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Graduates from the College of Natural Sciences and Mathematics:

Understand the basic concepts and principles of science and mathematics.

Are experienced in working collectively and collaborating to solve problems.

Communicate both orally and in writing with clarity, precision and confidence.

Are adept at using computers to do word processing, prepare spreadsheets and graphs, 
and use presentation software.

Posses skills in information retrieval using library resources and the Internet.

Have extensive laboratory/workshop/field experience where they utilize the scientific 
method to ask questions, formulate hypothesis, design experiments, conduct experiments, 
and analyze data.

Appreciate diverse cultures as a result of working side by side with many people 
in collaborative efforts in the classroom, laboratory and on research projects.

In many instances have had the opportunity to work individually with faculty in conducting 

research and independent projects. In addition to attribtes of all NSM students, these 
students generate original data and contribute to the reseach knowledge base.

Have had the opportunity to work with very modern, sophisticated equipment including 
advanced computer hardware and software.
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Larvae of parasitic flies grow inside and feed upon tissues of 
wildlife species and therefore depend upon healthy hosts. Bot fly 
(Cuterebra sp.) larvae were discovered on thirteen-lined ground 
squirrels (Ictidomys tridecemlineatus) during long-term monitoring 
studies in northern Colorado. Although bot flies are common 
parasites of small mammals, there were no records of infestation 
of this squirrel species and the species of bot fly was unknown. I 
examined prevalence and load of bot flies in ground squirrels trapped 
in shrub and grassland habitats in spring and summer between 1999-
2011 to determine host characteristics and environmental factors 
that influence patterns of infestation. I also investigated possible 
effects of prescribed fires in grasslands on infestation prevalence. 
Lastly, I used molecular genetics techniques to sequence the COI 
gene of preserved bot fly samples in an attempt to identify the 
species. Infested squirrels were rarely found on shrub sites and 
during spring trapping. Across all summers, average prevalence of 
infestation in grasslands was 7.9%. Infested squirrels had 1-7 bots, 
with 44.0% having only 1 larva. Infestation did not vary greatly with 
host sex, age, or weight. Prevalence was significantly higher (33.0%) 
in burned sites one year after a prescribed fire, and remained 
consistently higher on burned sites than on unburned sites. My 
results suggest that fires may alter the environment in ways that 
increase the susceptibility of squirrels to infestation or the ability of 
flies to infest hosts. COI gene sequences revealed the bot fly species 
to be most closely related to Cuterebra fontinella. 

Abstract

Determinants Of Prevalence Of Bot Fly Infestation In Thirteen-Lined Ground 
Squirrels In Colorado Shortgrass Steppe

Parasites harm their hosts by feeding on nutrients from inside the 
host’s body (Catts 1982). Although parasites can sometimes directly 
kill their host, many parasites require healthy hosts to survive 
and successfully reproduce, and therefore, may not pose a direct 
health risk unless infestation loads are high (Slansky 2007). Bot flies 

Introduction

(Family Oestridae), for example, spend their entire larval cycle inside 
mammalian hosts (Catts 1982) and benefit when their host is healthy 
(Slansky 2007). Bot flies of the genus Cuterebra are host-specific 
(Catts 1967), and typically infest small North American rodents, 
including chipmunks and tree squirrels (Catts 1967; Jacobson et al. 
1961). Although bot fly infestation is usually not fatal, it can cause 
energy loss, malnutrition, and secondary infection at the site of larva 
emergence (Catts 1982; Slansky 2007). Higher loads of bot flies may 
also interfere with a host’s ability to forage, escape predators, and 
reproduce (Catts 1982; Slansky 2007). 

Host traits such as age and sex may affect the rate of bot fly 
infestation (Jacobson et al. 1961). In addition, habitat structure may 
influence parasitism rates; for example, Blair (1942) found that bot fly
 parasitism of rodents was higher in shrub-dominated areas than in 
grasslands. Prescribed burning, a common habitat management 
technique in grasslands that alters habitat structure (Converse et al. 
2006), can also affect the abundance of both rodent hosts and their 
parasites. Working in Oklahoma, Boggs et al. (1991) found that bot 
fly parasitism in small mammals was higher in unburned areas than 
burned areas. 

In 1999-2011, thirteen-lined ground squirrels (Ictidomys 
tridecemlineatus) that were live-trapped a part of long-term 
monitoring studies in northern Colorado (Stapp et al. 2008) were 
found to be infested with bot flies. Previous studies have determined 
infestation rates of bot flies on small mammals including the 
white-footed mouse (e.g. Clark and Kaufman 1990), gray squirrels 
(Jacobson et al. 1961), and chipmunks (Bergstrom 1992), but there 
are no reports of bot fly parasitism of thirteen-lined ground squirrels, 
despite the fact that these squirrels are widespread and common in 
Great Plains grasslands. In fact, a widely cited review by Catts (1982) 
specifically stated that Cuterebra infest small rodents (including tree 
squirrels), but not ground squirrels. For example, none of the 179 

Department of Biological Science, California State University, Fullerton

Kim Conway
Advisor: Dr. Paul Stapp
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Methods

thirteen-lined ground squirrels trapped in Kansas were parasitized by 
bot flies (Clark and Kaufman 1990), and none of the 46 thirteen-lined 
ground squirrels trapped in Alberta, Canada, had bot flies either 
(Gummer et al. 1997). Aside from a single anecdotal reference (Lugger 
1896, cited by Sabroksy 1986), there are no published records to 
indicate which species of bot fly infests this squirrel. Morphological 
traits usually can be used to identify species (Baird 1972) using a 
taxonomic key. However, keys for identifying bot flies are based on 
morphological traits of the adult fly, which live only a short time 
once they emerge from the soil, and are very difficult to observe and 
capture (Catts 1982).

For my project, I sought to better understand the interactions 
between thirteen-lined ground squirrels in northern Colorado and their 
bot fly parasites. My specific objectives were to: 1) analyze existing data 
from 1999-2011 on bot fly infestation of ground squirrels to identify 
host or environmental factors that may influence prevalence and 
intensity; 2) attempt to determine the species of bot fly on squirrels by 
analyzing samples of the late-instar larvae collected from ground squir-
rels using molecular genetics methods; and 3) ex tract live, late-instar 
larvae from ground squirrels, rear them to adulthood in the laboratory, 
and confirm the species of bot fly using adult morphological traits. 

Information on rates of bot fly infestation of thirteen-lined ground 
squirrels from 1999-2011 was collected during live-trapping studies 
conducted as part of the Shortgrass Steppe- Long Term Ecological 
Research project the (SGS-LTER). The study site was the Central 
Plans Experimental Range (CPER), approximately 14 km north of 
Nunn, CO. Vegetation is characterized as shortgrass steppe, which 
is dominated by two perennial, warm-season short grasses (blue grama 
Boutelloua gracilis, buffalograss Buchloe dactyloides), although some 
areas also have large, woody shrubs, especially four-wing saltbush 
Atriplex canescens. Live-trapping was conducted in spring (May/June) 
and summer (July) each year on six 3.14-ha webs (three grassland, 
three shrub sites) from 1999-2011. In addition, squirrels were trapped 
on three additional grassland webs that were burned in the previous 
autumn to examine the effect of prescribed fire on squirrel populations. 
Bot fly prevalence was measured at one, two, three, and four years 
post-fire. One site (26NWSE) was burned in autumn 2007 and trapped 
in July each year from 2008 to 2011. Other grassland webs that were 
burned in 2008, 2009 or 2010 were trapped only once in July 2011. 

Late-instar larvae were collected in July 2011. Three larvae were 
dissected to obtain interior body tissue and cuticle tissue for DNA 
extraction. Cuticle tissue was cut in 2-mm x 2-mm squares. A clear, 
tube-like interior section of the larva was used, as it appeared to be 
the only visibly intact structure. Additional interior tissue was added 
to ensure approximately 0.025 grams of tissue was collected. DNA 
was extracted from interior and cuticle tissue of three bot fly samples 
using DNeasy Blood & Tissue kit and following the manufacturer’s 
recommendations (QIAGEN®, Valencia, CA).

Webs consisted of 12 100-m transects arranged in a spoke-like 
fashion, with extra-large Sherman live-traps every 20 m along each 
transect and two traps placed at the center, for a total of 62 traps. 
Traps were baited with peanut butter and oats and shaded with PVC 
to prevent mortality from heat. Traps were set at dawn and checked 
at mid-morning for four consecutive days in each session. Field 
crews collected data on sex, age, weight, and physical condition of 
squirrels, including presence of parasites, and marked each 
individual with a colored Sharpie marker to distinguish recaptures 
from newly caught individuals. Individuals were released unharmed 
at their capture locations. I used data from squirrels only on their 
first date of capture. Prior to analysis, juvenile and subadult squirrels 
were combined into one age class (young-of-year; YOY). In some 
instances, field crews recorded evidence of multiple bot fly warbles 
on each host; however, because the exact numbers were not always 
recorded, squirrels were categorized as having no flies, one bot fly, 
or more than one bot fly.

I used two metrics of bot fly infestation. First, prevalence was 
the proportion of individual hosts that were infested with bot flies, 
and was calculated for different sex, age, and weight classes as the 
number of bot flies divided by the total number of individual hosts 
in a particular class. Second, for hosts that had at least one bot fly, 
intensity was calculated as the proportion of infested hosts that had 
one fly versus more than one fly. Intensity was calculated by dividing 
the number of hosts that had multiple fly larvae by the total number 
of infested hosts; i.e., with at least one. 

In late June 2013, thirteen-lined ground squirrels were live-trapped 
for four consecutive mornings in an attempt to capture squirrels 
infested with bot fly larvae so that larvae could be extracted, reared 
to adulthood, and identified using a morphometric key.  

Laboratory Methods:

Data Analysis:
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Between 1999 and 2011, the earliest date that bot fly warbles were 
detected on squirrels was 16 May, but only six observations of bot fly 
infestation were noted before 3 June. Prevalence of bot flies was 
significantly lower in May and June (1.8% and 0.3%, respectively) 
than in July (Fig. 1; X2 = 21.75, d.f. = 2, P < 0.001). In addition, squirrels 
in grassland webs had a much higher prevalence of infestation (5.3%) 
than those in shrub areas (Fig. 1; X2 = 16.02, d.f. = 1, P < 0.001). For 
this reason, further analyses were only conducted on data from 
grassland webs trapped in July. 

Long-term data (1999-2011) from grassland webs in the summer 
indicated that prevalence was highest in 2008 (Fig. 2), with little 
variation in other years. On average, 7.5% of squirrels were infested 

Results
Analysis Of Long-Term Infestation Patterns

Figure 1. Prevalence of bot fly infestation in thirteen-lined ground squirrels by habitat type in long-term 

trapping webs in northern Colorado in spring and summer were highest in grasslands in summer (7.5%). 

Total number of hosts examined is shown above bars (Season:  X2 = 21.75, d.f. = 2, P < 0.001, Habitat: 

X2 = 16.02, d.f. = 1, P < 0.001).

DNA was extracted following the manufacturer’s Animal Tissue 
protocol, with the adjustment of incubating samples overnight and 
eluting with 100 µl instead of 200 µl. Three samples were eluted a 
second time. DNA concentration (ng/µl) was measured using Nano-
Drop spectrophotometer. Three interior tissue samples were chosen 
for further analysis because they had the highest DNA concentration 
of all purified samples.

Polymerase chain reaction (PCR) was used to amplify 657 bp of 
the cytochrome oxidase subunit I (COI) gene in three interior samples 
with the highest concentration of DNA. The COI gene is a region of 
mitochondrial DNA that is universally used in species identification. 
The total reaction volume was 50 µl, including 1 µl of forward primer, 
1 µl of reverse primer, 3 µl of DNA sample, and 45 µl of Platinum 
Taq Master Mix (Invitrogen™ Life Technologies). Samples were run 
in a BioRad t-100 Thermocycler at 94ºC for 3 min, followed by 35 
cycles of 94ºC for 30 s, 49ºC for 40 s, and 72ºC for 1 min, with a final 
extension of 72ºC for 5 min. Genus-specific primers (LC01490f and 
HC02198r) and species-specific sequences were provided by 
Dr. Brian Weigmann and Brian Cassell from North Carolina State 
University. PCR products were visualized on a 2% agarose gel using 
gel electrophoresis.

PCR products were sequenced by SEQUETECH (Mountain View,
 CA). Consensus sequences were assembled using bidirectional 
sequences using CodonCode Aligner software (CodonCode Corpo-
ration) and aligned using clustW in MEGA 5.1 (Kumar et al. 2011). 
Phylogenetic analysis was conducted with maximum likelihood, 
maximum parsimony, and neighbor-joining models using MEGA 5.1.

in a given year. Prevalence did not vary much by weight class, 
although the largest numbers of bots were on YOY (< 100 g; Fig. 3). 
Bot fly prevalence of female adults (8.2%) was similar to that of male 
adults (7.0%). Likewise, prevalence rates of female YOY (7.4%) did 
not differ significantly from male YOY (7.1%; Fig. 4; X2 = 0.15, d.f. = 3, 
P = 0.985). Intensity of infestation remained similar among different 
sex and age classes (X2 = 2.49, d.f. = 3, P = 0.480), although adult 
females had a higher intensity (75%) than other groups (Fig. 5). For 
hosts where the actual number of bots was recorded, the number of 
larvae ranged from 1 to 7.

Combining all years of the prescribed fire study (2008-2011), 
bot fly prevalence was consistently higher on squirrels from the 
three webs that were burned in 2007 than from those on unburned 
grassland webs between 2008-2011 (Fig. 6; paired t = 3.91, d.f. = 3, 
P = 0.030). Combining results from webs based on the number of 
years post-fire, prevalence of bot flies was significantly higher (33%) 
on sites one year after being burned (Fig. 7; X2 = 11.98, d.f. = 3, P 
= 0.007). After an increase in prevalence during the first year after 
burning, prevalence returned to the same rate (11-13%) by two years 
after a fire, which was the same rate as that on unburned grassland 
webs during the same time period (12%; Fig. 7).
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 Figure 2. Prevalence of bot fly infestation in thirteen-lined ground squirrels in 

long-term grassland trapping webs in northern Colorado during summer from 

1999-2011. Number of hosts examined in a given year ranged from 31 to 101, 

with 59 hosts in 2008, the year with the highest prevalence. 

Figure 6. Prevalence of bot fly infestation of thirteen-lined ground squirrels in three 

grassland trapping webs that were burned in autumn 2007, compared to three long-term 

grassland webs that were never burned (2008-2011; paired t = 3.91, d.f. = 3, P = 0.030).

 

Figure 4. Prevalence of bot fly infestation in thirteen-lined ground squirrels in the summer 

in long-term grassland trapping webs in northern Colorado, based on data from 1999-2011. 

Number of hosts examined is shown above bars (X2 = 0.15, d.f. = 3, P = 0.985).

Figure 7. Prevalence of bot fly infestation in thirteen-lined ground squirrels in northern 

Colorado on trapping webs in July as a function of the number of years since autumn 

prescribed fires. Six sites were trapped one, two, and three years post-fire, and three sites 

were sampled four years post-fire, from 2008-2011. Data from unburned webs were from 

three grassland webs trapped in July from 2008-2011 (X2 = 11.98, d.f. = 3, P = 0.007). 

Figure 5. Intensity of bot fly infestation in thirteen-lined ground squirrels in long-term 

grassland trapping webs in northern Colorado in the summer, based on data from 

1999-2011. Number of infested hosts is shown above bars (X2 = 2.49, d.f. = 3, P = 0.480).
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Figure 3. Prevalence of bot fly infestation in thirteen-lined ground squirrels in long-term 

grassland trapping webs in northern Colorado in summer, based on data from 1999-2011. 

Number of hosts examined in each weight class is shown above bars. Values on the x-axis 

are the midpoints of the 10-g weight classes. 
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My study offers the first detailed description of infestation of thirteen-
lined ground squirrels with bot flies. Prevalence was significantly 
higher in summer (July) than late spring (May, June), and in grasslands 
than in shrub areas, which differs from the account of Clark and 
Kaufman (1990) who found parasitism was higher in shrub areas 
than grasslands in tallgrass prairies. Prevalence did not vary much by 
host sex or age. Of the squirrels infested with bot flies, adult females 
tended to have higher loads that other sex and age classes, although 
this result was not significant. Prevalence varied from 2.0% to 25.4%, 
with an average of 7.5%, across the 13 years of sampling in grasslands. 
Prevalence was unusually high in 2008, although the reason for this 
spike is unknown. April-June 2008 was the third of three consecutive 
years with very low spring precipitation and represented a period 
during which squirrel population numbers on the site had been 
declining since 2006 (Fig. 2; P. Stapp, unpublished data). Moreover, 
relatively few squirrels were captured in May 2008 (7), compared to 
an average of 29.5 in other years (SD=8.7, range 19-45), so available 
hosts may have been scarce.

Prescribed burns seemed to affect prevalence of bot fly infestation, 
with prevalence significantly higher the first year after a fire. In 
addition, prevalence was significantly higher on three grassland 
webs that were burned than on unburned webs trapped at the same 
time. These results differ from those of Boggs et al. (2007), who 

Discussion

found lower levels of bot fly infestation of small mammals in burned 
tallgrass prairie in Oklahoma. Boggs et al. (2007) argued that fire might 
have killed eggs and larvae belowground, or that the removal of 
litter by burning made the microclimate unsuitable for developing 
larvae. My results suggest that, in shortgrass steppe, where there 
is no significant litter layer, fires may cause environmental changes 
that increase the susceptibility of squirrels to bot fly infestation. For 
example, burning of grasses may alter the vegetation near burrows 
in a way that makes it easier for squirrels to come in contact with bot 
fly eggs. In addition, fires may have altered the environment in a way 
that increased bot fly survival, such as warming the soil. Having a 
warmer soil temperature during the time larvae pupate may lead to 
a higher number of bot flies emerging in the spring. Lastly, autumn 
fires may alter the suitability of habitat for oviposition by adult flies.

Because bot fly larvae could not be identified morphologically, 
molecular genetic testing of preserved larvae was used needed to 
attempt to identify the species of fly. My results indicate that, with a 
difference of only 0.21% between sequences, the three bot fly larvae 
are most likely of the same species (intra-specific variations are less 
than 1.0%, Hebert et al 2003). Based on the maximum likelihood 
trees, the larvae appear to be most closely related to C. fontinella, 
although there is a 4.9% difference between the COI gene sequence 
and that of C. fontinella. It is unclear, however, whether this difference 
is large enough to consider it a new species. Although the widely used 
difference in gene sequence between species is 2.0%, studies have 
indicated that this boundary may not be accurate in determining 
species divergence in insects, for which inter-specific variation can 
range from 1.0-30.7% (Cognato 2006). Examination of sequences of 
other genes, e.g. 12S, may help to resolve the species identification.

 The final part of my project was to extract live bot fly larvae from 
squirrels, bring them back to the laboratory, and rear larvae to 
adulthood to observe morphological traits. Trapping success in 2013 
was low, however, with only two squirrels captured in grasslands 
areas in late June, neither of which had bot flies. Similarly, no squirrels 
captured in 2012 had bot flies, although the number of hosts again 
was low (nine individuals in July 2012). With so few hosts captured 
over the past two years, it is not surprising that prevalence would 
be at or near zero. It is not clear if bot flies could have switched to a 
different, more abundant rodent host, although, to date, there are no 
records on bot flies on other rodents captured at CPER since 1994 
(P. Stapp, unpublished data). Future work should attempt to determine 
the fate of the bot fly populations and to identify other possible hosts. 

Figure 8. Phylogenetic tree indicating C. fontinella as the closest relative to the unidentified bot fly samples 

(Sample 1-3). Maximum Likelihood bootstrap consensus tree using General Time Reversible Model and 

discrete Gamma distribution was generated using MEGA 5.1 software.

Molecular Genetics Analysis
The COI consensus sequences revealed the three samples to be 
0.21% different from each other, and 4.9% different from its closest 
relative C. fontinella (Fig. 8).
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Southern California experiences regular annual water deficit. 
Because of this, conservation agriculture has been developed to help 
California meet its increasing water needs. Conservation agriculture 
includes the use of soil amendments to increase the water retentive 
properties of the soil and thus, decreasing the amount of water 
necessary for each crop yield. Some amendments, such as worm 
casts, can accomplish this as well as increase plant productivity. 
Worm casts, plant wastes processed by worms that are traditionally 
used as an organic fertilizer, were used in this experiment as a soil 
amendment in an attempt to increase the soil water retention and 
plant productivity. The worm casts were added to the soil in two ways: 
mulch and mixed into the soil. It was found that worm casts  do 
significantly increase soil water retention, more so when incorporated 
into the soil than used as mulch. During the plant productivity 
observation based on the same treatments, it was also found that 
the addition of the worm casts increase overall plant productivity, 
and for radishes, increases the root size instead of shoot size more so 
when the worm casts were used as mulch than mixed into the soil. In 
conclusion, when worm casts are added to soil, they are able to not 
only increase the soil water retention, but also increase the roots of 
plants, which have a direct implication to vegetation where the root 
is the more necessary portion of the whole plant.

Abstract

Comparison of Worm Cast Application Methods on Soil Water Retention 
and Plant Growth

Southern California is a Mediterranean-type climate. For much of the 
year, there are high evaporation rates with low levels of precipitation, 
causing a water deficit. This annual water deficit is predicted to increase 
over the next 100 years (World Water Assessment Programme). Because 
of this annual water deficit, the water we use in California has to be 
imported from neighboring states at progressively higher costs through 
a complicated system of aqueducts. It is estimated that up to 70% of 
the water Californians use is imported from out of state sources which 

Introduction

have caused many political issues between California and its neighbors 
(California Department of Water Resources), (World Water Assessment 
Programme). The cost of importing this water increases each year 
with a decreasing supply, so water conservation is becoming of utmost 
importance (World Water Assessment Programme). Not only is most 
of the imported water used for agriculture, estimated to be up to 
80-85%, but the state of California alone produces 7.1% of the world’s 
produce and more than half of the nation’s produce (California 
Department of Food and Agriculture), (California Department 
of Water Resources). With the predicted population increases, 
California’s water needs will only increase (World Water Assessment 
Programme). For these reasons, identifying methods to conserve 
water in agricultural practices is currently the main area of focus in 
water conservation.

Agriculturists have combined several methods that conserve water 
into what they refer to as conservation agriculture. Some common 
methods of conservation agriculture include efficient irrigation, genetic 
modification of crops, and watering crops only when needed in order 
to decrease costs (Kassam et al., 2012). Soil amendments are known 
to help with the latter. Mulching has been developed in an attempt to 
prolong the times in between watering by decreasing the evaporative 
water loss from the soil and is the process where the surface of the soil 
is covered by a layer of amendment which can range between varieties 
of substances. Popularly used soil amendments include wood chips and 
inorganic substances such as rocks or pebbles (Dahiya, Ingwersen, and 
Streck, 2007). One of the many organic amendments used as mulch 
are worm casts, or processed plant waste produced by worms. Typically 
used as an organic fertilizer in agriculture, numerous studies have been 
done on their ability to provide plants with plenty of macro- and 
micronutrients and their ability to reduce a plant’s susceptibility to 
parasites and diseases, but not a lot has been done to study the affect 
worm casts have on water retention (Norgrove and Hauser, 1999).

Department of Biological Science, California State University, Fullerton
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Methods and Materials

It has been well documented that increasing the organic material 
in the soil directly influences the water retention of said soil 
(Rawls et al., 2003). There are different methods of application of 
soil amendments. The two main ways in which the amendments are 
added are through mulch or incorporating it into the soil. The different 
methods of application could have positive implications on plant 
productivity (Asawalam and Hauser, 2001). In conservation agriculture, 
not only do costs need to be minimized, but the benefits need to 
be maximized. It is a constant struggle for farmers to identify the 
correct combination of minimizing and maximizing, especially in arid 
environments such as in Southern California (Kassam et al., 2012) 
(Shemdoe, Van Damme, Kikula, 2009). Worm casts can aid farmers in 
finding this balance. They can not only retain water, but they can also 
increase plant productivity. This study sets out to determine if the 
use of worm casts can increase soil water retention and if method of 
application will affect the retention any differently. Also, this study 
sets out to determine if different methods of application will have an 
effect on plant productivity for maximization of crop yield.

The soil water retention levels were measured using gravimetric 
water content methods. The evaporative rate of water from the soil 
mixture was measured for four different treatments each with five 
replicates. The treatments include an experimental control 
(experimental) where the soil was not mixed and no casts were added, 
a procedural control (procedural) where the soil was mixed but no 
casts were added, the worm casts used as mulch (mulch) on top of the 
soil, and the casts mixed (mixed) into the soil. For this portion of the 
experiment, a 50% sand 50% nutrient deficient soil mix was used to 
ensure nothing present in the soil could affect the rate of evaporation 
of water other than the added worm casts. 35 mL clay pots commonly 
found in any variety store were used as containers. All the soil mixture 
as well as worm casts were dried in the oven for three days before use 
in the experiment. For the mixed treatment, 140 mL of the soil mix 
was placed in a large mixing bowl along with 35 mL of worm casts 
(casts), and then divided into the treatment pots, 35 mL each. For the 
mulched experiment, the same amount of soil mix was placed in a 
separate mixing bowl, 28 mL were placed in each pot, and 7 mL casts 
were added to the surface. For both the experimental and procedural 
controls, 140 mL of soil mixture was placed in separate containers, 
the soil used for the procedural control was agitated, and divided into 

Experiment 1: Soil Water Retention

Experiment 2: Plant Productivity

Statistical Analyses:

the treatment pots, 35 mL each. 6 mL of water was added to each 
pot and were placed in a drying oven set to about 40-45 ̊C and their 
weights were measured every hour for 10 consecutive hours.

For the water retention portion of the experiment, the data was 
compiled into excel and an ANOVA test was run on the last data 
point for each treatment. For the plant productivity portion of the 
experiment, a single factor ANOVA test was done on the root, shoot, 
and overall biomass data. A pairwise comparison was performed on 
the root:shoot and total biomass data to determine if the data were 
significantly different from each other.

The second portion of the project is the observation of plant 
productivity based on the different application methods of the casts. 
The same four treatments were used, with twelve plant replicates 
each. The radishes were grown from seed into seedlings for two 
weeks in large bins using regular potting soil inside a greenhouse. 
The seedlings were given ample amounts of water at this stage.
The seedlings were then transplanted into their individual treatment 
pots and grown outside for an additional four weeks when the 
radishes achieved maturity based on radish growing instructions. 
0.6 liter plastic pots commonly found in plant nurseries were used. 
The initial watering of the seedlings in their treatment pots was 80 
mL to account for the shock of transplantation and reduced to 40 
mL for every watering period after. For the mixed experiment, 1.2 
liters of casts and 4.8 liters of soil mixture were placed into a bucket, 
mixed thoroughly, and 0.5 liters was placed in each treatment pot 
along with one transplanted radish. For the mulch experiment, the 
same amount of soil mixture was placed into a separate bucket, then 
divided into its treatment pots, and 0.1 liters of casts were added to 
the surface of each pot after the addition of a transplanted radish. 
For the experimental and procedural controls, 6 liters of soil mixture 
was placed in a large bucket for each control, the mixture for the 
procedural control was agitated, and then 0.5 liters of each mixture 
was added into their respective treatment pots. Again, the same soil 
mixture of sand and nutrient deficient soil was used.

For data collection, the radishes were removed from their 
treatment pots and rinsed gently in water to ensure maximum recovery 
of the fine root hairs. The roots and shoots were separated, dried for 
three days in a drying oven, and their dry biomass was recorded.
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Study Organism:
For the plant productivity portion of the experiment, Raphanus 
sativus (cherry radishes or radishes) was used. Easily found in 
any variety store or gardening shop, radishes are a common 
household vegetable. Depending on the growing conditions, radishes 
take up only six weeks to mature and are good companion crops 
because of this.

In the soil water retention portion of the experiment, every hour for 
ten consecutive hours, the masses of the pots filled with a known 
amount of dirt mixture and worm casts were measured. The data 
were recorded and it was found that the addition of worm casts to 
the soil as both mulch and mixed into the soil increases the soil’s 
water retention capabilities, shown in Figure 1. However, according 
to the data, it also shows that when the worm casts are added as 
incorporated into the soil, it significantly increases the soil’s water 
retention more than using worm casts as mulch. It was also found 
that both the experimental control, where there were no worm casts 
added and no mixing of dirt, and the procedural control, where there 
were no worm casts added but there was mixing of the dirt, were not 
significantly different from each other.

In the observation on plant productivity portion of the experiment, 
radishes were grown in the same treatments as the soil water 
retention portion of the experiment for four weeks. As shown in 
Figure 2a, it was found that no matter the method of application, 
the addition of the worm casts significantly increased plant 
productivity. Upon further inspection, it was observed that it was 
the root of the plant, and not so much the shoots, that had increased 
in biomass (Figure 2b). According to the data collected and analyzed 
using a pairwise comparison, it was found that the procedural and 
experimental controls were not significant from each other. It was 
also found that the mulch and mixed treatments were significantly 
different from each other as well as from the two controls.

For the soil water retention portion of the experiment, it was found 
that the addition of the worm casts positively and significantly 
increased the soil water retention. This could be because worm casts 
are organic material. It is widely known that soil moisture and the 
amount of water soil is able to hold increases with increasing humus, 
or soil organic material (Rawls et al., 2003). One of the criteria for 
high quality soil is the occurrence of humus (Shemdoe, Van Damme, 

Results

Conclusions

Kikula, 2009). In this experiment, the increased water retention ability 
of the sand and dirt mixture was due to the addition of the worm 
casts, an organic material, when there was originally no organic 
material. Furthermore, it was also found that mixing the worm casts 
into the soil significantly increased the soil water retention more 
than using the casts as mulch. Rawls, Pachepsky, Ritchie, Sobecki, 
and Bloodworth (2003) believed this is because the organic material 
has a water potential of its own. This means that the worm casts 
have a different rate of evaporation than the soil mixture would. 
Since the water was added after the casts were added, this could mean 
that the water in the mulch experiment stayed in the cast surface 
layer so all the water was also at the surface and more prone to 
evaporation. However, when the casts were mixed into the soil, the 
water was drawn from the surface, deeper into the soil and wasn’t as 
readily able to evaporate, resulting in higher water retention.

For the plant productivity portion of the experiment, it was 
found that the overall biomass significantly increased upon addition 
of the casts. These findings correlate with Norgrove and Hauser 
(1999) who also demonstrated that the addition of worm casts 
significantly increased plant biomass. This could be due to the 
increased retentive powers the soil had due to the added organic 
matter. In the experiment, the radishes were water stressed to 
ensure that the difference between the treatments with and without 
the casts could be more visible. Because of this, the radishes with the 
casts had more water held within the soil and were able to out-perform 
the radishes that were not treated with worm casts. It is also possible 
that the increased biomass could have been the result of the added 
macronutrients to the soil. In the experiment, the two controls had no 
to little nutrients. The difference in biomasses between the controls 
and the two treatments could possibly have been the addition of 
more nutrients. This is what Norgrove and Hauser (1999) concluded 
as well. It was also found that the roots rather than the shoots were 
increasing in size in the mulch and mixed treatments contrary to 
what previous literature has stated (Asawalam and Hauser, 2001). 
They found that there was only a significant increase in dry biomass 
in the mulch experiment and determined that there was no significant 
increase in the mixed treatment. However, they studied maize and 
cowpea plants where the edible portion of the plant is above ground 
as well as most of the plant. The roots of these plants do not play a 
major role in the overall biomass of the plant. The root of radishes 
is where the plant stores its source of carbohydrates. In the case of 
this experiment, the root size increased because the plant was more 
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easily able to obtain water from the soil and as a result, was able 
to photosynthesize and store more energy. These data have major 
implications on future farming techniques for vegetation where the 
root is edible. Urban farmers must maximize the use of the small 
plots of land they are allotted. Because of the results of these data, 
it would seem that urban farmers can possibly have higher yields or 
better results while also saving water and costs.

However promising the data may seem, further research must 
be done on whether the biomass data are representative of the 
worm casts’ ability to increase soil water retention or whether the 
data are the result of the added macro- and micronutrients. Similarly, 
the soil water retention study portion of the experiment was done 
in a controlled environment in small pots. Future research must be 
done on whether or not the results would be the same if more common 
sized pots were to be used.

Several errors could have arisen during the course of the 
experiment. For instance, during the water retention portion, an 
error could have occurred when the pots were weighed. There was 
a difference in mass between when the pots cooled and when they 
were measured right after they were removed from the oven. This 
error could possibly alter the results. Error could also have occurred 
during the plant productivity study portion as well. One error could 
have occurred due to the water stress put on the plants. The way in 
which the radishes were determined as experiencing water stress 
was slight wilt and depending on the amount of wilt, the amount of 
water the radishes were given differed. This could have resulted in 
too much water stress which would be detrimental to the health of 
the plants or it could have resulted in too little water stress and the 
true value of the worm casts was not actually determined. The last 
error that could have occurred was the consumption of the radish 
shoots by the larvae of an insect. This could have resulted in false 
data and without this error, it could have been that both the roots 
and shoots were increasing at a roughly equal rate.

Figure 2b. Root: shoot of radish across soil treatments. Root: shoot in mulch significantly 

 greater than control treatments. Mixed root: shoot did not differ from other treatments 

(F = 6.705, df = 3, p < 0.001).

Figure 1. Average water loss in soil treatments over time. Mulch and mixed retained significantly 

more water at 10 hours than did either control treatment (F= 21.17, df = 4, p < 0.001).

Figure 2a. Mean total biomass of radishes across soil treatments. Radish biomass in mulch and 

mixed significantly greater than in control treatments (F = 14.666, df = 3, p < 0.001).
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Food waste has steadily increased over the past few decades, 
spurring the adoption of various waste diversion practices. One 
form of waste diversion gaining in popularity is vermicomposting, 
the use of worms to transform food waste into castings. Worm 
castings are an effective fertilizer. However, since food waste varies 
among households and over time, it is possible that the productivity 
of vermicompost systems, or the quality of the castings produced, 
are variable as well. The worms used in vermicompost systems 
respond poorly to some food inputs, such as citrus, onions, or 
meats, so the inclusion of those foods may negatively affect the 
productivity of those systems. However, standardization of food 
waste streams is time consuming and thus may reduce adoption of 
vermicomposting. In this study, I investigated whether food quality 
affects the productivity of vermicompost systems or the nutrient 
content of castings. I set up two vermicompost treatments (n = 7): 
sorted and unsorted food inputs. I measured final mass of worm 
castings, worm biomass, and casting nutrient content. I found no 
difference in the size of worm populations, casting yield, or casting 
quality between treatments. The results suggest that sorting food 
waste has little impact on the productivity of household- scale 
vermicomposting systems. Given the time investment needed to 
sort food waste streams and potential benefit of worm castings, the 
results may lead to higher adoption of vermicomposting as waste 
diversion practice.

Approximately, 34 million tons of food waste goes into landfills each 
year.1 However, because landfills are compacted daily, they often 
lack the oxygen and microbes necessary for waste decomposition.2 
As the demand in landfills increase, the need to convert large areas 
of land into landfills increases, leading to a decrease in land that can 
be used for beneficial purposes.

Abstract

Introduction

Effects of Sorted and Unsorted Food Waste Diets on Worm Cast Quality and Quantity

Department of Biological Science, California State University, Fullerton
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Advisor: Dr. Joel K. Abraham

Vermicomposting is an increasingly popular alternative to food 
waste dispersal in many countries, including the USA, Japan, Australia 
and Italy.3 Vermicomposting is the use of worms, most commonly 
Eisenia fetida, to break down waste into fertilizer (worm castings).4 
In the wild, E. fetida are epigeous, removing organic leaf litter, 
vegetation and manure.5 This attribute makes E. fetida an ideal species 
for use in converting food waste into worm castings. 

The castings produced by the worms are valuable as soil 
amendment. Worm castings have high levels of nitrogen, phosphorus 
and potassium, and lead to increases in plant productivity when 
applied to the soil.3,6 In addition, worm castings can reduce the 
prevalence or severity of certain pests and diseases, and are 
associated with increases in beneficial soil microbes.7–9 Some 
research shows that amending soil with worm castings helps reduce 
heavy metal uptake in plants, increase levels of soil enzymes, and 
increase nutrient retention in the soil.10 In addition, producing 
synthetic fertilizer is an extremely energy extensive process.11 By 
replacing synthetic fertilizers with worm casts, it decreases the need 
to consume so much energy. Given these benefits and the growing 
interest in home vermicomposting systems, it is important to know 
what factors might influence the quality of the castings produced to 
better understand the potential benefits.

One factor that could affect casting quality is the quality of food 
waste used in the system. There is some controversy among avid 
worm growers about the different types of food that worms can 
consume.12 Most organisms have a preferred diet that will maximize 
growth and productivity. The majority of studies on vermicompost 
worms focus on optimizing the population size of worms in a bin 
and the quantity of food worms can consume in a day, while other 
studies focus on th e ability of waste to maintain a certain biomass of 
worm.4,13 Another variable that depends on food waste is the variability 
in the quality of worm casting.
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Methods
Food waste was gathered from the CSU Fullerton Gastronome two 
times a week, Tuesdays and Thursdays, with food scraps with one of 
the day’s waste saved for Saturday. Waste was gathered and separated 
into two different categories. One category included unsorted 
trash while waste from the other included an ideal mix of fruits and 
vegetables. Although worms are quite robust, there may be some 
waste, such as meats, grains and fish, which may prevent them from 
producing optimum castings. As a result, the sorted category only 
contained food that is found in their ideal diet. Each category was 
then chopped into small pieces and was placed in its respective tray 
of soil and worms.14

A total of fourteen bins were used. Seven replicates were 
performed for each treatment and each sample required two trays. 
The trays were placed in the shade at the Fullerton Greenhouse to 
prevent desiccation and overheating. Although the age of the worms 
factor into how much casts are produced on a daily basis, all worms 
will be obtained from one source so that there will be no significant 
variation in relative age.15 The optimal amount of worms for each 
bin was 1.60 kg worm/m2 and optimal amount of food was provided 
at 0.75 kg feed/kg-worm/day.4 Food waste was chopped into fine 
pieces, estimated to be no larger than one cubic centimeter in size. 
100 grams of food waste were measured into each bin three times 
a week. There was at least one day in between feedings in order to 
allow the worms to breakdown the food. 

Vermicomposting is increasingly popular for home use.3 

However, given the variability in waste streams among households 
and within households over time, there may be variation in the 
nutritional quality of worm castings as a result. This study will 
investigate whether or not such variation exists.

