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Functional Assessment of an ExoS/Chvl Transcriptional Target Gene in Sinorhizobium

meliloti During Free-Living Growth

Kristen Abe

Advisor: Dr. Esther Chen

Abstract

Biological nitrogen fixation by microbes offers a sustainable alternative to synthetic
nitrogen fertilizers that contribute to environmental pollution. The ExoS/Chvl two-component
signaling pathway is critical for symbiotic nitrogen fixation by Sinorhizobium meliloti, a microbe
that performs nitrogen fixation in an endosymbiotic relationship with legume plants. This
pathway also regulates free-living bacterial phenotypes, including exopolysaccharide production,
cell envelope integrity, and biofilm formation. This study aimed to determine the functions of
small RNA (sRNA) genes that are transcriptionally regulated by ExoS/Chvl in S. meliloti.
Strains overexpressing the SRNA gene SmelC023 were successfully created, and preliminary
results showed no differences in bacterial growth and free-living phenotypes compared to S.
meliloti strains without SmelC023 overexpressed. Overall, these results provide an initial
contribution towards understanding the mechanisms of symbiotic nitrogen fixation and shed light
on the potential role of ExoS/Chvl-regulated SRNA genes in S. meliloti. This work is supported
by the Maximizing Access to Research Careers grant to CSUF from the National Institutes of
Health [T34GM008612-26] and the National Institute of General Medical Sciences of the

National Institutes of Health Award Number SC3GM 144065 to E.J.C.



Introduction

Nitrogen is a crucial element in nucleic acids and amino acids and is therefore vital for
the survival of all living organisms. Though nitrogen is one of the most abundant elements in the
Earth’s atmosphere, it is found in the chemically inert form of dinitrogen, which is not accessible
for use by organisms until it is reduced to ammonia. This reduction relies on the cleavage of the
molecule’s triple bond during a process known as nitrogen fixation (Socolow, 1999). Biological
nitrogen fixation is one of the main sources of fixed nitrogen on Earth, but it can only be
performed by microbes called diazotrophs (Raymond, Siefert, Staples, & Blankenship, 2004).
Rhizobia, such as the gram-negative, a-proteobacterium Sinorhizobium meliloti, are a type of
diazotroph that can perform nitrogen fixation in an endosymbiosis with legume plants of the
Medicago genus.

In nitrogen-limited conditions, the free-living bacteria evoke the formation of a nodule in
the root of the legume and infect the plant through an infection thread (Gibson, et al., 2008;
Long, 2016). The formation of this infection thread begins through hydrolysis of the plant cell
wall and is dependent on the production of bacterial exopolysaccharides, such as succinoglycan
or EPS-I (Cheng & Walker, 1998). Once they have successfully infected host cells, the free-
living bacteria become surrounded by a plant-derived membrane in an environment known as the
symbiosome where they undergo terminal differentiation into nitrogen-fixing bacteroids (Gibson
et al., 2008; Long, 2016).

In S. meliloti, the ExoS/Chvl two-component signaling pathway transcriptionally

regulates genes required for the bacteria to establish their symbiosis with the legume host. Two-



component signaling pathways are present in almost all bacteria and enable bacteria to sense and
respond to environmental signals for survival and adaptation (Laub, 2011). The two conserved
components in these pathways are the histidine protein kinase and the response regulator protein,
which work together in signal transduction. The exoS and chvl genes are adjacent to one another
in the S. meliloti chromosome and encode the two main components of the signaling pathway.
The cytoplasmic membrane protein ExoS is the histidine kinase component with a periplasmic
sensing domain and autophosphorylates in response to an unknown signal. ExoS is negatively
regulated by the periplasmic inhibitor protein ExoR, which is believed to act by binding the
sensing domain in ExoS, preventing its activity in the pathway (Chen et al., 2008). If ExoS is
autophosphorylated, the phosphate group is transferred to the response regulator Chvl (Cheng &
Walker, 1998). Once phosphorylated, Chvl activates transcription of exo genes, encoding
enzymes for the synthesis of exopolysaccharides required for successful bacterial infection of the
plant host (Belanger et al., 2009; Cheng & Walker, 1998). Notably, the ExoS/Chvl pathway
regulates the synthesis of succinoglycan, which plays a vital role in the Rhizobia-legume
symbiosis.

