s into m are shown. (A) Cell (i, j) of m contains a disc and
a neighboring cell in s: the position is updated to their average. (B) Cell (4, j) of m contains a disc, but cell
(i,7) of s is empty: the disc is removed. (C) Cell (i, 5) of m is empty, but cell (i,5) of s contains a disc: add
a disc. (D) Cell (i, 7) of m is empty and so are the cells in s: the confidence is increased.

e e
. € l | [ & l
e | °
s T T 0T ; d
o> .
m (before move) m’ (after move)

Figure 9.3: Odometry update rules: An agent and two discs. The corresponding ESM is shown below
(darkened circles indicate occupied cells). As the agent moves to the left the activations on the ESM are
shifted proportionally to the right (cf) The new activation may move to a neighboring cell (top disc) or
remain in the same cell (bottom disc). The central node always represents the location of the agent. The
Gaussians drawn below the ESM is an indication of the confidence before and after the odometry update.

The deviation increases after the update to show the reduced confidence.
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g T Cell (kN /et ()

pBA

Figure 9.4: Communication update: Two agents A and B store the location of the same disc in different
cells of their ESMs. The solid (dashed) grid shows how space is divided into uniform squares by agent A
(B). The activations on the corresponding ESMs, m4 and mp, are shown to the right.

neighboring cells (57" + Ppa is located in a neighboring cell of (k,) in my; line 2). In this case, py;*, is
updated to bring it closer to 77;® + ppa (line 7). To account for the error in measuring ppa, 0% 4 is added

to all the variances stored in mp (using function f(z,y) = /22 + y2). If all neighboring cells of (k,l) are
labeled unoccupied by m 4 (line 16), then it means mp contains the coordinates of a disc not present in m4.
Cell (k,!l) is updated with this new disc only if the confidence in the received map is greater than that in
the stored map ((07;7)* + 0g4 < (5;*)?; line 23).

The above communication update rule does not address the problem of “double counting”: using another
robot’s ESM repeatedly. If two robots exchange their maps often without incorporating sensor data (using
the same evidence more than once), then they will reinforce each other’s confidence in their maps without
regard to the accuracy of the positions stored in them. This problem is alleviated by keeping track of when
a map was received from an agent and accepting that agent’s map only after a certain number of time-steps
have passed. This approach has also been taken in [Fox et al., 2000].

9.4 Results

The performance of a ConAg-COM agent is measured by counting the average number of mismatches between
the ESM and the actual location of the discs. A mismatch is an occupied cell in the ESM which does not
have a corresponding disc in the environment or a disc that is within the ESM range but the corresponding
cell is represented as unoccupied.

All the discs are located within an area of 100 x 100 units. In this experiment, the size of the ESM is
51 x 51 and the sensor grid is 11 x 11. Each cell corresponds to a unit square in the world centered around
the agent. The agents move a distance of approximately 1 unit per time-step (slows during turns). Both the
initial positions of the discs and the pattern to be constructed are generated randomly. The world contains
125 discs (at random locations throughout the world) while the pattern contains 25 locations from the middle
of the world. In this way, even agents at the edge of the pattern location area have approximately the same
number of discs within ESM range. A portion of one random instance of the world is shown in figure 9.6.

Figure 9.7(a) shows the decrease in map error with time for 1 (no communication), 5, 10 and 15 agents.
os = 04 = 0. = 0.05 (the sensory, odometry and communication distance errors are within £15% of the
measured distances 99.7% of the time). The maximum distance between agents within which they can
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foputs o5, o754, S 6) € (- ) (0,01 ()
pBA: B ’sz_]J (/L J)G{(—m,—m),...,(0,0),...,(m,m)}

OUtPUt 01,] ) :;LA715:;A7 (Z J) {( 7_m)7'"7(070)7"'7(m7m)}

1:  for (4,j) in {(—=m,—m),...,(0,0),...,(m,m)} do

2 (k,1) is cell in m 4 that contains 13';?5’ + PBA

3 if (op;* =1)

4: if (0 = OV(4',5') € nb((4, 7))

5: {all nelghbormg cells empty; remove disc if confidence is greater}

6: if (o > 1(072.75.)