Sorting trash to remove potentially harmful components may 
improve the consistency of quality in worm casts.4 However, sorting 
food takes time and energy that may outweigh any potential benefit.  
Thus, it is important to understand what impact variation in food 
quality has on worm cast production. 

This study focuses on the effects of food sorting on E. fetida 
population growth, casting production, and casting quality. I 
hypothesized that sorting food waste leads to larger populations, 
higher casting production, and higher casting nutrient content.

The amount of worm casts produced is based off the amount of food 
consumed by E. fetida, and as a result, biomass is a good indicator of 
worm cast production. The biomass also describes how the worms 
fare in each type of environment. The biomass was measured by 
filling two 400 mL beakers of substrate from alternate corners of the 
bin and the worms and eggs were removed. The worms were sprayed 
with a small amount of water to remove the soil and then blotted with 
filter paper for the dry weight. Two worm biomass and egg samples 
were taken every other week for the duration of the study.

At the end of the study, one cup of castings was taken from each bin. 
Each of the randomly selected samples was dried in an incubator 
for nine days at 35ºC. Four randomly selected samples from each 
treatment were sent to the Soil and Plant Tissue Testing Laboratory 
at the University of Massachusetts for soil analysis. One sample from 
the sorted treatment was removed because it was an extreme outlier 
(order of magnitude difference in nutrient content). Each sample was 
analyzed for four key nutrients, (Phosphorous, Potassium, Magnesium 
and Nitrogen), in the samples.

The data were analyzed using StatPlus:mac V5 and Microsoft 
Excel 2011 for Mac.

Biomass and Population Dynamics Sampling

Soil Analysis

 Figure 1. The average concentration of nitrogen, phosphorus, potassium, and magnesium 

did not differ between the sorted and unsorted treatments. Orange bars represent the sorted 

treatment group and the blue represents the unsorted treatment group. Error bars signify 

standard error (p>0.05).
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Discussion
In the two different types of diets tested, there appears to be no 
significant difference between the two treatments groups, in both 
quality and quantity of worm casts. All of the nutrients measured, 
nitrogen, phosphorus, potassium and magnesium levels were 
insignificantly different when analyzed. The biomass of the worms 
was also not significantly different. The culmination of these results 
dictates that there is no reason to separate out food types for worm 
cast production. The two different types of diet had no effect in any 
of the variables measured and there were no distinct differences 
between the two groups.

While there were clearly two different treatment groups in this 
experiment, this research does not exactly quantify the difference in 
the two treatment groups. As a result, the similar results obtained 
in this experiment may be due to insignificant variation or quantity 
of food. Further research should investigate if large amounts of 
unsorted food would cause a larger difference in results e.g. changes 
in microbial community.

As landfills fills up, it is necessary to utilize the space in a more 
efficient manner. Previously, the main focus on waste divergent 
strategies were on landfill design and optimizing the amount of 
decomposition.2,16 However, another way to tackle this problem is 
to divert waste from the landfills. Currently, only 24% of municipal 
solid waste is recycled and composted and vermicomposting helps 
in minimizing food waste in landfills.17 In addition, vermicompost has 
the potential to convert waste into a novel income stream. One of 
the current obstacles in vermicomposting is the time and energy that 
was previously thought to be required in managing food waste.

Based on the results of this study, food sorting does not appear 
to have a measureable impact on casting production or quality. If 
true, it is likely that the additional effort put into sorting food for 
household scale vermicompost systems does not yield any benefits. 
This may increase vermicompost adoption and participation rates of 
households, thereby reducing load on landfill.18 

Figure 2. The average biomass of each sample group over a series of weeks. 

Data was collected every other week. Error bars signify standard error.

Figure 3. A graph depicting the difference in average mass of worm casts 

between the two sample groups. Error bars signify confidence intervals (p>0.05).

Figure 4. The average mass of 

castings collected over a ten-week 

period. Error bars signify confi-

dence intervals and there were no 

significant difference between the 

two treatment groups (p>0.05).

Results
There were no differences in nutrient levels (N, P, K, and M) between 
the two treatment groups (p>0.05) (Figure 1). Over the course of ten 
weeks, two out of the five measurements taken showed a significant 
difference in the biomass of the worms (Figure 2). There was no 
significant difference in total worm biomass between the two 
treatment groups (P>0.05) (Figure 3). There was no significant 
difference found in the total mass of castings (p>0.05) (Figure 4). 

Encouraging sustainability, even on a small scale, plays a larger role 
by minimizing waste and decreasing a need for synthetic fertilizers. 
These findings promote the ease and benefits of vermicompost.
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Conservation of irrigation water is a major concern for urban 
agriculture in semi-arid regions, such as southern California. A field 
experiment was carried out in the Fullerton Arboretum February 
through October 2013 to compare the efficiency of different drip 
irrigation systems, surface irrigation and subsurface irrigation 
for growing arbol and poblano peppers. The subsurface irrigation 
system was buried six inches deep into the soil, while the other was 
placed on the soil for surface drip irrigation. It was hypothesized that 
subsurface irrigation would be the most efficient system because of 
reduced evaporation and water delivery directly to the root zone. 
The results of this experiment revealed that the highest productivity 
of peppers was seen for plants under subsurface irrigation. Soil 
moisture contents for subsurface irrigation varied less over time 
than those for surface irrigation. This suggests that there was less 
evaporation and more water retention in the soil under subsurface 
irrigation, which benefited the plant growth and productivity. Lastly, 
stomatal conductance for arbol peppers was higher under subsurface 
irrigation, indicating lower water stress. Thus, it was concluded that 
subsurface irrigation is a better system for conserving water and 
maintaining high pepper yields.

Abstract

Effects Of Surface Drip Irrigation Compared To Sub Surface Irrigation 
On The Yield Of Peppers

Southern California is suffering from limited water supply due to high 
evaporation and low precipitation coupled with frequent droughts 
(McDonald, 2007). It is estimated that half of the water used in 
southern California is for irrigation (Baum, 2012). It is necessary to 
optimize water usage especially in agricultural applications in order 
to carry the growing populations. Moreover, there are environmental 
concerns related to irrigation including depletion of water source and 
soil erosion. Therefore, it is crucial to present a low cost, efficient, 
and resourceful irrigation model that can be used and applied in 
urban settings such as residential homes, school gardens, or 

Introduction

agriculture resource centers. Appropriate irrigation models should 
be researched to demonstrate to the general public how easy it is to 
practice efficient water management and conservation.

About 39% of all fresh water in the United States goes to 
irrigation; of which mostly is used for Furrow irrigation. Furrow 
irrigation is irrigation by water run in furrows between crop rows. 
Most farmers practice furrow because it can be recycled back to a 
major source of water to minimize water waste. However, furrow 
irrigation tends to not be uniform and labor is wasted in forming the 
canals, furrow ends, and borders. The lack of uniformity directly 
affects the distribution of water irrigation because it can result 
in drainage and increase of salinity in the soil. Since the 1990’s, 
alternative methods of deficit irrigation have been used such as 
micro-jet irrigation, drip irrigation, and subsurface irrigation. English 
et al. (1990) urged the usage of deficit irrigation in order to optimize 
strategies to sustain water deficit and reduction of productivity yield. 
Furthermore, they suggested that increasing profits and crop 
production could be achieved if deficit irrigation was used because 
irrigation is limited within vegetative and late ripening stages in 
order to optimize water use efficiency.

Snyder et al. (2008) surveyed the irrigation methods used in 
California in 2001. The survey was mailed to 10,000 growers in 
California that were randomly selected from the California 
Department of Food and Agriculture database. This study concluded 
that there was an increase of 15% to 31% of orchards mostly irrigated 
by low volume irrigation such as drip and micro-sprinkler irrigation 
due to an increase of 33% from 1972 to 2002. There was also a 31% 
increase of the use of surface irrigation methods in land use. The 
authors noted that sprinkler usage has decreased in orchards and 
vineyards but still used in vegetable crops.

Based on Snyder et al. it was suggested that the most popular 
irrigation method being used for land use was drip, surface, and 
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micro-jet irrigation. There is a consensus that sprinkler systems are 
no longer used in orchard agriculture but may be used for vegetable 
crops. Additional research must be made in order to assess which 
irrigation system is more efficient in terms of productivity and water 
conservation. For the purposes of this study, surface drip irrigation 
(SDI) and subsurface irrigation (SSDI) are the two methods that are 
investigated.

SDI is commonly used for more than one land use purpose; 
it can be used with orchards and vegetable crops. Surface drip 
irrigation involves dripping of water slowly to the roots of plants on 
the soil surface through emitters that control water flow. SDI is the 
network of drip tape on the surface that carries a low flow of water 
under low pressure to plants. It is adaptable and changeable because 
it can be removed and manipulated to fit any crop. Another advantage 
is that it minimizes water loss through runoff.

SSDI is the application of drip line polyethylene tubing with built 
in emitters located beneath the soil to pump water under low pressure. 
SSDI involves temporarily buried drip tape located below or at the 
plant roots. It involves water delivery directly to the root systems of the 
plants; however, it is more permanent because perforated pipes are 
installed beneath bed to control water flow and drainage. As a result it 
expected to have no water loss due to evaporation, run off, or wind drift.

The purpose of this experiment was to compare these two 
irrigation methods in order to investigate a difference between each 
mechanism and access water management and productivity yields. 
The efficiency will be measured through productivity yield, stomatal 
conductance, and soil moisture retention. It was hypothesized that 
subsurface irrigation would be the most efficient in conserving water 
(soil retention) and have highest productivity yield.

Methods
Expirmental Site

Expirmental Procedure

The field experiment was carried out at the Fullerton Arboretum in 
California State University, Fullerton. To investigate the efficiency of 
different irrigation systems, the techline EZ (12 mm dripper line) was 
used under different irrigation conditions. The irrigation water source 
was obtained from the Arboretum’s water supply.

The experiment consisted of two irrigation methods, SDI and SSDI 
on two different types of peppers. Each treatment was replicated 
four times with random distribution of pepper plants on each bed 
(n=20 count). Each replicate or row measured 30 feet in length and 
15 inches in width. Both treatments were equipped with separate 
pipelines connecting to separate pressure regulators and pipelines 
that connected to the main water source. Each row was irrigated 
by a single lateral pipeline connected to the main water source. The 
techline EZ was placed in the surface for the surface treatment and 
buried underground for the subsurface treatment (Figure C, Appendix). 
The techline EZ was one quarter inch thin and was placed on the bed 
12 inches apart. Drip irrigation pressure regulators were required in 
order to ensure the operating water pressure rating for drip compo-
nents does not exceed manufacturers recommended 
operating pressure. There were two pressure regulators used to 
separate the treatments at 45 psi. The same amount of water was 

Pepper seeds were ordered from the Chile Pepper Research Institute 
of the University of New Mexico. Germination of seeds was done 
using two multi-block sewing containers with 200 cells, used to plant 

Expirmental Treatment

150 seeds of each pepper variety. Each cell was filled with starting 
compressed soil, sunshine#1 which contained important nutrients 
(i.e nitrogen) purchased from McConkeyCo in Anaheim. One seed 
was added per cell to optimize growth of plants. Cells were kept 
under fluorescent light for 24 hours at room temperature and 
watered twice a week. Germination was seen in early February and 
the seed was transplanted into larger pots in early March (Fig A, 
Appendix). These pots were kept inside the greenhouse until they 
began to mature. At the end of March, the pots were moved to an 
open greenhouse where they were allowed to acclimate to higher 
temperatures and sunlight (Figure b, Appendix). Also, the plants 
were watered with soluble fertilizer bi-weekly to provide them 
with nutrients. In early April, the individual pots (200+) were moved 
outside the greenhouse to acclimate to stronger sunlight, wind, and 
higher temperatures. Peppers (Capsicum annuum, two varieties of 
peppers: chile de arbol and poblano) were transplanted at the end 
of May in the Fullerton Arboretum farm site. The area being used 
was 30ft by 30ft and contained 11 prepared soil beds. The distance 
between the rows was 27 inches apart and treatments were divided 
by rows. A total of 5 rows were used for each treatment as replicates 
for the irrigation method. For example, 5 rows had the same set up 
that displayed the dripper line on the surface of the bed. The last five 
rows obtained the dripper line 6 inches deep into the bed to display 
the underground subsurface treatment.
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For three months the pepper plants were allowed to grow and mature 
at the Fullerton Arboretum site. Starting in July when they were 
first transplanted, plants were maintained and watered at the same 
time and consistency. Based on weather reports from the Fullerton 
Municipal Airport weather station, the average humidity in Fullerton, 
California for the months of July through October were ranging from 
43 % to 93% humid. October reached very humid conditions rising to 
almost 88%. During the treatment trials, weather was very dry and 
at hot temperatures thus plants were under very dry conditions.

The mean for each replicate stomatal conductance per pepper variety 
was obtained as a direct reflection for each treatment, SDI and SSDI. 
A high conductance mean indicated that the stoma for each pepper 
variety was open more frequently for the subsurface treatment. 
Therefore, there was a higher stomatal conductance observed 
for the subsurface treatment compared to the surface treatment 
for both arbol (mean=333.11 mmol/m2s) and poblano peppers 

The results demonstrated that soil moisture retention was observed 
to be more consistent in the SSDI treatment because there was 
a trend that showed similar soil moisture retention (6in depth) 
between each replicate at upstream, middle, and downstream 
placements (Figure 2). When comparing soil moisture retention in 
the SDI (2in depth) there was no obvious trend observed upstream, 
middle or downstream in the mean replicate values (Figure 3). 
ANOVA demonstrated there was a significant difference between all 
the soil moisture groups for surface and subsurface values (p=0.011). 
However, the post hoc of multiple comparisons for each group at 
each treatment was not significantly different (p>.05). 

Results

Stomatal Conductance:

Soil Moisture:

Figure 1: Mean stomatal conductance for arbol peppers was higher under subsurface irrigation, 

indicating lower water stress (m=333.1 mmol/m²s) compared to the surface irrigation value. 

Statistical analysis indicates significant difference between arbol peppers (p=0.033). 95% 

confidence intervals were established as error bars. 

Stomatal Conductance (mmol/m2s) was collected using a steady state 
leaf porometer(Model SC-1,Decagon Devices Inc). Measurements 
were collected once a week for 10 plants for each replicate (n=5) 
from July to September. Soil moisture content (pct) was collected by 
placing soil moisture probes (EC-10, Decagon Devices Inc.) at two 
inches in depth for surface treatment, and 6.5 for subsurface 
treatment. Probes were installed upstream, middle, and downstream 
of each replicate’s’ bed for each treatment: upstream described the 
probe closer to the balb valve, the middle probe was placed to 
describe the moisture in the middle of the bed. While the downstream 
probe described the moisture at the end of the row near the kink, 
where flushing occurred. Measurements were done weekly to 
measure percent of water content (pct)(cm/m) in the soil to assess 
the amount of water retained after irrigation (Model ECH2O, 
Decagon Devices Inc.). Lastly, productivity was measured using the 
Salter Brecknell scale (capacity 5 lbs). Water stress was evaluated 
based on the visible indications of reduced growth, delayed maturity, 
and reduced crop yield per treatment replicates.

Measurements

(mean=341.849 mmol/m2s). A t-test indicated that the values were 
not significantly different when comparing the poblano peppers of 
each treatment (surface vs. subsurface) (p=0.35). However, there was 
a significant difference between the arbol peppers of each treatment 
for stomatal conductance (p=0.0325).

delivered twice a week in the summer and once a week in the fall 
time. The total amount of water delivered was 12 gallons.
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Throughout the experiment, productivity was witnessed by observing 
physical stress of the plant, maturity, and relative growth of the 
plants. When comparing methods, the surface irrigation method, 
which involved the dripper line on the surface, had more flower 
buds compared to the subsurface (Appendix, Figure D). In addition, 
surface had more arbol pepper count and stronger pepper coloration 

Productivity & Qualitative Analysis:

Figure 2: Soil moisture (pct) was averaged for each row to represent the surface treatment, up-

stream (blue), middle (red), and downstream (green) of the row. There is no obvious trend observed, 

thus no indication of similar soil moisture retention throughout the treatment. ANOVA indicates 

there is a significant difference between all groups in surface and subsurface sections (p=0.011). 

Figure 4: Productivity was measured in pounds from July to September (t=90 days). Subsurface 

(224lbs) had a higher productivity over time compared to the surface (217lbs) treatment. Statistical 

analysis from t-test between groups showed no significant difference (p=0.33).

Figure 3: The soil moisture mean was obtained for all four replicates to represent the subsurface 

treatment, upstream (blue), middle (red), and downstream (green) of the rows. There is an obvious 

trend that indicates similar water distribution. ANOVA demonstrated that there was a significant 

difference between all groups for surface and subsurface irrigation (p=0.011). 

directly to the roots. Although surface irrigation also delivered water 
under low pressure directly, risks of evaporation and run off had a 
higher chance to occur. However, it was an interesting method to 
investigate because it required less labor, better accessibility, and 
water was still delivered at a close proximity to the plant. 

Based on the results obtained from this study, it is recommended 
that subsurface irrigation is the better system to use when insufficient 
water is available because there was a more uniform soil moisture 

compared to the subsurface. Overall, the peppers under surface 
irrigation seemed to be doing better compared to the subsurface 
method. However, results indicated differently because overall
pepper productivity was continuously higher under subsurface 
irrigation (224 lbs) compared to the surface irrigation (217 lbs) 
method throughout time (Figure 4). A t-test was used to compare 
the end productivity of each treatment where it showed no significant 
difference between them (p=0.33).

The goal of this experiment was to investigate which irrigation 
method was better in conserving water while maintaining 
productivity. It was hypothesized that the subsurface irrigation 
would be a better choice for water conservation because the 
irrigation line was underground leading to reduced evaporation and 
higher producitivity because water was delivered under low pressure 
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grow, and thus reflects productivity of the plant. Although, at times 
pepper plants under subsurface irrigation seemed to wither and 
break faster, it was due to the faster growth and higher productivity 
of the plants. Thus, it was concluded that the subsurface irrigation 
system is a better method to use because it ensures conservation of 
water while promoting high productivity yields.

In addition, stomatal conductance or the state of the stoma 
was observed in order to see how frequently the stomas were open. 
Results indicated that stomas were opened more frequently in plants 
under subsurface irrigation treatment. Having plants with their 
stomas open suggests that plants are exchanging gases with the 
environment at a higher rate. Since stomatal opening and closing is 
a result of changes in the turgor of guard cells and epidermal cells, 
stomtatal state to reduced leaf water can be assumed. Tardieu and 
Davies (!993), demonstrated that stomatal conductance is regulated 
by leaf water status of plants in drying soil. That the opening of 
stoma is controlled by chemical messages from dehydrating roots 
(Tardieu and Davies, 1993). The authors results agree with our 
investigation of stomatal conductance to suggest that the reason 
stomatal conductance was lower in surface irrigation system was 
because the roots may have been dehydrated due to a dryer soil. 
These findings agree with the random uniformity of the soil moisture 
content (Figure 2&3). 

It was concluded that subsurface irrigation is a more efficient 
irrigation system compared to surface drip irrigation because it 
conserved water while maintaining high productivity of pepper yield. 
Based on these findings, it is recommended for areas with 
high drought such as in southern California to consider using subsurface 
irrigation because it ensures plant growth and minimum evaporation 
of water. 

SSDI is a good method to optimize water use because water can 
be conserved, supported by our findings of soil moisture retention. 
Although this system does require more labor than surface irrigation, 
it makes a larger impact on water conservation and productivity. 
Future studies should include measuring the resistance and 
transpiration rate per plant variet under irrigation methods which 
would provide more direct information on the plant exchanges of 
gases. Measurements of leaf water potential and root water potential 
can also be done to obtain information on water flow between the 
plants.  Improvement on this experimental design can be done by 
using the same pepper variety on each sub plot and not randomizing 
the peppers to make a true replicate. 

retention within this system. The results demonstrated an obvious 
trend of soil moisture content (pct) throughout each replicate and 
section of the subsurface system treatment, however there was no 
obvious trend to indicate water was delivered uniformly throughout 
in the surface treatment. Therefore, this suggests that subsurface 
irrigation allowed more water to be retained within the root systems 
of the plants. This ensures the plant to have water available under 
drought conditions to prevent water stress, ensure growth and 
maturity, and provide higher productivity yields. The subsurface 
dripper line was buried 6.5 inches below the soil surface, and root 
systems were rooted in deep close to the dripper line. At this depth, 
soil moisture retention was higher because of minimum evaporation 
loss with this method. It was expected to find a higher percent water 
content downstream of the row because that was the area where 
water was flushed out of the irrigation system. These observations 
were also reflected on the roots of the plants of each system when 
observed. The root system for subsurface were deep rooted compared 
to shallow roots in the surface method. 

Results compare to previous research findings because where 
they also found higher soil moisture content in subsurface irrigation. 
Kheira and Abdrabbo (2009) investigated different decifit irrigation 
systems of corn in the nile river. The authors investigated three 
systems of irrigations such as furrow irrigation using gated pipes 
technique, subsurface drip irrigation system, and surface drip 
irrigation. They concluded that subsurface irrigation was the best 
option for drought conditions because it displayed higher efficiency 
compared to the other irrigation systems (Kheira and Abdraddo, 
2009). They compared the soil moisture distribution before irrigation 
to find higher soil moisture retention at 60 cm compared to the other 
treatments (Kheira and Abdraddo, 2009). Moreover, they discovered 
that the distribution of water was more uniform for all treatments in 
the subsurface for the corn irrigated with the subsurface treatment 
(Kheira and Abdraddo, 2009). Therefore, subsurface irrigation is a 
better irrigation system because water is conserved more 
efficiently and thus a better system for high drought areas like 
southern California. 

Due to more water being available for the plant’s subsurface 
root system, it was expected to find that productivity was higher 
in plants under subsurface irrigation compared to the plants under 
surface dripper irrigation. There was a higher productivity of pepper 
yield throughout time in the subsurface system. This suggests that 
having higher soil retention near root systems ensures plants to 
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California pipefishes are highly diverse and particularly difficult to consistently identify. The 
widely used Miller and Lea Guide To The Coastal Fishes of California does not include all of 
the recognized Californian province species. We reexamined the key morphological traits 
emphasized in pipefish keys seeking to improve the diagnostic separation of pipefish species. 
Our data indicate that certain features, such as barred markings or a truncated snout, are 
reliable in separating three recognized species in California; kelp pipefish (Syngnathus 
californiensis), barred pipefish (S. auliscus), and snubnose pipefish (Cosmocampus arctus). In 
contrast, a combination of morphological and mitochondrial 16S and COI analyses have so 
far not supported three currently recognized species as distinct: the bay pipefish (Syngnathus 
leptorhynchus), and barcheek pipefish (S. exilis), and all could be synonymous with 
S. californiensis. Future work will further test these conclusions and our goal is to produce a 
more useful dichotomous key to California pipefishes. We expect to add more pipefish localities 
and species sequence comparisons and extend what we learn to also better characterize the 
identification of juveniles. The results from this study will be beneficial to fishery biologists 
working in the field to more effectively identify pipefishes.

Abstract

Morphological and Genetic Identification of California Pipefishes (Syngnathidae) 

Department of Biological Science, California State University, Fullerton

C.A. Rice, D.J. Eernisse, and K.L. Forsgren
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Plants possess multiple tiers of immunity that act to protect the 
plant cells against various types of invading pathogens including 
bacteria, viruses, fungi, nematodes, aphids and oomycetes (Jones 
and Dangl, 2006). The first line of defense that provides plants with 
protection involves physical and chemical barriers to protect against 
infection. These types of barriers include the cell wall and waxy 
cuticle layer covered in anti-microbial compounds that surround the 
cell (Dangl and Jones, 2001).

If pathogens are able to breach this first line of defense, the 
plants innate, or basal, immune system responds through recognition 
of conserved molecules associated with the pathogen known as 
pathogen-associated molecular patterns (PAMPs) using 
transmembrane pattern recognition receptors (PRRs) located on 
the cell surface (Boller and He, 2009). PAMPs are essential to the 
ultimate survival of the pathogen, such as bacterial flagellin or viral 
double- stranded RNA (dsRNA), and are therefore constitutively 
expressed and not easily altered (Akira et al., 2006; Jones and Dangl, 
2006). These unchanging characteristics of PAMPs allow their 
continued recognition by plants. Recognition of PAMPs alerts the 
plant to the presence of pathogens and leads to PAMP-triggered 
immunity (PTI), which acts to arrest pathogen colonization in the 
plant (Akira et al., 2006; Jones and Dangl, 2006).

Pathogens have evolved methods of counteracting PTI through 
proteins, commonly referred to as effectors. Bacterial pathogens 
inject effectors directly into plant cells through a type III secretion 
system (T3SS) while other pathogens use alternate methods (Sal-
mond and Reeves, 1993). Effectors have been shown to target PRRs 
and negatively affect downstream signaling or host vesicle transport 
in plant cells, leading to heightened virulence of the pathogen and 
interfering with plant PTI to cause effector-triggered susceptibility 
(ETS) (Jones and Dangl, 2006).

To protect themselves from infection caused by pathogen 
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injected effectors and ETS, plants have evolved R genes that produce 
resistance – or R proteins. R proteins are typically classified by their 
conserved domains, specifically the nucleotide binding (NB) and 
leucine rich repeat (LRR) domains with some R proteins containing a 
coiled-coil (CC) domain or toll/interleukin-1 receptor (TIR) cytoplasmic
domain at their N terminus (Jones and Dangl, 2006). According to 
the guard hypothesis, R proteins indirectly recognize pathogen 
avirulence (Avr) proteins, termed effectors, by monitoring effectors 
cellular targets in order to activate and elicit an immune response to 
counteract their effects (Jones and Dangl, 2006). The concept known 
as the gene-for-gene hypothesis is based on the idea that disease 
resistance in plants is mediated through two complementary genes 
including the Avr pathogenic gene and the host plant R gene (Van 
Der Biezen and Jones, 1998). Through the elicitation of a localized 
programmed cell death (PCD), commonly known as a hypersensitive 
response (HR), the plant prevents the spread of infection to healthy 
cells (Jones and Dangl, 2006). Recognition of Avr proteins by R 
proteins to trigger HR is known as effector-triggered immunity (ETI) 
(Dangl and Jones, 2001).

The 14-3-3 gene family is highly conserved across eukaryotes 
and encodes multifunctional proteins acting in a range of cellular 
regulatory processes. 14-3-3 proteins have been previously shown 
to serve as linkers and adapters between sensing and activation 
in cell signaling through dimerization or by binding to functionally 
diverse proteins that influence myriad cellular processes (Denison 
et al., 2011). In plant species, 14-3-3 genes have been shown to act 
in response to biotic stress in addition to abiotic stress, growth and 
division, metabolism, hormone pathways and responses to light 
(Denison et al., 2011). Several 14-3-3 proteins have been implicated 
in disease resistance responses to pathogens that act as biotic stress. 
In the case of the N protein recognizing Tobacco Mosaic Virus in
 Nicotiana tabacum, 14-3-3 isoforms interact with the TIR cytoplasmic 
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domain, NBS and LRR domains of this R protein (Konagaya et al., 
2004). Species of Arabidopsis have also demonstrated disease 
resistance caused by 14-3-3 genes in the case of the powdery mildew 
fungal infection. Low expression of 14-3-3s have been associated 
with susceptibility and decreased resistance to powdery mildew 
fungus, while over- expression of 14-3-3 genes elicit HR potentially 
due to an interaction between 14-3-3 proteins and the R protein 
RPW8.2 in order to increase resistance (Denison et al., 2011).

Within Solanum lycopersicum (tomato), 14-3-3 gene products have 
been shown to act as a receptor for the fungal toxin Fusicoccin (FC), 
and treatments with FC induced higher levels of 14-3-3 proteins 
(Moorhead et al., 1996). The mitogen-activated protein kinase 
(MAPK) pathway has been shown to initiate a PCD or HR in tomato 
carrying the R protein Pto when infected with the pathogen 
Pseudomonas syringae (Oh et al., 2010); it was hypothesized that 
14-3-3 proteins play a role in the MAPK pathway by stabilizing the 
MAPKKKα protein and activating down- stream signaling cascades 
that lead to PCD in plant tissues (Oh et al., 2010). However, it was 
demonstrated that PCD induction was not dependent on 14-3-3 
protein interactions with MAPKKKα, but may help to bring MAPK 
and MAPKKKα together in the cell and aid in their overall interaction 
(Oh et al., 2010). Although some 14-3-3 proteins have demonstrated 
a possible role in disease resistance to fungal or bacterial pathogens 
in tomato, the 14-3-3 family of proteins has not been studied 
intensively in the context of resistance to the full spectrum of plant 
pathogens, including viruses.

Previously, an interaction between N. benthamiana 14-3-3 
homologs and the Tm2-2 resistance protein from S. lycopersicum was 
found biochemically (Sobhanian, 2011). Tm2-2 confers resistance to 
the Tobacco mosaic virus (TMV) 30K movement protein in tomato 
species. The function of 14-3-3 genes in plant immunity through 
Tm2-2 will be investigated through silencing of endogenous 
N. benthamiana 14-3-3 homologs in a transgenic line expressing 
immune receptor Tm2-2. N. benthamiana was chosen specifically for 
this experiment as the genome was recently sequenced, it is thought 
to possess the same number of isoforms as tomato and has shown 
high efficiency in gene silencing using the virus-induced gene silencing
(VIGS) method. Additionally, the Tm2-2 gene is functional within 
N. benthamiana because it is in the same family as S. lycopersicum.

To better understand what the overall function of a specific 
gene may be within the cell, the gene can be turned off and its 
function muted to observe phenotypic differences in its absence. 

In plants, gene expression can be blocked by the use of VIGS. VIGS 
uses the mechanism of posttranscriptional gene silencing (PTGS), 
an endogenous defense mechanism that has evolved to protect cells 
against infection by targeting foreign RNAs for degradation 
(Purkayastha and Dasgupta, 2009). In PTGS, the cell recognizes 
foreign double-stranded RNAs (dsRNAs) through the Dicer protein, 
which cleaves the dsRNAs into small interfering RNAs (siRNAs) that 
are subsequently loaded into the RNA-induced silencing complex 
(RISC) (Purkayastha and Dasgupta, 2009). RISC is able to recognize 
foreign RNAs using siRNA complementarity to other RNA molecules 
and targets them for degradation by cleaving the base- paired region. 
Using VIGS, a fragment of the plant gene of interest is cloned into 
viral vectors to become equivalent to foreign RNA when the 
recombinant viruses are used to infect plant tissue. The RISC complex 
targets RNAs that complementary base-pair with the recombinant 
virus-derived siRNAs, including both viral RNAs and endogenous 
mRNAs encoding the gene of interest produced by the cell 
(Purkayastha and Dasgupta, 2009). RISC will recognize the specified 
gene transcripts as foreign even if they are normally found 
endogenously in the cell and cleave them, causing their elimination. 
Inhibition of gene expression through the destruction of targeted 
mRNAs is sometimes referred to as gene knockdown since 
expression is greatly reduced but not eliminated (as in a gene 
knockout) (Purkayastha and Dasgupta, 2009). Although VIGS has 
been attempted in other plant species, such as tomato, it has been 
highly inefficient in silencing targeted genes. However, Nicotiana 
benthamiana has shown notably efficient gene knockdown using 
VIGS, making it a model plant to use this type of silencing to study 
gene function (Velásquez et al., 2009).

Preceding VIGS, plasmid constructs carrying the 14-3-3 genes 
need to be created and validated to ensure the correct genes will be 
silenced. This report will focus on the phylogeny of S. lycopersicum 
and N. benthamiana 14-3-3 orthologs, amplification and creation 
of the 14-3-3 homolog set and the subsequent verification of their 
cloning. The set of N. benthamiana 14-3-3 homologs will be used to 
create a silencing library for gene knockdown using VIGS. By 
investigating potential roles of 14-3-3 genes in resistance to pathogens 
within N. benthamiana, we will be able to ultimately infer about 
functions of 14-3-3 genes in future experiments.
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Materials and Methods
RNA Extraction

Primer Design

RT-PCR

Total RNA from Nicotiana benthamiana was isolated by RNA 
extraction from leaves as outlined in the protocols of the RNeasy Plant 
Mini Kit (Qiagen). Briefly, leaf disks weighing an approximate total 
of 100 mg were punched out of leaves, flash frozen in liquid nitrogen 
and ground with a mortar. The frozen leaf powder was homogenized
in 450 μl buffer RLT containing beta-mercaptoethanol by vortexing 
before being transferred to a spin column collection tube. The spin 
column was centrifuged for 2 minutes at 10,000 rpm and the flow-
through was transferred to a clean tube. Absolute ethanol (0.5 
volumes of the leaf lysate) was added and mixed by pipetting. The 
lysates were transferred to the new spin column, centrifuged for 15 
seconds at 10,000 rpm and the flow-through discarded. The spin 
column was washed once with 700 μl buffer RWI and twice with 500 μl 
buffer RPE with centrifugation for 15 seconds at 10,000 rpm, followed 
by for a drying spin of 2 minutes at 10,000 rpm to remove residual 
wash solution. RNA was eluted from the column in 50 μl RNase-free 
water. The RNA concentration in ng/μl and 260 nm/280 nm ratio 
were determined using a NanoDrop ND-1000 spectrophotometer.

Forward and reverse primers were designed for ten 14-3-3 isoform 
sequences from Nicotiana benthamiana using the Primer 3 function 
from the JustBio online analysis tools (www.justbio.com) and 
incorporated restriction enzyme cut sites into their 5’ ends.

To create cDNA from the extracted RNA, reverse transcription-poly-
merase chain reaction (RT-PCR) was performed using random 
hexamer primers and the SuperScript III Reverse Transcriptase Kit 
(Invitrogen). The combination of 8 μl RNA, 1 μl random hexamers (50 
ng/μl) and 1 μl dNTP mix (10 mM) was incubated at 65°C for 5 minutes 
and chilled on ice for 1 minute. cDNA synthesis mix (2 μl 10X RT 
buffer, 4 μl 25 mM MgCl2, 3 μl 0.1 M DTT, 1 μl 40 U/μl RNaseOUT and 
1 μl 200 U/μl SuperScript III RT) was added to the RNA/primer mixture 
and incubated for 10 minutes at 25°C, followed by 50 minutes at 
50°C. The reverse transcription reaction was terminated by heating 
at 85°C for 5 minutes and then chilling on ice. RNaseH (1 unit) was 
used to digest RNA template at 37°C for 20 minutes.

PCR was performed to amplify the targeted 14-3-3 sequences 
using the MJ Mini BioRad thermocycler and Herculase enzyme. The 
cDNA was mixed with 10 μl 5X Herculase II reaction buffer, 34.5 μl 
nanopure water, 0.5 μl 40 mM dNTP mix, 1.25 μl 10 μM forward primer, Table 1: Sequences, restriction enzyme sites and Tm values for all 14-3-3 isoform primers.

1.25 μl 10 μM reverse primer, 1 μl DMSO and 0.5 μl Herculase II fusion 
DNA polymerase and ran in the thermocycler with the following 
program: denaturation of the DNA for 2 minutes at 98°C, 40 cycles 
of 30 seconds at 98°C, 30 seconds at 48°C and 1 minute at 72°C, 
followed by 3 minutes at 72°C.

Gel electrophoresis was performed at 125V using 0.8% agarose 
gels in 1X TBE buffer with 1% ethidium bromide (Fisher BioReagents) 
for visualization. The 100bp Low Scale DNA Ladder (Fisher Scientific) 
was used for size estimation of PCR products. Pictures were taken with 
the Gel Logic 100 Imaging System using an ultraviolet transilluminator. 
DNA bands were excised with a razor blade and extracted from the 
gel using the QIAquick Gel Extraction Kit (Qiagen). The gel slices were 
weighed and melted in 3 volumes buffer QG at 50°C for 10 minutes. 
After mixing with 1 gel volume of isopropanol, the dissolved gel was 
transferred to a spin column, centrifuged for 1 minute at 10,000 rpm, 
and the flow-through discarded. This process was repeated once with 
500 μl QG buffer and twice with 700 μl PE wash buffer before 
centrifuging an additional minute at 13,000 rpm and transferring the 
top of the spin column to a clean microcentrifuge tube. Lastly, DNA 
was eluted from the column in 50 μl EB buffer and stored at 4°C.
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Transformation Into E-Coli

Cloning into pGEM-T
In preparation to clone 14-3-3 genes into pGEM-T vectors, an A-tailing 
reaction was performed to add a single adenine nucleotide to the 5’ 
ends of the 14-3-3 PCR products. This was done by combining 7 μl 
of the PCR product from the gel extraction with 1 μl 10X Thermopol 
buffer, 0.5 μl dATPs, 1 μl Taq DNA Polymerase and 0.5 μl nanopure water 
(New England BioLabs). The reaction mixture was incubated at 70°C for 
30 minutes and then ligated into vector pGEM-T (Promega). The ligation 
reaction was performed by combining 3.5 μl of the A-tailing product, 
5 μl 2X ligation buffer, 1 μl pGEM-T vector and 1 μl T4 DNA ligase 
(New England BioLabs) and incubating the mixture at 4°C overnight.

Ligation reactions were transformed into E. coli by mixing 50 μl 
competent E. coli cells with 5 μl of the pGEM-T ligation reactions and 
incubating on ice for 10 minutes. Bacteria were heat shocked in a 
37°C water bath for 90 seconds and snap cooled on ice for 1 minute 
before addition of 450 μl of LB to each tube and recovery at 37°C for 
30 minutes. The transformed E. coli were spread on LB agar plates 
containing 100 μg/mL ampicillin and 100 μg/mL tetracycline. 
Bacterial plates were incubated at 37°C overnight.

A PCR screen for bacteria containing pGEM-T vector with 
inserts was performed on white colonies using the MJ Mini BioRad 
thermocycler DreamTaq program. Reactions containing 2 μl each of 
forward and reverse M13 primers, 6 μl nanopure water and 10 μl 2X 
Dream Taq polymerase (Thermo Scientific) master mix were set up 
before picking E. coli from the transformation plates, spotting onto 
a new LB agar plate containing 100 μg/mL ampicillin and 100 μg/mL 
tetracycline and mixed into the PCR reactions using sterile toothpicks. 
PCR reactions were performed with an initial denaturation at 98°C 
for 3 minutes and 40 cycles as follows: 1 minute at 98°C, 15 seconds 
at 98°C, 30 seconds at 50°C and 72°C for 1 minute, with an additional 
5 minutes at 72°C after the cycles ended.