Bacterial small RNAs (sRNAs) are believed to play a role in microbe-host interactions,
such as during the differentiation of free-living bacteria into their bacteroid form during
symbiosis initiation. SRNAs are short, non-protein encoding RNAs that are found in abundance
in all prokaryotes and regulate gene expression by base-pairing to a complementary mRNA
target sequence (Storz et al. 2011). Genes directly regulated by the ExoS/Chvl pathway have
their upstream region bound by Chvl, which acts as a transcriptional regulator. To date,
numerous ExoS/Chvl direct target genes have been identified in S. meliloti through

transcriptional profiling of strains with increased and reduced chvl activity to identify potential
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target genes based on the reciprocal changes in expression in the cAvl mutants compared to those
in the wild-type strain (Chen et al., 2009). In a later study, more direct target genes of Chvl were
identified by chromatin immunoprecipitation, followed by microarray analysis (ChIP-chip) and
gRT-PCR; specifically, 489 ChvI-bound DNA regions were identified (Ratib et al., 2018). The
sRNA gene SmelC023 was found to be a potential candidate for direct regulation by the
ExoS/Chvl pathway from previous RNA sequencing and ChIP-chip studies (del Val et al., 2007;
Ratib et al., 2018; Schluter et al., 2010).

For this study, overexpression strains were constructed to observe any altered phenotypic
effects. Plasmids with the SRNA gene SmelC023 overexpressed were introduced into S. meliloti
wild-type or chvl partial loss of function (LOF) strains. To observe growth phenotypes of free-
living S. meliloti, these overexpression strains were grown on various media to test nutrient
utilization, cell envelope integrity, survival in acidic conditions, and succinoglycan production.

Methods

Reagents and Equipment

All oligonucleotide primers used in this study were manufactured by Integrated DNA
Technologies (IDT; Coralville, IA) and were diluted to 20 uM for use (Table 1). Techne Progene
(Techne; Staffordshire, UK) and Bio-Rad MJ Mini (Bio-Rad; Hercules, CA) thermocyclers were
used for all PCR amplifications. Amplification of SmelC023, and its upstream and downstream
regions, was carried out with Phusion polymerase (Thermo Fisher, Waltham, MA). All other
PCR reactions used Taq polymerase (New England Biolabs [NEB], Ipswich, MA), following
conditions in Appendix A and Appendix B with 10 mM dNTPs (NEB).

All reaction amplicons were verified with agarose gel electrophoresis using Tris-acetate-

EDTA (TAE) buffer, and DNA was separated at 120 V for 30 minutes. Plasmids were generated
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and maintained in Escherichia coli DH5-a cells, which were grown at 37 °C. Zymo ZR Plasmid
Miniprep™- Classic kits (Zymo Research; Irvine, CA) were used in plasmid isolation, Zymo
DNA Clean & Concentrator™-5 kits were used in the purification of PCR products, and Qiagen
QIAEX II Gel Extraction Kits (Qiagen; Hilden, Germany) or Zymo Zymoclean Gel DNA
Recovery Kits were used in the extraction of DNA.

The E. coli and S. meliloti strains listed in Table 2 were grown on media plates containing
one or more antibiotics used at the following concentrations for all following sections: 500
pug/mL streptomycin (Sm), 40 pg/mL hygromycin (Hy), 50 ug/mL chloramphenicol (Cm), and

50 pg/mL spectinomycin (Sp).

Table 1. Oligonucleotide primers designed for this study.

5'

Positio  Restrictio F/

Primer n n Site R Primer Sequence

OCL 349 -36 Pstl F  TTTTctgcagCCTTGAAATGCCACATTTCAATCCA
OCL 350 177 Pstl R TTTTctgcagGCTTTCGACCGTCGGGCAAAG
OCL 351 -400 Spel F TTTTTactagtCGAAGATCACGGCCAGATGTG

TTTTTggatccGACATGATTTGTGGATTGAAATGT
OCL 352 -1 BamHI R

G

OCL 353 148 BamHI F TTTTTggatccTTTGTTGCCTTTGCCCGACGG
OCL 354 548 Sacl R TTTTTgagctcCGAACGCTTGTCGTTCGGATG
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Table 2. Bacterial strains used.