7 Okl = 0; Ukl = f(UZ?B7JBA); ﬁ/:;A = ﬁz{;'LB + PBA

8 endif

9: else {update p};* from closest vector in nb((4,7))}

10: oyt =1

11: (im, Jm) := argming jnens(g) (P’ — @y f + Peall)

12: akl“‘ := decrease(oy;*, (0737, 0B4))

13: pkl = merge(pkl ,O'Z;A,p‘::l:;m,f(o'z]B,UBA))

14: end if

15:  end if

16:  if (of, = OV(K',I') € nb((k,1)))

17: {cell (k l) is surrounded by unoccupied cells}

18: if (oj7 = OV(4', j') € nb((4, 7))

19: {the correspondlng cells in mp are unoccupled}

20: oyt = 0; o,* == decrease(op;* , f(0l3®,0B4))

21: end if

22: if (0;;% =1) {disc in mp; add disc if confidence is greater}

23: if (UklA > f(o73%,084))

24: ot =1, 04 = f(0i5",0B4); P = pi;° +Ppa

25: end if

26: end if

27:  end if

28: end for

Figure 9.5: Procedure for update from communication. Define f(z,y) = /22 + y>.
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Figure 9.6: A portion of one random instance of the environment and pattern of the structure to be built.
Filled red circles indicate bricks and unfilled black circles indicate a drop-site.
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exchange maps was 10 units. A pair of agents do not exchange maps more than once in 10 time-steps. The
errors are averaged over 20 trials and figure 9.7(b) shows one standard deviation error bars.

Figure 9.8 shows the affect of the range of communication on the map error. The map error over 100
time-steps is shown when the range is 10, and 15, and 20 units. The number of agents is fixed at 10 and
0y = 04 = 0, = 0.05. As the communication range increases, the error in estimating the distance between
agents predominates over the benefits of exchanging maps with a larger number of agents.

Figure 9.9 shows the affect of the deviation in the sensory, motor and communication errors. The average
map error is plotted for 10 agents when o5 = 04 = 0. = 0.025,0.05,0.05. All other parameters are kept
constant. Since no global recalibration of the odometry error is performed, the map error increases when
the error deviation reaches 0.075.

9.5 Discussion
Communication of spatial maps between agents has two advantages:

1. Reducing sensor and odometry errors: If the errors introduced by the sensors and motors are random,
then increasing the number of measurements and averaging the results will yield a more accurate map.
Using a Kalman filter is the optimal method of integrating these measurements. Incorporating the
map of another agent is equivalent to including all the sensor readings made by that agent (and other
agents with which it has communicated earlier) into the spatial map.

2. Extending the sensor range: In the absence of communication, the space represented by an agent
is limited by the range of its sensors and the speed at which it moves (to cover new areas). By
exchanging spatial maps with other agents, agents can incorporate spatial information of areas that it
has not directly sensed.

The simulation results show that the spatial map errors increase rapidly with increase in communication
range (since the error in measuring the distance to the sending agent increases with distance). The spatial
map errors however decrease with larger number of agents in the environment (since this is effectively
increasing the number of measurements available to an agent). Thus, decreasing the communication range
while increasing the number of agents prevents the errors in the spatial map from increasing.

9.6 Related Work

The ESMs used in this work are similar to evidence grids [Moravec and Elfes, 1985; Elfes, 1987]. An
evidence grid represents space as a grid of uniform cells and was initially formulated to convert sonar scan
data into a spatial map. Each cell in an evidence grid stores the probability (or equivalently the odds) that
the corresponding space is occupied by some object. The probability of the sensors detecting obstacles is
calculated beforehand. Sensor readings can then update the probabilities in each grid cell using Bayes rule
and the conditional independence of different sensor measurements:

p(o|My A My) _ p(o|My)p(Mslo) _ p(o|Mi1)p(o|M2)p(o)

p(0|My A M) p(o|My)p(Malo) — p(o|M:)p(o|Ma)p(o)

where M; represents all a priori measurements, Ms the latest sensor measurement, and p(o|M;) and
p(o|My) are the probabilities that the cell is occupied or unoccupied respectively (stored in a cell). If the
probabilities are initialized such that p(o) = p(6) = 0.5, then the sensor update equations can be rewritten
as:

O(o| M1 A M3) = O(o|M1)O(o| M3) (9.5)
using the odds form of writing probabilities
p(o| M)
O(o|M) =
) = piernn)
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Figure 9.7: (a) Map error against time for 1, 5, 10 and 15 agents (b) Map error at the end of 100 time-steps
with errorbars (at one standard deviation).
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Figure 9.8: Effect of communication range on map error: Map error against time for 10 agents when the
range of communication is 10, 15, and 20 units. Averaged over 20 trials.
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Figure 9.9: Effect of sensor, odometry, and communication errors: Map error against time for 10 agents
when o, = 04 = 0. = 0.025,0.05,0.075. Averaged over 20 trials.
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Equation 9.5 gives an incremental update rule which can be implemented efficiently even for large grid
sizes. Since sensor readings are directly incorporated into the spatial map, the location of an obstacle is
not restricted to a single cell. Thus matching the map with the construction pattern will not always be
possible. However, entire maps can be compared to each other to measure how well they agree [Moravec
and Blackwell, 1993] and current sensor readings can be aligned with the stored grid readings to implement
place learning [Yamauchi and Langley, 1997].

Evidence grids only specify the location of the objects and not that of the robot itself. Hence, robot
localization has to be implemented separately. The most common method is position tracking where the
initial position of the robot is known and this position is updated at every step. In static environments, the
steps involve matching the stored evidence grid with the current sensory input (usually converted into grid
form) and using the best match location as the estimate of the robot’s position [Yamauchi, 1996]. These
systems always maintain a single map and estimate of the robot and hence cannot disambiguate between
places that give the same sensor readings. Moreover, past estimates of the map cannot be changed based on
newer sensor readings. Therefore, the accuracy of the robot position on the map degrades over time. This
matching can be reliably performed by first extracting line segments from the evidence grids Schiele and
Crowley compare different techniques for position tracking using evidence grids [1994].

Kalman filtering techniques [Kalman, 1960] represent the position of the robot and landmarks as a Gaus-
sian probability distribution. Since it is necessary to match the sensor readings with stored landmarks,
this technique has been used extensively in environments with easily recognizable features such as bea-
cons [Durrant-Whyte and Leonard, 1991]. Lu and Milios give a more sophisticated algorithm that maintains
all past sensor information [1997]. All the past sensor readings are then optimally combined together using
a maximum likelihood criterion to create a global spatial map.

The Gaussian probability distribution used in Kalman filtering is uni-modal and hence these methods
cannot solve the kidnapped robot problem - to recompute the position of the robot after it has been moved
without its knowledge. Markov localization overcomes this limitation. The internal spatial representation
can store either only large-scale topological features [Kaelbling et al., 1996a; Nourbakhsh et al., 1995] or it
can be a fine-grained grid [Burgard et al., 1996]. These two kinds of representation have been integrated by
partitioning a fine-grained grid into a small number of regions that are connected by topological links [Thrun
and Biicken, 1996]. Another method of representing a multi-modal distribution is using particle filters [Fox et
al., 1999a). In this method, called Monte-Carlo localization, the density of particles at a location represents
the probability of the robot being situated there. A modification of this method for rapid re-localization is
Sensor-Resetting Localization [Lenser and Veloso, 2000)].

In a static world, given the robot’s current location, future sensor readings are independent of past
readings. This is assumed in all the localization methods described above. However this is not true in a
dynamic world as in the case of the construction task. Transient changes can be handled in an evidence grid
by reducing the occupancy probability [Yamauchi, 1996; Yamauchi and Langley, 1997]. Fox et al. describe
a filtering technique for Monte-Carlo localization to detect which sensor readings are due to a changed
environment [1999b).

Markov localization was extended for map formation among multiple robots [Fox et al., 2000]. A method
similar to that used in ConAg-COM was used by Sugiyama and Murata for distributed map building [1995).
Two robots that were in communication range would measure the distance to each other and the maps are
communicated to each other to reduce the error in them.