Gel electrophoresis was performed on the PCR screen products 
as described above. Clones containing inserts with the correct size 
predicted for the 14-3-3 isoform cDNA fragments were incubated in 
LB media containing 100 μg/mL ampicillin and 100 μg/mL tetracycline
overnight at 37°C with shaking. Glycerol stocks were created by 
adding 300 μl of 50% glycerol to 700 μl of the bacterial culture and 
freezing at -80°C. To isolate plasmid DNA, the remaining bacterial 
cultures containing the pGEM-T 14-3-3 clones were centrifuged at 
4,400 rpm for 15 minutes, the supernatant discarded and the pellets 
were frozen before use.

pGEM-T PLASMID ISOLATION
The isolation of plasmid DNA of pGEM-T clones containing the 14-3-3 
cDNA fragments was performed as according to the directions outlined 
in the QIAprep Spin Miniprep Kit (Qiagen). Briefly, the bacterial pellets 
were resuspended with 250 μl P1 buffer and transferred to a sterile 
microcentrifuge tube. 250 μl P2 and 300 μl N3 buffers were sequentially 
added to the bacteria, inverting between each addition, and the 
lysate was centrifuged for 10 minutes at 13,000 rpm. The supernatant 
was transferred to a spin column, centrifuged for 1 minute, and the 
flow-through discarded. The spin column was washed with 500 μl PB 
buffer and twice with 500 μl PE buffer and centrifuged an additional 2 
minutes for a dry spin. Plasmid DNA was eluted from the spin columns 
in 50 μl EB buffer. The NanoDrop ND-1000 spectrophotometer was 
used to determine the 260 nm/280 nm ratio as well as the DNA 
concentration in ng/μl.

DNA Sequencing/NCBI Blast Search
The pGEM-T clones were sent to Eton Biosciences Inc., in San Diego, 
CA for DNA sequencing. Sequence identities and similarities to 
known 14-3-3 tomato genes (TFTs) were determined using the Basic 
Local Alignment Search Tool (BLAST) from the National Center of 
Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov).

Phylogenetic Tree And Alignment Construction
NbFTT and TFT sequences were aligned for phylogenetic analysis 
using ClustalW2 to create a preliminary sequence alignment for 
further similarity comparison (Larkin et al., 2007). The initial Clustal 
alignment in conjunction with Seaview software was subsequently 
used to construct a Parsimony phylogenetic tree for similarities in 
the amino acid sequences (Gouy et al., 2010). Lastly, the BoxShade 
server 3.21 was used to create shaded sequence alignments to better 
visualize relatedness of the NbFTTs and TFTs (www.ch.embnet.org/
software/BOX_form.html).

To investigate potential relatedness of 14-3-3 homologs in Nicotiana 
benthamiana to their previously studied orthologs from Solanum 
lycopersicum (tomato), the sequences were obtained from the 
Solgenomics Network genomic databases and a phylogenetic analysis 
of the two families of proteins was conducted (Bombarely et al., 2012). 
Evolutionary relatedness of S. lycopersicum 14-3-3 proteins, termed 
TFTs, and N. benthamiana 14-3-3 homologs is demonstrated in the 
phylogenetic tree (Figure 1). N. benthamiana 14-3-3 homologs, referred 

Results
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Figure 1. Phylogenetic tree demonstrating relatedness of 14-3-3 orthologs. The phylogenetic tree was 
constructed using Seaview software with PhyML tree function, 100 replicates and showing bootstrap values 
at branch nodes. S. lycopersicum 14-3-3 isoforms are indicated as TFTs and N. benthamiana 14-3-3 isoforms 
indicated as NbFTTs.

to as NbFTTs, were given number designations based on the initial Basic 
Local Alignment Search Tool (BLAST) search of the N. benthamiana 
genome database with the TFT protein sequences; the best matching 
NbFTT was named based on the TFT used in the search. The oldest 
node separating the clusters indicates that the orthologs evolved from 
a single common ancestor forming two main clades. The branching off 
points between the two groups show that NbFTT and TFT homologs 3, 
7, 8 and 10 are most closely related to each other and paired together 
in the same clade, confirming their named designations as accurate. 
Interestingly, TFT1 and TFT2 evolved separately from NbFTT1 and 
NbFTT2 and reside in various clades, stemming from their most recent 
common ancestor. TFT4 and NbFTT4 are shown to be the most distantly 
related from each other of the homologs paired by their numerical 
designations, despite their initial match, and reside in separate clades. 
Although TFT6 and TFT9 are closely related to their N. benthamiana 
orthologs, NbFTT6 and NbFTT9, the branch distances of the tree show 
that NbFTT6 and NbFTT9 evolved much later than TFT6 or TFT9. 

A boxshade sequence alignment of NbFTT and TFT orthologs 
further demonstrated the evolutionary relatedness between the two 
groups (Figure 2). TFTs and NbFTTs show common residues with each 
other and demonstrate blocks of amino acid similarities distributed at 
both the N-terminal and C-terminal ends of the proteins. Additionally, 
a search of the conserved amino acid sequences using the BLAST 
database shows high conservation among the 14-3-3 gene superfamily 
as well as multiple peptide binding sites. Further supporting their 
arrangement in the phylogenetic tree, TFT6, NbFTT6 and TFT5 show 
groupings of amino acids around amino acid residues 7 and 61 that are 
not shared by members of other clades. TFT3 and NbFTT3 also 
demonstrate similar sequence similarities not seen in other TFTs or 
NbFTTs near amino acid position 34. NbFTT6 and NbFTT9 show less 
conserved amino acids throughout the entirety of their sequences, 
starting at amino acid residue 161 for NbFTT6 and 154 for NbFTT9. As 
similarly seen in the distance away from their most closely related 
orthologs in the phylogenetic tree, the differences in amino acid 
sequence of NbFTT6 and NbFTT9 further supports their more recent 
evolution from the last common ancestors they share with TFT5 and 
6 or NbFTT4, respectively. Additionally, many N. benthamiana 14-3-3 
proteins show large insertions in their amino acid sequences. The splice 
donor and splice acceptor sites surrounding introns may not be 
accurate as a result of the protein-coding sequences being pieced 
together in silico from the genomic DNA sequence and the insertions 
may not reflect real coding sequence insertions.
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Figure 2. Amino acid sequence alignment of 14-3-3 proteins. Clustal Box-
Shade multiple sequence alignment of TFTs and NbFTTs using parameters 
of 0.5 similarities among amino acid residues and BoxShade server 3.2. 
Residues highlighted in black indicate identical amino acid residues and 
residues highlighted in grey indicate similarly charged amino acid residues. 
S. lycopersicum 14-3-3 isoforms are indicated as TFTs and N. benthamiana 
14-3-3 isoforms indicated as NbFTTs. 
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Figure 3. RT-PCR amplification of N. benthamiana 14-3-3 cDNA. 

cDNA was separated by gel electrophoresis and visualized on 0.8% 

agarose gels. A. NbFTT6 and NbFTT9 with bands shown around 600bp 

and 400bp were both extracted for cloning and sequencing. The single 

NbFTT7 band around 400bp was also excised. B. NbFTT8 with bands 

shown around 400bp and 300bp were both extracted for cloning and 

sequencing and single NbFTT4 band around 500bp was also excised. 

DNA bands were imaged with the Gel Logic 100 Imaging System, 

excised and purified with the Qiagen gel extraction kit.

Amplification of N. benthamiana 14-3-3 DNA.

Cloning of N. benthamiana 14-3-3 isoforms

In order to create a library for use in silencing of the NbFTT homologs, 
primers were designed for use in reverse transcription-polymerase 
chain reaction (RT-PCR) to amplify NbFTT cDNA fragments from 
N. benthamiana RNA. Primers were designed to contain restriction 
enzyme cut sites for subsequent cloning into the silencing vector. 
RT-PCR gel electrophoresis confirmed the amplification of cDNA of 
14-3-3 homologs of the expected sizes. Several 14-3-3 homologs, 
including NbFTT1, NbFTT2, NbFTT3, NbFTT5 and NbFTT10, were 
previously amplified using RT-PCR, separated by gel electrophoresis 
and extracted for further use in cloning and creation of the silenc-
ing library. For this study, NbFTT6, NbFTT7, NbFTT9, NbFTT4 and 
NbFTT8 were reverse transcribed and amplified from Nicotiana 
benthamiana leaves (Figure 3). Due to the presence of higher bands 
around 500-600bp and lower bands around 300-400bp, the additional 
bands were also extracted from the agarose gel in case the different 
sized PCR products represented alternative splice variants and the 
PCR products were designated as NbFTT#up or NbFTT#down. Each 
NbFTT RT-PCR product confirms the expression of 14-3-3 homologs 
in N. benthamiana leaves, which is promising for adequate silencing 
of 14-3-3 genes in future experiments.

In order to complete creation the 14-3-3 homolog silencing library, 
14-3-3 cDNA fragments were cloned into the pGEM-T vector for fu-
ture subcloning into the silencing vector. After the amplification and 

isolation of 14-3-3 homolog cDNA by RT-PCR and gel extraction, the 
cDNA fragments were cloned into the pGEM-T vector using A-tailing 
reactions, ligation reactions and transformation into Escherichia coli. 
Transformation of the correct 14-3-3 homolog fragments needed to 
be validated before further use in silencing of NbFTT homologs in N. 
benthamiana leaves. Validation of 14-3-3 isoform clones were done 
by using PCR screening with the primers designed for the vector and 
separated by gel electrophoresis (Figure 4). After validation from PCR 
screening, clones of NbFTT3 (lanes 3 and 4), NbFTT4 (lane 3), NbFTT6 
(lanes 6 and 9) and NbFTT10 (lane 7) were selected for DNA sequenc-
ing for final confirmation of the correct 14-3-3 homolog insert se-
quences. DNA sequencing confirmed cloning of fragments of NbFTT3 
(lanes 3 and 4), NbFTT4 (lane 3) and NbFTT10 (lane 7). Several 14-3-3 
homologs, including NbFTT1, NbFTT2 and NbFTT5, were previous-
ly validated and confirmed using this method. Clones of NbFTT6, 
NbFTT7 and NbFTT9 were amplified in E. coli and sequenced directly 
for confirmation of correct gene fragment inserts. While most NbFTTs 
were successfully amplified and cloned, DNA sequencing revealed 
that the primers designed for the amplification of NbFTT8 did not 
amplify the targeted 14-3-3 gene and instead amplified another gene. 
New primers need to be designed to target a different region of 
NbFTT8 in order to amplify and clone a fragment from the intended 
sequence. Glycerol stocks of all sequenced and confirmed 14-3-3 ho-
mologs were retained for further use in subcloning for VIGS studies.
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The role of tomato 14-3-3 homologs has been previously described 
in plant immunity through involvement in the MAPK pathway and a 
putative interaction observed between the tomato Tm2-2 resistance 
protein (Denison et al., 2011) and a NbFTT homolog (Sobhanian, 2011).
Investigating the evolutionary relationship between TFTs and NbFTTs 
could prove beneficial in determining the potential role of NbFTTs 
in plant immunity. Although the N. benthamiana 14-3-3 homologs 

Figure 4. Screening of N. benthamiana 14-3-3 DNA inserts. PCR screen products separated by gel electro-
phoresis and visualized on 0.8% agarose gels. A. NbFTT3 (lanes 3 and 4) and NbFTT6 (lanes 6 and 9) clones 
were selected for validation of the insert. B. NbFTT4 (lane 3) and NbFTT10 (lane 7) clones were selected for 
validation of the insert. DNA bands were imaged with the Gel Logic 100 Imaging System.

DISCUSSION

were named based on their retrieval from the genome database as 
matches to the TFT sequences, the phylogenetic tree and sequence 
alignment show the designated names for some NbFTT homologs 
did not correspond to their most closely related TFT homologs. 
The differences in phylogeny between TFTs and NbFTTs could be 
attributed to gene duplication among the NbFTTs and contribute 
towards functional redundancy of several NbFTT homologs. After 
silencing and testing each NbFTT homolog’s interaction with Tm2-2 
individually in multiple N. benthamiana plants, NbFTT members 
of clades, including NbFTT2, NbFTT5 and NbFTT1, will be silenced 
together in one N. benthamiana plant. Silencing multiple homologs 
simultaneously would down-regulate NbFTT proteins together that 
are likely functionally redundant and provide a clearer assessment 
of the putative interaction between NbFTT homologs and Tm2-2 
(Sobhanian, 2011). However, genetic duplication could have attributed 
to diversification of the NbFTT genes and resulted in differences in 
phylogeny. The incongruity between the designations of NbFTTs and 
their closest evolutionary match means that the N. benthamiana 
sequences need to be renamed accordingly in future experiments.

Although NbFTT8 was not correctly amplified, the remaining 
nine homologs were successfully cloned into pGEM-T to partially 
complete the set of NbFTTs. Primers were redesigned for future 
amplification and cloning of NbFTT8 in order to complete cloning of 
all ten homologs. After completion of the set of N. benthamiana 14-3-3 
homolog pGEM-T clones, the ten NbFTT homologs will be used to 
create a silencing library of clones in the pTV viral silencing vector. 
These clones will be subsequently transformed into A. tumefaciens in 
the future for agroinfiltration and use in VIGS experiments. Interactions 
between 14-3-3 homologs and the Tm2-2 resistance protein will be 
assessed through the presence or absence of HR when transgenic N. 
benthamiana expressing Tm2-2 is challenged with the 30K movement 
protein. Silencing of 14-3-3 homologs essential for Tm2-2 function 
could potentially prevent HR in transgenic N. benthamiana in the 
presence of movement protein and substantiate a role for one or 
several 14-3-3 proteins in Tm2-2-mediate immune responses.

In some species of Arabidopsis, low expression of 14-3-3 proteins 
has been previously associated with susceptibility and decreased 
resistance to powdery mildew fungus (Denison et al., 2011). Conversely, 
over-expression of Arabidopsis 14-3-3 genes elicited HR, potentially 
due to an interaction between 14-3-3 proteins and the R protein, 
RPW8.2, thereby increasing resistance (Denison et al., 2011). Additional 
future experiments will address the latter of the two cases and 
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involve over-expression of tomato 14-3-3 genes and co-expression of 
Tm2-2 in wild- type N. benthamiana leaves. When challenged with 
the 30K movement protein, differences in HR on the leaves 
over-expressing 14-3-3 genes and co-expressing Tm2-2 could further 
indicate an interaction between 14-3-3 proteins and the Tm2-2 

resistance protein. The initiation of faster, more robust HR could 
indicate that 14-3-3 proteins function in Tm2-2-mediated immune 
responses. Additionally, co-immunoprecipitation experiments with 
14-3-3 proteins and the CC domain of Tm2-2 will further investigate 
these putative interactions.
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Self-immolative polymers (SIPs) have proven to be an innovative system for the controlled 
release of small molecules. Most SIPs have chain end triggers that once activated, can lead 
to a head-to-tail depolymerization of the polymer backbone. Each monomer is then released 
sequentially in a timely and consistent manner, concomitant with release of the output 
molecule (e.g., drug or reporter molecules) from the monomer. However, the SIP’s hydrophobic 
properties are problematic for its implementation into biological applications, thus making 
it necessary to further functionalize the polymer for water solubility. This can be achieved 
by attaching a hydrophilic polymer to the SIP. As a result, the amphiphilic diblock copolymer 
can form micelles which are of interest in the field of drug delivery. In this study, we examine 
the multiple syntheses that lead to the formation of the SIP-containing amphiphilic diblock 
copolymers. Through these experiments, we aspire to learn more about the creation and 
stability of micelles from SIP diblock copolymers and ultimately aim to use this as a platform 
to demonstrate thermally activated SIPs in a novel drug delivery system. 
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A strategy for the synthesis of anhydrous cyclopropanol is being 
developed from a commercially-available precursor. The core of the 
method involves protecting 1,3-dichloro-2-propanol with a suitable 
silylating agent such as t-butyldimethylsilyl chloride to form a 
precursor compound using Schlenk techniques. Subsequent 
1,3-reductive elimination to close the three membered ring, followed 
by removal of the protecting group under anhydrous conditions, 
should result in an accessible gram-scale preparative method for 
cyclopropanol. Formation of the protected alcohol was confirmed by 
infrared spectroscopy and 1H-NMR, which showed possible
conformational isomers.

Cyclopropanol is not an unknown compound; however, it has not 
been prepared and isolated in gram-sized quantities as a pure 
alcohol. Main commercial use of cyclopropanol is in the formation 
of esters, which is used in preparations of pharmaceuticals, flavors, 
fragrances, and pesticides. Also, the chemical properties of 
cyclopropanol are more diverse than those of enols or enolates. 
Another useful property is that cyclopropanols are able to undergo 
synthetically useful transformations where the three-carbon ring 
is retained or cleaved. Cleavage causes the cyclopropanols to act 
as equivalents of enolates or corresponding allylic derivatives.1 
Many methods to synthesize cyclopropanol have been attempted, 
however, these methods produced cyclopropanol containing other 
substituent groups. One such simple method of preparation involves 
the use of Grignard addition to 1,3-dichloroacetone, as shown 
in Equation 1.2 Cyclopropanol was first synthesized in pure form 
accidently in 1942 by Cottle and Magrane. This method involved the 
reaction of epichlorohydirn with magnesium bromide, 
ethylmagnesium bromide, and ferric chloride.2

Modification of this method involves the reaction of epichlorohydrin 
with MgBr2 to form the magnesium salt of 1-bromo-3-chloro-2-pro-
panol. If the salt is treated with a Grignard reagent in the presence of 
ferric chloride, ring closure occurs.3 However, the problem with this 
method is that the cyclopropanols have to avoid contact with acids 
or bases in the presence of protic solvents.3 Gerdil reported a further 
modification of the 1,3-dihalo-2-propanol method where 
dehalogenation is accomplished by an electrochemical process giving 
good yield of cyclopropanol4 seen in equation 2.
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Abstract 
A strategy for the synthesis of anhydrous cyclopropanol is being developed from a 
commercially-available precursor.  The core of the method involves protecting 1,3-dichloro-2-
propanol with a suitable silylating agent such as t-butyldimethylsilyl chloride to form a precursor 
compound using Schlenk techniques.  Subsequent 1,3-reductive elimination to close the three-
membered ring, followed by removal of the protecting group under anhydrous conditions, should 
result in an accessible gram-scale preparative method for cyclopropanol.  Formation of the 
protected alcohol was confirmed by infrared spectroscopy and 1H-NMR, which showed possible 
conformational isomers.  
 
Introduction 
Cyclopropanol is not an unknown compound; however, it has not been prepared and isolated in 
gram-sized quantities as a pure alcohol. Main commercial use of cyclopropanol is in the 
formation of esters, which is used in preparations of pharmaceuticals, flavors, fragrances, and 
pesticides. Also, the chemical properties of cyclopropanol are more diverse than those of enols or 
enolates. Another useful property is that cyclopropanols are able to undergo synthetically useful 
transformations where the three-carbon ring is retained or cleaved. Cleavage causes the 
cyclopropanols to act as equivalents of enolates or corresponding allylic derivatives.1   
Many methods to synthesize cyclopropanol have been attempted, however, these methods 
produced cyclopropanol containing other substituent groups. One such simple method of 
preparation involves the use of Grignard addition to 1,3-dichloroacetone, as shown in Equation 
1.2 Cyclopropanol was first synthesized in pure form accidently in 1942 by Cottle and Magrane. 
This method involved the reaction of epichlorohydirn with magnesium bromide, 
ethylmagnesium bromide, and ferric chloride.2   
  

	
  
Modification of this method involves the reaction of epichlorohydrin with MgBr2 to form the 
magnesium salt of 1-bromo-3-chloro-2-propanol. If the salt is treated with a Grignard reagent in 
the presence of ferric chloride, ring closure occurs.3 However, the problem with this method is 
that the cyclopropanols have to avoid contact with acids or bases in the presence of protic 
solvents.3 Gerdil reported a further modification of the 1,3-dihalo-2-propanol method where 
dehalogenation is accomplished by an electrochemical process giving good yield of 
cyclopropanol4 seen in equation 2.  
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Also, 1,3-dihalides can be converted into cyclopropanes by dehalogenation with magnesium.5 

Attempts to purify cyclopropanol have been unsuccessful. Cottle and Magrane devised an 
isolation method for cyclopropanol using fractional distillation, however, they found that their 
experiments gave cyclopropanol fractions that contained halogen, possibly as epichlorohydrin, 
and fractional distillation or chemical treatment could not remove these fractions without damage 
to the alcohol.6 A later experiment’s sample purified by Stahl and Cottle resulted in a 
Zerewitinoff value that indicated an 87% content of cyclopropanol. Also, cyclopropanol’s 
change to propionaldehyde was obtained when the alcohol was treated with potassium 
carbonate.7 Furthermore, cyclopropanol readily rearranges to propionaldehyde especially in basic 
solution7, seen in equation 3. 
 

 
 
Experiments conducted by Roberts and Chambers also concluded analytically pure 
cyclopropanol was not obtained in repeated Magrane and Cottle methods and rearranged easily 
to propionaldehyde.8 

 
Another method in the formation of cylcopropanol is by cleavage of esters and ethers. Generally, 
basic cleavage of a cyclopropyl ester produces cyclopropanol in good yield, however Paukstelis 
and Kao have reported an instance where skeletal rearrangement takes precedence over the 
formation of alcohol.3 Preparing cyclopropanols using ethers was first developed by Schollkopf 
and his co-workers. The problem with this method, however, is finding an R group that can be 
removed without disrupting the three-membered ring.3  
 
One of the most well-known transformations of cyclopropane derivatives is the cyclopropyl to 
allyl rearrangement and is widely used in the preparation of allylic compounds from 
halogenocyclopropanes.1  
 
It is important to use a protecting group on the alcohol before ring closure can occur. The use of 
a tert-Butyldimethylsilyl group is advantageous in that it does not have a chiral center and is both 
stable and applicable in the protection of alcohol.9 Furthermore, silyl ethers are easily prepared, 
show resistance to oxidation, good thermal stability, low viscosity, and are easily recoverable 
from their parent compound.10 
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Also, 1,3-dihalides can be converted into cyclopropanes by 
dehalogenation with magnesium.5 Attempts to purify cyclopropanol 
have been unsuccessful. Cottle and Magrane devised an isolation 
method for cyclopropanol using fractional distillation, however, they 
found that their experiments gave cyclopropanol fractions that 
contained halogen, possibly as epichlorohydrin, and fractional 
distillation or chemical treatment could not remove these fractions 
without damage to the alcohol.6 A later experiment’s sample purified 
by Stahl and Cottle resulted in a Zerewitinoff value that indicated an 
87% content of cyclopropanol. Also, cyclopropanol’s change to 
propionaldehyde was obtained when the alcohol was treated with 
potassiumcarbonate.7 Furthermore, cyclopropanol readily rearranges 
to propionaldehyde especially in basic solution7, seen in equation 3.

Experiments conducted by Roberts and Chambers also concluded 
analytically pure cyclopropanol was not obtained in repeated Magrane 
and Cottle methods and rearranged easily to propionaldehyde.8

Another method in the formation of cylcopropanol is by cleavage 
of esters and ethers. Generally, basic cleavage of a cyclopropyl ester 
produces cyclopropanol in good yield, however Paukstelis and Kao 
have reported an instance where skeletal rearrangement takes 
precedence over the formation of alcohol.3 Preparing cyclopropanols 
using ethers was first developed by Schollkopf and his co-workers. 
The problem with this method, however, is finding an R group that 
can be removed without disrupting the three-membered ring.3

One of the most well-known transformations of cyclopropane 
derivatives is the cyclopropyl to allyl rearrangement and is widely used 
in the preparation of allylic compounds from halogenocyclopropanes.1

It is important to use a protecting group on the alcohol before 
ring closure can occur. The use of a tert-Butyldimethylsilyl group 
is advantageous in that it does not have a chiral center and is both 
stable and applicable in the protection of alcohol.9 Furthermore, 
silyl ethers are easily prepared, show resistance to oxidation, good 
thermal stability, low viscosity, and are easily recoverable from their 
parent compound.10

Known physical properties of cyclopropanol include index 
of refraction (1.526), molar volume (50.2±3cm3), flash point 
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Also, 1,3-dihalides can be converted into cyclopropanes by dehalogenation with magnesium.5 

Attempts to purify cyclopropanol have been unsuccessful. Cottle and Magrane devised an 
isolation method for cyclopropanol using fractional distillation, however, they found that their 
experiments gave cyclopropanol fractions that contained halogen, possibly as epichlorohydrin, 
and fractional distillation or chemical treatment could not remove these fractions without damage 
to the alcohol.6 A later experiment’s sample purified by Stahl and Cottle resulted in a 
Zerewitinoff value that indicated an 87% content of cyclopropanol. Also, cyclopropanol’s 
change to propionaldehyde was obtained when the alcohol was treated with potassium 
carbonate.7 Furthermore, cyclopropanol readily rearranges to propionaldehyde especially in basic 
solution7, seen in equation 3. 
 

 
 
Experiments conducted by Roberts and Chambers also concluded analytically pure 
cyclopropanol was not obtained in repeated Magrane and Cottle methods and rearranged easily 
to propionaldehyde.8 

 
Another method in the formation of cylcopropanol is by cleavage of esters and ethers. Generally, 
basic cleavage of a cyclopropyl ester produces cyclopropanol in good yield, however Paukstelis 
and Kao have reported an instance where skeletal rearrangement takes precedence over the 
formation of alcohol.3 Preparing cyclopropanols using ethers was first developed by Schollkopf 
and his co-workers. The problem with this method, however, is finding an R group that can be 
removed without disrupting the three-membered ring.3  
 
One of the most well-known transformations of cyclopropane derivatives is the cyclopropyl to 
allyl rearrangement and is widely used in the preparation of allylic compounds from 
halogenocyclopropanes.1  
 
It is important to use a protecting group on the alcohol before ring closure can occur. The use of 
a tert-Butyldimethylsilyl group is advantageous in that it does not have a chiral center and is both 
stable and applicable in the protection of alcohol.9 Furthermore, silyl ethers are easily prepared, 
show resistance to oxidation, good thermal stability, low viscosity, and are easily recoverable 
from their parent compound.10 
 

(22.2±10.9℃), boiling-point (90.4±8.0℃ at 760 mmHg), densit 
(1.2±0.1 g/cm3), and vapor pressure (34.4±0.3 mmHg at 25℃).11

Known physical properties of cyclopropanol include index of 
refraction (1.526), molar volume (50.2±3cm3), flash point 
(22.2±10.9℃), boiling-point (90.4±8.0℃ at 760 mmHg), density 
(1.2±0.1 g/cm3), and vapor pressure (34.4±0.3 mmHg at 25℃).11
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Known physical properties of cyclopropanol include index of refraction (1.526), molar volume 
(50.2±3cm3), flash point (22.2±10.9℃), boiling-point (90.4±8.0℃ at 760 mmHg), density 
(1.2±0.1 g/cm3), and vapor pressure (34.4±0.3 mmHg at 25℃).11  
 
The goal of this project is to synthesize anhydrous cyclopropanol from 1,3-dichloro-2-propanol. 
The approach to this project is to eliminate by-products and not allow an isomerization reaction 
to allyl alcohol while maintaining anhydrous conditions.  
Starting with a halogenated straight chain hydrocarbon and protecting the alcohol could possibly 
lead to a reductive ring closure reaction that would occur in a non-aqueous solvent. It is 
important to protect the alcohol since there would be a competing reduction of the alcohol’s 
acidic proton and competing intramolecular substitution to form epichlorohydrin. Lastly, the 
removal of the protecting group could potentially allow a high yield of cyclopropanol. The 
overall strategy is summarized below in Scheme 1.  
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Results  

 
Figure 1: IR of starting material 1,3-dichloro-2-propanol.  
 

 
Figure 2: IR indicating the –OH functional group is no longer present.  
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Results

Figure 1: IR of starting material 1,3-dichloro-2-propanol.

Figure 2: IR indicating the –OH functional group is no longer present.

Figure 3: NMR with a doublet around 0.8ppm in crude product
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Figure 3: NMR with a doublet around 0.8ppm in crude product  
 
Experimental  
Dichloromethane, 50 mL, and a magnetic stir-bar were added to a 250-mL round bottom flask. 
Imidazole, 3.3318 g (16.26mmol), dissolved in 10 mL of dichloromethane was added to the 
flask.  Approximately 2.35 mL (25mmol) of 1,3-dichloro-2-propanol was added to the flask 
using an appropriate syringe. t-Butyldimethylsilyl chloride (TBDMSiCl), 8.1556 g (18mmol) 
dissolved in 10 mL of dichloromethane, was transferred under argon to an addition funnel along 
with an additional 30 mL of dichloromethane. The flask was placed under a slight positive 
pressure of argon. The TBDMSiCl solution was added drop-wise over a period of 48 hours at 
room temperature. Vacuum filtration was performed to separate the precipitate.  An extraction 
was performed three times with deionized water and magnesium sulfate was added to the organic 
liquid.  The solution dried for 24 hours. An IR spectrum was taken, using a Perkin Elmer 1500 
Series FTIR, (neat liquid on a polyethylene IR card) to check for any trace of alcohol; IR 
confirmed none was present. Vacuum filtration was performed to remove the drying agent.  A 
rotary evaporator was used to remove the solvent. The product recovered was clear. An IR 
spectrum of product was taken as well as an 1H-NMR, which showed volatile impurities; 
therefore, rotovap was performed a second time. 1H-NMR of this purified product was taken, 
spectrum seen in Figure 3. Each 1H-NMR taken had TMS as the solvent.  
 
Discussion  
A white precipitate and yellowish liquid were formed during the reaction of the alcohol with the 
silylating agent.  After vacuum filtration, IR confirmed no alcohol was present in the solution, as 
seen in Figure 2. Also, the doublet present around 3000 cm-1 and second doublet around 1500 
cm-1 represent the presence of TBDMSiCl and are consistent with those found in literature. 1H-
NMR of the crude protected alcohol showed a doublet was present at 0.76 ppm with an 
integration number of 8.560 as shown in Figure 3. It is believed that this doublet is actually two 
singlets representing conformational isomers, which is consistent with restricted rotation due to 
the bulky t-butyl group. 
 

Dichloromethane, 50 mL, and a magnetic stir-bar were added to a 
250-mL round bottom flask. Imidazole, 3.3318 g (16.26mmol), 
dissolved in 10 mL of dichloromethane was added to the flask. 
Approximately 2.35 mL (25mmol) of 1,3-dichloro-2-propanol was 
added to the flask using an appropriate syringe. t-Butyldimethylsilyl 
chloride (TBDMSiCl), 8.1556 g (18mmol) dissolved in 10 mL of 
dichloromethane, was transferred under argon to an addition funnel 
along with an additional 30 mL of dichloromethane. The flask was 
placed under a slight positive pressure of argon. The TBDMSiCl 
solution was added drop-wise over a period of 48 hours at room 
temperature. Vacuum filtration was performed to separate the 
precipitate. An extraction was performed three times with deionized 
water and magnesium sulfate was added to the organic liquid. The 
solution dried for 24 hours. An IR spectrum was taken, using a Perkin 
Elmer 1500 Series FTIR, (neat liquid on a polyethylene IR card) to 
check for any trace of alcohol; IR confirmed none was present. Vacuum 
filtration was performed to remove the drying agent. A rotary 
evaporator was used to remove the solvent. The product recovered 
was clear. An IR spectrum of product was taken as well as an 1H-NMR, 
which showed volatile impurities; therefore, rotovap was performed 
a second time. 1H-NMR of this purified product was taken, spectrum 
seen in Figure 3. Each 1H-NMR taken had TMS as the solvent.

A white precipitate and yellowish liquid were formed during the 
reaction of the alcohol with the silylating agent. After vacuum 
filtration, IR confirmed no alcohol was present in the solution, as 
seen in Figure 2. Also, the doublet present around 3000 cm-1 and 
second doublet around 1500 cm-1 represent the presence of 
TBDMSiCl and are consistent with those found in literature. 1H- NMR 
of the crude protected alcohol showed a doublet was present at 
0.76 ppm with an integration number of 8.560 as shown in Figure 3. 
It is believed that this doublet is actually two singlets representing 
conformational isomers, which is consistent with restricted rotation 
due to the bulky t-butyl group.

Experimental

Discussion
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Figure 4: Literature 1H-NMR of 1,3-dichloro-2-propanol 
 
The remaining features of the spectrum are consistent with the target compound. Peaks present 
around 4.00, 3.50, and 2.00 ppm indicate the presence of TBDMSiCl. Comparing Figures 3 and 
4, differences are noticed in peak positions.  
Future work will determine if the desired product was formed. Firstly, vacuum distillation or 
chromatographic purification of the protected alcohol product must be done. 13C-NMR will 
check for impurities. Various reducing agents can be used such as magnesium, lithium, sodium 
amalgam, or zinc amalgam to form the ring closure. After ring closure, the protecting group must 
be removed. Removal can be done with tetrabutylammonium fluoride in THF under anhydrous 
conditions. It is important to note that none of these steps involves the use of water.  
 
Conclusion  
A Schlenk technique resulted in the protection of the alcohol group in 1,3-dichloro-2-propanol 
using silylating agent t-butyldimethylsilyl chloride. Comparison between literature values and 
experimental values in FTIR and 1H-NMR confirmed the protection. Future work including 
vacuum distillation, ring closure using reducing agents, and removal of protecting group through 
the use of tetrabutylammoinium fluoride in THF under anhydrous conditions can possibly form 
anhydrous cyclopropanol.  
 
References 
1. Kulinkovich, O.G. The Chemistry of Cyclopropanols. J. Am. Chem. Soc. 2002. 103, 2597-
2632. 
2. DePuy, C.H.; Mahoney L.R.. The Chemistry of Cyclopropanols. I. The Hydrolysis of 
Cyclopropyl Acetate and the Synthesis of Cyclopropanol. J. Am. Chem. Soc. 1963. 86 (13) 2653-
2657. 
3. DePuy, C.H.; Gibson D.H. Cyclopropanol Chemistry. J.Am. Chem. Soc. 1973. 1974 (6) 605-
623.  
4. Gerdil, R. Helv. Chim. Acta.1970. 53 2100. 
5. Cudre, Y.; Fernandez-Zumel, M.A.; Risse, J.; Severin, K. Synthesis of Tri-fluoromethyl-
Substituted Cyclopropanes via Sequential Kharasch Dehalogenation Reactions. Org. Lett. 2012. 
14 (12) 3060-3063. 
6. Cottle, D.L.; Magrane J.K. The Reaction of Epichlorohydrin with the Grignard Reagent. J. 
Am. Chem Soc. 1941. 65 483-487.  

  

12 11 10 9 8 7 6 5 4 3 2 1 0

240 220 200 180 160 140 120 100 80 60 40 20 0
CDCl3 QE-300   

Figure 4: Literature 1H-NMR  of 1,3-dichloro-2-propanol

The remaining features of the spectrum are consistent with the 
target compound. Peaks present around 4.00, 3.50, and 2.00 ppm 
indicate the presence of TBDMSiCl. Comparing Figures 3 and 4, 
differences are noticed in peak positions.

Future work will determine if the desired product was formed. 
Firstly, vacuum distillation or chromatographic purification of the 
protected alcohol product must be done. 13C-NMR will check for 
impurities. Various reducing agents can be used such as magnesium, 
lithium, sodium amalgam, or zinc amalgam to form the ring closure. 
After ring closure, the protecting group must be removed. Removal 
can be done with tetrabutylammonium fluoride in THF under 
anhydrous conditions. It is important to note that none of these 
steps involves the use of water.

A Schlenk technique resulted in the protection of the alcohol group 
in 1,3-dichloro-2-propanol using silylating agent t-butyldimethylsilyl 
chloride. Comparison between literature values and experimental 
values in FTIR and 1H-NMR confirmed the protection. Future work 
including vacuum distillation, ring closure using reducing agents, and 
removal of protecting group through the use of tetrabutylammoinium 
fluoride in THF under anhydrous conditions can possibly form 
anhydrous cyclopropanol.

Conclusion
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Intrinsically disordered proteins (IDPs) are an interesting class of highly dynamic, typically 
regulatory, proteins. They lack a native three-dimensional fold, but often acquire a stable, 
ordered structure upon interaction with a binding partner. Various IDPs have been reported 
to exist in cells as ordered oligomers or disordered aggregates, often resulting in disease. In 
particular, stathmin is a regulatory IDP involved in the disassembly of cytoskeletal 
microtubules. As such, it is essential for proper cell function (i.e., processes coordinating the 
cell cycle, maintaining cell shape, etc.); improper regulation of stathmin activity has been 
linked to neurodegenerative diseases, mental disorders, and various cancers. It is thus 
important to study the solution-phase structure and conformational dynamics of stathmin, 
as they likely emulate the protein’s behavior in cellular environments. Upon obtaining 
preliminary Native-PAGE results that indicated multiple stathmin complexes of varying mass, 
we hypothesized that it may exist as an oligomer in solution, which contradicts previous 
observations of a purely monomeric state as seen by analytical ultracentrifugation. We thus 
obtained static multi-angle light scattering data for stathmin solutions of varying 
concentrations, which show distinct concentration-dependent variation on measured particle 
size, as expected from an equilibrium system of monomers and oligomers. To investigate this 
further, we then performed site-directed spin labeling (SDSL) electron paramagnetic 
resonance (EPR) spectroscopy on multiple singly- and doubly-labeled stathmin mutants. 
Interestingly, the resulting EPR data all exhibit ‘complex’ (multicomponent) spectra, which 
could be easily deconvoluted and interpreted. In each case, one spectral component 
exhibited the predicted high-mobility – but ordered – state of a nitroxide side chain tethered 
to a stable alpha helix. The other spectral component, on the other hand, was substantially 
broadened due to the dipolar interaction, implying the close proximity of two or more spin 
labels, likely due to dimerization or higher-order oligomerization. Upon dilution of the 
spin-labeled proteins with unlabeled wild-type stathmin, the spectral weight of the 
dipolar-broadened component was significantly reduced. The data collectively presented 
herein support our hypothesis that stathmin exists as an oligomer in solution. These results 
have important implications on our understanding of the conformational dynamics of this 
IDP and the roles that oligomerized or aggregated IDPs have in diseases.