Strain Antibiotic Backgroun
Name Resistance d Details
C10 Cm E. coli pMS4
Cl12 Sm S. meliloti Wild-type (WT) — Rm1021
Cl4 Cm E. coli Helper Strain
C26 Sm, Hy S. meliloti  chvl K214T (Hy) marked with pDW181 at P-HisB
C27 Sm, Hy S. meliloti WT (Hy) — marked with pDW 181 at P-HisB
C314 Cm E. coli SmelC023 overexpression plasmid
C322 Sp, Sm, Hy S. meliloti SmelC023 overexpression in chvl K214T mutant
C324 Sp, Sm, Hy S. meliloti SmelC023 overexpression in WT

Overexpression Strain Construction

Primers OCL 349 and OCL 350 (Table 1) were used to PCR amplify SmelC023, along

with 1 unit of Phusion polymerase (2 units/uL; Thermo Fisher) with and without dimethyl

sulfoxide (DMSO), and 40 ng S. meliloti genomic DNA as a template. The plasmid vector pMS4

and SmelC023 amplicon were both digested with 10 units Pstl (NEB) in 1x NEB Buffer 3 for 2.5

hours at 37 °C. Five units of calf intestinal alkaline phosphatase (NEB) were added to the pMS4

digest and incubated for 5 additional minutes after the 2.5-hour digestion. Ligation of the

digested amplicon and digested pMS4 vector was performed using 200 units of T4 DNA ligase

(400 units/pL; NEB) and 1x T4 DNA Ligase Reaction Buffer (NEB) at room temperature for 3
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hours. Five pL of the ligation mix was transformed into 50 uL competent DHS5-a E. coli cells by
heat shock at 42 °C for 45 seconds and transformants were selected using LB media plates with
50 pg/mL Cm after growth at 37 °C for 25 hours. Colony PCR (Appendix B) was performed
with 0.625 units of Taq DNA polymerase (5 units/uL; NEB) per reaction to check for successful
ligation using T7 and T3 primers (IDT) with DNA from E. coli colonies lysed with boiling in
SmM Tris pH 8, 2 mM EDTA, 0.5% Triton X-100. The orientation of the SmelC023 insert
ligated into pMS4 was determined through PCR (Appendix B) with the T3 primer and primer
OCL 349 or OCL 350 (Table 1). The overexpression plasmid was conjugated into the wild-type
(C27) and chvl partial loss of function (C26) strains of S. meliloti through triparental mating,
with an E. coli helper strain (C14) on LB media plates with Sm, Sp, Hy, and grown at 30 °C for

about 24 hours.

Plate Assays

Overexpression and control strains were grown on LB media plates with Sm, Sp, Hy, as
reported in Reagents and Equipment, at 30 °C for three days, then resuspended and serially
diluted in Joel’s minimal media (JMM2) until final optical densities of 1x10* OD/mL and 1x10-3
OD/mL were achieved. Five uL of these dilutions were spotted onto LB plates with Sm, Sp, Hy
in addition to each of the following media plates. Calcofluor plates were prepared using LB
media, Sm, Sp, Hy, and 0.02% calcofluor. Tryptone-yeast (TY) plates were prepared with Sm,
Sp, Hy. Ethanol (EtOH) plates were prepared using LB media with Sm, Sp, Hy, and 4% EtOH.
JMM2 plates were prepared using JIMM2 salts, 0.3% sucrose, 1.5% agar, sterile double distilled
water, and a mixture of magnesium sulfate, cobalt chloride, and biotin (MCB). Acidic plates

were prepared using a 2x LB media, 80mM MES, and Sm, Sp, Hy, with NaOH added to pH
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6.25. All plates were incubated for 1-2 days at 30 °C, then photographed using a Canon
(Melville, NY) EOS Rebel camera. Calcofluor plates were also photographed with exposure to
UV light.

Results

To investigate the role of SmelC023, overexpression studies were performed on free-
living bacteria. ExoS/Chvl is known to regulate biofilm formation, motility, survival in acidic
conditions, cell envelope integrity, succinoglycan production, and nutrient utilization in S.
meliloti (Belanger et al., 2009; Wells et al., 2007; Yao et al., 2004, Zahran, 1999). Thus, the
growth of S. meliloti strains on different types of media allows for the detection of differences
between different strains under discrete conditions. While it was expected that the chvl partial
LOF (K214T) strain will have less growth and smaller colony sizes than the wild-type strain on
LB medium, the overexpression of SmelC(023 was investigated to potentially observe any
additional phenotypes. SmelC023 was overexpressed in both a wild-type background and in a
chvl partial LOF background, to see if overexpression of SmelC023 would rescue any
phenotypes caused by the LOF mutation. The wild-type Rm1021 strain with empty vector and
the chvl partial LOF strain with empty vector were used as control strains. Five microliters of
each strain were spotted onto different media plates at either 10* ODgoo mL"! to observe overall
growth or 10~ ODgoo mL"! to be able to observe the growth of single colonies. Each phenotypic
figure shows results from one trial, except for Figures 1, 3, and 4 which are representative of two

trials.