In an egocentric spatial representation like ESMs, the issue of localization is slightly different since the
center of the map always corresponds to the current location of the agent. Therefore, changes in position
of the robot is reflected by adjusting the position of objects in the spatial map. The localization method
used in ConAg-COM is a form of position tracking. The environment for which ConAg-COM was designed
for is highly dynamic and comparing corresponding grids of the ESMs of different agents enables an agent
to decide which discs have been moved. This will not generally be possible if raw range measurements are
stored in the spatial map. However the discs in the ConAg-COM environment can be distinguished by their
color and thus the readings stored in an ESM are more “high-level” than that in an evidence grid storing
sonar readings. Color has been used elsewhere as a basis of selecting landmarks from a real-world scence
[Dodds and Hager, 1997].
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Chapter 10

Conclusions and Future Work

This dissertation presents the ConAg series of architectures that enable a group of autonomous simulated
agents to construct arbitrary structures in their simulated 2-dimensional environment. The main features of
this architecture are that it is behavior-based and includes a spatial representation. The main capabilities
of this system are that it can learn the construction sequence, and after learning it can build arbitrary
two-dimensional structures specified by the designer. Moreover, the agents build this structure in an efficient
way.

The behavior-based architecture integrates both low-level reactive behaviors and higher-level planning
behaviors. The fast reactive behaviors enable an agent to fulfill its survival needs, namely eating and drinking
periodically. The spatial representation is a grid-based egocentric map that maintains the locations of all
the discs that the agent has sensed. This map is used for path planning by spreading activation, an efficient
method to calculate a path to the nearest goal and which avoids obstacles. The spatial representation also
generates the navigational goals of the agent (locations of bricks, drop-sites, etc.). This is performed by
comparing the spatial map (the current state of the world) with the blueprint of the structure to be built.
Locations where they differ become goal locations. In this way, even unexpected changes in the structure
being built will result in an agent repairing the structure automatically. Thus, this approach has significant
advantages over the reactive, stigmergetic approaches to construction which do not easily generalize to
arbitrary structures and whose success depend on the initial configuration of objects [Deneubourg et al., 1992;
Therauluz and Bonabeau, 1995; Bonabeau et al., 1998; Karsai, 1999].

The architecture has a connectionist action selection and this facilitates learning. An agent can learn the
construction sequence by imitating a teacher agent. It can also learn to exploit correlations between discs in
the environment through unsupervised Hebbian learning. Learning occurs at every step which is important
for an autonomous agent since in the real world reinforcement occurs rarely. The agent is also able to learn
an emergent bucket-brigading behavior that reduces interference between agents. This behavior is learned
while attempting to break deadlocks between agents with crossing paths.

An agent selects its navigational goals in such a way that it reduces interference with other agents. It also
builds the structure in such an order that the bricks placed will not obstruct paths to future goal sites. This
also enables it to build certain structures (for example, concentric circles) which would be impossible to build
if a certain order is not followed (inner circle has to be completed before the outer circle). These goals are
selected either by randomized strategies or by running algorithms that spread activation on the spatial maps.
Spreading activations can be performed in parallel on a grid based spatial map for fast implementations.

The sensors and motors found on the simulated agent reflect the properties of physical robots. A method
to reduce the impact of random sensory errors on the accuracy of the spatial map is presented. This method
also takes advantage of the multiple agents: agents exchange their spatial maps with each other improving
the accuracy of the individual maps and also increasing the area of the world that is covered by each map.

There are several directions in which the ConAg architecture may be extended:

1. Imitation Learning

The ConAg sequence learning algorithm imposes strong limitations on the teacher and student (for
instance, both have to receive the same sensory input at all times). Relaxing these conditions would
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require a more sophisticated mechanism to enable the learner to infer the teacher’s actions and goals
even if they do not share the same sensory input.

. Correlation Learning

The ConAg-ST architecture uses an unsupervised Hebbian learning. Comparing this with reinforce-
ment learning for the same task could give useful insights. The large state space that is induced by a
continuous real-world environment makes reinforcement learning using the sensor data directly infea-
sible for a physical robot. A solution would therefore be to use the correlation learning as a means of
speeding up reinforcement learning.

. Scale-up

All the architectures and algorithms demonstrated in this dissertation were carried out with at most
20 agents. The performance of these algorithms have to be studied in the case where the number
of interacting agents is large (in the hundreds and thousands). This could also lead to unexpected
emergent, behaviors.

. Construction order

The algorithm presented in chapter 8 that enabled the ConAg-TS architecture to compute the order of
dropping discs uses the internal spatial representation to spread activations. This algorithm could be
modified to instead spread activations among the agents themselves instead of on their spatial maps
as in the system of Payton et al. [2001]. This would be useful in environment embedded computing
application.