Abstract

The Intrinsically Disordered Protein Stathmin Exists as an Oligomer in Solution, 
as Measured by Static Light-scattering and Dipolar Broadening EPR Spectroscopy.
Department of Chemistry and Biochemistry, California State University, Fullerton
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Here we report the utility of time-domain electron paramagnetic resonance (EPR) 
spectroscopy for the direct detection of tobacco etch virus (TEV) protease activity. Our target 
substrate for monitoring the action of the protease was a fusion protein construct consisting 
of maltose binding protein linked to the intrinsically disordered protein ‘stathmin’ by the TEV 
protease-specific amino acid sequence (ENLYFQG). We used site-directed mutagenesis and 
nitroxide spin labeling to probe local motion at specific sites in the stathmin portion of the 
fusion construct (i.e., at residues 3, 12, 54, 74, 91, 113, and 146). Spin labeling involves the 
attachment of an EPR-active nitroxide side chain to a cysteine residue and the relative mobility 
of the spin label is directly reported via its exhibited EPR spectrum. As such, we were able to 
monitor the cleavage of the fusion construct by an increase in the observed motion of the 
stathmin-bound nitroxide. The spectra recorded over the course of the proteolysis reaction 
were globally fit by using a simple Michaelis-Menten model. Km and kcat were extracted from 
these fits and were compared to previously published values. While the Km values 
(0.103 ± 0.011 mM) recorded for most mutants spin labeled in the C-terminal end or middle 
of the protein agreed well with those in the literature, their kcat  values (0.028 ± 0.005 s-1) 
were consistently lower, approximately one-eighth of the published values. This might suggest 
that the intrinsically disordered protein portion of the fusion construct interacts with the 
protease while bound to it, interfering with the expected catalytic activity though not affecting 
substrate binding. Another interesting result is that the presence of the neutral-polar spin 
label close to the peptide ‘cut site’ itself (i.e., a nitroxide at residue 3 in stathmin) appears to 
dramatically increase the binding affinity of the peptide to the protease, as evidenced by a 
notably smaller Km value (0.022 ± 0.003 mM). This suggests that TEV protease activity is 
strongly dependent on not just the sequence of peptide cut-site, but also the polarity and 
charge make-up of nearby residues.

Abstract

Michaelis-Menten Kinetics of TEV Protease as Observed by Time-domain EPR 
Spectroscopy
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In northern Deep Springs Valley (DSV), between Owens Valley and 
Death Valley, California, Miocene-Pliocene-age, olivine basalts lie on 
the valley floor and atop the adjacent White/Inyo Mountains to the 
west and the Deep Springs Range to the east. Previous geologic 
mapping shows the DSV basalt flows and the Last Chance Range (LCR) 
basalts found to the southeast are the same geologic unit with a 
source in the White/Inyo Mountains. The basalts in northern DSV are 
offset ~400 m by the Deep Springs fault and have a K/Ar age of 10.8 Ma.

To determine if the olivine basalts found in the region are all 
from the same source, four samples were collected in a linear pattern 
from west to east across northern DSV. The samples were powdered 
and analyzed for major and trace element composition by X-Ray 
Fluorescence spectrometer (XRF). 

Trace-element plots (e.g., Ba, Nb, Zr, Y, Ce, etc.) show that the 
DSV basalts are similar and are likely from the same source; however, 
the composition of the DSV basalts are distinct from the LCR basalts. 
I interpret this data by presenting the DSV and LCR basalts have 
different sources and should not be mapped as the same geologic 
unit. The likely source of the DVS basalts is in the White/Inyo Range. 
The geochemical correlation shows that the DSV basalts flowed NW 
to SE in a paleochannel 10.8 Ma and that DSV did not exist at that time. 

Questions exist about the possible dispersal pathways of various 
ancient species such as the pupfish (Knott et al., 2008; Phillips, 2008; 
Echelle, 2008). Early hypotheses suggested that pupfish dispersed 
along the ancient rivers and lakes of eastern California about 20,000 
years ago (Blackwelder, 1933); however, biological studies show that 
this is an insufficiently short time period and a more realistic time is 
about 4 Ma (Smith et al., 2002). A 4,000,000 year time frame allows 
for plate tectonic motions to impact migration pathways. Reheis 
and Sawyer (1997) hypothesized that basalt flows of the White 

Abstract
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Geochemical Correlation of Basalts in Northern Deep Springs Valley, California, 
by X-Ray Fluorescence Spectroscopy (XRF)
Department of Geological Sciences, California State University, Fullerton

Aaron Justin Case
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Mountains occupied ancient river channels and flowed possibly as far 
southeast as Death Valley. Basalt flows found atop the White 
Mountains, Deep Springs Range (DSR) and Last Chance Range (LCR) 
are all mapped as the same geologic unit (Tb; McKee and Nelson, 
1967; Wrucke and Corbett, 1990) presenting the possibility that one 
flow emanated from the White Mountains and possibly reached 
Death Valley, thus showing the possible ancient river trace that would 
connect pupfish populations. 

In this study, I present geochemical analyses of the basalt flows 
of the northern DSR. These basalts are the first key link between the 
White Mountains and Death Valley. I will then compare these data 
with basalts atop the LCR to the southwest to try and show that 
these are or are not the same basalt flow and potential pathway for 
pupfish dispersal. 

Figure 1: Eastern California/ Southern Nevada area showing mountain ranges 

and valleys. The box is the research area.
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Deep Springs Valley (DSV) is located about 37±1 kilometers (~23±1 
miles) east of Bishop, California. DSV is a 25 kilometers long closed 
basin between the southern White Mountains and the northern Inyo 
Mountains (Figure 1). The olivine basalts crop out in the north end of 
DSV (Figure 2). The east side of DSV is bounded by the DSR. At the 
base of the DSR is the north-northeast striking, normal slip Deep 
Springs fault zone (Reheis and Sawyer, 1997). 

Location

Background

Figure 2: Deep Springs Valley area showing Mountain Ranges and Valleys 

zoomed in. The box is the research area. 

Observations indicate that ancient basalts flowed downhill along 
ancient riverbeds (Dalrymple, 1963). Dalrymple (1963) determined 
by whole-rock K/Ar that the olivine basalts with locally scoriaceous 
features in the DSV and the White Mountains are 10.8±0.1 Ma. A tuff 
below the basalt yields an age of 10.8±0.1 Ma. 

McKee and Nelson (1967) mapped olivine basalt flows (Tb) in 
the northern DSV, DSR and LCR (Figure 3). These flows span from 
the Inyo Mountains east to Piper Mountain in the DSR. McKee and 
Nelson (1967) show the basalt offset by strands (west side down) 
normal faults of the Deep Springs fault zone (Figure 4). Most of these 
normal faults do not offset the older alluvium (Qoa); however, one 
north-trending normal fault produces a scarp in the Qoa. All of the 
faults are buried by the younger alluvium (Qa) and alluvial fan (Qf) 
deposits. Thus, the Deep Springs fault zone began sometime after 10.8 
Ma, but has not produced ground rupture since deposition of the Qoa. 

Krauskopf (1971) listed a 4.8 Ma K/Ar age for olivine basalts with 
locally scoriaceous features (Tb); however, this basalt is actually not 
in the White Mountains, but across Fish Lake Valley to the northeast. 
Krauskopf mapped a basalt overlying rhyolite tuff near Cottonwood 
Creek in the White Mountains, which is the likely location of Dalrymple’s 
(1963) 10.8 Ma basalt.  

Reheis and Sawyer (1997) proposed that basalts of the Deep 
Springs/Eureka Valley area flowed from the White/Inyo Mountains 
to the LCR and had the same source. They wrote “major oxide and 
trace elements analyses indicate that the basalts are from the same 
sequence of flows or at least share a common parentage” (Reheis 
and Sawyer 1997, pg. 284). They showed paleo-channels locations 
and report the 10.8±0.1 Ma K/Ar age of Dalrymple (1963) for the 
basalt at Piper Mountain. Correlation of the Piper Mountain basalt 
with those dated in the White Mountains by Dalrymple (1963) is 
reasonable; however, McKee and Nelson (1967) mapped sedimentary 
rocks below the Piper Mountain basalt, not a rhyolite like Dalrymple 
(1963). One drawback to the correlation of basalts in the White/Inyo 

Range is that there are no published geochemical analyses of the 
White Mountain basalts. 

Ormerod et al. (1988; 1991) showed that basalts of the Great 
Basin have a unique ratio of Zr/Ba. They used these two elements 
rather than Nb because the concentration of Nb is relatively low and 
subject to analytical error. Zr and Ba are both relatively immobile 
elements in basalt magmas and Ormerod et al. (1988; 1991) showed 
that the ratio is consistent and indicative of magma source. They 
found that basalts with Zr/Ba ratios <0.2 are greater than 5 Ma at 
the latitude of Bishop and indicate a lithospheric contamination. In 
contrast, basalts with a Zr/Ba ratio >0.2 are younger than 5 Ma and 
indicate an asthenosphere source. 

Kempton et al. (1991), also working on Great Basin basalts, 
found that there was significant variation in Ce and Y concentrations. 
They used the ratio of Ce/Y to illustrate the fractionation of rare-earth 
elements in various magma sources. 

Pluhar et al. (2005) showed that X-ray Fluorescence spectroscopy
(XRF) effectively sorted out different basalt flows of the Coso Volcanic 
field, California, just southwest of Deep Springs Valley and part of 
the Great Basin. Many of the Coso basalts were thought to be the 
same; however, Pluhar et al. used Harker diagrams and plots of Rb/
Nb vs. Sr/Zr to segregate different basalts from the same source. 
Manoukian (2012) analyzed basalts from the LCR by XRF as well. 
Miller and Wrucke (1995) reported a K/Ar age of 5.5 Ma for the basalt 
analyzed by Manoukian.
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Figure 3: The upper part isa portion of the Soldier Pass 15’ quadrangle 

geologic map by McKee and Nelson (1967). The lower portion is a 

Google Earth image of the same area. The unit Tb in the red boxed 

area is olivine basalt and the sample locations are shown on both. The 

cross section along A-A’ is shown in Figure 4.

Figure 4: Cross section of northern Deep Springs Valley by McKee and Nelson (1967).
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I will test the following hypotheses by completing XRF analysis on 
basalt samples of northern DSV:

If the olivine basalts in northern DSV are the same, then  
they should all have the same geochemical composition.
If the olivine basalts in northern DSV are different, then they 
should all have different geochemical compositions. 
If the olivine basalts in northern DSV and the LCR have the 
same source, then the geochemical compositions would be 
the same proving that the olivine basalts came from the LCR.
If the olivine basalts in northern DSV and the LCR have 
different sources, then the geochemical compositions would 
be different which would prove the source had a different 
origin such as the White Mountains located in the northwest.

Objective

I collected basalt samples (Figure 5) from four locations in northern 
Deep Springs Valley. Each sample will be described in the field and 
the location recorded using a hand-held GPS (Table 1.) 

I used XRF to determine the geochemical composition of each 
sample collected. The XRF uses x-rays to excite the electrons of the 
elements. When the electrons become excited, they jump an electron 
shell and when returning back to its original state, energy is released 
as light. The amount and wavelength of the light indicates the 
quantity and types of major and trace elements present. The data 
was analyzed and data reduction completed at Pomona College.

Methods

Figure 5: Photograph (above) of outcrop 

where AJC-DSV-0528-13-2 was collected. In 

the low background is the location of sample 

3 with the location of sample 4 on the skyline 

atop Piper Mountain. At left is a close-up of 

sample 2 location. 

Table 1: Universal Transverse Mercator coordinates of samples collected. Coordinates were 
determined with a hand-held GPS receiver and are in sections 11S

The main results are XRF analysis of whole-rock samples (Table 2). 
The data collected is relatively well behaved. One sample (AJC-
DSV-052813-4) was randomly chosen to be run twice to measure 
accuracy. For the duplicate samples, the Relative Standard Deviation 
(RSD) ranged from 0.0% to 254%. The highest RSD was for Ta at 
491.9%. The concentrations of Ta for all five AJC samples ranged 
from -2.5 ppm to 2.9 ppm The negative values clearly indicate poor 
data, as a result, Ta was no longer considered for data analysis.

Beside Ta, U and Th also had RSD results of 47% and 70%, 
respectively. The concentration of U ranged from 0.7 to 4.9 ppm 
whereas the concentration of Th ranged from 0.9 to 4.3 ppm. These 
concentrations are very low and the range produces a mean with a 
high standard deviation. The explanation for the wide range of 
concentration of U and Th is probably related to the large atomic 
radius that may result in excessive interferences. 

Excluding Ta, U and Th, the RSDs for the remaining elements 
and oxides for the duplicate samples range from 10-15% (Sm, Nd, 
Pb), 5-10% (Cr, Cu, Ni, Zn, Zr, Ce, La, Nb) and less than 5% for the 
remaining elements and oxides. In general, I regarded RSDs less than 
10% for the duplicate analyses as acceptable and indicate that the 
particular concentration of that element or oxide was acceptable for 
data evaluation. 
The Total Alkali Silica (TAS) diagrams (Figure 6) distinguish igneous 
rocks geochemically using the Silica (Si) and Total Alkali (K2O + 
Na2O). The DSV samples plot in the basalt field. 

Results and Discussion

1.

2.

3.

4.

AJC-DSV-
052813-1
411661E 413804E 414430E 416827E
4141290N 4140912N 4141141N 4140683N

AJC-DSV-
052813-2

AJC-DSV-
052813-3

AJC-DSV-
052913-4
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Table 2: X-Ray Fluorescence Data. Concentrations are in parts per million unless labeled as weight percent (%).
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Pluhar et al. (2005) used ratios of Rb/Nb and Sr/Zr for “lava 
fingerprinting”. A plot of Rb/Nb vs. Sr/Zr shows that the DSV basalts 
are distinct from the Coso basalts (Figure 7). The DSV basalts show 
quite a range of Rb/Nb ratios. This is likely the result of the relatively 
low Nb concentration as described by Ormerod et al. (1988). Ormerod 
et al. (1988; 1991) and Kempton et al. (1991) both noted that the 
unusually low concentration of Nb led to potential analytical errors. 
They found that ratios of Zr/Ba and Ce/Y adequately distinguished 
basalt flows of differing age and tectonic setting. 

A plot of Zr/Ba vs. Ce/Y shows that the 10.8 Ma DSV basalts 
have a ratio of Zr/Ba <0.2 (Figure 8). This is consistent with Ormerod 
et al.’s hypothesis that basalts >5 Ma have Zr/Ba ratios <0.2 as a 
result of lithospheric contamination by the subducted Farallon plate. 
Plotting Manoukian’s XRF results on the Rb/Nb vs. Sr/Zr diagram 

shows that the LCR basalts plot in a separate cluster from both the 
Coso and DSV basalts (Figure7). Plotting the LCR basalts on the Zr/
Ba vs. Ce/Y diagrams (Figure 8) shows that the LCR basalts have a 
Zr/Ba ratio >0.2. A ratio of >0.2 is attributed to mantle magmas <5 
Ma and a asthenosphere source. This >0.2 Zr/Ba ratio conflicts with 
Miller and Wrucke’s (1995) whole-rock 5.5 Ma K/Ar age. One possible 
explanation is that Ormerod et al.’s observations are inconsistent. 
Alternatively, the K/Ar date is incorrect. The latter is more likely 
considering that a preliminary 40Ar/39Ar date (sanidine) on a rhyolite 
tuff that underlies the basalt is ~3.5 Ma. 

The linear trend of Ce/Y shows that AJC-DSV-052813-1, -3 & -4 
are from the same flow (Figure 8). The offset of AJC-DSV-052813-2 
from the others suggests that this was separate flow or some process 
impacted the Zr/Ba ratio as the basalt cooled. 
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Conclusions, Significance, and Future Works
Geochemical data (Zr/Ba vs. Ce/Y) show that the DSV basalts are 
different from the LCR basalts in a similar geomorphic position atop 
each range. The Zr/Ba ratio indicates that DSV basalts erupted prior 
to 5 Ma whereas the LCR basalts erupted after 5 Ma or after the 
Mendocino triple junction move north of Bishop. This different 
Zr/Ba ratio indicates that the DSV basalts and LCR basalts had 
different magma sources. 

Because the olivine basalts in the northern DSV are the same, 
then when the flows erupted, there was a topographic low (e.g. 
ancient river channels) that allowed the basalts to flow southeast 
from the White/ Inyo mountains to the Deep Springs Range. That 
would indicate that Deep Springs Valley and the Deep Springs Range 
did not exist. If this is true, another hypothesis arises in which we can 
calculate the minimum slip rate of the Deep Springs fault zone by 
taking the ~400m offset of the basalt flow and the 10.8±0.1Ma age to 
determine an estimated minimum 0.04 mm/yr slip rate.

These data show that there are different basalts of differing age 
in the Deep Springs/Eureka/Last Chance region. Correlation of the 
DSV basalts indicates that a flow from the White Mountains traveled 
to at least Piper Mountain in the DSR and shows that there was a 
possible river channel that connected the White Mountains with the 
LCR to the southeast. As to whether the channel extended further 
east to Death Valley or turned south is unknown; however, this 
potential dispersal pathway is not eliminated at this time.

Future work should include sampling of additional basalts found 
to the northwest and southeast of DSV. Some new geochronology of 
the basalts should also be done to improve the existing K/Ar chronology. 
Additional analytical data, such as mass spectrometry, should be 
done to improve the precision and accuracy of the geochemical 
character of the rocks. 

Zr/Ba
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The Los Penasquitos Marsh is one of a series of coastal wetlands between San Diego and 
Orange County that formed within stream valleys that flooded and filled with sediment 
during Holocene sea-level rise.  In order to test the hypothesis that these wetlands contain 
prehistoric tsunami deposits, within the normal wetland sediments, 21 reconnaissance cores 
between 48 and 321cm in length were collected and described in the field.  Nearly all the 
sediment cores contained a peaty layer in the top 5-25cm, underlain by dark brown and black 
mud, above interbedded fine-medium gray sand and mud.  The stratigraphy in the cores is 
consistent with the complete infilling of a lagoon behind a baymouth bar of sand, a ‘drowned 
river valley’.  Five of the cores taken, ranging from 1.0-1.5 km inland from the present day 
beach, intersect a distinctive 0.5 – 12.0 cm-thick shell-hash and muddy sand layer between 
233 and 280cm depth.

Based on this discovery we collected a 285cm long 5cm diameter piston core to further 
analyze this possible tsunami deposit.  In this larger core the 10 cm-thick shell hash layer 
consists of angular shell fragments up to 3cm in size, in a muddy sandy matrix that includes 
the following genera: Mitrella, Venus, Spirotropis, Pecten, Nassarius, and an unidentified 
oyster.  This fossil assemblage suggests a quiet water marine source for the shell hash debris– 
from the lagoon and/or offshore, not typical of low energy fine grained comparatively well 
sorted wetland sediments.  The core was analyzed for loss on ignition (LOI) at both 550° and 
950°C and magnetic susceptibility (ms).  The LOI550 data is unremarkable, and the LOI950 
data shows an expected spike in mass percent of carbonates within the shell-hash layer.  The 
ms data shows low values for the lagoonal muds and sands, but a pronounced spike within 
the shell hash layer, where the average reading more than doubles from 2.0 to 4.6.  We 
hypothesize that the anomalously high ms value for the shell hash layer indicates a substantial 
component from an offshore source, where heavier magnetic minerals accumulated seaward 
of the baymouth bar, but were subsequently swept back inland into the lagoon. If correct this 
layer may represent a large-wave event, either storm or tsunami.  Three C-14 dates on shell 
fragments cluster between 1380-1420 yrs BP. 
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Possible Shell-Hash Tsunami Deposit at the Los Penasquitos Marsh, 
San Diego County, CA.
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Jeremy Cordova
Advisor: Dr. Brady Rhodes
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The Seal Beach Marsh is located inside the Seal Beach Naval Weapons Station in north 
Orange County, CA. The wetland formed as a result of flooding and infilling of topographic 
lowlands during early Holocene sea-level rise. The Seal Beach marsh may contain a record 
of prehistoric tsunami and other paleoseismic data because the marsh is a low-energy 
depositional environment and historic anthropogenic disturbance is limited. To test if the 
marsh has a record of tsunami, sixteen reconnaissance gouge cores between 150 and 240 
cm in length were collected and described in the field. The reconnaissance cores showed 
peaty organic layers interbedded with mud and sand. To investigate the stratigraphy at 
greater depths, a 377-cm vibracore was collected. Preliminary analyses of the vibracore 
show the top 15 cm is modern marsh. From 15 to 107 cm below land surface (bls), peaty mud 
and mud of varying thicknesses are interbedded. At 118 cm bls, a 10-cm thick sand layer 
covers mud at a sharp irregular contact. A 10-cm sand layer with an irregular basal contact 
at 137-cm bls covers peaty mud that consists of 50% organic matter. Peaty mud transitions 
to mud at 140 cm bls. Alternating mud and muddy sand layers of varying thickness continue 
to 246 cm bls. At 250 cm bls, a 2-cm thick mud layer caps a muddy peat layer. Mud at 270 
cm bls extends down until a sharp irregular contact is made with a sand layer at 356 cm. 
A 21-cm thick sand layer marks the base of sediment recovery in the vibracore.  The core 
was analyzed for loss on ignition (LOI) at 550°C (% total organic matter) and 950°C (% total 
carbonate) as well as magnetic susceptibility (CHI) at 1-cm intervals.  These analyses confirm 
the existence of several organic-rich zones alternating with organic-poor mud.  Our working 
hypothesis is that these peaty layers represent repeated subsidence of the marsh, perhaps 
related to seismic activity on the Newport-Inglewood Fault zone. 
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There has been a substantial amount of research concerning south-
ern California’s potential and vulnerability to tsunami activity. 
Near-field or local tsunamis can be generated by submarine landslides 
and/or earthquakes. As many as 20 tsunamis have breached the coast 
of California within the past two centuries, but none have been 
reported since 1800 (Eisner et al., 2001). One of the earliest is thought 
to be the Santa Barbara, southern California tsunami of 1812, which 
damaged over 60km of Santa Barbara’s coast (Toppozada et al., 1981; 
Lander et al., 1993). Southern California need only generate a 
M > 6.5 earthquake along one of the offshore fault lines to create a 
near-field tsunami (Mcculloch, 1985). Seal Beach lies above an active 
right-lateral strike-slip fault known as the Newport-Inglewood fault 
zone (NIFZ) (Vedder, 1975; Wright, 1991; Grant et al., 1999). The Seal 
Beach environment is a known lowland trough and susceptible to 
fault zone activity causing this localized depression. Today, the 
coast is heavily developed and populated thus making tsunami 
research important.  

A 344cm sediment core extracted from the subsurface of 
the intertidal salt marsh at Seal Beach, Orange County, southern 
California was examined to determine if there is any evidence for 
past tsunamis. The objective of this study is to identify paleotsunami 
units in southern California’s marsh stratigraphy and to compare 
the sedimentological data to that of others extracted from southern 
California, and elsewhere. Tsunami deposits are identifiable by the 
types of deposits left in the sediment. High energy transportation is 
usually propagated by tsunamis or storms capable of carrying fairly 
large (≤0.5 m diameter) shells, coral, and sand in low energy 
environments such as swamps, mangroves, and marshes. Discerning 
the two has been the focus of several studies (Nanayama et al., 2000; 
Goff and McFadgen, 2004; Tuttle et al., 2004; Morton et al., 2007). 
Because tsunamis can travel several hundreds of meters inland, they 
are capable of leaving fairly thick deposits, some of which have been 
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calculated up to 25cm on the Pacific coast. The coarser material 
tends to settle first, followed by the finer material due to wave 
deceleration (Morton et al., 2007). Grain size characterized by tsunamis 
can range from mud to boulders, but are commonly sand sized 
particles (Kawata et al., 1999). Deposits can be mixed under peat, 
given the wetland environment. Single or several beds of normally 
graded sand, mud laminae, and coral and shell debris all suggest 
tsunami deposits (Rhodes et al., 2011). Furthermore, many tsunami 
deposits thin landward.  

Core sediment was attained using a vibracore, which penetrated 
the subsurface to a depth of 344cm. The core was split, described, 
photographed, sampled, capped, and stored in a cold storage facility 
at California State University, Fullerton. Multi-proxy methods were 
used to describe the core including: descriptive analysis, magnetic 
susceptibility (CHI), and loss on ignition (LOI) at 550°C (% total 
organic matter) and 950°C (% total carbonate). The stratigraphic 
record preserved in the subsurface sediments of this coastal wetland 
does not show definitive evidence of rapid debris transport. We see 
none of the indicators that characterize a tsunami deposit. Alternating 
sand and mud layers were identified both visually and through 
magnetic susceptibility. These sand layers do not necessarily indicate 
tsunamis, but perhaps a dynamic environment of materials washing 
into Seal Beach. High CHI values (above 5×10−7 m3kg−1) represent 
a sandy or muddy magnetite-rich environment from a terrestrial 
source, such as a beach, stream flow, or flooding. There is an unusual 
sand intrusion feature (Unit I) between 202cm - 215cm depth. Unit 
I is an interesting interface of mud and sand, with softer overlying 
sediment surrounding a denser sand injection. This feature may 
have been due to subsidence caused by NIFZ activity. The structure 
could also be a result of liquefaction. It closely represents that of 
a sand or clastic dike, which are associated with storm events and 
earthquakes. Another common feature in stratified sands are flame 
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structures, which resemble this intrusion. These flame structures 
are formed from seismic activity and density variation between the 
stratified layers. Further research may characterize this structure and 
thus the causal event.
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The Bird Spring Formation has gone through two separate metamor-
phism events; of faulting-induced metasomatism and contact 
metamorphism. A coarse grained white cream dolomite has gone 
through metasomatism and metamorphism is compared to a white 
coarse grained marble with grossular garnet and epidote that has 
gone through metasomatism and a different grade of metamorphism. 
Both of these are compared to a coarse grained white gray surface 
of marble, which has gone through metamorphism. Most samples 
contained high amounts of calcium. Few samples contained iron 
or magnesium. While these units do not have high abundances of 
precious elements, they still give insight into crystal formations. The 
grossular garnet is a prime spot for the element vanadium. Another 
element, strontium, does not fit into the chemical structure of 
grossular garnet and is located within the other samples. These
 findings determine the chemical structures that these elements prefer. 

The geologic history of this region is best summarized by Burchfiel 
and Davis (1977) and Miller and Wooden (1993), and their results 
will be summarized here. The underlying bedrock of the New York 
Mountains is Precambrian gneiss (Pcgn).  This unit consists of both 
meta-igneous and metasedimentary rocks with potassium 
feldspar augens. 

Unconformably overlying gneiss is the Cambrian Tapeats 
Sandstone (Ct), which is overlain by the Cambrian Bright Angel Shale 
(Cba), which is interbedded with calc-silicate and pelitic hornfels due 
to localized metamorphism. 

The Cambrian Bonanza King Formation (Cbz) unconformable 
overlies the Bright Angel Shale, and is subdivided into the lower 
Papoose Lake member (Cbl) and the Banded Mountain member 
(Cbu). The lower Papoose Lake is interbeded with calcite and dolomite 
that has locally been metamorphosed to marble.  

Overlying the Bonanza King is the Cambiran Nopah Formation 
(Cn), which is a coarse-grained white dolomite unit underlain by 
shale known as the Dunderberg Shale Member (Cd). Atop the 
Nopah Formation is the Devonian Sultan Limestone (Ds), which 
contains a lower member that is interbedded calcite and dolomite 
marble believed to be the metamorphosed equivalent of the 
Valentine Member (Dsv) found in other areas (REF). It has an upper 
member called Crystal Pass (Dscp), which is a white limestone that 
has been metamorphosed to coarse grained marble. 

Lying nicely on top of Crystal Pass is the Monte Cristo Limestone 
(Mm).  It has three members, from lower to upper: Dawn (Mmd), 
Anchor (Mma), and Buillion (Mmb).  The Dawn and Anchor members 
have been recrystallized into marble, but the Anchor contains chert 
nodules. Buillion is calcite and marble with very few chert nodules.  

The Bird Spring Formation overlies the Monte Cristo Limestone. 
Bird Spring is limestone and dolomite, and has been metamorphosed 
to low grade marble in many places. 

Understanding how ore deposits develop is vital to our ability to 
locate and develop mineral resources. In particular, ore deposits 
containing precious metals like gold, copper, and lead, play a major 
role in our economy. In this study, I characterize the ore mineralization 
of metasomatized Pennsylvanian Bird Spring Formation (Pbs) where 
in contact with the (1) high angle Slaughterhouse Fault and (2) Mid 
Hills quartz monzonite of the Cretaceous Teutonia batholith in the 
New York Mountains near Slaughterhouse Springs, California. 
Comparing the mineralization of the Bird Springs Formation as a 
result of faulting-induced metasomatism and contact metamorphism 
will yield valuable insight into our understanding of how metasomatic 
ore deposits are related to contrasting geological phenomena. My 
field area is located along the Slaughterhouse Fault in the New York 
Mountains in northeast San Bernardino California, south of Ivanpah 
road from I-15(See Figure 1).
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Its exact date of deposition is unknown but it is restricted to the 
upper Mississippian to Pennsylvanian and possibly the Permian. 

Unconformable overlaying the Bird Spring is a calc-sillicate rock 
(Mcs). This unit has been proposed to have been deposited during 
the Mesozoic, as well as is the next unit in the sequence: volcanic and 
sedimentary rocks (Mmvs).  Atop of these unknown units we have 
the Mesozoic Sedimentary Rocks of Sagamore Canyon. This unit 
correlates with the nonmarine environment of the south-eastern 
California region. 

Finally an intrusion of magma has caused some of the 

metamorphism in the area. This magma is now coarse grained quartz 
monzonite to monzonite with phenocrysts of potassium feldspar 
(Mp).  Additionally, the Slaughterhouse Fault ripped across the area 
and is slowly overturning the units.  It is also responsible for the rest 
of the metamorphism of the units.  

Following this faulting is the Tertiary volcanic rocks (Tv).  This is 
a unit of volcanic breccias that is associated with a late Miocene-Plio-
cene volcanic event (Burchfiel and Davis, 1977). 

The last unit to be deposited in the New York Mountains is alluvium 
units in the Quaternary; an older unit (Qoal) and a younger unit (Qal).
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In order to compare the metamorphism, samples were selected 
from two sampling sights; one on the western flank of the Bird 
Spring Formation where it has been intruded by Cretaceous quartz 
monzonite and the other along the northern flank where the Bird 
Spring Formation is in contact with the Slaughterhouse fault. These 
samples were analyzed for mineral content by taking the average of 
X-ray fluorescence scans of each sample (See Table 1).  While 
collecting, a ~1.5 square kilometers (km2) geological map of the 
area, mapping the contacts between rock units, the extent and style 
of the metamorphism and metasomatism (see Figure 2A), and 
geologic structures such as folds and faults (see Figure 2B) 
was completed. 

Conclusions, Significance, and Future Works

Sampling Strategy and Analytical Method

Figure 2B. A-A` Cross Section

Figure 2A. Geologic Map (U.S. Geologic Survey 1983)
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Mineral Chemistry

Table 1. Average geochemical analysis of three separate scans of samples. SFTK-2 was not 

able to get an accurate reading and was rejected.

Figure 5. Percent abundance in regards to major oxides

SFTK-1, a coarse grained white cream dolomite collected near 
the north end of the fault, has gone through metamorphism and 
metasomatism. SFTK-3, found near the north center of the fault, 
a white coarse grained marble with spots of green and brown, has 
gone through primarily metasomatism and a different grade of 
metamorphism. These spots gain there color from the high amounts 
of grossular garnet and epidote within.  SFTK-4, SFTK-5, SFTK-6 are 
a coarse grained white gray marble, collected along the contact
between the Cretaceous Teutonia batholith and Bird Spring Formation. 
These samples have gone through metamorphism. 

The data shows that this unit does not possess a large abundance 
of precious elements. It also shows consistency in SFTK-4, SFTK-5 
and SFTK-6(see Figure 5). These metamorphosed samples are very 
high in calcium as the original limestone should be. These samples are 
higher in most of the precious metals compared to SFTK-1. The first 
metamorphism event would have made Bird Spring formation similar 
in content. The only differences would be based on proximity to the 
contact. The metasomatism event only affects a small part of the Bird 
Spring formation making the differences in SFTK-1 and SFTK-3. It does 
show that SFTK-1 contains similar amounts of magnesium and calcium 
with very high amounts of zircon and strontium. This holds bearing 
to SFTK-3 that was also found near the fault. SFTK-3 hardly contains 
any magnesium, strontium, and zircon, but it does have all the iron 
and vanadium. During the metasomatism, elements like iron and 
vanadium relocated within the grossular garnet. Other elements like 
strontium did not fit into the chemical structure of grossular garnet, 
so it left and went to the rest of the unit instead. Both samples have 
undergone the same metasomatism but have very different chemical 
compositions. The other thing of note is how there is not any sodium 
in any of the samples. This most likely comes from the original rocks 
being limestone and not having much sodium to begin with.

g
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The Bird Spring Formation does not contain much in the way of 
precious elements, but it does show a difference in ore development 
in metasomatism and metamorphism. The different events have 
allowed for the elements to reallocate themselves in more favorable 
arrangements. Vanadium favored the grossular garnet but strontium 
did not. Bird Spring formation is 300 meters (m) thick and only a 
small amount was sampled to determine a correlation. By analyzing 
different metamorphic events it could be possible to determine 
which elements and how they will relocate.
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Owens Valley in eastern California is a deep graben located between the Inyo and White 
Mountains to the east and by the Sierra Nevada Mountains to the west. The boundary 
between Owens Valley and the Sierra Nevada Mountains is the Sierra Nevada Frontal Fault 
System (SNFFS), which is a system of normal faults formed by crustal extension of the Basin 
and Range province. It generally is assumed in previous studies that the SNFFS normal faults 
dip steeply at ~60 degrees east. However, a recent study (Phillips and Majkowski, 2011) 
shows that the faults typically dip less than 50 degrees along the northern part of the SNFFS 
near Bishop. More recent work (Shagam 2011) near Independence shows that faults there dip 
29-34 degrees east. My hypothesis is that faults farther south between Independence and 
Lone Pine dip shallowly (~30 degrees). I will test this hypothesis by mapping and measuring 
fault orientations of the SNFFS at George and Bairs Creeks using hand-held GPS and 
differential GPS devices at three fault exposures. The selected faults will have sufficient 
elevation exposure to allow for three-point analysis to determine their orientations in detail. 
Deliverables of this study will include a detailed map of a section of the SNFFS,  an analysis of 
fault outcrop exposures to determine fault dip, and a report discussing the data and 
conclusions found in this study.
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Hunt and Mabey (1966, Fig. 48, pg. 67) mapped three debris fan 
lobes on the Starvation Canyon alluvial fan in western Death Valley, 
California, with an estimated volume of 8 to 25 million cubic yards.  
These deposits were mapped on top of the fan indicating that they 
were younger than the ~70 ka Qg2 alluvial fan. Tertiary volcanic rocks 
were mapped at the mouth of Starvation Canyon in the Panamint 
Range by Hunt and Mabey, with faulted Cambrian and Precambrian 
metasedimentary rocks to the west. The Precambrian Sterling 
Quartzite and Johnny Formations are composed of distinctive brown 
quartzite and purple shale. Granite at Hanaupah Canyon is 8.6 km 
upstream from the piedmont. 

Field observations show that the northern lobe of the Qg2 
deposits of the Starvation Canyon fan and consists of grusified 
granite boulders at the surface. The debris flow deposits, which 
generally line a wash channel, are composed of 1-6 m diameter, 
varnished, but relatively unweathered, granite boulders with rare 
metasedimentarty boulders (<2%). The wash channel is incised 
through the Qg2 deposits with debris flow boulders overtopping the 
channel margins and resting atop the Qg2 deposits at the distal end. 
The southern lobe of the Starvation Canyon fan is composed of Qg3 
gravels with an intervening active channel (Qg4). Both the younger 
and active channels are lined with large granite boulders (up to ~9 m 
diameter) that are unweathered and have very little, if any, varnish.
Based on my field observations, Hunt and Mabey were correct in 
their conclusion that younger, unweathered granite boulders from 
debris flows are found atop the Qg2 gravel. However, my 
observations are that the debris flow boulders are limited to the 
channel and channel margins. I infer that these deposits traveled 
along the incised channels and did not overtop the Qg2 gravels, 
aside from the area at the distal end of the fan. I infer that the flow 
volumes were significantly lower volume than previously thought 
and, based on the dominance (>98%) and size (up to ~9 m) of granite 
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boulders these flows would have traveled ≤ 16 km before being 
deposited on the Starvation Canyon fan, with the origination point 
>8 km from the apex of the fan. My interpretation is that these 
debris flows were emplaced in multiple events rather than one large 
event. This is based on the differences in weathering of the boulders 
as well as the disconnected nature of the debris flow deposits. The 
active channel (Qg4) is comprised of similar debris flow deposits as 
are found in the older channels. This would indicate that the same 
processes continue to repeat, that this process has been ongoing for 
~70 ka and that debris flow travel may be ≤ 16 km.
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In this study we look at past mass wasting events in the Pai Valley of Northern Thailand to 
better understand the size and scope of previous slide events. Thailand is located in 
southeast Asia, sharing borders with Burma, Laos, Cambodia, Malaysia, The Andaman Sea 
and The Gulf of Thailand. Pai Valley is in the northernmost region of Thailand, close to the 
Burmese border.  Research on past slides in this area is significant because of the population 
living on these slides. The inhabitants of Pai had an estimated population of about 2,284 
as of 2006 (www.geonames.org). Residents built their homes on the suspected slide area 
and are dependent on the agriculture grown on the slides. A future slide event could be 
catastrophic for the valley, including major loss of life. It is hypothesized that in the past 
there was a massive debris flow that originated west of the valley. Our research shows the 
suspected slides are “Torrent Slides”, or “Long Slides”. These are channelized type slides 
discharging water and debris composed of bedrock, unconsolidated sediment or organic 
material and can be triggered by changes in ground water conditions or the geometry of the 
slope. Given the tropical setting of the area, it is presumed these slides were triggered by 
excessive rains or unseasonably wet periods. Through satellite imagery and on the ground 
mapping we determined at least two slide events and possibly a third. The mapping process 
involved driving and looking for locations with boulders versus bedded areas. When we 
determined the end of the boulder section and beginning of bedding, we plotted the location 
on our map. We continued until we had the boundaries of the slide determined. Clast counts 
were performed at a number of locations within the slide area. At each location an average 
of 50 clasts were counted, classified and measured. Sizes ranged from sand grain to 16 
meters. The main lithologies of the clasts were granites and sandstones, this is expected if 
the slides originated west of the valley. There was no clear difference in weathering from 
one location to the next which leads us to believe these events occurred in a relatively short 
time frame. Future research could determine the precise origins of the slides and cosmogenic 
dating could be helpful in determining how old the slides are.
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The Sierra Nevada Batholith (SNB) formed from multiple arc 
magmatism events that occurred as a result of the collision between 
the North American and Farallon plates during the Mesozoic Era 
(251-65 million years ago). Arc batholiths, such as the SNB, are 
important to understand because they record episodes of continental 
crustal growth. Calculating the amount of material, in this case 
magma, transferred from the mantle to the crust is dependent on 
the composition of the mantle wedge located beneath the continent.
 The focus of this research is to understand the origin and formation 
of the SNB by geochemically characterizing the Summit Gabbro and 
suite from the Kern Plateau located in the southern Sierra Nevada 
Mountains, California. Gabbros are crucial to studies on mantle-wedge 
composition since they have experienced a minimal amount of 
chemical-evolution and represent a proxy for the chemical 
composition of the mantle source below the batholith. By definition 
gabbros are mafic, or silica-poor, and contain large quantities of 
magnesium- and iron-rich minerals, such as olivine. The amount of 
chemical evolution that was experienced by a magma can be 
quantified using the magnesium number (Mg#), which is calculated 
using the formula Mg # = [100 Mg/Mg + Fe2+]. In this formula, Mg 
and Fe2+ are atomic proportions, which are measured using scanning 
electron microscopes (SEM) and electron microprobe analyzers 
(EMPA). Higher Mg#’s indicate more primitive magmas—i.e., magmas 
that have not evolved much from their original, mantle-derived 
composition. Therefore, gabbros with higher Mg#’s are ideal for 
identifying mantle-derived magmas that have not experienced much 
differentiation, and the geochemical compositions of these high-Mg# 
rocks can be used to determine whether the mantle source rock was 
either “enriched” or “depleted”. The methodology to complete this 
object includes: (1) study thin sections of each sample using a 
petrographic microscope to look for alteration that may have 
changed rock chemistry and identify minerals for SEM analysis; (2) 
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analyze the rock chemistry of each sample using the x-ray fluorescence 
spectrometer (XRF) in order to identify the most mafic samples; and 
(3) analyze the compositions of minerals to determine their Mg# and 
further estimate the composition of the magma from which they 
crystallized. In order to complete this last task, I will use two 
instruments: the scanning electron microscope (SEM) and an 
electron probe microanalyzer (EPMA). A desired potential outcome 
of this study is to locate gabbros with Mg#’s between Fo72-Fo65. 
The highest Mg# recorded to date from the eastern SNB is Fo50 
(Gevedon, 2013), a value significantly lower than what would be 
predicted for a pristine mantle melt. Thus, geochemical 
characterization of the Summit Gabbro may provide new information 
about the type of mantle underlying the eastern Sierra Nevada arc 
and is one of the first steps to determining how the western margin 
of the North American continent was modified and expanded by 
Mesozoic arc magmatism. 
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Microarray technology has become one of the most powerful tool to 
simultaneously study thousands of genes at once. Since microarray 
data involves high dimensional data (i.e., number of genes are 
comparably higher than number of replicates), making inferences 
using current statistical methods are insufficient. Despite the inability 
of the F-test to draw valid conclusions in Microarray data, it is one of 
the common statistical methods that is used. One of the assumptions 
of the classical F-test is that groups (genes) are supposed to be 
independent. However, this assumption is violated in microarray 
data because gene-gene interactions are possible. In this paper, 
we suggest performing permutation test to explore if the p-value 
obtained from the F-test can be improved. We consider various 
magnitudes of correlation among genes from no correlation to 
strong correlations in a Monte Carlo study to compare the p-values 
of the F-test and the permutation test. Our findings show that the 
permutation test is preferred over the F-test.