S. meliloti strains were grown on LB and TY media plates to observe growth on two
types of nutrient-rich media (Figs. 1 and 2). As expected, the chvl partial LOF strain showed a

growth defect compared to the wild-type S. meliloti. Comparing the wild-type S. meliloti with an
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empty vector to the wild-type overexpressing SmelC023, no difference in overall growth or
single colony size was observed. Similar results were observed between the chvI partial LOF S.
meliloti strain with an empty vector and chvl partial LOF strain with SmelC023 overexpressed

(Figs. 1 and 2).

SmelC023
SmelC023 OX in chvl
WT OX in WT  ¢hvI K214T K214T

Figure 1. SmelC023 overexpression did not affect growth on LB media. Five microliters of
strains diluted to 10 ODgoo mL"! (top row) or 105 ODgoo mL"! (bottom row) then grown on LB
media plates with Sm, Sp, and Hy for three days at 30°C. From left to right, strains shown are:

WT (Rm1021), SmelC023 overexpression in WT, chvl partial LOF, and SmelC023

overexpression in chvl partial LOF. Results shown represent two trials.
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SmelC023
OXin WT

WT

e 8

Figure 2. SmelC023 overexpression did not affect growth on tryptone-yeast (TY) media.

Five microliters of strains diluted to 10* ODgoo mL"! (top row) or 10~ ODgoo mL"! (bottom row)
then grown on TY media plates with Sm, Sp, and Hy for three days at 30°C. From left to right,
strains shown are: WT (Rm1021) and SmelC023 overexpression in WT. Results shown represent

one trial.

S. meliloti strains were grown on LB media plates with JIMM2 (Fig. 3) and 4% EtOH
(Fig. 4) and media plates to observe any effects on S. meliloti nutrient utilization and cell
envelope integrity, respectively. JIMM2 shows how the strains grow on a minimal medium, and
EtOH plates allow for the detection of cell envelope integrity defects since EtOH disrupts cell
membranes. On JMM?2, the chvl partial LOF strain was expected to grow similarly to the wild-
type strain, matching what was observed in these results. Again, there were no differences in
overall growth or single colony size of the wild-type and partial LOF strains compared to the
strains overexpressing SmelC(023 in those backgrounds. Together, these results indicate that
SmelC023 overexpression did not affect nutrient utilization or cell envelope integrity in S.

meliloti.
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SmelC023
SmelC023 chvl OX in chvl
WT OXin WT  K214T K214T

Figure 3. SmelC023 overexpression did not affect growth on minimal media. Five microliters
of strains diluted to 10 ODgoo mL"! (top row) or 10 ODgoo mL"! (bottom row), then grown on
JMM2 media plates with Sm, Sp, and Hy for three days at 30°C. From left to right, strains shown
are: WT (Rm1021), SmelC023 overexpression in WT, chvl partial LOF, SmelC023

overexpression in chvl partial LOF. Results shown represent two trials.

SmelC023
SmelC023 chvl OX in chvl
WT OXin WT K214T K214T

Figure 4. SmelC023 overexpression did not affect cell envelope integrity. Five microliters of
strains diluted to 10 ODgoo mL"! (top row) or 105 ODgoo mL"" (bottom row), grown on
LB+EtOH media plates with Sm, Sp, and Hy for three days at 30°C. From left to right, strains
shown are: WT (Rm1021), SmelC023 overexpression in WT, chvl partial LOF, SmelC023

overexpression in chvl partial LOF. Results shown represent one trial.
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The ability to grow in acidic conditions is important for S. meliloti since the root nodule
environment formed during host invasion is believed to be acidic (Zahran, 1999). To test this
phenotype, S. meliloti strains were grown on LB media plates at pH 6.25. Preliminary results
showed no difference in growth or single colony size between strains where SmelC023 is
overexpressed or not overexpressed, indicating that SmelC(023 has no effect on growth in acidic

conditions (Fig. 5).

SmelC023
SmelC023 chvl OX in chvl
WT OXinWT  K214T K214T

Figure 5. SmelC023 overexpression did not affect growth in acidic conditions. Five
microliters of strains diluted to 10* ODgoo mL! (top row) or 10> ODgoo mL! (bottom row) then
grown on LB media plates at pH 6.25 with Sm, Sp, and Hy for three days at 30°C. From left to
right, strains shown are: WT (Rm1021), SmelC023 overexpression in WT, chvl partial LOF, and

SmelC023 overexpression in chvl partial LOF. Results shown represent one trial.