. Map building with sensor errors

Sophisticated probabilistic approaches to map building have recently met with success on physical
robots in static environments [Fox et al., 2000; 1999a]. However, approaches to highly dynamic envi-
ronments such as a construction world are not yet available. This would therefore be a useful line of
research.

. Integration of architectures

This dissertation demonstrated the individual architectures, but did not present a unified architecture.
A single architecture could exhibit all the advantages of the individual architectures. However, some
of the architectures were designed for different environments. For instance, the ConAg-ST architecture
learns to exploit correlations between discs while construction changes the layout of the discs.

. Physical Implementation

It would be very useful to have a group of physical robots build any structure autonomously after
they were given a blueprint of the structure. Current, “construction” robots can only do simpler tasks
such as cooperatively carry a beam from one place to another [Pirjanian et al., 2000]. The primary
impediment to realizing the ConAg architecture in a physical robot is the quality of currently available
sensors and motors.
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Appendix

List of Symbols

Agent parameters

G Set of green sensors

G; Activation of green sensor i

R Maximum sensor range

fo Rate at which internal food level decreases while moving
wo Rate at which internal water level decreases while moving
fi Rate at which internal food level increases while eating

wq Rate at which internal water level increases while drinking
i¥s Threshold of food level that activates hunger motivation
T¢ Threshold of water level that activates thirst motivation
Th Threshold of food level that de-activates hunger motivation
Tt Threshold of water level that de-activates thirst motivation
ESM

N Number of neurons in an ESM

M Number of neurons per row in an ESM. N = M x M

an Activation of neuron n

nb(n) Set of neighboring neurons of neuron %

d(n,m) Distance between areas represented by neurons n and m
gradient(n,m) | Gradient of activation from n to m. gradient(n,m) = ?11("7;21)1
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ConAg-ST

mipeed Speed motor output of behavior B
mrte Turn angle motor output of behavior B

méFeiter | Excitation at behavior B from motivations
inhibtor | Tnhibition at behavior B from motivations

m
$B

tm
n p

Sensory excitation of behavior B

Motor activation of behavior B

Gating at behavior B

Gating threshold

Weight of spatial correlation link from behavior i to j
Weight of temporal correlation link from behavior ¢ to j
max(w?, wly")

Threshold of sensory excitation in spatial learning rule
Threshold of sensory excitation in temporal learning rule
Spatial correlation learning rate

Temporal correlation learning rate

Sequence Learning

wff”te Excitatory weight on link from node i to node j
withibit | Tnhibitory weight on link from node i to node j
T}é Threshold of behavior motor activation
R; Reinforcement signal at node j
n®el Learning rate for sequence learning
pied Decay factor of learning rate n*¢?
ConAg-DL
f @) Frustration level at time ¢
TF Threshold of frustration level
afF Activation of Frustration internal state node
d(t) Position of agent at time ¢
) Time taken to test if deadlock is broken or not
d Minimum distance agent must have moved if deadlock is broken
Wip Weight on link from internal state node 7 to behavior b
Db Probability of performing behavior b in algorithm learnFrustrated
n¥ Learning rate in algorithm learnFrustrated
d; Activation of neuron i of Deadlock Pattern Map
nP Learning rate for Deadlock Pattern Map
TP Threshold for identifying occupied cells in Deadlock Pattern Map
Dr Probability of performing random behavior in algorithm
Coordination_Learning
Pr Decay rate of p,
nf+t Learning rate in algorithm Coordination_Learning when deadlock
is broken
nf- Learning rate in algorithm Coordination_Learning when deadlock
continues
prt Decay rate of nf'*
pF- Decay rate of nf'—
ConAg-TS

matchl[i] | Activation of node i in Matching Grid
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ConAg-COM

Os
0d
Oc

-

d
PBA
OBA

Standard deviation of error in sensors per unit distance
Standard deviation of error in motors per unit distance
Standard deviation of error in measuring position of sender per unit distance
Distance moved by agent in a time-step

Position of agent B as measured by agent A

Standard deviation of measurement of pg4

Number of cells per row in Sensor grid (S = 2s+ 1)
Occupancy of sensor grid cell ij

Position of disc in sensor grid cell ij

Expected standard deviation of p;

Occupancy of cell ij in ESM m

Position of disc in cell ij of ESM m

Expected standard deviation of pi?
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