Microarray experiments study gene expressions of cells, organisms, 
or tissues. For example, in a cancer study healthy and diseased tissues 
of breast is compared to identify disease causing genes.

Microarray data has a high dimensional data structure which 
makes challenging todraw statistical inferences [1]. Various methods 
have been proposed to answer different kinds of questions. For 
example, clustering and classification are two common methods 
to identify groups of genes that share similar functions [2,3]. These 
methods search for similar genes, but they do not help to identify 
which genes are differentially expressed under different conditions. 
To find differentially expressed genes, we need to perform hypothesis 
tests of no difference in the means of gene expressions under 
different conditions. Fold change, linear models, as well as Bayesian 
methods [4–6] are some of the statistical tests; however because 
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of computational difficulty, adopting these methods in microarray 
analysis have been slow in practice.

To test whether the difference in means is statistically significant, 
analysis of variance (ANOVA) method can be performed. If the 
populations from which the data were sampled violate assumption(s) 
of the ANOVA, then the results of the analysis may be incorrect or 
misleading. For example, if the assumption of independence of the 
observations is violated, then the ANOVA is not appropriate. The test 
statistics used in ANOVA is the classical F-test. Since gene-gene 
interactions can happen in nature, the F-test should not be considered
to answer if there is a difference in means of genes under different 
conditions. Permutation test can be an alternative test to consider. 
Permutation test is particularly used when the distributions of the 
data is unknown, sample sizes are small, or outliers are present [7]. 
However, in this paper we suggest performing permutation test in lieu 
of the violation of the independency assumption in ANOVA. We run 
Monte Carlo Simulation studies by considering various magnitudes 
of correlations among genes to answer if the permutation test is 
preferable over the F-test.

In Section 2, we describe the data and outline the F-test and 
the permutation test, and in Section 3 we describe Monte Carlo 
Simulation study and present its findings. Finally, we draw 
conclusions in Section 4.
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A single multivariate observation is the collection of measurements 
on p different variables (genes) taken from the same trial (array). If n 
observations have been obtained, the entire data set can be 
represented in an n  × p  matrix

The row vector Xj'  represents the jth multivariate observation. The 
matrix X represents p  genes each having n  observations.

Now, consider a microarray experiment of n 1 and n 2 sample 
from population 1 and population 2, respectively. For example, 
population 1 can represent the disease group, while population 2 can 
represent the healthy group. Suppose that the expression levels of 
p  genes are measured and matrix representation of the population 
1 and 2 are defined as X and Y, which is in the form of (1). Let Xij 
be the expression level for gene j  of sample i  from population 1. The 
expression level vectors for sample i  from population 1 can be ex-
pressed as Xi' = (Xi1, . . . , Xip). The mean expression levels of gene j 
in population 1 is,

Methodology
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Comparing Mean Vectors from Two Populations
Consider a random sample of n 1 and n 2 from populations 1 and 2. 
The observations on p variables can be arranged as follows:

We want to make inferences about the differences of the mean vectors 
of the populations. That is, μ1 − μ2, where μi is the mean vector of 
population i(= 1, 2). We want to answer the question of μ1 = μ2  or 
equivalently: Is μ1 − μ2  = 0? We need to make some assumptions to 
provide answers to these questions. The assumptions are:

For large samples, these assumptions are enough to make an 
inference about μ1 − μ2. However, when the sample sizes n 1 and n 2 
are small we need to have the following as- sumptions as well.

The sample  X1', X2' , . . . ,X'n1  is a random sample of size 
n 1 from a p -variate population with mean vector μ1 and 
covariance matrix Σ1.

The sample  Y1', Y2' , . . . ,Y'n2  is a random sample of size 
n 2 from a p -variate population with mean vector μ2 and 
covariance matrix Σ2.

X1’, X2’, . . . ,X’n1  is independent of  Y1', Y2' , . . . ,Y'n2.

Both populations are multivariate normal.

The null (H0) and alternative (H1) hypotheses are:

where μ1 = (μ11, μ12, . . . ,μ1p)' is the mean expression level of 
population 1, and μ2 = (μ21, μ22, . . . ,μ2p)'  is the mean expression level 
of population 2. That is, the null and alternative hypotheses can be 
rewritten as

Σ1 = Σ2

4

The mean expression level vector for p genes for population 1 is given by

X̄ = (X̄1, . . . , X̄p)
′. Similarly, we can define these expressions for population 2. Now, we

are ready to outline the hypotheses we are interested in.
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The mean expression level vector for p genes for population 1 is 
given by  X = (X1, . . . , Xp)'. Similarly, we can define these expressions 
for population 2. Now, we are ready to outline the hypotheses we are 
interested in.       

H0 : μ1 − μ2 = 0 versus Ha : μ1 − μ2 = 0

5

1. Both populations are multivariate normal.

2. Σ1 = Σ2.

The null (H0) and alternative (Ha) hypotheses are:

H0 : µ1 − µ2 = 0 versus Ha : µ1 − µ2 �= 0,

where µ1 = (µ11, µ12, . . . , µ1p)
′ is the mean expression level of population 1, and µ2 =

(µ21, µ22, . . . , µ2p)
′ is the mean expression level of population 2. That is, the null and

alternative hypotheses can be rewritten as

H0 : (µ11 − µ21, µ12 − µ22, . . . , µ1p − µ2p)
′ = (0, 0, . . . , 0)′

Ha : (µ11 − µ21, µ12 − µ22, . . . , µ1p − µ2p)
′ �= (0, 0, . . . , 0)′

2.2 F Test

The classical F -test compares the means of the columns of X, and assumes that these

columns are independent (univariate case). Here, we want to compare the differences of

the p means of X and Y. To adopt the data structure from multivariate case to univariate

case, we consider the observations as the differences of the X and Y. That is, we compute

Xij − Yij and apply the univariate F -test on these observations. The statistic

F =
MST

MSE
,

where MST is the mean square for treatments (genes) and MSE is the mean square for

errors, follows F distribution with p− 1 and p(n1 + n2 − 1) degrees of freedoms.
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errors, follows F distribution with p− 1 and p(n1 + n2 − 1) degrees of freedoms.

F-Test

Permutation Test

The classical F-test compares the means of the columns of X, and 
assumes that these columns are independent (univariate case). Here, 
we want to compare the differences of the p means of X and Y. To 
adopt the data structure from multivariate case to univariate case, 
we consider the observations as the differences of the X and Y. That 
is, we compute Xij − Yij and apply the univariate F-test on these 
observations. The statistic

Permutation test also called randomization or re-randomization test 
has been proposed for a long time, but it has become practical with 
the advance of high-speed computers. Permutation test is more 
useful when the distributions of the data are unknown, sample sizes 
are small, or outliers are present. The basic approach to permutation 
test that we used in the simulation follows:

Decide a test statistic. In ANOVA, the test statistic is the 
F -test.

Calculate the F-test for the data, called it Fobs.

Repeat the following r times, where r is a number greater 
than 1000.

Compute how many times Fs is greater than or equal to 
Fobs, call this number s. Then calculate the p-value as the 
ratio of s and r. That is, p-value=s /r.

Decide if the  -value can reject the null hypothesis.

where MST is the mean square for treatments (genes) and MSE is 
the mean square for errors, follows F distribution with p − 1 and 
p(n1 + n2 − 1) degrees of freedoms.

We generated two multivariate normal distributions by running 
Monte Carlo simulation studies in R software: MVN(μ1, Σ1) and 
MVN(μ2, Σ2), each with dimension p (genes). 

The variance covariance matrices are defined as

The matrix Σρ and Σ(-ρ) have dimensions n × n, and the matrix 
Σ1 =Σ2 has dimension p×p.

We considered sample sizes of n1 = n2 = 10 for p = 50 genes. 
We assume that there are 5 groups of 10 genes in each group, totaling 
of 100 genes. That is, we fixed n = 10 in Σρ matrix. We assumed 
ρ = 0, 0.1, 0.2, . . . , 0.9 as various magnitudes of correlations, and 
μ1 = μ2  = (0.5,0.5,0,0,...,0). We run 1000 data sets to test the null 
hypothesis at the significance level of α = 0.05. We followed the 
permutation test approach described in the previous section with 
r = 1000. We computed p-values, which is the probability of 
rejecting the null hypothesis when the null hypothesis is true, to draw 
conclusions about the F-and the permutation tests.
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·

·
·

·

·

- Shuffle the labels of the populations (genes).
- Calculate the F-test for the shuffled data, call it Fs.
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Microarray experiments produce a large amount of gene expression 
data. The main goal is to apply appropriate statistical methods to 
determine which genes function differently under different conditions 
(i.e, normal lung cells versus diseased lung cells).

One of the most commonly used methods to test whether the 
difference in means is statistically significant is the ANOVA. However, 
since genes can be correlated among themselves, the use of ANOVA 
can lead to invalid conclusions of the data. In this paper, we 
investigated if the permutation test applied to ANOVA could improve 
the p-value of the classical F-test. Our findings show that we can 
perform F-test if the correlation among genes are small to moderate, 
but should be avoided if strong correlations are suspected. When 
correlations among genes are strong, permutation test is an 
alternative method. Overall, permutation test outperformed the 
F-test, hence we suggest to use permutation test in lieu of the F-test.

We thank the California State University, Fullerton (CSUF) for 
providing us with an intramural grant to work on this project. The 
author extend a special thanks to Dr. Gu ̈lhan Bourget for mentoring 
and allowing the opportunities to grow as undergraduate researcher. 
The authors also thank Dr. Bourget for her valuable comments and 
editions that helped improved the quality of this paper.

We consider the test statistic is valid if its p-value smaller than the 
chosen significance level α or the p-value lies in the (1 − α)% 
confidence interval
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Computing canonical equivalence classes (EC) in Clifford projective 
space (CPS) can be difficult, especially in high dimension. We created 
our own package in Mathematica to perform such computations. 
By passing in certain parameters to our user-defined Mathematica 
function, EquivalenceClass, we can analyze canonical representatives 
of EC in CPS. The examples in this paper involve            explicity, but 
our Mathematica package works with Clifford algebras such as       
and          . Other Clifford algebras will be available in our package in 
the future.

In this definition,           denotes the invertible elements of           , and      
               is the projective space defined as the set of EC [2, p.2].

Recall that Agnew-Childress discuss the use of matrices as scalars. As 
such we can make use of matrix isomorphims which relate to Clifford 
algebra. So, using              to build                we start by programming 
these matrix isomorphisms. An example of a matrix isomorphism 
would be,

where Mat(2,   ) is short-hand for a 2-dimensional matrix having real 
entries. Other isomorphisms could be programmed using helpful 
properties, such as,

Constructing CPS in Mathematica
It is discussed in Agnew-Childress’ paper the standard approach to 
constructing projective n−space over a field. Further they discuss how 
to construct a projective space where a ring of k × k matrices,      , is 
used for scalars. They note that since      is typically not a field, we are 
working with modules over rings instead of vector spaces [2, p.2]. 
Their discussion on construcing matrix projective spaces serves as 
the cornerstone for our Mathematica package.

The construction of a CPS requires that we take a module,             , 
Clifford algebra. Next, we impose an equivalence relation (denoted 
by     ) on                         . The definition of     is,What is Clifford Algebra?

Clifford Algebra is an associative algebra equipped with a quadratic 
form. For example, consider the quadratic space          . It is an n 
dimensional real vector space where n = p+q, and has a 
non-degenerate symmetric scalar product which induces the 
quadratic form:

Definition 1.

Furthermore, Clifford algebra is generally non-commutative. For 
example the Clifford algebra,           , has e1e2 = -e1e2, where {e1e2} is a 
canonical basis of the algebra [1, p.188-189].

What is a projective space?
A projective space, denoted as         , is the set of lines through the 
origin of the vector space,          . A simple example would be the 
real projective space,         . In this case, each element of                     is 
mapped to its respective equivalence class (i.e. a line). Topologically, 
the set of EC,          represents a circle since any two points on the 
same line in        belong to the same EC [2, p.2].

Abstract Methodology

Introduction

Mathematica and Clifford Projective Spaces

Department of Mathematics, California State University, Fullerton

Andrew Halsaver
Advisor: Dr. Alfonso Agnew

Mathematica and Clifford Projective Spaces
Author: Andrew Halsaver

Mentor: Dr. Alfonso Agnew

Abstract

Computing canonical equivalence classes (EC) in Clifford projective space
(CPS) can be difficult, especially in high dimension. We created our own package
in Mathematica to perform such computations. By passing in certain parame-
ters to our user-defined Mathematica function, EquivalenceClass, we can analyze
canonical representatives of EC in CPS. The examples in this paper involve C�2,0
explicity, but our Mathematica package works with Clifford algebras such as C�3,0
and C�1,1. Other Clifford algebras will be available in our package in the future.

Introduction

What is Clifford Algebra?
Clifford Algebra is an associative algebra equipped with a quadratic form.

For example, consider the quadratic space Rp,q. It is an n dimensional real vector
space where n = p+q, and has a non-degenerate symmetric scalar product which
induces the quadratic form:

x · x = x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q [1, p. 205].

Furthermore, Clifford algebra is generally non-commutative. For example the
Clifford algebra, C�2,0, has e1e2 = −e2e1, where {e1, e2} is a canonical basis of
the algebra [1, p.188-189].

What is a projective space?
A projective space, denoted as FPn, is the set of lines through the origin of

the vector space, Fn+1. A simple example would be the real projective space,
RP1. In this case, each element of R2 − {�0} is mapped to its respective equiva-
lence class (i.e. a line). Topologically, the set of EC, RP1 represents a circle since
any two points on the same line in R2 belong to the same EC [2, p.2].
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Constructing CPS in Mathematica
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structing projective n−space over a field. Further they discuss how to construct
a projective space where a ring of k × k matrices, M, is used for scalars. They
note that since M is typically not a field, we are working with modules over rings
instead of vector spaces [2, p.2]. Their discussion on construcing matrix projec-
tive spaces serves as the cornerstone for our Mathematica package.

The construction of a CPS requires that we take a module, C�n+1
p,q , over the

Clifford algebra. Next, we impose an equivalence relation (denoted by ∼) on
C�n+1

p,q − {�0}. The definition of ∼ is,

Definition 1 : �u ∼ �v if and only if there exists a λ ∈ C�∗p,q such that �u = �vλ.
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In this definition, C�∗p,q denotes the invertible elements of C�p,q, and C�p,qPn is the
projective space defined as the set of EC [2, p.2].

Recall that Agnew-Childress discuss the use of matrices as scalars. As such
we can make use of matrix isomorphims which relate to Clifford algebra. So, using
C�n+1

p,q to build C�p,qPn, we start by programming these matrix isomorphisms. An
example of a matrix isomorphism would be,

C�2,0 � Mat (2,R) [1, p.205],

where Mat(2,R) is short-hand for a 2-dimensional matrix having real entries.

Other isomorphisms could be programmed using helpful properties, such as,

C�p+1,q+1 � Mat (2, C�p,q) [1, p.214].

In a general case, given the CPS dimension (n), we build a column of k × k
matrices whose entries belong to C�p,q. Exclusively for this discussion, we build
a 2(n + 1) × 2 matrix, and consider if the columns are linearly independent, or
linearly dependent (LI or LD)a.

Now, there are several canonical forms which a matrix can take in order for
its columns to be LI or LD. However, we can significantly reduce the number
of cases by using matrix reductions. Moreover, matrix reduction is a result of
applying elementary matrices from linear algebra, so it is a familiar processb [3,
p.172].

In general, C�p,q is non-commutative, so we have to distinguish between right
and left scalar actions (i.e. multiply a matrix by a scaling matrix with said scalar
on the left, or right, of the matrix itself) [2, p.2]. The use of row reduction on a
matrix is equivalent to the action of using left scalar action on a 2×2(n+1) matrix.
Similarly, for column reduction, one must use right scalar action on a 2(n+1)×2
matrix. This is very convenient, since Mathematica can execute row and column
reduction quickly. Furthermore, not only can we use matrix reductions to yield
equivalence classes, we can also determine what scaling matrix is necessary to
perform the reduction process.

a. Recall the definition of linear dependence. As stated in Goode-Annin’s text, “A finite

nonempty set of vectors {�v1, �v2, ..., �vk} in a vector space V is said to be linearly dependent if

there exist scalars c1, c2, ..., ck, not all zero, such that c1�v1+c2�v2+ ...+ck�vk = �0.” Furthermore,

a set of vectors which is not linearly dependent is called linearly independent [3, p.269].

b. A matrix that is found by using a single elementary row operation on the identity matrix

is, by definition, an elementary matrix [3, p.172].
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In this definition, C�∗p,q denotes the invertible elements of C�p,q, and C�p,qPn is the
projective space defined as the set of EC [2, p.2].

Recall that Agnew-Childress discuss the use of matrices as scalars. As such
we can make use of matrix isomorphims which relate to Clifford algebra. So, using
C�n+1

p,q to build C�p,qPn, we start by programming these matrix isomorphisms. An
example of a matrix isomorphism would be,

C�2,0 � Mat (2,R) [1, p.205],

where Mat(2,R) is short-hand for a 2-dimensional matrix having real entries.

Other isomorphisms could be programmed using helpful properties, such as,

C�p+1,q+1 � Mat (2, C�p,q) [1, p.214].

In a general case, given the CPS dimension (n), we build a column of k × k
matrices whose entries belong to C�p,q. Exclusively for this discussion, we build
a 2(n + 1) × 2 matrix, and consider if the columns are linearly independent, or
linearly dependent (LI or LD)a.

Now, there are several canonical forms which a matrix can take in order for
its columns to be LI or LD. However, we can significantly reduce the number
of cases by using matrix reductions. Moreover, matrix reduction is a result of
applying elementary matrices from linear algebra, so it is a familiar processb [3,
p.172].

In general, C�p,q is non-commutative, so we have to distinguish between right
and left scalar actions (i.e. multiply a matrix by a scaling matrix with said scalar
on the left, or right, of the matrix itself) [2, p.2]. The use of row reduction on a
matrix is equivalent to the action of using left scalar action on a 2×2(n+1) matrix.
Similarly, for column reduction, one must use right scalar action on a 2(n+1)×2
matrix. This is very convenient, since Mathematica can execute row and column
reduction quickly. Furthermore, not only can we use matrix reductions to yield
equivalence classes, we can also determine what scaling matrix is necessary to
perform the reduction process.

a. Recall the definition of linear dependence. As stated in Goode-Annin’s text, “A finite

nonempty set of vectors {�v1, �v2, ..., �vk} in a vector space V is said to be linearly dependent if

there exist scalars c1, c2, ..., ck, not all zero, such that c1�v1+c2�v2+ ...+ck�vk = �0.” Furthermore,

a set of vectors which is not linearly dependent is called linearly independent [3, p.269].

b. A matrix that is found by using a single elementary row operation on the identity matrix

is, by definition, an elementary matrix [3, p.172].
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73DIMENSIONS

We can take advantage of matrix representatives of Clifford 
elements in order to determine what scaling matrix is required to 
reduce a matrix appropriately. To do this, we look to the definition of 
elementary operations on matrices from linear algebra [3, p.172]. We 
will work with right scalar action, but note that left scalar action is 
analogous and can be done by transposing matrices [2, p.2].

Consider a matrix with LD columns, and let’s consider working with 
the projective line. That is let’s suppose we have 

Using column reduction on this matrix yields

Expressing this resulting matrix as its Clifford algebra representative, 
we find the EC to be

Now, consider Λ∗ such that

and has inverse,

(2)

(1)

This matrix has a Clifford representative that is invertible. The Clifford 
representative is,

Looking back at equation (1), u · v (using right-scalar action for k = 1) 
the first component of the EC representative reduces to,

where λ is a fixed real number, k = 1,3, and j = (k+1)/2. Also, 
assume for this particular case that x1 is non-zero. As a result, we 
have the matrix representative

In a general case, given the CPS dimension (n), we build a column of 
k × k matrices whose entries belong to          . Exclusively for this 
discussion, we build a 2(n + 1) × 2 matrix, and consider if the 
columns are linearly independent, or linearly dependent (LI or LD)a.

Now, there are several canonical forms which a matrix can take in 
order for its columns to be LI or LD. However, we can significantly 
reduce the number of cases by using matrix reductions. Moreover, 
matrix reduction is a result of applying elementary matrices from 
linear algebra, so it is a familiar processb [3, p.172].

In general,           is non-commutative, so we have to distinguish 
between right and left scalar actions (i.e. multiply a matrix by a scaling 
matrix with said scalar on the left, or right, of the matrix itself) [2, 
p.2]. The use of row reduction on a matrix is equivalent to the action 
of using left scalar action on a 2×2(n+1) matrix. Similarly, for 
column reduction, one must use right scalar action on a 2(n+1)×2 
matrix. This is very convenient, since Mathematica can execute row 
and column reduction quickly. Furthermore, not only can we use 
matrix reductions to yield equivalence classes, we can also determine 
what scaling matrix is necessary to perform the reduction process.

Results
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to determine what scaling matrix is required to reduce a matrix appropriately.
To do this, we look to the definition of elementary operations on matrices from
linear algebra [3, p.172]. We will work with right scalar action, but note that left
scalar action is analogous and can be done by transposing matrices [2, p.2].

Consider a matrix with LD columns, and let’s consider working with the
projective line. That is let’s suppose we have u ∈ C�22,0 :

uj =
1

2
[(xk + λxk+1) + (xk − λxk+1)e1 + (λxk + xk+1)e2 + (λxk − xk+1)e12] (1)

where λ is a fixed real number, k = 1, 3, and j = (k+1)/2. Also, assume for this
particular case that x1 is non-zero. As a result, we have the matrix representative




x1 λx1

x2 λx2

x3 λx3

x4 λx4




.

Using column reduction on this matrix yields




1 0
x2/x1 0
x3/x1 0
x4/x1 0




.

Expressing this resulting matrix as its Clifford algebra representative, we find
the EC to be 



1

2
(1 + e1) +

x2

2x1

(e2 − e12)

x3

2x1

(1 + e1) +
x4

2x1

(e2 − e12)




.

Now, consider Λ∗ such that

Λ∗ =

(
1/x1 −λ
0 1

)

,

x1 �= 0.

This matrix has a Clifford representative that is invertible. The Clifford
representative is,

v =
1

2

[(
1

x1

+ 1

)
+

(
1

x1

− 1

)
e1 − λ (e2 + e12)

]

,

(2)
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and has inverse,

v−1 =
v

vv
=

x1

8

[(
1

x1

+ 1

)
+

(
1− 1

x1

)
e1 + λ (e2 + e12)

]

,

provided x1 �= 0.

Looking back at equation (1), u · v (using right-scalar action for k = 1) the
first component of the EC representative reduces to,

1

2
(1 + e1) +

x2

2x1

(e2 − e12).

For k = 3, the second component of the EC representative reduces to,

x3

2x1

(1 + e1) +
x4

2x1

(e2 − e12).

As required, we have the equivalence class

u ∈ C�22,0 : uj =
1

2
[(xk + λxk+1) + (xk − λxk+1)e1 + (λxk + xk+1)e2 + (λxk − xk+1)e12] �−→




1

2
(1 + e1) +

x2

2x1

(e2 − e12)

x3

2x1

(1 + e1) +
x4

2x1

(e2 − e12)




,

where k = 1, 3 and j =
k + 1

2
.

We are inclined to think that equation (2) can be applied to other canon-
ical matrix representatives of C�n+1

2,0 . We do in fact find that this is true. We
acknowledge this with the following theorem.

Theorem 1: Consider u ∈ C�n+1
2,0 : such that u � M ∈ R2(n+1)×n where M has

L.D. columns. A priori, we have

uj =
1

2
[(xk + λxk+1) + (xk − λxk+1)e1 + (λxk + xk+1)e2 + (λxk − xk+1)e12] ,

where j =
k + 1

2
, λ is a fixed real number, and k = 1, 3, 5, ..., n+1. The canonical

equivalence class on u is determined by v ∈ C�∗2,0 :

v =
1

2

[(
1

xi

+ 1

)
+

(
1

xi

− 1

)
e1 − λ (e2 + e12)

]
, whenever xi �= 0, and i = 1, 2, 3, ..., n+1

Proof:

Let u ∈ C�n+1
2,0 . The matrix representative of u is a 2(n+ 1)× 2 matrix with

linearly dependent columns written as,

a. Recall the definition of linear dependence. As stated in Goode-Annin’s text, “A finite nonempty set of 

vectors                              in a vector space V is said to be linearly dependent if there exist scalars                     

                         not all zero, suchthat                                                       “ Furthermore, a set of vectors which is not 

linearly dependent is called linearly independent [3, p.269].

b. A matrix that is found by using a single elementary row operation on the identity matrix is, by defini-
tion, an elementary matrix [3, p.172].
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In this definition, C�∗p,q denotes the invertible elements of C�p,q, and C�p,qPn is the
projective space defined as the set of EC [2, p.2].

Recall that Agnew-Childress discuss the use of matrices as scalars. As such
we can make use of matrix isomorphims which relate to Clifford algebra. So, using
C�n+1

p,q to build C�p,qPn, we start by programming these matrix isomorphisms. An
example of a matrix isomorphism would be,

C�2,0 � Mat (2,R) [1, p.205],

where Mat(2,R) is short-hand for a 2-dimensional matrix having real entries.

Other isomorphisms could be programmed using helpful properties, such as,

C�p+1,q+1 � Mat (2, C�p,q) [1, p.214].

In a general case, given the CPS dimension (n), we build a column of k × k
matrices whose entries belong to C�p,q. Exclusively for this discussion, we build
a 2(n + 1) × 2 matrix, and consider if the columns are linearly independent, or
linearly dependent (LI or LD)a.

Now, there are several canonical forms which a matrix can take in order for
its columns to be LI or LD. However, we can significantly reduce the number
of cases by using matrix reductions. Moreover, matrix reduction is a result of
applying elementary matrices from linear algebra, so it is a familiar processb [3,
p.172].

In general, C�p,q is non-commutative, so we have to distinguish between right
and left scalar actions (i.e. multiply a matrix by a scaling matrix with said scalar
on the left, or right, of the matrix itself) [2, p.2]. The use of row reduction on a
matrix is equivalent to the action of using left scalar action on a 2×2(n+1) matrix.
Similarly, for column reduction, one must use right scalar action on a 2(n+1)×2
matrix. This is very convenient, since Mathematica can execute row and column
reduction quickly. Furthermore, not only can we use matrix reductions to yield
equivalence classes, we can also determine what scaling matrix is necessary to
perform the reduction process.

a. Recall the definition of linear dependence. As stated in Goode-Annin’s text, “A finite

nonempty set of vectors {�v1, �v2, ..., �vk} in a vector space V is said to be linearly dependent if

there exist scalars c1, c2, ..., ck, not all zero, such that c1�v1+c2�v2+ ...+ck�vk = �0.” Furthermore,

a set of vectors which is not linearly dependent is called linearly independent [3, p.269].

b. A matrix that is found by using a single elementary row operation on the identity matrix

is, by definition, an elementary matrix [3, p.172].
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vv
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x1
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1

x1

+ 1

)
+

(
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x1
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e1 + λ (e2 + e12)
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provided x1 �= 0.
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U =




x1 λx1

x2 λx2

... ...
xk λxk

... ...
x2(n+1) λx2(n+1)




.

Let Λ∗ =

(
1/xi −λ
0 1

)
, assuming xi �= 0.

Multiplying, we see that U · Λ∗ yields




x1 λx1

x2 λx2

... ...
xk λxk

... ...
x2(n+1) λx2(n+1)




(
1/xi −λ
0 1

)
=




x1/xi 0
x2/xi 0
x3/xi 0
x4/xi 0
... ...

xk/xi 0
... ...

x2(n+1)/xi 0




.

This matrix corresponds to w ∈ C�n+1
2,0 :

w =




x1

2xi

+
e1x1

2xi

+
e2x2

2xi

− e12x2

2xi

x3

2xi

+
e1x3

2xi

+
e2x4

2xi

− e12x4

2xi

...

xk

2xi

+
e1xk

2xi

+
e2xk+1

2xi

− e12xk+1

2xi

...

x2n+1

2xi

+
e1x2n+1

2xi

+
e2x2(n+1)

2xi

−
e12x2(n+1)

2xi




.
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(3)
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Now, consider             ,      with a matrix representative with linearly 
independent columns. In particular consider these six matrices:

where                                  . Using column reduction on each of these 
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• Projective point example using C�2,0 coefficients:
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to the Clifford algebra having the form

u = u0 + u1e1 + u2e2 + u12e12.
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1
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.

c. This definition in Goode-Annin’s text actually defines this as “row-echelon matri-

ces”. Even though we cite this definition as “column-echelon matrices”, we note that the

definitions are analogous where matrices are transposed to one another. The definition

states, “An m×n matrix is called a reduced row-echelon matrix if it satisfies the following

conditions: (1) It is a row-echelon matrix. (2) Any column that contains a leading 1 has

zeros everywhere else.” [3, p.147]
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Projective point example using             coefficients:
The first argument is an ordered list representing the coefficients 
(u0, u1, u2, u12) to the Clifford algebra having the form

u1 = {1, 1, -1, -1};
eqc1 = EquivalenceClass[{u1}, 2, 0, 0]
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Abstract

Computing canonical equivalence classes (EC) in Clifford projective space
(CPS) can be difficult, especially in high dimension. We created our own package
in Mathematica to perform such computations. By passing in certain parame-
ters to our user-defined Mathematica function, EquivalenceClass, we can analyze
canonical representatives of EC in CPS. The examples in this paper involve C�2,0
explicity, but our Mathematica package works with Clifford algebras such as C�3,0
and C�1,1. Other Clifford algebras will be available in our package in the future.

Introduction

What is Clifford Algebra?
Clifford Algebra is an associative algebra equipped with a quadratic form.

For example, consider the quadratic space Rp,q. It is an n dimensional real vector
space where n = p+q, and has a non-degenerate symmetric scalar product which
induces the quadratic form:

x · x = x2
1 + ...+ x2

p − x2
p+1 − ...− x2

p+q [1, p. 205].

Furthermore, Clifford algebra is generally non-commutative. For example the
Clifford algebra, C�2,0, has e1e2 = −e2e1, where {e1, e2} is a canonical basis of
the algebra [1, p.188-189].

What is a projective space?
A projective space, denoted as FPn, is the set of lines through the origin of

the vector space, Fn+1. A simple example would be the real projective space,
RP1. In this case, each element of R2 − {�0} is mapped to its respective equiva-
lence class (i.e. a line). Topologically, the set of EC, RP1 represents a circle since
any two points on the same line in R2 belong to the same EC [2, p.2].

Methodology

Constructing CPS in Mathematica
It is discussed in Agnew-Childress’ paper the standard approach to con-

structing projective n−space over a field. Further they discuss how to construct
a projective space where a ring of k × k matrices, M, is used for scalars. They
note that since M is typically not a field, we are working with modules over rings
instead of vector spaces [2, p.2]. Their discussion on construcing matrix projec-
tive spaces serves as the cornerstone for our Mathematica package.

The construction of a CPS requires that we take a module, C�n+1
p,q , over the

Clifford algebra. Next, we impose an equivalence relation (denoted by ∼) on
C�n+1

p,q − {�0}. The definition of ∼ is,

Definition 1 : �u ∼ �v if and only if there exists a λ ∈ C�∗p,q such that �u = �vλ.
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One might wonder why the first argument is passed in as a list of a
list. We have set up the coding so that we can handle examples of CPS
having higher dimensions which involves more than one Clifford element.
We express this in the next example.

• Projective line example of C�2,0 :
u2 = {2, 1, 0, 1/2};
eqc2 = EquivalenceClass[{u1, u2}, 2, 0, 1]
The equivalence class here is,

(
1 + e1 − e2 − e12

2 + e1 +
1

2
e12

)
�−→




1

2
+

e1
2

1− e1 +
15e2
4

+
41e12
4



.

Now, consider u ∈ C�22,0 with a matrix representative with linearly indepen-
dent columns. In particular consider these six matrices:




x1 y1
x2 y2
x3 y3
x4 y4


 ,




x1 y1
0 0
x2 y2
x3 y3


 ,




x1 y1
0 0
0 0
x2 y2


 ,



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)
.

c. This definition in Goode-Annin’s text actually defines this as “row-echelon matri- ces”. Even though 

we cite this definition as “column-echelon matrices”, we note that the definitions are analogous where 

matrices are transposed to one another. The definition states, “An m×n matrix is called a reduced 

row-echelon matrix if it satisfies the following conditions: (1) It is a row-echelon matrix. (2) Any column 

that contains a leading 1 has zeros everywhere else.” [3, p.147]
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Recall that from definition 1, we sought to establish a canonical form 
of an invertible scalar which would ultimately lead to the required 
equivalence class for a Clifford module. Using isomorphic properties 
whereby we map the Clifford module to a 2(n+1)×2 matrix (in the 
case of             ), we used matrix reductions to find the equivalence 
class. Realizing that matrix reduction methods from lin- ear algebra 
are achieved via elementary operations, it became a matter of using 
this definition from linear algebra step by step.

Mathematica can use matrix reductions quickly which is beneficial 
for calculating canonical equivalence classes in Clifford projective space 
in high dimension. Our Mathematica package implemented the use 
of the matrix representatives for a given Clifford module, and operated 
via matrix reduction to achieve the associated equivalence class.

We wish to continue our work with this Mathematica package to 
make it better so that it can handle any type of Clifford module. In 
particular, we feel that theorem 1 and conjecture 1 could be 
applied directly to            as well as other Clifford algebras such that 

We find that the scaling matrix required to yield such reduced 
matrices is

which is the inverse of the matrix

Now, matrix (4), as its Clifford representative, is Λ∗:
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The inverse of equation (5) is

It follows that (5) is invertible because the denominator of its inverse 
is nonzero. The only way the denominator would be zero is when
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One might wonder why the first argument is passed in as a list of a
list. We have set up the coding so that we can handle examples of CPS
having higher dimensions which involves more than one Clifford element.
We express this in the next example.

• Projective line example of C�2,0 :
u2 = {2, 1, 0, 1/2};
eqc2 = EquivalenceClass[{u1, u2}, 2, 0, 1]
The equivalence class here is,

(
1 + e1 − e2 − e12

2 + e1 +
1

2
e12

)
�−→




1

2
+

e1
2

1− e1 +
15e2
4

+
41e12
4



.