Calcofluor specifically binds to succinoglycan and fluoresces under UV light, making

fluorescence a proxy for succinoglycan production. The resulting growth of the wild-type S.

meliloti overexpressing SmelC(023 and the wild-type control strain on LB media with calcofluor
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under UV light showed no differences in fluorescence between the two strains (Fig. 6). There
was also no difference in fluorescence observed between the chvl partial LOF S. meliloti strain
and the SmelC023 overexpression in the chvl partial LOF background. Likewise, the strains with
and without SmelC023 overexpression show no noticeable differences in overall growth and
single colony sizes. Together, these results indicate that overexpression of Sme/C023 had no

noticeable effect on succinoglycan production in S. meliloti.

SmelC023
SmelC023 chvl OX in chvl
WT OXinWT  K214T K214T

Figure 6. SmelC023 overexpression did not affect succinoglycan production. Five microliters
of strains diluted to 10* ODgoo mL™"' (top row) or 10> ODgoo mL™! (bottom row) in each of the
two panels were grown on LB+calcofluor media plates with Sm, Sp, and Hy for three days at
30°C, photographed under visible (upper panel) and UV light (lower panel). From left to right,
strains shown are: WT (Rm1021), Smel/C023 overexpression in WT, chvl partial LOF, SmelC023

overexpression in chvl partial LOF. Results represent shown one trial.
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Discussion

This project aimed to characterize the functions of SRNA direct target genes of the
ExoS/Chvl pathway, namely SmelC023. Overexpression strains were created by cloning each
gene of interest behind a strong constitutive promoter, then introducing this construct as a
plasmid into S. meliloti backgrounds via triparental mating.

The preliminary results presented here indicate that the overexpression of SmelC023 does
not affect succinoglycan production, growth on TY, growth in acidic conditions, cell envelope
integrity, or growth on minimal media in free-living S. meliloti. Although overexpression of
SmelC023 had no effect on the phenotypes studied here, overexpression may show a distinct
phenotype in other free-living bacterial functions known to be regulated by ExoS/Chvl,
including biofilm formation. To further investigate the results of SmelC023 overexpression
presented in this study, it would be beneficial to conduct quantitative analyses of the
succinoglycan production phenotype to determine the magnitude of difference in this function.
This is important because small differences may be overlooked when conclusions are drawn
solely from visual analysis. Additionally, a 2007 study by del Val et al. demonstrated that the
expression of SmelC023 is highly induced in endosymbiotic bacteria, and it was speculated that
SmelC023 may be involved in infection and/or bacterial differentiation (del Val et al., 2007).
Therefore, the failure to detect a free-living phenotype in the assays performed here does not
exclude a possible role for SmelC023 during symbiosis. Furthermore, the effects of Smel/C023
deletion were not investigated in this study, and testing the phenotypes of a SmelC023 knockout
strain can provide new insights into both free-living and symbiotic potential functions. Together,
these findings build upon previous research and provide new insights into the potential role of

SmelC023 in S. meliloti to guide future investigations.
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APPENDIX A.

Thermocycler Conditions with Phusion Polymerase

—

98°C for 3 minutes

2. 98°C for 10 seconds

3. Annealing temperature for 20 seconds (Skip if annealing temperature is greater than
72°C)

4. Repeat Steps 2-3 32 times (33 cycles total)

72°C for 5 minutes

6. 4°C hold

9]

APPENDIX B.
Thermocycler Conditions with Taq Polymerase

94°C for 3 minutes

94°C for 30 seconds

55°C for 30 seconds

72 °C 1 min per 1kb length

Repeat Steps 2-4 four times (5 cycles total)
94°C for 30 seconds

58°C for 30 seconds

72°C 1 min per 1kb length

Repeat Steps 6-8 24 times (25 cycles total)
72°C for 10 minutes

4°C hold
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Effects of grazing-related vegetation changes and moonlight on foraging behavior of