Now, consider u ∈ C�22,0 with a matrix representative with linearly indepen-
dent columns. In particular consider these six matrices:




x1 y1
x2 y2
x3 y3
x4 y4


 ,




x1 y1
0 0
x2 y2
x3 y3


 ,




x1 y1
0 0
0 0
x2 y2


 ,




0 0
x1 y1
x2 y2
x3 y3


 ,




0 0
x1 y1
0 0
x2 y2


 ,




0 0
0 0
x1 y1
x2 y2




where x1y2 − x2y1 �= 0. Using column reduction on each of these matrices yields
these matrices respectively:




1 0
0 1
a b
c d


 ,




1 0
0 0
0 1
a b


 ,




1 0
0 0
0 0
0 1


 ,




0 0
1 0
0 1
a b


 ,




0 0
1 0
0 0
0 1


 ,




0 0
0 0
1 0
0 1




where a =
x3 y2 − x2 y3
x1 y2 − x2 y1

, b =
x1 y3 − x3 y1
x1 y2 − x2 y1

, c =
x4 y2 − x2 y4
x1 y2 − x2 y1

, and d =
x1 y4 − x4 y1
x1 y2 − x2 y1

We find that the scaling matrix required to yield such reduced matrices is




y2
x1 y2 − x2 y1

−y1
x1 y2 − x2 y1

−x2

x1 y2 − x2 y1

x1

x1 y2 − x2 y1


 (4)

which is the inverse of the matrix

(
x1 y1
x2 y2

)
.
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Now, matrix (4), as its Clifford representative, is Λ∗:

Λ∗ =
1

2

[
y2 + x1

x1y2 − x2y1
+

y2 − x1

x1y2 − x2y1
e1 −

y1 + x2

x1y2 − x2y1
e2 −

y1 − x2

x1y2 − x2y1
e12

]
(5)

The inverse of equation (5) is

2(x1y2 − x2y1)

(x1 + y2)− (x1 − y2)e1 − (x2 + y1)e2 + (x2 − y1)e12

It follows that (5) is invertible because the denominator of its inverse is nonzero.
The only way the denominator would be zero is when x1 = x2 = y1 = y2 = 0 and
this cannot happen per definition 1.

By this example, we may have found the canonical matrix representative
for the module C�22,0. Moreover, we believe this applies for C�n+1

2,0 . By this, we
propose the following conjecture.

Conjecture 1: Let u ∈ C�n+1
2,0 be defined as follows:

uj =
1

2
[(xk + yk+1) + (xk − yk+1)e1 + (xk+1 + yk)e2 + (xk+1 − yk)e12] ,

where j =
k + 1

2
and k = 1, 3, 5, ..., 2n+ 1. Let i < t such that xiyt − xtyi �= 0.

Also, assume that the matrix representative for u can be reduced to a matrix
with its ith element in the first column and tth element in the second column as
the leading coefficients (pivots) per the definition of a column reduced matrix
(refer to footnote c. on page 6) [3, p.147]. Then, the equivalence class for u is
determined by the scalar, v ∈ C�∗2,0:

v =
1

2

[
yt + xi

xiyt − xtyi
+

yt − xi

xiyt − xtyi
e1 −

yi + xt

xiyt − xtyi
e2 −

yi − xt

xiyt − xtyi
e12

]
.

Going about proving this conjecture can be done, but may be quite messy
to do by hand. Consider the case of C�22,0. For this, we could perform the same
procedure done to prove theorem 1 by exhaustion where we use the same method
for each of the six matrices we considered on the previous page for C�22,0. However,
as you may have already guessed, we wouldn’t want to do that for C�n+1

2,0 as that
would take too long. We will indeed look for a simpler approach to proving this
conjecture.

(5)

(4)
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x1y2 − x2y1
e1 −

y1 + x2

x1y2 − x2y1
e2 −

y1 − x2

x1y2 − x2y1
e12

]
(5)

The inverse of equation (5) is

2(x1y2 − x2y1)

(x1 + y2)− (x1 − y2)e1 − (x2 + y1)e2 + (x2 − y1)e12

It follows that (5) is invertible because the denominator of its inverse is nonzero.
The only way the denominator would be zero is when x1 = x2 = y1 = y2 = 0 and
this cannot happen per definition 1.

By this example, we may have found the canonical matrix representative
for the module C�22,0. Moreover, we believe this applies for C�n+1

2,0 . By this, we
propose the following conjecture.

Conjecture 1: Let u ∈ C�n+1
2,0 be defined as follows:

uj =
1

2
[(xk + yk+1) + (xk − yk+1)e1 + (xk+1 + yk)e2 + (xk+1 − yk)e12] ,

where j =
k + 1

2
and k = 1, 3, 5, ..., 2n+ 1. Let i < t such that xiyt − xtyi �= 0.

Also, assume that the matrix representative for u can be reduced to a matrix
with its ith element in the first column and tth element in the second column as
the leading coefficients (pivots) per the definition of a column reduced matrix
(refer to footnote c. on page 6) [3, p.147]. Then, the equivalence class for u is
determined by the scalar, v ∈ C�∗2,0:

v =
1

2

[
yt + xi

xiyt − xtyi
+

yt − xi

xiyt − xtyi
e1 −

yi + xt

xiyt − xtyi
e2 −

yi − xt

xiyt − xtyi
e12

]
.

Going about proving this conjecture can be done, but may be quite messy
to do by hand. Consider the case of C�22,0. For this, we could perform the same
procedure done to prove theorem 1 by exhaustion where we use the same method
for each of the six matrices we considered on the previous page for C�22,0. However,
as you may have already guessed, we wouldn’t want to do that for C�n+1

2,0 as that
would take too long. We will indeed look for a simpler approach to proving this
conjecture.

Mathematica and Clifford Projective Spaces
Author: Andrew Halsaver

Mentor: Dr. Alfonso Agnew

Now, matrix (4), as its Clifford representative, is Λ∗:

Λ∗ =
1

2

[
y2 + x1

x1y2 − x2y1
+

y2 − x1

x1y2 − x2y1
e1 −

y1 + x2

x1y2 − x2y1
e2 −

y1 − x2

x1y2 − x2y1
e12

]
(5)

The inverse of equation (5) is

2(x1y2 − x2y1)

(x1 + y2)− (x1 − y2)e1 − (x2 + y1)e2 + (x2 − y1)e12

It follows that (5) is invertible because the denominator of its inverse is nonzero.
The only way the denominator would be zero is when x1 = x2 = y1 = y2 = 0 and
this cannot happen per definition 1.

By this example, we may have found the canonical matrix representative
for the module C�22,0. Moreover, we believe this applies for C�n+1

2,0 . By this, we
propose the following conjecture.

Conjecture 1: Let u ∈ C�n+1
2,0 be defined as follows:

uj =
1

2
[(xk + yk+1) + (xk − yk+1)e1 + (xk+1 + yk)e2 + (xk+1 − yk)e12] ,

where j =
k + 1

2
and k = 1, 3, 5, ..., 2n+ 1. Let i < t such that xiyt − xtyi �= 0.

Also, assume that the matrix representative for u can be reduced to a matrix
with its ith element in the first column and tth element in the second column as
the leading coefficients (pivots) per the definition of a column reduced matrix
(refer to footnote c. on page 6) [3, p.147]. Then, the equivalence class for u is
determined by the scalar, v ∈ C�∗2,0:

v =
1

2

[
yt + xi

xiyt − xtyi
+

yt − xi

xiyt − xtyi
e1 −

yi + xt

xiyt − xtyi
e2 −

yi − xt

xiyt − xtyi
e12

]
.

Going about proving this conjecture can be done, but may be quite messy
to do by hand. Consider the case of C�22,0. For this, we could perform the same
procedure done to prove theorem 1 by exhaustion where we use the same method
for each of the six matrices we considered on the previous page for C�22,0. However,
as you may have already guessed, we wouldn’t want to do that for C�n+1

2,0 as that
would take too long. We will indeed look for a simpler approach to proving this
conjecture.

Mathematica and Clifford Projective Spaces
Author: Andrew Halsaver

Mentor: Dr. Alfonso Agnew

Now, matrix (4), as its Clifford representative, is Λ∗:

Λ∗ =
1

2

[
y2 + x1

x1y2 − x2y1
+

y2 − x1

x1y2 − x2y1
e1 −

y1 + x2

x1y2 − x2y1
e2 −

y1 − x2

x1y2 − x2y1
e12

]
(5)

The inverse of equation (5) is

2(x1y2 − x2y1)

(x1 + y2)− (x1 − y2)e1 − (x2 + y1)e2 + (x2 − y1)e12

It follows that (5) is invertible because the denominator of its inverse is nonzero.
The only way the denominator would be zero is when x1 = x2 = y1 = y2 = 0 and
this cannot happen per definition 1.

By this example, we may have found the canonical matrix representative
for the module C�22,0. Moreover, we believe this applies for C�n+1

2,0 . By this, we
propose the following conjecture.

Conjecture 1: Let u ∈ C�n+1
2,0 be defined as follows:

uj =
1

2
[(xk + yk+1) + (xk − yk+1)e1 + (xk+1 + yk)e2 + (xk+1 − yk)e12] ,

where j =
k + 1

2
and k = 1, 3, 5, ..., 2n+ 1. Let i < t such that xiyt − xtyi �= 0.

Also, assume that the matrix representative for u can be reduced to a matrix
with its ith element in the first column and tth element in the second column as
the leading coefficients (pivots) per the definition of a column reduced matrix
(refer to footnote c. on page 6) [3, p.147]. Then, the equivalence class for u is
determined by the scalar, v ∈ C�∗2,0:

v =
1

2

[
yt + xi

xiyt − xtyi
+

yt − xi

xiyt − xtyi
e1 −

yi + xt

xiyt − xtyi
e2 −

yi − xt

xiyt − xtyi
e12

]
.

Going about proving this conjecture can be done, but may be quite messy
to do by hand. Consider the case of C�22,0. For this, we could perform the same
procedure done to prove theorem 1 by exhaustion where we use the same method
for each of the six matrices we considered on the previous page for C�22,0. However,
as you may have already guessed, we wouldn’t want to do that for C�n+1

2,0 as that
would take too long. We will indeed look for a simpler approach to proving this
conjecture.

Mathematica and Clifford Projective Spaces
Author: Andrew Halsaver

Mentor: Dr. Alfonso Agnew

Now, matrix (4), as its Clifford representative, is Λ∗:

Λ∗ =
1

2

[
y2 + x1

x1y2 − x2y1
+

y2 − x1

x1y2 − x2y1
e1 −

y1 + x2

x1y2 − x2y1
e2 −

y1 − x2

x1y2 − x2y1
e12

]
(5)

The inverse of equation (5) is

2(x1y2 − x2y1)

(x1 + y2)− (x1 − y2)e1 − (x2 + y1)e2 + (x2 − y1)e12

It follows that (5) is invertible because the denominator of its inverse is nonzero.
The only way the denominator would be zero is when x1 = x2 = y1 = y2 = 0 and
this cannot happen per definition 1.

By this example, we may have found the canonical matrix representative
for the module C�22,0. Moreover, we believe this applies for C�n+1

2,0 . By this, we
propose the following conjecture.

Conjecture 1: Let u ∈ C�n+1
2,0 be defined as follows:

uj =
1

2
[(xk + yk+1) + (xk − yk+1)e1 + (xk+1 + yk)e2 + (xk+1 − yk)e12] ,

where j =
k + 1

2
and k = 1, 3, 5, ..., 2n+ 1. Let i < t such that xiyt − xtyi �= 0.

Also, assume that the matrix representative for u can be reduced to a matrix
with its ith element in the first column and tth element in the second column as
the leading coefficients (pivots) per the definition of a column reduced matrix
(refer to footnote c. on page 6) [3, p.147]. Then, the equivalence class for u is
determined by the scalar, v ∈ C�∗2,0:

v =
1

2

[
yt + xi

xiyt − xtyi
+

yt − xi

xiyt − xtyi
e1 −

yi + xt

xiyt − xtyi
e2 −

yi − xt

xiyt − xtyi
e12

]
.

Going about proving this conjecture can be done, but may be quite messy
to do by hand. Consider the case of C�22,0. For this, we could perform the same
procedure done to prove theorem 1 by exhaustion where we use the same method
for each of the six matrices we considered on the previous page for C�22,0. However,
as you may have already guessed, we wouldn’t want to do that for C�n+1

2,0 as that
would take too long. We will indeed look for a simpler approach to proving this
conjecture.

Let                        be defined as follows:

Mathematica and Clifford Projective Spaces
Author: Andrew Halsaver

Mentor: Dr. Alfonso Agnew

and has inverse,

v−1 =
v

vv
=

x1

8

[(
1

x1

+ 1

)
+

(
1− 1

x1

)
e1 + λ (e2 + e12)

]

,

provided x1 �= 0.

Looking back at equation (1), u · v (using right-scalar action for k = 1) the
first component of the EC representative reduces to,

1

2
(1 + e1) +

x2

2x1

(e2 − e12).

For k = 3, the second component of the EC representative reduces to,

x3

2x1

(1 + e1) +
x4

2x1

(e2 − e12).

As required, we have the equivalence class

u ∈ C�22,0 : uj =
1

2
[(xk + λxk+1) + (xk − λxk+1)e1 + (λxk + xk+1)e2 + (λxk − xk+1)e12] �−→




1

2
(1 + e1) +

x2

2x1

(e2 − e12)

x3

2x1

(1 + e1) +
x4

2x1

(e2 − e12)




,

where k = 1, 3 and j =
k + 1

2
.

We are inclined to think that equation (2) can be applied to other canon-
ical matrix representatives of C�n+1

2,0 . We do in fact find that this is true. We
acknowledge this with the following theorem.

Theorem 1: Consider u ∈ C�n+1
2,0 : such that u � M ∈ R2(n+1)×n where M has

L.D. columns. A priori, we have

uj =
1

2
[(xk + λxk+1) + (xk − λxk+1)e1 + (λxk + xk+1)e2 + (λxk − xk+1)e12] ,

where j =
k + 1

2
, λ is a fixed real number, and k = 1, 3, 5, ..., n+1. The canonical

equivalence class on u is determined by v ∈ C�∗2,0 :

v =
1

2

[(
1

xi

+ 1

)
+

(
1

xi

− 1

)
e1 − λ (e2 + e12)

]
, whenever xi �= 0, and i = 1, 2, 3, ..., n+1

Proof:

Let u ∈ C�n+1
2,0 . The matrix representative of u is a 2(n+ 1)× 2 matrix with

linearly dependent columns written as,

Conjecture 1.
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Going about proving this conjecture can be done, but may be quite messy
to do by hand. Consider the case of C�22,0. For this, we could perform the same
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Conclusion

Recall that from definition 1, we sought to establish a canonical form of an
invertible scalar which would ultimately lead to the required equivalence class
for a Clifford module. Using isomorphic properties whereby we map the Clifford
module to a 2(n+1)×2 matrix (in the case of C�n+1

2,0 ), we used matrix reductions
to find the equivalence class. Realizing that matrix reduction methods from lin-
ear algebra are achieved via elementary operations, it became a matter of using
this definition from linear algebra step by step.

Mathematica can use matrix reductions quickly which is beneficial for calcu-
lating canonical equivalence classes in Clifford projective space in high dimension.
Our Mathematica package implemented the use of the matrix representatives for
a given Clifford module, and operated via matrix reduction to achieve the asso-
ciated equivalence class.

We wish to continue our work with this Mathematica package to make it
better so that it can handle any type of Clifford module. In particular, we feel
that theorem 1 and conjecture 1 could be applied directly to C�3,0 as well as other
Clifford algebras such that C�p,q � Mat(2,R).
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77DIMENSIONS

Cancer treatments have been shown to be more effective if the cancer
is detected and treated at an early stage. Current cancer detection 
methods include imaging as well as tissue and blood-sample testing. 
These methods are expensive and invasive for patients, thus scientists
have been driven to develop new alternatives to detect cancer. 
Biomimetic Pattern Recognition (BPR) is a technique that constructs 
a hyper-dimensional (HD) geometric body by mimicking a biological
system and uses it for classification. BPR is derived from the Principle 
of Homology-Continuity, which assumes elements of the same class 
are biologically evolved and continuously connected. In other words, 
between any two elements of the same class, there is a gradual 
connection. These connecting branches form HD line segments or 
hyper-surfaces. The resulting topological structure, known as a 
biomimetic structure, mimics a biological class. In recent years, BPR 
has been successfully used in voice, facial, and iris recognition 
software. In this project we developed new BPR algorithms and 
classification schemes to detect specific cancers using DNA microarray 
data. We investigated the performance of the proposed BPR methods 
on data for bladder, colon, leukemia, and liver cancers. Results indicate 
that the proposed BPR has an increase in recognition rate when 
compared to previous techniques. BPR has shown to be a promising 
approach for cancer detection using DNA microarray data.

Cancer treatments have been shown to be more effective if detected 
and treated at an early stage. Current cancer detection methods 
include imagining and blood-sample testing. Cancer imaging 
encompasses various techniques including traditional X-Rays, 
X-Ray-based computed tomography, Magnetic Resonance Imaging, 
Positron Emission Tomography, ultrasound scans, and endoscopy [1]. 
Current detection methods can be expensive and invasive, driving 
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scientists to develop alternative methods for detection, such as 
pattern recognition. Pattern recognition techniques such as Support 
Vector Machine, Discriminatory Analysis, etc. have been used in 
cancer detection in the past. In this paper, we consider and develop 
new Biomimetic Pattern Recognition techniques.

DNA Microarray Data
Diagnosis and treatment of cancer can be improved by characterizing
gene expression levels in healthy and cancerous tissue. Gene 
expression levels can be studied through microarray technology. 
Microarray technology allows researchers to measure and monitor 
the expression levels of thousands of genes simultaneously for a 
given organism [1]. DNA microarray data can be used to determine 
which genes are expressed at different levels between cancer-free 
cells and cancer-containing cells [2]. Biologists gather DNA from 
both cancerous and healthy cells for comparison and is tagged with 
red fluorescence for cancer and green for normal. DNA fragments 
then bind to their complements in a microarray chip as a part of a 
process called hybridization (Figure 1). A red spot indicates that the 
gene is highly expressed in a cancer cell and minimally in a healthy 
cell [2]. Green signifies that the gene is minimally expressed in a 
cancer cell and highly in a healthy cell. Yellow fluorescence shows 
that a gene is almost equally expressed in both cells. A black spot 
indicates that the gene is inactive in both cell [3]. A laser then scans 
the microarray and determines the expression levels of each gene 
according to the intensity of the color and is given a numeric value. 
Each sample is defined as a sequence of numerical values of gene 
expression levels. In recent years, DNA microarray technology has 
provided a promising tool to determine the diagnosis and prognosis 
of different cancer types [4-7].
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Biomimetic Pattern Recognition (BPR) is a technique constructing a 
hyper-dimensional (HD) geometric body to mimic a biological system 
for classification. BPR was first introduced by Shoujeu Wang in 2002 
in Beijing, China and was derived from the Principle of Homology
-Continuity (PHC) [8]. PHC assumes that the difference between 
elements of the same class is gradually changed. In other words, 
there is a gradual connection between any two elements that 
belong to the same class. These connecting branches can be HD line 
segments or hyper-surfaces and the resulting topo- logical structure 
forms a “biological” organism, which can be used for classification. 
One special characteristic of BPR is that it requires only a small 
number of samples as opposed to traditional pattern recognition 
algorithms. In recent years, BPR has been used successfully in voice 
recognition [9], iris recognition [10], and facial recognition [11]. BPR 
methods include different constructions as well as different 
classification techniques.

In this paper, the focuses are to develop two new techniques for 
developing BPR algorithms and apply them to DNA microarray data 
for cancer de- tection. We aim to build HD topological formations 

Let S be the set of M elements of the training set and U be an 
empty set. Without loss of generality, let      and      be the two closest 
elements in S. Remove     and      from S and add them to U so that           

           Then, we select the next element       in S so that its 
distance to the line segments in U is minimal; currently U simply 
contains a line segment connecting      to      . Again, we remove      
from S and add it to U in the following fashion:

Biomimetic Pattern Recognition

both cells. A black spot indicates that the gene is
inactive in both cell [3]. A laser then scans the
microarray and determines the expression levels of
each gene according to the intensity of the color and
is given a numeric value. Each sample is defined as
a sequence of numerical values of gene expression
levels. In recent years, DNA microarray technology
has provided a promising tool to determine the
diagnosis and prognosis of different cancer types
[4-7].

Figure 1. DNA microarrays process from
reference [3]. (A) DNA from a cell is extracted.

Each DNA segment has a corresponding “spot” on
the microarray chip. (B) When comparing gene

expression levels, DNA from each cell is labeled
with different fluorescent tags and hybridized on

the microarray chip.

1.2 Biomimetic Pattern Recognition

Biomimetic Pattern Recognition (BPR) is a
technique constructing a hyper-dimensional (HD)
geometric body to mimic a biological system for
classification. BPR was first introduced by Shoujeu
Wang in 2002 in Beijing, China and was derived
from the Principle of Homology-Continuity (PHC)
[8]. PHC assumes that the difference between el-
ements of the same class is gradually changed.
In other words, there is a gradual connection be-
tween any two elements that belong to the same

class. These connecting branches can be HD line
segments or hyper-surfaces and the resulting topo-
logical structure forms a “biological” organism,
which can be used for classification. One special
characteristic of BPR is that it requires only a small
number of samples as opposed to traditional pattern
recognition algorithms. In recent years, BPR has
been used successfully in voice recognition [9], iris
recognition [10], and facial recognition [11]. BPR
methods include different constructions as well as
different classification techniques.

In this paper, the focuses are to develop two
new techniques for developing BPR algorithms and
apply them to DNA microarray data for cancer de-
tection. We aim to build HD topological formations
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inner product in Rn, respectively. It can be shown
that

D =




‖�x− �x1‖ q < 0√
‖�x2 − �x1‖2 + q2 0 ≤ q ≤ ‖�x2 − �x1‖

‖�x− �x2‖ q > ‖�x2 − �x1‖
(1)

Let S be the set of M elements of the
training set and U be an empty set. Without loss of
generality, let �x1 and �x2 be the two closest elements
in S. Remove �x1 and �x2 from S and add them to U
so that U =

(
�x1

�x2

)
. Then, we select the next element

�x3 in S so that its distance to the line segments in
U is minimal; currently U simply contains a line
segment connecting �x1 to �x2. Again, we remove �x3
from S and add it to U in the following fashion:

U =

(
�x1 �x3
�x2 �x∗3

)
(2)

where �x∗3 is determined based on the proposed
algorithms:
Ia. Nodal Connection: Connect �x3 to the closest

node of the line segment �x1 to �x2. In this case,
�x∗3 is either �x1 or �x2.

�x3∗ =

{
�x1 if ‖�x3 − �x1‖ < ‖�x3 − �x2‖
�x2 if ‖�x3 − �x2‖ ≤ ‖�x3 − �x1‖

(3)

IIa. Segment Connection: Connect �x3 to the
closest element of x1x2. In this case, �x∗3 could
be �x1 , �x2 or a new element,�xt (not from the
original training set) on the segment from �x1
to �x2.

– If the projection of �x3 lies outside x1x2,
then �x3∗ is defined as in Equation 3.
Figure 2 shows how the projection of �x3
can lie inside (A) or outside (B).

– If the projection of �x3 lies inside x1x2,
then

�x3∗ = �x1 + (�x3 − �x1) • (�u) ∗ �u (4)

where �u = �x2− �x1

‖ �x2− �x1‖ .
Continue in this fashion until S has been

exhausted. At the end of the algorithm, the set U
will contain (M − 1) segments

U =

(
�x1 �x3 · · · �xM
�x2 �x∗3 · · · �x∗M

)
(5)

with at least one node of the segment being an
element of the training set. Notice that while both

algorithms use the same name set, a different struc-
ture is constructed. Figure 3 shows an example of
the development of and the contrast between both
proposed algorithms in R2. The Segment Connec-
tion algorithm provides a more compact structure
than that from the Nodal Connection algorithm.
Namely, the sum of all minimum distances in U is
smaller for the Segment Connection algorithm. The
algorithms are performed on each training class,
hence, they produce two “biological organisms,”
one structure for the Training Normal class and one
for the Training Cancer class.

Figure 3. Development of the skeleton-like
structures using two assembling algorithms. In the
Nodal Connection (left), the next point is selected

based on its minimal distance to the current
structure. In the Segment Connection (right) the
next point is the closest point on the segment.

We also defined two different extension pos-
sibilities, where U can be composed of nodes which
can connect to more than one node from S (“Multi-
Lateral”), or U can contain nodes which can only
connect to a one node (“Sequential”).

1. Multi-lateral: The algorithm proceeds such
that each line segment can connect to any
previously constructed line as shown in Figure
4.

2. Sequential: The algorithm proceeds such that
each line can only connect to a node that does
not belong to U as shown in Figure 4.
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sibilities, where U can be composed of nodes which
can connect to more than one node from S (“Multi-
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1. Multi-lateral: The algorithm proceeds such
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2. Sequential: The algorithm proceeds such that
each line can only connect to a node that does
not belong to U as shown in Figure 4.
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connect to a one node (“Sequential”).
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4.
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with at least one node of the segment being an
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proposed algorithms in R2. The Segment Connec-
tion algorithm provides a more compact structure
than that from the Nodal Connection algorithm.
Namely, the sum of all minimum distances in U is
smaller for the Segment Connection algorithm. The
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sibilities, where U can be composed of nodes which
can connect to more than one node from S (“Multi-
Lateral”), or U can contain nodes which can only
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1. Multi-lateral: The algorithm proceeds such
that each line segment can connect to any
previously constructed line as shown in Figure
4.

2. Sequential: The algorithm proceeds such that
each line can only connect to a node that does
not belong to U as shown in Figure 4.
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2. Sequential: The algorithm proceeds such that
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not belong to U as shown in Figure 4.
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both cells. A black spot indicates that the gene is
inactive in both cell [3]. A laser then scans the
microarray and determines the expression levels of
each gene according to the intensity of the color and
is given a numeric value. Each sample is defined as
a sequence of numerical values of gene expression
levels. In recent years, DNA microarray technology
has provided a promising tool to determine the
diagnosis and prognosis of different cancer types
[4-7].

Figure 1. DNA microarrays process from
reference [3]. (A) DNA from a cell is extracted.

Each DNA segment has a corresponding “spot” on
the microarray chip. (B) When comparing gene

expression levels, DNA from each cell is labeled
with different fluorescent tags and hybridized on

the microarray chip.

1.2 Biomimetic Pattern Recognition

Biomimetic Pattern Recognition (BPR) is a
technique constructing a hyper-dimensional (HD)
geometric body to mimic a biological system for
classification. BPR was first introduced by Shoujeu
Wang in 2002 in Beijing, China and was derived
from the Principle of Homology-Continuity (PHC)
[8]. PHC assumes that the difference between el-
ements of the same class is gradually changed.
In other words, there is a gradual connection be-
tween any two elements that belong to the same

class. These connecting branches can be HD line
segments or hyper-surfaces and the resulting topo-
logical structure forms a “biological” organism,
which can be used for classification. One special
characteristic of BPR is that it requires only a small
number of samples as opposed to traditional pattern
recognition algorithms. In recent years, BPR has
been used successfully in voice recognition [9], iris
recognition [10], and facial recognition [11]. BPR
methods include different constructions as well as
different classification techniques.

In this paper, the focuses are to develop two
new techniques for developing BPR algorithms and
apply them to DNA microarray data for cancer de-
tection. We aim to build HD topological formations
(skeleton-like structures) and pattern recognition
schemes. We propose a new approach to the PHC,
where elements of the same class are topologically
assembled as nodes in a HD space and are con-
nected by means of nearest neighbor.

2. METHODOLOGY

2.1 Data Sets

The BPR technique introduced in this paper
is a general one, and can therefore be applied to
any data set in a specified format. An applicable
data set should be a nS−by−mG matrix, where ns

is the number of samples and mG is the number
of objects, such as genes, images, or frame data.
However, for our purposes, we apply this technique
to DNA microarray data.

2.2 BPR Algorithm with Hyper-Dimensional Line
Segments

2.2.1 Training Process: By providing a new
approach to the PHC, we connect nodes from the
same class in a HD space by means of nearest
neighbor. In order to build the HD topological
formations, it is important to understand points and
line segments in HD space. Let �x be an element
in Rn and x1x2 be a line segment in Rn as well.
The minimum distance, D, from �x to a x1x2 is
determined based on whether its projection is inside
the line segment. Let �u = �x2− �x1

‖ �x2− �x1‖ be a unit vector
going from �x1 to �x2 and q = 〈�x − �x1, �u〉 be the
projection of �x onto the line segment.. Note that
‖·‖ and 〈·〉 denote the usual Euclidean norm and the
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inner product in Rn, respectively. It can be shown
that

D =




‖�x− �x1‖ q < 0√
‖�x2 − �x1‖2 + q2 0 ≤ q ≤ ‖�x2 − �x1‖

‖�x− �x2‖ q > ‖�x2 − �x1‖
(1)

Let S be the set of M elements of the
training set and U be an empty set. Without loss of
generality, let �x1 and �x2 be the two closest elements
in S. Remove �x1 and �x2 from S and add them to U
so that U =

(
�x1

�x2

)
. Then, we select the next element

�x3 in S so that its distance to the line segments in
U is minimal; currently U simply contains a line
segment connecting �x1 to �x2. Again, we remove �x3
from S and add it to U in the following fashion:

U =

(
�x1 �x3
�x2 �x∗3

)
(2)

where �x∗3 is determined based on the proposed
algorithms:
Ia. Nodal Connection: Connect �x3 to the closest

node of the line segment �x1 to �x2. In this case,
�x∗3 is either �x1 or �x2.

�x3∗ =

{
�x1 if ‖�x3 − �x1‖ < ‖�x3 − �x2‖
�x2 if ‖�x3 − �x2‖ ≤ ‖�x3 − �x1‖

(3)

IIa. Segment Connection: Connect �x3 to the
closest element of x1x2. In this case, �x∗3 could
be �x1 , �x2 or a new element,�xt (not from the
original training set) on the segment from �x1
to �x2.

– If the projection of �x3 lies outside x1x2,
then �x3∗ is defined as in Equation 3.
Figure 2 shows how the projection of �x3
can lie inside (A) or outside (B).

– If the projection of �x3 lies inside x1x2,
then

�x3∗ = �x1 + (�x3 − �x1) • (�u) ∗ �u (4)

where �u = �x2− �x1

‖ �x2− �x1‖ .
Continue in this fashion until S has been

exhausted. At the end of the algorithm, the set U
will contain (M − 1) segments

U =

(
�x1 �x3 · · · �xM
�x2 �x∗3 · · · �x∗M

)
(5)

with at least one node of the segment being an
element of the training set. Notice that while both

algorithms use the same name set, a different struc-
ture is constructed. Figure 3 shows an example of
the development of and the contrast between both
proposed algorithms in R2. The Segment Connec-
tion algorithm provides a more compact structure
than that from the Nodal Connection algorithm.
Namely, the sum of all minimum distances in U is
smaller for the Segment Connection algorithm. The
algorithms are performed on each training class,
hence, they produce two “biological organisms,”
one structure for the Training Normal class and one
for the Training Cancer class.

Figure 3. Development of the skeleton-like
structures using two assembling algorithms. In the
Nodal Connection (left), the next point is selected

based on its minimal distance to the current
structure. In the Segment Connection (right) the
next point is the closest point on the segment.

We also defined two different extension pos-
sibilities, where U can be composed of nodes which
can connect to more than one node from S (“Multi-
Lateral”), or U can contain nodes which can only
connect to a one node (“Sequential”).

1. Multi-lateral: The algorithm proceeds such
that each line segment can connect to any
previously constructed line as shown in Figure
4.

2. Sequential: The algorithm proceeds such that
each line can only connect to a node that does
not belong to U as shown in Figure 4.
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smaller for the Segment Connection algorithm. The
algorithms are performed on each training class,
hence, they produce two “biological organisms,”
one structure for the Training Normal class and one
for the Training Cancer class.

Figure 3. Development of the skeleton-like
structures using two assembling algorithms. In the
Nodal Connection (left), the next point is selected

based on its minimal distance to the current
structure. In the Segment Connection (right) the
next point is the closest point on the segment.

We also defined two different extension pos-
sibilities, where U can be composed of nodes which
can connect to more than one node from S (“Multi-
Lateral”), or U can contain nodes which can only
connect to a one node (“Sequential”).

1. Multi-lateral: The algorithm proceeds such
that each line segment can connect to any
previously constructed line as shown in Figure
4.

2. Sequential: The algorithm proceeds such that
each line can only connect to a node that does
not belong to U as shown in Figure 4.
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both cells. A black spot indicates that the gene is
inactive in both cell [3]. A laser then scans the
microarray and determines the expression levels of
each gene according to the intensity of the color and
is given a numeric value. Each sample is defined as
a sequence of numerical values of gene expression
levels. In recent years, DNA microarray technology
has provided a promising tool to determine the
diagnosis and prognosis of different cancer types
[4-7].

Figure 1. DNA microarrays process from
reference [3]. (A) DNA from a cell is extracted.

Each DNA segment has a corresponding “spot” on
the microarray chip. (B) When comparing gene

expression levels, DNA from each cell is labeled
with different fluorescent tags and hybridized on

the microarray chip.

1.2 Biomimetic Pattern Recognition

Biomimetic Pattern Recognition (BPR) is a
technique constructing a hyper-dimensional (HD)
geometric body to mimic a biological system for
classification. BPR was first introduced by Shoujeu
Wang in 2002 in Beijing, China and was derived
from the Principle of Homology-Continuity (PHC)
[8]. PHC assumes that the difference between el-
ements of the same class is gradually changed.
In other words, there is a gradual connection be-
tween any two elements that belong to the same

class. These connecting branches can be HD line
segments or hyper-surfaces and the resulting topo-
logical structure forms a “biological” organism,
which can be used for classification. One special
characteristic of BPR is that it requires only a small
number of samples as opposed to traditional pattern
recognition algorithms. In recent years, BPR has
been used successfully in voice recognition [9], iris
recognition [10], and facial recognition [11]. BPR
methods include different constructions as well as
different classification techniques.

In this paper, the focuses are to develop two
new techniques for developing BPR algorithms and
apply them to DNA microarray data for cancer de-
tection. We aim to build HD topological formations
(skeleton-like structures) and pattern recognition
schemes. We propose a new approach to the PHC,
where elements of the same class are topologically
assembled as nodes in a HD space and are con-
nected by means of nearest neighbor.

2. METHODOLOGY

2.1 Data Sets

The BPR technique introduced in this paper
is a general one, and can therefore be applied to
any data set in a specified format. An applicable
data set should be a nS−by−mG matrix, where ns

is the number of samples and mG is the number
of objects, such as genes, images, or frame data.
However, for our purposes, we apply this technique
to DNA microarray data.

2.2 BPR Algorithm with Hyper-Dimensional Line
Segments

2.2.1 Training Process: By providing a new
approach to the PHC, we connect nodes from the
same class in a HD space by means of nearest
neighbor. In order to build the HD topological
formations, it is important to understand points and
line segments in HD space. Let �x be an element
in Rn and x1x2 be a line segment in Rn as well.
The minimum distance, D, from �x to a x1x2 is
determined based on whether its projection is inside
the line segment. Let �u = �x2− �x1

‖ �x2− �x1‖ be a unit vector
going from �x1 to �x2 and q = 〈�x − �x1, �u〉 be the
projection of �x onto the line segment.. Note that
‖·‖ and 〈·〉 denote the usual Euclidean norm and the
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Let S be the set of M elements of the
training set and U be an empty set. Without loss of
generality, let �x1 and �x2 be the two closest elements
in S. Remove �x1 and �x2 from S and add them to U
so that U =

(
�x1

�x2

)
. Then, we select the next element

�x3 in S so that its distance to the line segments in
U is minimal; currently U simply contains a line
segment connecting �x1 to �x2. Again, we remove �x3
from S and add it to U in the following fashion:

U =

(
�x1 �x3
�x2 �x∗3

)
(2)

where �x∗3 is determined based on the proposed
algorithms:
Ia. Nodal Connection: Connect �x3 to the closest

node of the line segment �x1 to �x2. In this case,
�x∗3 is either �x1 or �x2.
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{
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IIa. Segment Connection: Connect �x3 to the
closest element of x1x2. In this case, �x∗3 could
be �x1 , �x2 or a new element,�xt (not from the
original training set) on the segment from �x1
to �x2.

– If the projection of �x3 lies outside x1x2,
then �x3∗ is defined as in Equation 3.
Figure 2 shows how the projection of �x3
can lie inside (A) or outside (B).

– If the projection of �x3 lies inside x1x2,
then

�x3∗ = �x1 + (�x3 − �x1) • (�u) ∗ �u (4)

where �u = �x2− �x1
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will contain (M − 1) segments
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)
(5)

with at least one node of the segment being an
element of the training set. Notice that while both

algorithms use the same name set, a different struc-
ture is constructed. Figure 3 shows an example of
the development of and the contrast between both
proposed algorithms in R2. The Segment Connec-
tion algorithm provides a more compact structure
than that from the Nodal Connection algorithm.
Namely, the sum of all minimum distances in U is
smaller for the Segment Connection algorithm. The
algorithms are performed on each training class,
hence, they produce two “biological organisms,”
one structure for the Training Normal class and one
for the Training Cancer class.

Figure 3. Development of the skeleton-like
structures using two assembling algorithms. In the
Nodal Connection (left), the next point is selected

based on its minimal distance to the current
structure. In the Segment Connection (right) the
next point is the closest point on the segment.

We also defined two different extension pos-
sibilities, where U can be composed of nodes which
can connect to more than one node from S (“Multi-
Lateral”), or U can contain nodes which can only
connect to a one node (“Sequential”).

1. Multi-lateral: The algorithm proceeds such
that each line segment can connect to any
previously constructed line as shown in Figure
4.

2. Sequential: The algorithm proceeds such that
each line can only connect to a node that does
not belong to U as shown in Figure 4.
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Figure 2. shows how the projection of a point       can lie outside (Left) or inside (Right) a line segment, 
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shows the projection landing inside the line segment. In both cases, the projection is a red dashed line 
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Figure 2: shows how the projection of a point �x3 can lie outside (Left) or inside (Right) a line
segment, namely x1x2. (Top) Case 1 shows the projecting landing outside the line segment. (Bottom)

Case 2 shows the projection landing inside the line segment. In both cases, the projection is a red
dashed line and the distance from the point to the line segment as a green dashed line.

Figure 4. Shows the different possible extensions.
(Top) The multilateral extension shows how some

nodes can connect to more than two nodes.
(Bottom) The sequential extension shows how
each segment can connect only two nodes.

In Figure 4, we see how the “Sequential” Extension
grows outward while the “Multilateral” can expand
from a single node into different directions.

The resulting skeleton-like structures, one for
the cancer training set UC and one for the normal
training set UN , are used for the classification
of an arbitrary node from the test set, TS . Two
classification techniques are introduced. Accuracy
for the algorithm is calculated based on the True

Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) values with Equation
(6) We also determine sensitivity and specificity in
Equations (7) and (8) respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
. (8)

Accuracy is used to calculate the percent
of correctly classified samples. Sensitivity shows
the ability of the algorithm to correctly identify
a sample as cancerous, while specificity gives the
ability of the algorithm to correctly identify a
sample as cancer-free. Ideally, sensitivity should be
close to 100% since, clinically, we do not want
to identify a cancerous sample as cancer-free. An
optimal method will reach close to 100% for all
three of the above.