shortgrass-prairie rodents

Marlene Lopez

Adviser: Dr. Paul Stapp

Abstract
Predation risk is a factor that highly influences rodent foraging behavior. Rodents alter their
behavior in response to cues of predation risk, like levels of moonlight and changes in
vegetation. I used artificial seed trays to analyze the effects of moonlight and grazing-related
differences in vegetation on the foraging behavior of nocturnal rodents in the shortgrass prairie.
Seed trays were placed in either open or shrub microhabitats for one night (new, quarter, full
moon) in one of four different grazing treatments. Trays were recorded as either “visited” or “not
visited” by a forager, and the amount of seed (g) removed from trays was recorded. I examined
two response variables: the percentage of visited trays and amount of seed (g) removed from
visited trays. Rodents visited trays most frequently during darker, new moon nights and visited
treatments with lowest amount of grazing most frequently. The most seed was removed from
trays during darker, new moon nights, but there wasn’t any difference between amount of seed
removed from visited trays between grazing treatments. Rodents altered their foraging behavior
in response to changes in moonlight and differences of grazing levels, presumably because of

perceived predation risk.
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Introduction
Behavioral decision-making by animals reflects tradeoffs between foraging efficiency and
minimizing risk of predation (Lima and Dill 1990). For many small mammals, movements and
microhabitat use reflect both the dispersion and availability of food as well as the need to avoid
detection and capture by predators (Stapp and Lindquist 2007). In open environments such as
deserts and grasslands, the amount of moonlight can influence predation risk and thus rodent
foraging behavior. For example, predators are often more effective hunters during full moon
nights (Clarke 1983, Longland and Price 1991), leading nocturnal rodents to alter their behavior
to become more vigilant and more risk averse. On bright nights, desert rodents may move shorter
distances, spend less time foraging, or use vegetation cover, e.g., shrubs, more (Longland and
Price 1991). On darker nights, rodents may be more active aboveground and venture further from
their burrows to forage or find mates (Longland and Price 1991). Moonlight thus may serve as a
cue that rodents use to assess predation risk, ultimately causing them to alter their activity levels

and aboveground behavior in response to ambient light caused by different phases of the moon.

Because foraging by rodents is sensitive to predation risk, and perceived or actual risk is
mediated by the availability of protective cover, factors that influence the amount or type of
vegetation can affect rodent foraging behavior and, ultimately, patterns of abundance and
community structure. In grassland ecosystems, grazing by native herbivores and livestock are a
key determinant of plant productivity, community composition, and vegetation structure (Hobbs
1996, Eldridge et al. 2016). Rodent communities in intensively grazed areas tend to differ from
those in enclosures or in areas with less intensive grazing (Grant et al. 1982, Thompson and Gese

2013, Ellis and Cushman 2018), although the exact ecological mechanisms underlying these
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differences have not been studied thoroughly. The influence of grazing on the activity and
behavior small mammals could ultimately feed back to affect plant communities because rodents
can be important seed predators, especially for large-seeded forbs and shrubs (Brown and Heske

1990, Hoffman et al. 1995, Maron et al. 2012, Larios et al. 2017).

I used artificial seed trays to examine the interactive effects of moonlight and grazing-related
differences in vegetation on the foraging behavior of nocturnal rodents in the shortgrass prairie in
north-central Colorado. I estimated overnight seed removal during foraging trials conducted
during new, quarter- and full-moon phases, in plots where access to large and medium-sized
herbivores were manipulated experimentally to examine the effects of herbivory on woody shrub
encroachment. I expected that, in trays set out overnight, rodents would visit trays set out under
shrubs than in open microhabitats, visit more trays on darker, new-moon nights than bright, full-
moon nights, and visit more trays in ungrazed plots with taller vegetation than grazed plots with
more bare ground and shorter vegetation. Of the trays that were visited, I expected that rodents
would remove more seeds in trays beneath shrubs than in open microhabitats, remove more
seeds during darker, new-moon nights than on bright, full-moon nights, and remove more seeds
in ungrazed plots with taller vegetation than grazed plots with more bare ground and shorter

vegetation.

Methods
I conducted my research between May and August 2022, at the Semi-arid Grasslands Research
Center (SGRC), located at the USDA-ARS Central Plains Experimental Range (CPER) in north-

central Colorado. Vegetation at the study site is classified as shortgrass prairie, with a great
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diversity of grasses, shrubs, cacti, and forbs (Lauenroth and Burke 2008). The climate is
semiarid, with cold winters and hot summers, and most precipitation falling as rain during the
spring and summer growing season (Lauenroth and Burke 2008). Common nocturnal rodent
species at the CPER include the Ord’s kangaroo rat (Dipodomys ordii), northern grasshopper
mouse (Onychomys leucogaster), deer mouse (Peromyscus maniculatus), and the western harvest

mouse (Reithrodontomys megalotis; Lauenroth and Burke 2008).