2.2.2 Classification Process: Two structures
are developed from the Training algorithm one for
the cancer training set (UC) and one for the normal
training set (UN ). The resulting structures provide a
basis for classification of an arbitrary node from the
test set, TS . We introduce a classification technique
which we call “BPR Proximity” where an arbitrary
node is classified as part of a class depending on its
location relative to each “skeleton”. If the distance
from the node to the structure of class A is closer
than the distance from the node to the structure of
class B, then the node is classified as part of class
A. Figure 5, depicts a visual representation of the
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grows outward while the “Multilateral” can expand
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The resulting skeleton-like structures, one for
the cancer training set UC and one for the normal
training set UN , are used for the classification
of an arbitrary node from the test set, TS . Two
classification techniques are introduced. Accuracy
for the algorithm is calculated based on the True

Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) values with Equation
(6) We also determine sensitivity and specificity in
Equations (7) and (8) respectively.
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ability of the algorithm to correctly identify a
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close to 100% since, clinically, we do not want
to identify a cancerous sample as cancer-free. An
optimal method will reach close to 100% for all
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are developed from the Training algorithm one for
the cancer training set (UC) and one for the normal
training set (UN ). The resulting structures provide a
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test set, TS . We introduce a classification technique
which we call “BPR Proximity” where an arbitrary
node is classified as part of a class depending on its
location relative to each “skeleton”. If the distance
from the node to the structure of class A is closer
than the distance from the node to the structure of
class B, then the node is classified as part of class
A. Figure 5, depicts a visual representation of the
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inner product in Rn, respectively. It can be shown
that

D =




‖�x− �x1‖ q < 0√
‖�x2 − �x1‖2 + q2 0 ≤ q ≤ ‖�x2 − �x1‖

‖�x− �x2‖ q > ‖�x2 − �x1‖
(1)

Let S be the set of M elements of the
training set and U be an empty set. Without loss of
generality, let �x1 and �x2 be the two closest elements
in S. Remove �x1 and �x2 from S and add them to U
so that U =

(
�x1

�x2

)
. Then, we select the next element

�x3 in S so that its distance to the line segments in
U is minimal; currently U simply contains a line
segment connecting �x1 to �x2. Again, we remove �x3
from S and add it to U in the following fashion:

U =

(
�x1 �x3
�x2 �x∗3

)
(2)

where �x∗3 is determined based on the proposed
algorithms:
Ia. Nodal Connection: Connect �x3 to the closest

node of the line segment �x1 to �x2. In this case,
�x∗3 is either �x1 or �x2.

�x3∗ =

{
�x1 if ‖�x3 − �x1‖ < ‖�x3 − �x2‖
�x2 if ‖�x3 − �x2‖ ≤ ‖�x3 − �x1‖

(3)

IIa. Segment Connection: Connect �x3 to the
closest element of x1x2. In this case, �x∗3 could
be �x1 , �x2 or a new element,�xt (not from the
original training set) on the segment from �x1
to �x2.

– If the projection of �x3 lies outside x1x2,
then �x3∗ is defined as in Equation 3.
Figure 2 shows how the projection of �x3
can lie inside (A) or outside (B).

– If the projection of �x3 lies inside x1x2,
then

�x3∗ = �x1 + (�x3 − �x1) • (�u) ∗ �u (4)

where �u = �x2− �x1

‖ �x2− �x1‖ .
Continue in this fashion until S has been

exhausted. At the end of the algorithm, the set U
will contain (M − 1) segments

U =

(
�x1 �x3 · · · �xM
�x2 �x∗3 · · · �x∗M

)
(5)

with at least one node of the segment being an
element of the training set. Notice that while both

algorithms use the same name set, a different struc-
ture is constructed. Figure 3 shows an example of
the development of and the contrast between both
proposed algorithms in R2. The Segment Connec-
tion algorithm provides a more compact structure
than that from the Nodal Connection algorithm.
Namely, the sum of all minimum distances in U is
smaller for the Segment Connection algorithm. The
algorithms are performed on each training class,
hence, they produce two “biological organisms,”
one structure for the Training Normal class and one
for the Training Cancer class.

Figure 3. Development of the skeleton-like
structures using two assembling algorithms. In the
Nodal Connection (left), the next point is selected

based on its minimal distance to the current
structure. In the Segment Connection (right) the
next point is the closest point on the segment.

We also defined two different extension pos-
sibilities, where U can be composed of nodes which
can connect to more than one node from S (“Multi-
Lateral”), or U can contain nodes which can only
connect to a one node (“Sequential”).

1. Multi-lateral: The algorithm proceeds such
that each line segment can connect to any
previously constructed line as shown in Figure
4.

2. Sequential: The algorithm proceeds such that
each line can only connect to a node that does
not belong to U as shown in Figure 4.
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In Figure 4, we see how the “Sequential” Extension grows outward 
while the “Multilateral” can expand from a single node into different 
directions. The resulting skeleton-like structures, one for the cancer 
training set UC and one for the normal training set UN , are used 
for the classification of an arbitrary node from the test set, TS. Two 
classification techniques are introduced. Accuracy for the algorithm 
is calculated based on the TruePositive (TP), True Negative (TN), 
False Positive (FP), and False Negative (FN) values with Equation (6) 
We also determine sensitivity and specificity in Equations (7) and (8) 
respectively.

Accuracy is used to calculate the percent of correctly classified 
samples. Sensitivity shows the ability of the algorithm to correctly 
identify a sample as cancerous, while specificity gives the ability of 
the algorithm to correctly identify a sample as cancer-free. Ideally, 
sensitivity should be close to 100% since, clinically, we do not want 
to identify a cancerous sample as cancer-free. An optimal method 
will reach close to 100% for all three of the above.

Two structures are developed from the Training algorithm one for 
the cancer training set (UC ) and one for the normal training set 
(UN). The resulting structures provide a basis for classification of an 
arbitrary node from the test set, TS . We introduce a classification 
technique which we call “BPR Proximity” where an arbitrary node is 
classified as part of a class depending on its location relative to each 
“skeleton”. If the distance from the node to the structure of class A 
is closer than the distance from the node to the structure of class B, 
then the node is classified as part of class A. Figure 5, depicts a visual 
representation of the BPR Proximity method. Mathematically, one 
can write the classification rule as follows:

Figure 5. The “BPR Proximy 

classification method. The True Pos-
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Negative (TN), and False Negative 

(FN) values are determined based 

on the node’s location relative to 
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indicate cancer samples, and blue 

squares signify normal samples. The 
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the skeleton-like formation forthe 

cancer training set.

Figure 4. Shows the different possible extensions. (Top) The multilateral extension shows how some 

nodes can connect to more than two nodes. (Bottom) The sequential extension shows how

each segment can connect only two nodes.

Figure 2: shows how the projection of a point �x3 can lie outside (Left) or inside (Right) a line
segment, namely x1x2. (Top) Case 1 shows the projecting landing outside the line segment. (Bottom)

Case 2 shows the projection landing inside the line segment. In both cases, the projection is a red
dashed line and the distance from the point to the line segment as a green dashed line.

Figure 4. Shows the different possible extensions.
(Top) The multilateral extension shows how some

nodes can connect to more than two nodes.
(Bottom) The sequential extension shows how
each segment can connect only two nodes.

In Figure 4, we see how the “Sequential” Extension
grows outward while the “Multilateral” can expand
from a single node into different directions.

The resulting skeleton-like structures, one for
the cancer training set UC and one for the normal
training set UN , are used for the classification
of an arbitrary node from the test set, TS . Two
classification techniques are introduced. Accuracy
for the algorithm is calculated based on the True

Positive (TP), True Negative (TN), False Positive
(FP), and False Negative (FN) values with Equation
(6) We also determine sensitivity and specificity in
Equations (7) and (8) respectively.
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TP + TN
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TP + FN
(7)

Specificity =
TN

TN + FP
. (8)

Accuracy is used to calculate the percent
of correctly classified samples. Sensitivity shows
the ability of the algorithm to correctly identify
a sample as cancerous, while specificity gives the
ability of the algorithm to correctly identify a
sample as cancer-free. Ideally, sensitivity should be
close to 100% since, clinically, we do not want
to identify a cancerous sample as cancer-free. An
optimal method will reach close to 100% for all
three of the above.

2.2.2 Classification Process: Two structures
are developed from the Training algorithm one for
the cancer training set (UC) and one for the normal
training set (UN ). The resulting structures provide a
basis for classification of an arbitrary node from the
test set, TS . We introduce a classification technique
which we call “BPR Proximity” where an arbitrary
node is classified as part of a class depending on its
location relative to each “skeleton”. If the distance
from the node to the structure of class A is closer
than the distance from the node to the structure of
class B, then the node is classified as part of class
A. Figure 5, depicts a visual representation of the
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ability of the algorithm to correctly identify a
sample as cancer-free. Ideally, sensitivity should be
close to 100% since, clinically, we do not want
to identify a cancerous sample as cancer-free. An
optimal method will reach close to 100% for all
three of the above.

2.2.2 Classification Process: Two structures
are developed from the Training algorithm one for
the cancer training set (UC) and one for the normal
training set (UN ). The resulting structures provide a
basis for classification of an arbitrary node from the
test set, TS . We introduce a classification technique
which we call “BPR Proximity” where an arbitrary
node is classified as part of a class depending on its
location relative to each “skeleton”. If the distance
from the node to the structure of class A is closer
than the distance from the node to the structure of
class B, then the node is classified as part of class
A. Figure 5, depicts a visual representation of the

Classification Process:

BPR Proximity method. Mathematically, one can
write the classification rule as follows:

Class(�x) =
{

Cancer if ‖UC − �x‖ ≤ ‖UN − �x‖
Normal if ‖UN − �x‖ ≤ ‖UC − �x‖

(9)

Figure 5. The “BPR Proximy classification
method. The True Positive (TP), False Positive
(FP), True Negative (TN), and False Negative

(FN) values are determined based on the node’s
location relative to each derived “skeleton.” Red
nodes indicate cancer samples, and blue squares

signify normal samples. The line segment
structure represents the skeleton-like formation for

the cancer training set.

For a fixed number of genes considered, a
fixed holdout percentage (percentage of the total
samples used for training), and a cancer type, the
proposed BPR algorithms are run numerous times,
each with different randomly picked training and
testing sets. The average accuracy AH

n (cancer) is
recorded. Due to a large number of parametric
variations (number of genes, holdout percentages,
cancer types), a unified metric is needed to assess
the performance of the proposed algorithms. A
geometric mean,

GH
n = Ntypes

√√√√
Ntypes∏

Cancer=1

AH
n (Cancer) (10)

is calculated the for all considered cancer
types, where n is number of genes considered and
H is the holdout percentage. We use the geometric

mean since the average accuracy is given in percent-
ages across different parameters. A different form
of generalized mean, like the arithmetic mean, can-
not account for percent changes from one metric to
another. We also define the algorithm performance
as:

Pn = NH

√√√√NH∏
i=1

GHi
n (11)

where {Hi}NH
i=1 is a set of holdout percent-

ages. We also use the overall performance for each
cancer type, Op, defined as:

OCancer =
3
√

Sensitivity ∗ Accuracy ∗ Specificity
(12)

for each cancer type. To then determine the
performance for each method in order to identify
the optimal technique, we use the Overall Perfor-
mance across all cancer types, defined as,

OAll =
4
√

O(Bldr) ∗O(Col) ∗O(Leuk) ∗O(Liv)
(13)

where, Bldr is Bladder, Col in Colon, Leuk
is Leukemai, and Liv is Liver cancer. Equations 11
- 13 help determine the optimal technique.

3. RESULTS

In this paper, the proposed BPR methods
(two biomimetic construction algorithms and two
classification methods) were applied to four differ-
ent cancer types (bladder, colon, leukemia, liver),
generating four data sets. Each data set contained
caner-free (normal) and cancerous (cancer) sam-
ples. For bladder cancer, the data set contained
125 samples, of which 103 were cancerous and 22
were normal. Data for 6688 genes was provided
by reference [15]. For colon cancer, the data set
contained 62 samples, of which 40 were cancerous
and 22 were normal. Data for 2000 genes was
provided from reference [16]. For leukemia, the
data set contained 73 samples, of which 48 were
Acute Myeloid Leukemia (AML) and 25 were
Acute Lymphoblastic Leukemia (ALL). We con-
sidered the AML samples to be cancerous and the
ALL samples to be normal. Data for 7129 genes
was taken from reference [17]. For liver cancer, the
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For a fixed number of genes considered, a fixed holdout per-
centage (percentage of the total samples used for training), and a 
cancer type, the proposed BPR algorithms are run numerous times, 
each with different randomly picked training and testing sets. The 
average accuracy AH

n  (cancer) is recorded. Due to a large number 
of parametric variations (number of genes, holdout percentages, 
cancer types), a unified metric is needed to assess the performance 
of the proposed algorithms. A geometric mean,

In this paper, the proposed BPR methods (two biomimetic 
construction algorithms and two classification methods) were 
applied to four different cancer types (bladder, colon, leukemia, 
liver), generating four data sets. Each data set contained caner-free 
(normal) and cancerous (cancer) samples. For bladder cancer, the 
data set contained 125 samples, of which 103 were cancerous and 
22 were normal. Data for 6688 genes was provided by reference 
[15]. For colon cancer, the data set contained 62 samples, of which 
40 were cancerous and 22 were normal. Data for 2000 genes was 
provided from reference [16]. For leukemia, the data set contained 
73 samples, of which 48 were Acute Myeloid Leukemia (AML) and 25 
were Acute Lymphoblastic Leukemia (ALL). We considered the AML 
samples to be cancerous and the ALL samples to be normal. Data for 
7129 genes was taken from reference [17]. For liver cancer, the data 
set contained 181 samples, of which 105 were cancerous and 76 were 
normal. Data for 5520 genes was provided by reference [18]. Table 1 
summarizes the microarray data sets used in this study. 

Several metrics have been proposed for as- sessing the accuracy 
of the BPR algorithms. Accuracies are calculated based on the a
verage of 100 runs. We ran 100 times in order to obtain objective 
view of the algorithm performance with different metrics since 
Training and Testing sets are randomly selected. Accuracy is calculated 
based on the remaining test set with Equation 6. Below are results 
obtained as well as how optimal conditions are determined and 
highest accuracy attainable for each cancer type. Table I summarizes 
the microarray data sets used in this study. Data for liver and bladder 
has been provided by genome- www5.stanford.edu in reference [12] 
and [13] respectively. Colon and leukemia data came from reference 
[14] and [15], respectively. Limitations of our study are discussed in 
the Conclusion section of the paper.

In order to develop the HD skeleton-like structure, we consid-
ered the gene expression level of each sample as a single node in the 
space, of either cancer-containing or cancer-free cells. The Cancer 
Training Set, SC , and Normal Training Set, SN , were randomly 
selected from the total number of samples, based on a Holdout value 
(percentage of the total samples used for training alone). Holdout 
percentages used in this study included 33%, 50%, and 80%. The 
remaining samples composed the Testing sets. Given SC, and SN , 
we defined the following two techniques when choosing the training 
and testing sets.

is calculated the for all considered cancer types, where n is number 
of genes considered and H is the holdout percentage. We use the 
geometric mean since the average accuracy is given in percentages 
across different parameters. A different form of generalized mean, 
like the arithmetic mean, cannot account for percent changes from 
one metric to another. We also define the algorithm performance as:
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overall performance for each cancer type, Op, defined as:

for each cancer type. To then determine the performance for each 
method in order to identify the optimal technique, we use the 
Overall Performance across all cancer types, defined as,

where, Bldr is Bladder, Col in Colon, Leuk is Leukemai, and Liv is 
Liver cancer. Equations 11 - 13 help determine the optimal technique.
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Differential Mean: foreachgene,g,wedefine the differential mean, 
D(g), as

We then sorted the differential mean values for all the genes 
considered in descending order and chose the highest differential 
mean to construct a HD biomimetic structure.

Cross Validation: for each gene, g, we define the cross validation, 
crossvalind, as described in MatLab 2011a Bioinformatics toolbox. 
This function generates randomly selecting a train- ing set and test set.

For each simulation, the training sets contained a random selection 
of samples from all of the raw data amassed. Figure 6 shows the 
average gene expression levels for each type of cancer in our study.

After testing each algorithm, we determined the overall per-
fermance with Equations 10 and 12. In Figure 7 we see the overall 
performance across all cancers. Specifically, we see which of the 
four methods consistently reaches the highest performance score. 
In each plot, we see the dark blue bar, representing the Multilateral 
Segment Connection method, almost consistently score higher than 
the other methods. It is important to also note that between the two 
plots in each figure, the methods in the Cross validation plot score 
higher than the ones in the Differential Mean plot.

The average accuracy for each cancer type using the mentioned 
metrics is compared to previous algorithms and experiments. We 
limited comparison to studies using the same data sets of DNA 
microarray samples. Table 2 summarizes the overall performance 
of the proposed BPR and performance from other articles using 
the same DNA microarray data. In Peterson (2004), the accuracy is 
calculated using a single dominant mode of the Principal of Orthogonal 
Decomposition (POD) method. Testing was done separately with 
either cancer or normal set [7]. In Abbasi (2007), an improved POD 
classification method was introduced, where accuracy is determined 
from a combination of both cancer and normal sets [8]. Lee uses a 
multi-nodal POD along with Support Vector Machine, Self-Organized 
Map, and Neural Networks to determine the accuracy for each cancer 
type [9]. The last column shows the attained accuracy when using the 
proposed Biomimetic Pattern Recognition method for each cancer type.

From Table 2 we see the highest accuracy occurs at Cross 
Validation and Multilateral. Except in the case for liver cancer, where 
the highest accuracy occurs with Differential Mean and Sequential. 
From Table 2 we see that the proposed BPR reaches higher accuracies 

than previous studies. Except in the case for liver cancer. In Table 2, 
the reported accuracy is that with the following parameters: Cross 
validation as training set selection, Multilateral as extension method, 
and Segment Connection in construction.

In this paper we proposed a new BPR algorithm which employs a 
different approach to the PHC where elements of the same class are 
connected according to nearest neighbor. This approach allows for 
the development of two different biomimetic structure constructions 
(Nodal and Segment). The proposed methods were applied to bladder, 
colon, leukemia, and liver cancer data. We considered different number 
of genes to test highest recognition rate on each cancer type.

Results from Figure 7 indicate that the combination of the 
Segment Connection construction and Multilateral extension yield 
higher accuracies than the other combinations examined. Table 2 
suggests that the given combination of schemes with a 33% holdout 
value give a higher accuracy for each cancer type. We also determined 
that experiments shows the new BPR algorithm has high recognition 
rate when compared to previous techniques, as seen by Table 3. It 
is important to note that the proposed BPR has higher accuracies 
than the previous studies for bladder, colon, and leukemia cancers. 
However, it is believed that liver cancer is better detected with the 
Differential Mean and Sequential implementations. This could largely 
be due to the fact that liver is the largest data set, as described in 
Table 1, and thus a sequential method suffices. We also note that 
colon cancer has the lowest accuracy. We believe this could be due to 
the small number of genes available. However, Biomimetic Pattern 
Recognition has shown to be a promising tool for cancer detection 
using DNA microarray data. Due to constrains, we also expanded our 
BPR algorithm into Planar structures. For further information, please 
refer to the thesis in the Department of Mathematics, California 
State University, Fullerton.
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I.

II.

data set contained 181 samples, of which 105 were
cancerous and 76 were normal. Data for 5520 genes
was provided by reference [18]. Table 1 summarizes
the microarray data sets used in this study.

Several metrics have been proposed for as-
sessing the accuracy of the BPR algorithms. Accu-
racies are calculated based on the average of 100
runs. We ran 100 times in order to obtain objective
view of the algorithm performance with different
metrics since Training and Testing sets are ran-
domly selected. Accuracy is calculated based on the
remaining test set with Equation 6. Below are re-
sults obtained as well as how optimal conditions are
determined and highest accuracy attainable for each
cancer type. Table I summarizes the microarray data
sets used in this study. Data for liver and bladder
has been provided by genome- www5.stanford.edu
in reference [12] and [13] respectively. Colon and
leukemia data came from reference [14] and [15],
respectively. Limitations of our study are discussed
in the Results section of the paper.

In order to develop the HD skeleton-like
structure, we considered the gene expression level
of each sample as a single node in the space, of
either cancer-containing or cancer-free cells. The
Cancer Training Set, SC , and Normal Training Set,
SN , were randomly selected from the total number
of samples, based on a Holdout value (percentage of
the total samples used for training alone). Holdout
percentages used in this study included 33%, 50%,
and 80%. The remaining samples composed the
Testing sets. Given SC , and SN , we defined
the following two techniques when choosing the
training and testing sets.

I. Differential Mean: for each gene, g, we define
the differential mean, D(g), as

D(g) = |SC(g)− SN (g)|. (14)

We then sorted the differential mean values
for all the genes considered in descending
order and chose the highest differential mean
to construct a HD biomimetic structure.

II. Cross Validation: for each gene, g, we define
the cross validation, crossvalind, as described
in MatLab 2011a Bioinformatics toolbox. This
function generates randomly selecting a train-
ing set and test set.

For each simulation, the training sets contained a

random selection of samples from all of the raw
data amassed. Figure 6 shows the average gene
expression levels for each type of cancer in our
study.

After testing each algorithm, we determined
the overall perfermance with Equations 10 and 12.
In Figure 7 we see the overall performance across
all cancers. Specifically, we see which of the four
methods consistently reaches the highest perfor-
mance score. In each plot, we see the dark blue bar,
representing the Multilateral Segment Connection
method, almost consistently score higher than the
other methods. It is important to also note that
between the two plots in each figure, the methods
in the Cross validation plot score higher than the
ones in the Differential Mean plot.

The average accuracy for each cancer type
using the mentioned metrics is compared to previ-
ous algorithms and experiments. We limited com-
parison to studies using the same data sets of DNA
microarray samples. Table 2 summarizes the overall
performance of the proposed BPR and performance
from other articles using the same DNA microarray
data. In Peterson (2004), the accuracy is calculated
using a single dominant mode of the Principal of
Orthogonal Decomposition (POD) method. Testing
was done separately with either cancer or normal
set [7]. In Abbasi (2007), an improved POD classi-
fication method was introduced, where accuracy is
determined from a combination of both cancer and
normal sets [8]. Lee uses a multi-nodal POD along
with Support Vector Machine, Self-Organized Map,
and Neural Networks to determine the accuracy
for each cancer type [9]. The last column shows
the attained accuracy when using the proposed
Biomimetic Pattern Recognition method for each
cancer type.

From Table 2 we see the highest accuracy
occurs at Cross Validation and Multilateral. Except
in the case for liver cancer, where the highest accu-
racy occurs with Differential Mean and Sequential.
From Table 2 we see that the proposed BPR reaches
higher accuracies than previous studies. Except in
the case for liver cancer. In Table 2, the reported
accuracy is that with the following parameters:
Cross validation as training set selection, Multilat-
eral as extension method, and Segment Connection
in construction.

Conclusion

Acknowledgements
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Table 1: Data Sets Used in Study

Data Sets

Cancer Type Bladder Colon Leukemia Liver
No. of Genes 6699 2000 7129 5520
No. of Cancer Samples 103 Primary Tumor 40 Primary Tumor 48 Acute Myeloid

Leukemia
105 Primary Tumor

No. of Normal Samples 22 Healthy Tissue 22 Healthy Tissue 25 Acute Lymphoblastic
Leukemia

76 Healthy Tissue

Figure 6. Graphs represent the average gene expression level for genes with highest differential mean.
Includes Bladder, Colon, Leukemia, and Liver average differential gene expression.
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Figure 7. Performance of Line Segment method across all cancer types. (Left) The performance across
all cancers using Differential mean as the training set selection. (Right) The performance using Cross

validation. For both plots, the x-axis represents the number of genes considered when implementing the
technique and the y-axis shows the performance using Equation 12 and for all four methods. All

methods were completed with 33% holdout 100 times.

Table 2: Overall Accuracy for each Method

Overall Accuracy for each Cancer Type
Cancer Type

Studies Bladder Colon Leukemia Liver
POD Cancer & Normal Separately Peterson (2004) 60.00% N/A N/A 75.00%

POD Cancer & Normal Together Abbasi (2007) 64.52% N/A N/A 82.30%
Multi-Modal POD Lee (2010) N/A 65.35% 97.30% 96.43%

Cross Validation Multilateral 98.95% 82.29% 94.09% 96.64%
Sequential 98.61% 82.04% 94.03% 96.36%

Differential Mean Multilateral 99.89% 81.59% 94.07% 95.95%
Sequential 99.88% 81.24% 93.87% 97.00%

4. CONCLUSION

In this paper we proposed a new BPR al-
gorithm which employs a different approach to
the PHC where elements of the same class are
connected according to nearest neighbor. This ap-
proach allows for the development of two differ-
ent biomimetic structure constructions (Nodal and
Segment). The proposed methods were applied to
bladder, colon, leukemia, and liver cancer data. We
considered different number of genes to test highest
recognition rate on each cancer type.

Results from Figure 7 indicate that the com-
bination of the Segment Connection construction
and Multilateral extension yield higher accuracies
than the other combinations examined. Table 2
suggests that the given combination of schemes

with a 33% holdout value give a higher accuracy
for each cancer type. We also determined that
experiments shows the new BPR algorithm has
high recognition rate when compared to previous
techniques, as seen by Table 3. It is important to
note that the proposed BPR has higher accuracies
than the previous studies for bladder, colon, and
leukemia cancers. However, it is believed that liver
cancer is better detected with the Differential Mean
and Sequential implementations. This could largely
be due to the fact that liver is the largest data
set, as described in Table 1, and thus a sequential
method suffices. We also note that colon cancer
has the lowest accuracy. We believe this could due
to the small number of genes available. However,
Biomimetic Pattern Recognition has shown to be
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In this paper we proposed a new BPR al-
gorithm which employs a different approach to
the PHC where elements of the same class are
connected according to nearest neighbor. This ap-
proach allows for the development of two differ-
ent biomimetic structure constructions (Nodal and
Segment). The proposed methods were applied to
bladder, colon, leukemia, and liver cancer data. We
considered different number of genes to test highest
recognition rate on each cancer type.

Results from Figure 7 indicate that the com-
bination of the Segment Connection construction
and Multilateral extension yield higher accuracies
than the other combinations examined. Table 2
suggests that the given combination of schemes

with a 33% holdout value give a higher accuracy
for each cancer type. We also determined that
experiments shows the new BPR algorithm has
high recognition rate when compared to previous
techniques, as seen by Table 3. It is important to
note that the proposed BPR has higher accuracies
than the previous studies for bladder, colon, and
leukemia cancers. However, it is believed that liver
cancer is better detected with the Differential Mean
and Sequential implementations. This could largely
be due to the fact that liver is the largest data
set, as described in Table 1, and thus a sequential
method suffices. We also note that colon cancer
has the lowest accuracy. We believe this could due
to the small number of genes available. However,
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Figure 7. Performance of Line Segment method across all cancer types. (Left) The performance across all cancers using Differential mean as the training set selection. (Right) The 

performance using Cross validation. For both plots, the x-axis represents the number of genes considered when implementing the technique and the y-axis shows the performance 

using Equation 12 and for all four methods. All methods were completed with 33% holdout 100 times.
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86DIMENSIONS

In this work, we consider the problem of identification of those 
statistically significant variables that have an effect on the performance 
of K9-11 students in mathematics. We address this problem by 
constructing a number of statistical linear models with mixed-effects. 
Additionally, in order to identify the top performers, we employ 
three types of clustering techniques, namely, the method of 
Kmeans, Hclust, and Mclust. We compare the precision of these 
methods through measuring their misspecification rates via 
extensive simulation studies. Finally, we employ a Bayesian missing 
value imputation methodology in order to estimate some of the 
missing values associated with our data set.

This data set was generated through an NSF funded project titled 
Teachers Assisting Students to Excel in Learning Mathematics Phase 
II (TASEL-M2), led by professor David Pagni from the mathematics 
department at CSUF. As part of this extended study, California State 
Testing (CST) scores in mathematics were collected from a group of 
nearly 3000 K6-12 students whose names and personal information 
were removed to protect their privacy. An ultimate goal of this study 
is to examine students’ socio-economic and demographic variables 
to view their effect on mathematical achievement.
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Missing Values

Modeling

In this blind data set, we had access to a number of variables such as 
students’ math scaled scores from CST, mathematics courses taken, 
grade level progression, and mathematics raw scores for students in 
grade 6 to 11 from 2004-2008. Due to a steady flow of student 
migration in and out of the program at various time points, we 
encountered a considerable number of nonexisting values that may 
be interpreted as missing at random. It is those missing values that 
we aim to estimate.

The problem of missing values is a well-studied subject in 
statistical sciences (Little, 2011). Missing data problems often arise 
in the context of collecting educational data mainly because many 
students withhold personal and other types of information. Also, 
students get to take a variety of math courses, not necessarily in a 
sequence and thus, a gap will appear in a row associated with their 
records. In other words, our matrix of observations will be sparse due 
to missing observations per individuals.

In this work, we shall particularly concentrate on applying 
Bayesian methods for missing value estimation. This is beneficial 
for multiple reasons: 1 - we contribute to the sparse literature in the 
field, 2 - by applying model checking techniques, we will verify the 
quality of our missing value estimations, and 3 – we would potentially 
provide a more complete picture of the underlying relationship 
between the variables of interest.

The original data set is a combination of surveys collected at different 
time periods, “waves” in order to measure students’ and teachers’ 
performance throughout the different school years. Our models are 
based on data from wave 3 of the survey which was conducted in the 
spring of 2005.

We employ a two-stage modeling scheme in order to first, identify
 the significance of teachers’ effects, and second, quantify their 
strengths on the performance of freshmen and sophomore high school 
students in Orange County, California. The first stage borrows from the 
properties of the so-called “fixed-effect” linear modeling and is merely 
used to demonstrate whether teachers’ performance would play any 
role on students’ mathematical achievement. The second stage is built 
around the idea of utilizing multi-level regression modeling in order to 
measure the magnitude and statistical significance of teachers’ effect 
on students’ California Standards Test (CST) math scores.
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Suppose that the data are represented as an n x p matrix - a 
matrix with rows i = 1,..., n, and columns j = 1,..., p. Let 
Mi = (M1,...,Mp)T indicate a vector of zeros and ones such that 
Mi,j = 1 whenever the (i,j) cell is missing, and Mi,j = 0, otherwise. 
Also, let Yobs,i,j be the observed value in row i and column j. Without 
loss of generality, we can assume a missing at random mechanism 
(our intent has been to demonstrate that in an extremely large data 
set such as the one we are working with, it is nearly impossible to 
seek out deterministic patterns for missing values, and thus, we 
treated the problem as one of missing at random). However, as noted 
in Little (2011), the mechanism has little effect on the Bayesian 
paradigm explained below. Indeed, Little recommends ignoring the 
missing data mechanism when it is justified. Note that the full data 
set will be the aggregate of Y = (Yobs, Ymissing), where Ymissing are the 
missing data.

Now, suppose that              is the distribution of all data, given 
all associated unknown parameters θ. Also, let                   represent 
the distribution of M given the full data set indexed by the unknown 
parameters

If there were no missing values, using Bayes theorem, one could 
write the posterior distribution of all parameters as

Methodology

Clustering

Missing Values

From the larger set of those students who were enrolled in either of 
the two studied high schools from the TASEL-M2 project, we selected 
a subset containing students enrolled in ninth grade in 2004 or 2005 
totaling to 1070 students. We considered the following mathematical 
achievement variables: the students’ standardized test scores from 
grades 9, 10, and 11, their highest CAHSEE score, and their overall 
math GPA. We implemented three clustering techniques in order 
to address two objectives: (a) identify which clustering technique 
attains the lowest misspecification rate, followed by (b) applying 
that method on student mathematical achievement data in order to 
study the trajectory of students’ performances, as well as facilitate 
further comparisons between achievement variables.
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value estimations, and 3 – we would potentially provide a more complete picture of the 
underlying relationship between the variables of interest.  
 
Modeling 
The original data set is a combination of surveys collected at different time periods, “waves” in 
order to measure students’ and teachers’ performance throughout the different school years. Our 
models are based on data from wave 3 of the survey which was conducted in the spring of 2005.  

We employ a two-stage modeling scheme in order to first, identify the significance of 
teachers' effects, and second, quantify their strengths on the performance of freshmen and 
sophomore high school students in Orange County, California. The first stage borrows from the 
properties of the so-called "fixed-effect" linear modeling and is merely used to demonstrate 
whether teachers' performance would play any role on students' mathematical achievement. The 
second stage is built around the idea of utilizing multi-level regression modeling in order to 
measure the magnitude and statistical significance of teachers’ effect on students’ California 
Standards Test (CST) math scores. 
 
Clustering 
From the larger set of those students who were enrolled in either of the two studied high schools 
from the TASEL-M2 project, we selected a subset containing students enrolled in ninth grade in 
2004 or 2005 totaling to 1070 students. We considered the following mathematical achievement 
variables: the students’ standardized test scores from grades 9, 10, and 11, their highest 
CAHSEE score, and their overall math GPA. We implemented three clustering techniques in 
order to address two objectives: (a) identify which clustering technique attains the lowest 
misspecification rate, followed by (b) applying that method on student mathematical 
achievement data in order to study the trajectory of students’ performances, as well as facilitate 
further comparisons between achievement variables.  
 
2. Methodology 
 
Missing Values 
Suppose that the data are represented as an n x p matrix - a matrix with rows i = 1,…, n, and 
columns j = 1,…, p. Let Mi = (M1,…,Mp)T

 indicate a vector of zeros and ones such that Mi.j =1 
whenever the (i,j) cell is missing, and Mi,j =0, otherwise. Also, let Yobs,i,j be the observed value in 
row i and column j. Without loss of generality, we can assume a missing at random mechanism 
(our intent has been to demonstrate that in an extremely large data set such as the one we are 
working with, it is nearly impossible to seek out deterministic patterns for missing values, and 
thus, we treated the problem as one of missing at random). However, as noted in Little (2011), 
the mechanism has little effect on the Bayesian paradigm explained below. Indeed, Little 
recommends ignoring the missing data mechanism when it is justified. Note that the full data set 
will be the aggregate of Y = (Yobs, Ymissing), where Ymissing are the missing data. 
 Now, suppose that f(Y|θ) is the distribution of all data, given all associated unknown 
parameters θ. Also, let f(M|Y,ψ) represent the distribution of M given the full data set indexed by 
the unknown parameters ψ. 
 If there were no missing values, using Bayes theorem, one could write the posterior 
distribution of all parameters as 
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After removing students with missing information, we ended up 
with 1242 students who, in turn, were nested within 45 teachers. We 
consider three different measures of math achievement, taken as 
the response variable for our linear model. These measurements are 
students’ mathematics GPA, CST scores and CAHSEE scores. In this 
stage, we would like to see whether there exists a teachers’ effect. In 
other words, we would like to investigate the possibility of statistical 
significance of teachers’ performances on their students’ mathematics 
learning. To achieve that goal we construct a simple mixed-effects 
model with a nested structure in terms of student-teacher relationship. 
We can express each of the three models as

Modeling

where  yi is student i’s math achievement (GPA, CST score, or 
CAHSEE score), X is the design matrix which consists of information 
on student’s gender, ethnicity, English language proficiency, and the 
level of Math they are in, β is a vector of coefficients that corresponds 
to the predictors in X and is fixed for all teachers, and αj[i] is the 
intercept for student i associated with teacher j. According to Gelman 
and Hill (2007), in usual regression, αj would come from the classical 
least squares estimation for each teacher but in this model, αj is 
assumed to be random so that

where µα is the mean level of all students, and σ2
α is the uncertainty for 

the jth intercept . In multilevel modeling, αjs are partially pooled toward 
µα. The model pools teachers with fewer students toward the mean 
level more than teachers with a higher number of students.

Here       ￼      and          ￼  represent teacher j’s random effects on the 
intercept and slope of student i’s CST scores, respectively. The error 
term εi is iid N(0, σ2

α ) and is assumed to be independent of αj and βj. 
The model assumes that teachers’ effects differ randomly across 
students with different ethnicities but that CST scores increase linearly 
with teachers’ averaged GPA at the same fixed rate for all teachers.

An efficient way to estimate αj, βj, and σ2
α would be to use the 

likelihood function of y and maximize it with respect to each of these 
parameters. However, maximizing the likelihood function in the 
presence of repeated measures is known to produce biased 
estimations. To elaborate, this is a multilevel regression model in 
which students have repeated measurements and therefore the 

Taking the nested structure of this data set into account, we fitted a 
two level varying-intercept, varying-slope Mixed-Effects model 
including a teacher level predictor (see page 280 in Gelman and Hill, 
2007). This model has a single student-level predictor x (the indicator 
for whether the student was Asian or Hispanic), and a single teacher 
level predictor μ (the average math GPA of students associated with 
each teacher). Thus,

where αj and βj vary by teacher and ρ is the between teacher’s 
correlation parameter.

We can express this model by substituting the formulas for αj and  
βj into the equation for yi:

and

a multivariate normal prior on θ and an inverse-Wishart on Σ. It is 
also straightforward to obtain the marginal distribution of 
                              in step (3) through                                                  which 
would be proportional to the conditional distribution of the missing 
values given the observed values, the mean and the covariance 
parameters. The main advantage of this procedure is that in 
estimating missing values, the method is borrowing strength from 
the observed values.

Su et al. (2011) have developed a multiple imputation package 
in R called mi. In addition to implementing the Bayesian missing value 
imputation method, this program provides the users with sensitivity 
analyses associated with the missing value predictions to the effect 
that the efficiency of the predictions can be assessed. We aim to 
compare the various outputs of this software with the results obtained.
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f(θ,ψ|Y,M) = C x π(θ,ψ) x L(θ,ψ,|Y) 

 
where, f(θ,ψ|Y,M) is the posterior distribution, C is a constant not dependent on ψ and θ, π(θ,ψ) is 
the full prior distribution on the parameter space, and L(θ,ψ,|Y) is the complete-data likelihood 
which can be written as 
  

L(θ,ψ|Y)=f(Y|θ)f(M|Y,ψ). 
 
 However, with incomplete data, the full posterior distribution becomes 
 

ffull(θ,ψ|Yobs,M) ∝ π(θ,ψ)L(θ,ψ,|Yobs,M) 
 
where L(θ,ψ,|Yobs,M)  is the likelihood due to observed values. Now, the observed likelihood is 
obtained by integrating all missing values out of the full likelihood: 
 

L(θ,ψ,|Yobs,M) = 𝑓𝑓(𝑌𝑌!"#, 𝑌𝑌!"##"$%|𝜃𝜃)𝑓𝑓(𝑀𝑀|𝑌𝑌!"#, 𝑌𝑌!"##"$%, 𝜓𝜓)𝑑𝑑𝑌𝑌!"##"$%. 
 
 As in Rubin (1976), under the missing at random mechanism, one can assume 
 

f(M|Yobs, Ymissing,ψ) = f(M|Yobs,ψ) 
 
for all missing values, and 

π(θ,ψ) = π(θ) π(ψ). 
 

 Specifically, as per Hoff (2009), consider the case of data modelled via a multivariate 
normal distribution indexed with the mean parameter θ, and the covariance Σ. Subsequently, the 
sampling probability of data for student i can be given as 
 
P(mi,{yi,j :mi,j = 1}|θ,Σ) 

= f(mi) f({yi,j :mi,j = 1}|θ,Σ) = f(m)i (𝑓𝑓(𝑦𝑦!,!, … , 𝑦𝑦!,!|𝜃𝜃, 𝛴𝛴) 𝑑𝑑𝑦𝑦!,!!!,!:!!,!!! ). 
 
 The main consequence of this is that we can integrate out the missing data to obtain the 
marginal probability of observed data. This would allow us to utilize the simple Gibbs sampling 
algorithm to update the posterior distribution of θ and Σ along with implementing the Bayesian 
multiple imputation scheme. 
 
In iteration (r + 1) of the algorithm, 
1) Sample θ(r+1) from f(θ|Yobs,Y(r)

miss,Σ(r)); 
2) Sample Σ(r+1) from f(Σ|Yobs,Y(r)

miss,θ(r+1)); 
3) Sample Y(r+1)

miss from f(Ymiss|Yobs,θ(r+1),Σ(r+1)) 
 
 In the case of normal distributions, the marginal posterior distributions of θ and Σ as 
signified in steps (1) and (2) have closed forms when conjugate priors are used. That is, we 
consider a multivariate normal prior on θ and an inverse-Wishart on Σ. It is also straightforward 
to obtain the marginal distribution of (Ymiss|Yobs,θ,Σ) in step (3) through 
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𝑓𝑓!
!!! (Yi,miss|Yi,obs,θ,Σ), which would be proportional to the conditional distribution of the 

missing values given the observed values, the mean and the covariance parameters. The main 
advantage of this procedure is that in estimating missing values, the method is borrowing 
strength from the observed values. 
 Su et al. (2011) have developed a multiple imputation package in R called mi. In addition 
to implementing the Bayesian missing value imputation method, this program provides the users 
with sensitivity analyses associated with the missing value predictions to the effect that the 
efficiency of the predictions can be assessed. We aim to compare the various outputs of this 
software with the results obtained. 
 
Modeling 
 
Stage 1: 
After removing students with missing information, we ended up with 1242 students who, in turn, 
were nested within 45 teachers. We consider three different measures of math achievement, 
taken as the response variable for our linear model. These measurements are students’ 
mathematics GPA, CST scores and CAHSEE scores. In this stage, we would like to see whether 
there exists a teachers’ effect. In other words, we would like to investigate the possibility of 
statistical significance of teachers’ performances on their students’ mathematics learning. To 
achieve that goal we construct a simple mixed-effects model with a nested structure in terms of 
student-teacher relationship. We can express each of the three models as  
 

𝑦𝑦!~𝑁𝑁 𝛼𝛼! ! + 𝑋𝑋𝑋𝑋,       𝜎𝜎!! ,     𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 1,    … ,   1242, 𝑎𝑎𝑎𝑎𝑎𝑎  𝑗𝑗 = 1,… ,45, 
 
where 𝑦𝑦! is student i’s math achievement (GPA, CST score, or CAHSEE score), X is the design 
matrix which consists of information on student’s gender, ethnicity, English language 
proficiency, and the level of Math they are in, 𝛽𝛽 is a vector of coefficients that corresponds to the 
predictors in X and is fixed for all teachers, and 𝛼𝛼! !  is the intercept for student i associated with 
teacher j. According to Gelman and Hill (2007), in usual regression, 𝛼𝛼! would come from the 
classical least squares estimation for each teacher but in this model, 𝛼𝛼! is assumed to be random 
so that    
 

𝛼𝛼!  ~N µμ!,   𝜎𝜎!! ,     𝑓𝑓𝑓𝑓𝑓𝑓  𝑗𝑗 = 1,… ,   45, 
 
where µμ! is the mean level of all students, and 𝜎𝜎!! is the uncertainty for the jth intercept . In 
multilevel modeling, 𝛼𝛼!s are partially pooled toward  µμ!. The model pools teachers with fewer 
students toward the mean level more than teachers with a higher number of students.  
 
Stage 2:   
Taking the nested structure of this data set into account, we fitted a two level varying-intercept, 
varying-slope Mixed-Effects model including a teacher level predictor (see page 280 in Gelman 
and Hill, 2007). This model has a single student-level predictor x (the indicator for whether the 
student was Asian or Hispanic), and a single teacher level predictor µ (the average math GPA of 
students associated with each teacher). Thus, 
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𝑦𝑦!~𝑁𝑁 𝛼𝛼! ! +   𝛽𝛽! ! 𝑥𝑥!,       𝜎𝜎!! ,             𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 1,… ,   1242,    and  𝑗𝑗 = 1,    … ,   45, 
 
and  
 

𝛼𝛼!
𝛽𝛽!

~𝑁𝑁
𝛾𝛾!! + 𝛾𝛾!!µμ!
𝛾𝛾!
! + 𝛾𝛾!

!µμ!
,   

𝜎𝜎!!                    𝜌𝜌𝜎𝜎!𝜎𝜎!
𝜌𝜌𝜎𝜎!𝜎𝜎!                    𝜎𝜎!!

,     𝑓𝑓𝑓𝑓𝑓𝑓  𝑗𝑗 = 1,    … ,   45,    

 
where 𝛼𝛼! and 𝛽𝛽! vary by teacher and 𝜌𝜌 is the between teacher’s correlation parameter.  
 We can express this model by substituting the formulas for 𝛼𝛼! and 𝛽𝛽! into the equation 
for  𝑦𝑦!: 
 

𝑦𝑦! = 𝛾𝛾!! + 𝛾𝛾!!µμ! ! + 𝜂𝜂! !
! + 𝛾𝛾!

! + 𝛾𝛾!
!µμ! ! + 𝜂𝜂! !

! 𝑥𝑥! + 𝜀𝜀!. 
 
 Here 𝛾𝛾!!µμ! !  and 𝛾𝛾!

!µμ! !  represent teacher j’s random effects on the intercept and slope of 
student i’s CST scores, respectively. The error term 𝜀𝜀!  is iid 𝑁𝑁(0,   𝜎𝜎!!) and is assumed to be 
independent of 𝛼𝛼! and  𝛽𝛽!.  The model assumes that teachers’ effects differ randomly across 
students with different ethnicities but that CST scores increase linearly with teachers’ averaged 
GPA at the same fixed rate for all teachers.  
 An efficient way to estimate 𝛼𝛼!,     𝛽𝛽!,   𝑎𝑎𝑎𝑎𝑎𝑎    𝜎𝜎!! would be to use the likelihood function of y 
and maximize it with respect to each of these parameters. However, maximizing the likelihood 
function in the presence of repeated measures is known to produce biased estimations. To 
elaborate, this is a multilevel regression model in which students have repeated measurements 
and therefore the regression coefficients are expected to carry high correlation between them and 
hence are not independent. Therefore, we consider a technique known as Restricted Maximum 
Likelihood Estimation (RMLE) for the purpose of parameter estimation in this setting (1975 DR. 
Cox. Partial Likelihood, Biometrika). RMLE is based on the idea of synthesizing the joint 
likelihood function for 𝛼𝛼!,     𝛽𝛽!,   𝑎𝑎𝑎𝑎𝑎𝑎    𝜎𝜎!! through forming conditional inferences based on the 
parameters that are not being estimated. Due to the lack of independence in this case, we 
consider a recursive estimation technique that would facilitate estimating a quasi-likelihood 
function (as opposed to the original likelihood function), which is an adjusted version of the 
original likelihood function that accommodates for bias.  
 To apply RMLE, we used the R package and we relied on codes described in “Data 
Analysis Using Regression and Multilevel/Hierarchical Models” by Andrew Gelman and 
Jennifer Hill. 
 
Clustering 
 
Kmeans method 
Suppose we have a data set consisting of n observations of a random D-dimensional variable x.  
Let the D-dimensional set of vectors µk for which k=1,…,K, be a prototype associated with the kth 
cluster. We aim to assign all data points to clusters as well as a set of vectors {µk} such that we 
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Clustering

Suppose we have a data set consisting of n observations of a random 
D-dimensional variable x. Let the D-dimensional set of vectors μk 
for which k=1,...,K, be a prototype associated with the kth cluster. We 
aim to assign all data points to clusters as well as a set of vectors {μk} 
such that we minimize the sum of squares of the distances of each 
data point to its closest vector μk (Bishop 2006). 

For each xn we assign a set of binary indicator variables             
where k=1,...,K and                        , where k=1,...,K, such that xn is assigned 
0 or 1 dependent upon which cluster it is assigned to. We next define a 
function known as a distortion measure by       

which represents the sum of the squares of the distances of each data 
point to its assigned vector μk. We wish to minimize J by assigning 
values to rnk for each xn.

The Kmeans clustering method allows for us to choose the 
number of clusters that it will output. Since we generated three 
different distributions, we ran Kmeans with three clusters. We made 
these simulations based on a grand assumption that each cluster 
is uniquely represented by a multivariate normal distribution with 
distinct mean and covariance structures.

This method clusters based on the distance between data points. It 
starts by clustering each data point as its own cluster. The distance 
between each cluster is then measured and the two points closest 
together are joined into one cluster. The process is repeated until the 
number of clusters is reduced to the desired amount. The algorithm 
used in each step is

where D(r,s) represents the dissimilarity between nodes r and s, and 
d(i,j) represents the distance between i and j where object i is in 
cluster r and object j is in cluster s.

We used the Hclust function in R to cluster the data hierarchically. 
The Hclust command requires that we select the number of clusters 
we prefer. Since we generated three different multivariate normal 
distributions, we chose three clusters. That is, the process of 
hierarchical clustering will repeat until there are only three clusters.

Model based clustering computes an approximate maximum for the 
classification likelihood:

where li are labels classifying each observation. For example, li = k 
if yi belongs to the kth component. Model based clustering 
merges pairs of clusters according to the greatest increase in the 
classification likelihood among all possible pairs. The process begins 
by treating each data point as its own cluster. When the probability 
model in the classification likelihood is multivariate normal with 
equal-volume spherical covariance λI, the selection criterion is the 
sum-of-squares criterion.

Mclust is a function that combines model-based hierarchical 
clustering, expectation  maximization (EM) for Gaussian mixture 
models, and Bayesian Information Criterion (BIC) approximation 
(Fraley and Raftery 2002).
Most commonly, fk is the multivariate normal (Gaussian) density Øk, 
parameterized by its mean μk covariance matrix Σk,

regression coefficients are expected to carry high correlation between 
them and hence are not independent. Therefore, we consider a 
technique known as Restricted Maximum Likelihood Estimation 
(RMLE) for the purpose of parameter estimation in this setting 
(1975 DR. Cox. Partial Likelihood, Biometrika). RMLE is based on the 
idea of synthesizing the joint likelihood function for αj, βj, and σ2

α 
through forming conditional inferences based on the parameters 
that are not being estimated. Due to the lack of independence in 
this case, we consider a recursive estimation technique that would 
facilitate estimating a quasi-likelihood function (as opposed to the 
original likelihood function), which is an adjusted version of the 
original likelihood function that accommodates for bias.

To apply RMLE, we used the R package and we relied on codes 
described in “Data Analysis Using Regression and Multilevel/Hierar-
chical Models” by Andrew Gelman and Jennifer Hill.

Kmeans Method

Hierarchical clustering method

Model Based Clustering Method
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a multivariate normal distribution with distinct mean and covariance structures.  
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This method clusters based on the distance between data points. It starts by clustering each data 
point as its own cluster. The distance between each cluster is then measured and the two points 
closest together are joined into one cluster. The process is repeated until the number of clusters is 
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𝐷𝐷 𝑟𝑟, 𝑠𝑠 = max 𝑑𝑑 𝑖𝑖, 𝑗𝑗 ,  
 
where D(r,s) represents the dissimilarity between nodes r and s, and d(i,j) represents the distance 
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requires that we select the number of clusters we prefer. Since we generated three different 
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where li are labels classifying each observation. For example, li = k if yi belongs to the kth 
component. Model based clustering merges pairs of clusters according to the greatest increase in 
the classification likelihood among all possible pairs. The process begins by treating each data 
point as its own cluster. When the probability model in the classification likelihood is 
multivariate normal with equal-volume spherical covariance λI, the selection criterion is the sum-
of-squares criterion. 
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in which, D represents data and Mk depicts the kth possible model to be considered.  
 In this setting, the corresponding surfaces of densities are ellipsoidal. Multivariate 
normality facilitates clustering of data by changing shape, value, and orientation of each density 
(Fraley, Raftery, 1997). Another advantage of model-based clustering is the determination of 
optimal number of clusters which is achieved by criteria such as the Bayesian Information 
Criterion (BIC). The algorithm calculates the BIC for varying number of clusters, and selects the 
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Misspecification Rate: Comparing the Three Methods via Simulation 
We started by generating random data in R from three separate multivariate normal distributions 
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data. We then calculated what percentage of points from each clustering method was 
misspecified from the true scenarios. We then repeated this process while increasing the number 
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Time dependent classification 
We then applied the clustering methods on variables from the data set. Variables Math GPA and 
CST scores were paired on a yearly basis for analysis. The students were classified into different 
groups based on the clustering in order to observe their mathematical achievement relative to 
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 The count of students with the highest mathematics achieving cluster is represented by 
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clustering placement in grade 11.  
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3. Results 
 
Missing Value 
We implemented the multiple imputation approach of the previous sections on the achievement 
data set containing the scaled math scores of 3474 observations acquired between the years 
2005-2008 from the TASEL-M2 project assembled by AnneMarie Conley from UC Irvine. To 
assess the quality of the imputation technique, we concentrated on the longitudinal data 
associated with math scaled scores in the same period. We employed the Gibbs algorithm of 
section 2 with a normal model having normal conjugate priors. 
 In Figure 1, we include a missing pattern graph. The graph is comprised of four blocks 
(rows), each showing the portion of available observed data in black, as opposed to the portion of 
missing data in white. 

 
Figure 1. MP plot used with the mi package for R. The black parts of the plot are the available data while the white 

are the missing data. 
 
The scaled math scores of 2008 are on the top block followed by those of 2007, 2006, 2005. It is 
apparent from Figure 1 that a considerable portion of the response variable is missing over the 
period of study. 
 In Figure 2, we show the posterior distribution of scaled math scores obtained from the 
Gibbs sampling scheme of section 2.  

We started by generating random data in R from three separate 
multivariate normal distributions with equally spread means. 
Subsequently, we used Kmeans, Hclust, and Mclust on the simulated 
data. We then calculated what percentage of points from each 
clustering method was misspecified from the true scenarios. We then 
repeated this process while increasing the number of distributions 
being sampled as well as increasing the dimensionality of each 
underlying distribution.

We then applied the clustering methods on variables from the data 
set. Variables Math GPA and CST scores were paired on a yearly 
basis for analysis. The students were classified into different 
groups based on the clustering in order to observe their mathematical 
achievement relative to other students throughout their high 
school years.

The count of students with the highest mathematics achiev-
ing cluster is represented by                   in which: ￼ ￼           ￼                 
where                  determine whether or not the students were in the 
highest scoring cluster.

This way i1 = 1 specifies the student was clustered in the highest 
scoring cluster in 9th grade while i1 = 1 specifies that the student was 
not placed in the highest scoring cluster in 9th grade. Similarly, i2 
refers to the clustering placement of student in grade 10 and i3 refers 
to the clustering placement in grade 11.

We implemented the multiple imputation approach of the previous 
sections on the achievement data set containing the scaled math 
scores of 3474 observations acquired between the years 2005-2008 
from the TASEL-M2 project assembled by AnneMarie Conley from 
UC Irvine. To assess the quality of the imputation technique, we 
concentrated on the longitudinal data associated with math scaled 
scores in the same period. We employed the Gibbs algorithm of 
section 2 with a normal model having normal conjugate priors.

In Figure 1, we include a missing pattern graph. The graph is 
comprised of four blocks (rows), each showing the portion of available 
observed data in black, as opposed to the portion of missing data 
in white.

The scaled math scores of 2008 are on the top block followed by those 
of 2007, 2006, 2005. It is apparent from Figure 1 that a considerable 
portion of the response variable is missing over the period of study.  

In Figure 2, we show the posterior distribution of scaled math 
scores obtained from the Gibbs sampling scheme of section 2.

in which, D represents data and Mk depicts the kth possible model 
to be considered. In this setting, the corresponding surfaces of 
densities are ellipsoidal. Multivariate normality facilitates clustering 
of data by changing shape, value, and orientation of each density 
(Fraley, Raftery, 1997). Another advantage of model-based clustering 
is the determination of optimal number of clusters which is achieved 
by criteria such as the Bayesian Information Criterion (BIC). The 
algorithm calculates the BIC for varying number of clusters, and 
selects the number of clusters for which the BIC is minimized.

Data generated by mixtures of multivariate normal densities are 
characterized by groups or clusters centered at the means μk , with 
increased density for points nearer the mean.
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Misspecification Rate: Comparing the Three Methods via Simulation

Missing Value

Time Dependent Classification

Results

Figure 1. MP plot used with the mi package for R. The black parts of the plot are the 

available data while the white are the missing data.
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Figure 2. Histograms of the filled out data sets generated from the Gibbs Sampler method.

Figure 3. A plot comparing the mean values generated by the mi package in R and 

the Gibbs sampler method. mi is in red while the Gibbs method is in blue.
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Figure 2. Histograms of the filled out data sets generated from the Gibbs Sampler method. 

 
 
It is quite important to note that these distributions are realized through borrowing strength from 
the information of the full data (observed and missing) as manifested by the hierarchical 
algorithm of section 2.1. Finally, in Figure 3, we demonstrate the mean of each of the posterior 
distributions of the previous graph.  
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Figure 2. Histograms of the filled out data sets generated from the Gibbs Sampler method. 

 
 
It is quite important to note that these distributions are realized through borrowing strength from 
the information of the full data (observed and missing) as manifested by the hierarchical 
algorithm of section 2.1. Finally, in Figure 3, we demonstrate the mean of each of the posterior 
distributions of the previous graph.  

Histogram of mathss0

mathss0

Fr
eq
ue
nc
y

200 400 600

0
50
0

10
00

15
00

Histogram of mathss3

mathss3

Fr
eq
ue
nc
y

200 400 600

0
50
0

10
00

15
00

Histogram of mathss6

mathss6

Fr
eq
ue
nc
y

200 400 600

0
50
0

10
00

15
00

Histogram of mathss8

mathss8

Fr
eq
ue
nc
y

200 400 600

0
50
0

10
00

15
00

Histogram of mathss9

mathss9

Fr
eq
ue
nc
y

200 400 600

0
50
0

10
00

15
00

 

10 

 
Figure 3. A plot comparing the mean values generated by the mi package in R and the Gibbs sampler method. mi is 

in red while the Gibbs method is in blue. 
 
 The decline in the mean scores is not surprising, especially considering that we followed 
students progressively from grade 6 to grade 11 meaning that, in each wave of the study, the 
students would have to deal with a more challenging set of mathematical problems. The 
Bayesian methodology applied in this work is quite robust and is computationally inexpensive. 
This approach is considerably more reliable than ad-hoc methods such as data deletion and 
estimating missing values with averages. 
 
 
Modeling 
As seen in Figure 4, teachers’ performances play a major role in students’ mathematics 
achievement.  
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As seen in Figure 4, teachers’ performances play a major role in 
students’ mathematics achievement.

Modeling

We note that for some teachers there is a significant overlap 
between the three types of intervals of interest, while this pattern 
is easily distorted for some other teachers. Similarly, we could 
not establish a general pattern of preference for one measure 
of achievement in comparison to the others. That is, for a given 
teacher we can have students performing better in CST as opposed 
to GPA and CAHSEE, whereas for another teacher students 
performances for CAHSEE is shown to be superior.

Figure 5 demonstrates that Asian students universally scored 
higher on the CST than Hispanic students.

It is quite important to note that these distributions are realized 
through borrowing strength from the information of the full data 
(observed and missing) as manifested by the hierarchical algorithm 
of section 2.1. Finally, in Figure 3, we demonstrate the mean of 
each of the posterior distributions of the previous graph.

The decline in the mean scores is not surprising, especially 
considering that we followed students progressively from grade 6 
to grade 11 meaning that, in each wave of the study, the students 
would have to deal with a more challenging set of mathematical 
problems. The Bayesian methodology applied in this work is 
quite robust and is computationally inexpensive. This approach 
is considerably more reliable than ad-hoc methods such as data 
deletion and estimating missing values with averages.
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Figure 5. A plot of the same12 selected teachers. The x-axis demonstrates CST scores taken from wave 3 of the 

study. The y-axis represents teacher id. Red shows the scores for Vietnamese students while blue show the scores 
for Hispanic students. The intervals are obtained by adding/subtracting one standard deviation from the parameter 

estimate in the mix-effect model. 
 
 
 It is also worth noting that in most cases, the intervals did not overlap indicating a significant 
difference in scores for a given teacher. 
 Figure 6, takes gender into account and hints that there may be more significant 
differences between the CST scores for Asian males and females compared to those of Hispanic 
males and females.  
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Figure 4. A plot of 12 selected teachers (6 from the high performance group and 6 from the low performance group). 
The x-axis demonstrates the percent change from the overall mean. The y-axis represents teacher id. Different colors 
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Figure 6. A plot of the same 12 selected teachers. The x-axis demonstrates CST scores taken from wave 3 

of the study. The y-axis represents teacher id. Different colors are used to show pairings of ethnicity and 

gender. Intervals are obtained by adding/subtracting one standard deviation from the parameter estimate 
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Figure 5. A plot of the same12 selected teachers. The x-axis demonstrates CST scores taken from wave 3 

of the study. The y-axis represents teacher id. Red shows the scores for Vietnamese students while blue 

show the scores for Hispanic students. The intervals are obtained by adding/subtracting one standard 

deviation from the parameter estimate in the mix-effect model.

Table 1. Misclassification rates, in percentages, for each tested scenario pertaining to 3, 6, and 10-dimensions.
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 Mathematical achievement does not have a unique definition. As such, we see that 
different measures yield different results indicating that the entire picture cannot be seen by 
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Clustering 

We notice from Table 1 that the Kmeans method yields a significant number of 
misclassified data points in the control case. 
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generating artificially large or small number of clusters. Kmeans performs better in high 
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that the entire picture cannot be seen by looking at one dimension of 
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ment cannot be ignored.

We notice from Table 1 that the Kmeans method yields a significant 
number of misclassified data points in the control case.

It is worth noting that sometimes the Kmeans method would 
misclassify entire distributions by generating artificially large or small 
number of clusters. Kmeans performs better in high dimensions as 
well as higher number of clusters that are close together.Additionally, 
under scenario III (see Figure 7) where underlying distributions are 
taken to be very close, we found Hclust consistently performing 
worse than the other two methods.
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In general, Mclust performs quite well. However, when the 
predetermined number of clusters grows, the computational 
complexity of Mclust increases significantly.

A solid majority of the students in our data set were consistently 
classified in the lower achieving group throughout the three years 
of the study. There is a noticeable decrease in performance between 
students classified as being in the highest cluster, compared to those 
students who were not. We can observe from Table 2 that groups 
with smaller counts pertain to higher precision. 

Consequently, data summaries in those groups can be used for a 
more precise estimation of the parameters of the underlying 
population from which this data is extracted.

We would like to sincerely thank: the Mathematics Department 
Summer Research Program for providing us with the opportunity 
and funding for this research project; Dr. Sam Behseta for his 
professional guidance, sparking our interest in research; Dr. David 
Pagni for providing insight regarding the data set; Dr. AnneMarie 
Conley and Nayssan Safavian for their enthusiastic direction on the 
project. We would also like to thank Selene Black, Antouneo Kassab, 
Jimmy Kwon, and Calvin Pham for their contributions to the modeling 
portion of this project as well as Reina Galvez for her contributions to 
the clustering part of the project.

 

14 

scenario III (see Figure 7) where underlying distributions are taken to be very close, we found 
Hclust consistently performing worse than the other two methods.  

 
Figure 7. Scenarios generated using Mclust for distributions of different means of 6-dimensional Gaussians. 

Scenario I is realized under the assumptions that the means of the distributions are 10 units apart. Scenario II is the 
case when the means are 4 units apart and, finally, in scenario III, the means are taken to be 1 unit apart. In the 

figure, each color represents its own cluster. Clearly, as the means become closer to each other, the clusters are also 
closer together allowing for more misclassification. In scenario I, the distributions are clustered perfectly while in 

scenario III, the clusters overlap. 
 
In general, Mclust performs quite well. However, when the predetermined number of clusters 
grows, the computational complexity of Mclust increases significantly.   
 A solid majority of the students in our data set were consistently classified in the lower 
achieving group throughout the three years of the study. There is a noticeable decrease in 
performance between students classified as being in the highest cluster, compared to those 
students who were not. We can observe from Table 2 that groups with smaller counts pertain to 
higher precision.  
 
  GPA Mathss averaged 
Trajectory Count Freq. Mean Median Standard 

deviation 
Mean Median Standard 

deviation 
1 1 1 20 .019 3.774 3.917 .316 444.9 440.2 25.567 
1 1 0 18 .017 3.488 3.5 .308 410.5 406.2 20.710 
1 0 1 4 .004 2.688 2.688 .452 434.7 438.7 24.160 
0 1 1 7 .007 3.446 3.5 .512 422.6 426.3 9.409 
1 0 0 32 .030 2.463 2.464 .546 375.2 376.2 22.660 
0 1 0 41 .038 3.328 3.375 .327 374.3 373.3 18.755 
0 0 1 1 .001 2.75 2.75 NA 387.3 387.3 NA 
0 0 0 947 .885 1.806 1.75 .738 306.1 302.7 32.890 
Table 2. Time Dependent Clustering; showing the count, frequency, and the mean, median, standard deviation 
regarding Math GPA and CST scores (mathss9, mathss10, mathss11) averaged for grades 9-11 for each trajectory.  
 
Consequently, data summaries in those groups can be used for a more precise estimation of the 
parameters of the underlying population from which this data is extracted.  
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Figure 7. Scenarios generated using Mclust for distributions of different means of 6-dimensional Gaussians. Scenario I is realized under the assumptions that the means of the distributions are 10 units 

apart. Scenario II is the case when the means are 4 units apart and, finally, in scenario III, the means are taken to be 1 unit apart. In the figure, each color represents its own cluster. Clearly, as the means 

become closer to each other, the clusters are also closer together allowing for more misclassification. In scenario I, the distributions are clustered perfectly while in scenario III, the clusters overlap.

Table 2. Time Dependent Clustering; showing the count, frequency, and the mean, median, standard 

deviation regarding Math GPA and CST scores (mathss9, mathss10, mathss11) averaged for grades 9-11 

for each trajectory.

Conclusion

Acknowledgments

In this work, we considered three approaches for the analysis of 
TASEL-M2 data. Even though these methods, namely, missing data 
imputation, modeling, and clustering are addressing different aspects 
of measuring the effect of explanatory variables on the response, 
they share the common objective of identifying those students whose 
mathematical performance was significantly higher (lower) than 
others. In this process, we encountered a number of technical and 
computational challenges, mainly stemmed from the fact that the 
underlying data set had an extremely complex structure. This was the 
main motivation for our simulation studies. In the future, we plan to 
tackle the same set of problems from a more theoretical perspective.
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Abstract: The Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), with 
sites in Livingston, LA and Hanford, WA, and its international partners, Virgo, GEO600, and 
KAGRA, are being built to detect gravitational waves, a phenomenon theorized by Einstein 
in his Theory of General Relativity (GR). By direct prediction of GR, gravitational waves are 
ripples in space-time that propagate at the speed of light and are created by violent astro-
physical processes. The gravitational-wave detectors are all based on the Michelson interfer-
ometer, which has an input laser, a beam splitter, and two perpendicular arms with mirrors at 
each end. However, their configurations have significantly more complexity to augment the 
sensitivity. Higher order spatial modes can create ‘junk light’ that decreases the shot-noise 
limited sensitivity of the detectors. To combat this, each LIGO detector has an Output Mode 
Cleaner (OMC) at its detection ‘dark port.’ Scattered light from the OMC mirrors can reduce 
the shot-noise limited sensitivity of the instruments, and add noise via stray and count-
er-propagating light. Thus, it is important that the light scattering from the OMC mirrors in 
Advanced LIGO be minimal. This paper will describe measurements of the scattered light 
from sample Advanced LIGO OMC mirrors.

Abstract

Scattered Light Measurements for Advanced LIGO’s 
Output-Mode-Cleaner Mirrors
Department of Physical Sciences, California State University, Fullerton

Adrian Avila Alvarez
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research in conferences such as the 2012 HACU student track conference in Washington D.C and the 2013 Latinos in Agricul-

ture in El Paso, TX. Along with travel grants, I was also awarded a scholarship from the Rose Society of Saddleback Mountain 

Research Assistant Award in Plant Sciences in 2013. This year, I was accepted to the Watershed Management Internship (WMI) 

program that collaborates with the USDA and California State Universities to promote and expose students to career opportu-

nities with government agencies while performing important research in conservation. Being accepted to the WMI program will 

help me reach my goal to obtain a master’s degree in Biology because it will directly fund my research. 

Miriam Morua

Calvin Lung is an alumnus of CSU, Fullerton and has his BS in biology, with a concentration in molecular biology and biotechnology. 

In May 2013, Calvin received the CSUF MSTI Scholarship for Future Teachers, a scholarship given to those pursing a career in 

education. Working under Dr. Joel K. Abraham, Calvin’s research explored the effects of diet optimization has on worm cast 

quality and quantity. Eisenia fetida, a type of worm, can break down organic matter, such as food wastes, and turn them into 

a nutrient-rich soil amendment that plants can easily uptake. Calvin found that food sorting had no measurable impact on cast 

production or nutrient content. Calvin is currently taking a year off of school by working before pursing a PhD in biology.

Calvin Lung
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Cristy Rice is hoping to graduate in spring 2015 with a B.S. in Biology and an emphasis in Marine Biology. She transferred here 

and also became a Southern California Ecosystems Research Program (SCERP) scholar in the Summer of 2012. Under the 

direction of Dr. Kristy Forsgren, she has worked on California pipefishes to establish a faster method of identification and deter-

mined species via genetic analysis. She has presented her work at numerous symposiums and conferences and won a research 

grant and best poster award from the Southern California Academy of Science annual meeting. She hopes to continue on into a 

graduate program after she graduates and is very interested in ecology and systematics among other topics.

Cristy Rice

Kelly Shaw is an undergraduate student set to graduate in December 2014 with a Bachelor of Science Degree in Geology. Kelly 

has done geologic research studying mass wasting events in Thailand through the Environmental Science Research in Thailand 

(ESRT) program at CSUF. She has been dedicated to the Geology Department serving first as the club treasurer and currently as 

the club president. She is also a member of Phi Beta Delta Honor Society on campus at CSUF. Kelly regularly attends profes-

sional meetings and lectures. In the past Kelly has served her community by being actively involved with the Boy Scouts of 

America and the Parent Teacher Association (PTA) in the Brea-Olinda School District where she held various office positions 

including PTA President at Brea Jr High. Kelly plans to apply to the CSUF graduate program in the spring of 2015 to work on a 

Master of Science Degree in Geology. 

Kelly Shaw

Working under the mentorship of Dr. Melanie Sacco, my research involves studying disease responses of the 14-3-3 gene family 

in Nicotiana benthamiana and Solanum lycopersicum. Through this research, we hope to substantiate a role for 14-3-3 genes 

in effector-triggered immunity in plants. I have conducted this research while participating as a Minority Access to Research 

Careers (MARC) scholar and Ronald E. McNair scholar. After my undergraduate degree, I will obtain a Ph.D. involving infectious 

disease biology, virology and immunology. I aspire to work for the Center for Disease Control and Prevention or the World 

Health Organization to research and help mitigate detrimental diseases.

Jennifer Spencer

Nathan Robertson is a fourth-year undergraduate student graduating this spring with a Bachelor of Arts in Mathematics and 

a concentration in Statistics. Nathan has spent the past two years researching mathematics achievement with Dr. Behseta. 

Nathan hopes to continue his studies by pursuing graduate school in Statistics.

Nathan Robertson
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Elizabeth White is a senior pursuing a Bachelor of Science degree in Geology. She is set to graduate this summer after attending 

field camp and investigating the regional geology of Montana at the University of Montana-Western. She also will be traveling 

to Thailand for the Earth Science in Thailand (ESIT) class offered as a joint program between CSUF and Chiang Mai University. 

This fall, Elizabeth will begin her master’s degree with a focus in geochemistry. When she is not immersed in her coursework, 

Elizabeth can be found in the University Learning Center (ULC) where she works as a geology tutor.

Elizabeth White
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Kali Prasun Chowdhury (Duke) graduated with high honors from University of California, Riverside in two and a half years with a 

degree in Business Economics. Since then, he has worked in consulting for five years before embarking on his graduate career. 

His endeavors have led him to complete a Master of Arts in Economics, from University of California, Santa Barbara and he is in 

his last semester of finishing up his Master of Science in Statistics, here at California State University, Fullerton. With a curiosity 

and a passion for research on some of the most fundamental questions of the Standard Social Science Model, Duke’s ultimate 

goal is to attain his doctorate in Statistics. He wishes to apply it to the current models of human decision making, to improve 

predictive accuracy and inferential ability, over and above what is currently observed in such settings.

Kali Prasun Chowdhury

Chris Baker (Editor-in-Chief) is a graduating Geology student. He is currently working with Dr. Phil Armstrong to determine the 

rates of exhumation of the southern Alaskan Mountains. Chris plans to further his education and obtain a graduate degree with 

emphasis in hydrogeology. Currently Chris works as a geologist for The Source Group, is involved with multiple professional 

societies, and serves as an officer in the South Coast Geological Society.

Chris Baker

Editors
Neha Ansari is a third year biochemistry major minoring in print journalism. Ansari currently serves as the Chemistry and 

Biochemistry Section editor for Dimensions. At Cal State Fullerton, Ansari conducts research in Dr. Peter de Lijser’s organic 

chemistry lab where she studies the use of a carbonyl group as a nucleophile in photosensitized electron transfer reactions 

of oxime ethers. In the summer of 2013, Ansari was selected as an Amgen Scholar at the University of Washington, where she 

investigated the development of micelles in self-immolative polymers for the purpose of drug delivery in Dr. AJ Boydston’s 

organic chemistry lab. Ansari is a member of the ASI Board of Directors representing the College of Natural Sciences and 

Mathematics, the University Honors Program, and is a President’s Scholar. 

Neha Ansari

I am a graduating senior double-majoring in Biology and Health Science. I am currently working in Dr. Paul Stapp’s Vertebrate 

Ecology and Conservation Biology laboratory studying the prevalence of bot fly infestation in thirteen-lined ground squirrels 

in northern Colorado, while also attempting to identify the species of bot fly through molecular genetics techniques. I am a 

BURST (Biology Undergraduate Research Scholar Training) scholar at CSUF, and have been working as a veterinary assistant 

for 4 ½ years. I will be attending the UC Davis School of Veterinary Medicine next fall to obtain a DVM degree with a focus on 

wildlife medicine.

Kim Conway
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D’lisa O’hara Creager is an undergraduate student that will be finishing up this summer with a Bachelor of Science degree in 

Geology.  She has been working with Dr. Brady Rhodes on her senior thesis project studying paleotsunami deposits in Seal 

Beach, CA.  Dr. Rhodes also advised her in completing a hydrogeochemical study done in Chiang Mai, Thailand during her 

participation in the Environmental Science Research in Thailand (ESRT) program in the summer of 2013.  O’hara has contributed to 

the California State University, Fullerton Geology club for the past year and served as its historian.  She enjoys attending 

conferences and has given a number of poster presentations on her research.  In her spare time she enjoys playing volleyball, 

which she spent three years coaching at Sunny Hills High School in Fullerton, CA.  O’hara plans on earning her Master of 

Science degree in Geology and is currently deciding on a graduate program.  

D’Lisa O’hara Creager

Carose Le is a graphic designer from Seattle, Washington. She is expected to graduate Fall 2014 with a Bachelor of Fine Arts 

degree in Graphic Design. She serves as a graphic designer for the Spring 2014 issue of CSUF’s literary magazine of the College 

of Communications, TUSK. Carose has previously worked as a designer for City of Fullerton Parks & Recreation and CSUF 

Mihaylo College of Business & Economics. On behalf of College of the Arts and the Jerry Samuelson Scholarship Foundation, 

Carose was selected as a Jerry Samuelson Scholar. The scholarship recipient is selected by faculty and awarded to a visual arts 

student who has demonstrated talent and artistic potential. She enjoys using bright and vibrant colors when compiling her use of 

typography, photography and graphics. 

Carose Le

Niv Ginat is a graduating graphic design student from Los Angeles, California. Motivated by his love for design and hunger 

for knowledge, Niv draws his experience from a wide range of projects that he has worked on since embarking on his creative 

journey.  In 2013, he was awarded the Jerry Samuelson Scholarship for his commitment and artistic potential as a graphic 

designer. He hopes to one day be able to carry his work with him as he travels around the world.

Niv Ginat

Phillipe is currently a second year physics major at CSUF and part both the Honors Program and the Dan Black Physics Business 

Program. With an interest in both physics and business, Phillipe plans on a career in technology based new venture start ups. 

Phillipe is a member of many physics, business, and honors organizations on campus. In addition, he volunteers with a youth 

soccer organization as a coach, referee, and mentor. Phillipe is currently working with Dr. Jocelyn Read on crust interactions 

of neutron star binaries during inspirals and mergers as part of his Senior Honors Project. Phillipe plans to attain his Masters in 

Business Administration while giving back to the organizations that helped him reach his goals. 

Phillipe Diego Rodriguez
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