I conducted my research at five CPER sites (19N, 19S, 24W, 118, 5E; Figure 1) that were part of
an ongoing study initiated in 2012 to investigate effects of different-sized herbivores on potential
encroachment by four-wing saltbush (Atriplex canescens). Each site consisted of four
experimental plots, each measuring 50 x 50 meters, and representing a different experimental
treatment. “All herbivores” (AH) plots were not fenced and allowed access to all herbivores,
including pronghorn (4ntilocapra americana) and cattle (Bos taurus), the latter of which were
stocked at a moderate grazing intensity during the growing season. “Cattle excluded” (CE) plots
were fenced using 4 strands of barbed wire, which prevented cattle from entering, but still
allowed smaller herbivores such as jackrabbits (Lepus sp.) to enter. “Rabbits excluded” (RE)
plots were fenced with both barbed wire and chicken wire, but two steers were placed in the plot
for two days (one day in June, one day in August) to simulate moderate-intensity grazing. Lastly,
“cattle and rabbits excluded” (CRE) plots were fenced using barbed wire and chicken wire,

permitting access to only small rodents and juvenile cottontail rabbits (Sylvilagus audubonii).
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Figure 1. Map of the Semi-arid Grasslands Research Center (SGRC), located on the USDA-ARS
Central Plains Experimental Range (CPER) in northern Colorado. The five study sites, each

with three enclosures and one unfenced control plot, are labeled. Map provided by USDA-ARS.

To determine rates of seed removal by rodents, I set artificial seed trays in each treatment plot for
one night during quarter-, full-, and new- moon phases. Quarter-moon trials were conducted
between 21-23 June, full-moon trials were conducted from 14-16 July, and new-moon trials were
conducted between 27-31 July. Because of the distance between and the need to check

immediately at dawn, all four plots at a site (16 trays per site) were sampled on the same night.
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Seed trays were circular, terra-cotta plant saucers constructed of stiff plastic, measuring 1,964
cm? in area and 8.9 cm deep. Two pairs of seed trays were placed into each treatment plot. One
was placed beneath the canopy of a large shrub (usually Atriplex canescens), with the other
placed 1-2 m away in the open, at least 1 m from any shrubs or dense vegetation (Figure 2). Each
tray contained 8 g of commercial milo millet mixed with 2 L of sieved play sand. I set the trays
at dusk and then checked them at dawn. I recorded any signs of foraging behavior (tail drags,
disturbed sand, footprints) and labeled these trays as “visited” (Figure 2C). If no foraging signs

were observed, the tray was considered “not visited”. After returning the seed to the lab, I sieved

the remaining millet from the sand and weighed it to estimate the amount of seed removed.

Figure 2. Images of artificial seed trays used in rodent foraging trials at the Central Plains
Experimental Range, Colorado. A. Tray placed in open cover type. B. Tray placed in shrub cover

type. C. Foraged seed tray showing evidence of visitation (scats, tail drags).

I analyzed two response variables: the proportion of trays in a given treatment type that were

visited and the amount (g) of seed removed from visited trays. I used a three-way ANOVA to
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test the effects of moonlight, grazing treatment (AH, CE, RE, CRE), and microhabitat (shrub,

open) on the percentage of trays visited and the amount of seed removed from visited trays.

Results

Vegetation in plots was measured in most years of the study by USDA-ARS field crews. Table 1
shows the treatment means of some representative variables in 2022. CRE and RE plots had the
highest canopy cover of mid grasses, followed CE plots. AH plots had lowest canopy percent

cover of mid grasses.

Table 1. Mean (+ 1 SE) of vegetation measurements in treatment plots at the CPER in 2022 .

Sample size was five plots per treatment.

Treatment Canopy percent cover of  Index of vegetation Density of Atriplex per
"mid" grasses thickness/height m’

AH 0.68+1.0 16.75+2.7 0.14+£0.01

CE 1.25+1.8 28.72 +£2.1 0.15+0.01

CRE 1.90+2.5 27.58 £4.0 0.16 £0.01

RE 1.40+4.6 22.72+3.3 0.11 £0.01

Based on live-trapping studies conducted concurrently by M.S. student Katie Biardi in 2022
(Table 2), the highest number of nocturnal rodents were captured in CRE plots (19), followed by

RE plots(18). The fewest nocturnal rodents were captured in AH and CE (15). Ord’s kangaroo
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rat, a large granivore, was most common rodent caught in all treatments, making up 40-68% of
captures. Omnivorous rodents (ONLE, PEMA, REME) were especially common on AH and CE

plots (40% and 53% of total captured, respectively).

Table 2. Total number of nocturnal rodents live-trapped in four treatments (AH, CE, RE, CRE)
at the Central Plains Experimental Range in north-central Colorado in June and July 2022.
DIOR = Dipodomys ordii,; CHHI = Chaetodipus hispidus, PEFL = Perognathus flavus, ONLE
= Onychomys leucogaster, PEMA = Peromyscus maniculatus, REME = Reithrodontomys

megalotis. Data from Katie Biardi, M.S. student, Department of Biological Science, CSUF.

DIOR CHHI  PEFL ONLE PEMA REME Total

AH 7 0 1 4 1 2 15
CE 6 1 0 2 2 4 15
RE 12 0 3 0 3 0 18
CRE 13 1 0 0 1 4 19

Based on results of a three-way ANOVA, there was no significant difference between the
percentage of trays visited in open and shrub cover types (p=0.263, F=1.37, df=1; Figure 3).
There was also no interaction between treatment and cover type, nor between moon phase and
cover type. Pooling across cover types, the percentage of trays visited differed between treatment
(p<0.0001, F=27.1, df=3) and moon phases (p<0.0001, F=23.2, df=2; Figure 4). There was also a
significant interaction between moon phase and treatment (p=0.02, F=3.95, df=6). Overall,

during all moon phases, the fewest trays were visited in AH plots, whereas most of the trays in
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CRE and RE plots were visited. The greatest difference in visitation was between AH and fenced

plots on new-moon nights.
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Figure 3. Percentage of trays visited in open (o) and shrub (s) cover types in four grazing
treatments (AH, CE, RE, CRE) during three different moon phases (New, Quarter, Full) in
shortgrass prairie in north-central Colorado in June and July 2022. There were five replicate
sites in each treatment type and two trays per cover type, for a total of 10 trays per treatment

and moon phase (trays were set for one night during each moon phase).
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Figure 4. Pooling across cover types, the percentage of trays visited (mean + SE) in four grazing
treatments (AH, CE, RE, CRE) during three different moon phases (new, quarter, full) in
shortgrass prairie in north-central Colorado in June and July 2022. There were four trays per
treatment type and five replicates of each treatment type for a total of 20 trays per treatment type
in each moon phase (trays were set for one night during each moon phase). Bars with letters

were not significantly different (P > 0.05, Tukey HSD tests).

Considering only trays that were visited, the amount of seed removed (g) from trays did not
differ significantly between “open” and “shrub” cover types (p=0.918, F=0.01, df=1), nor
between treatment types (p=0.087, F=2.24, df=3), and there was no significant interaction
between moon phase and treatment or moon phase and cover. The mean amount of seeds
removed from visited trays tended to be lowest in AH plots (Figure 5). Across all treatments and

cover types, the most seeds were removed during new- moon nights and the lowest during
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quarter- and full- moon nights (Figure 5). Combining across cover and treatment types,
significantly more seed was removed from visited trays on new-moon nights than quarter- or

full-moon nights (p=0.0008, F=7.51, df=2; Figure 6)
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Figure 5. Mean (+1 SE) amount of millet seed removed (g) from a total of 8 g of seed placed in
one of the four grazing treatments (AH, CE, RE, CRE) during three different moon phases (New,
Quarter, Full) in shortgrass prairie in north-central Colorado in June and July 2022. Only trays

actually visited by rodents were included, so sample size varied from 4 to 20.
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Figure 6. Considering only trays visited by rodents and pooling across treatments trays, mean
(+1 SE) amount of millet seed removed (g) from a total of 8§ grams of seed placed in trays during
three moon phases (New, Quarter, Full) in shortgrass prairie in north-central Colorado in June
and July 2022. Sample sizes were 65, 42, and 44 for New, Quarter and Full moon nights,

respectively.

Discussion
To understand the effects of moonlight and vegetation cover on rodent foraging behavior,
I analyzed two variables: the percentage of trays that were visited by a nocturnal forager and the
amount of seed removed from those visited trays. I was able to tell if rodents visited trays by the

presence of footprints, tail drags, or feces and by the volume of sand moved. In many cases, the
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most likely visitors were kangaroo rats, which are more than twice the size of mice, have large
tails and hind feet, and are capable of moving large amounts of sand during foraging. The
percentage of trays visited reflected the activity of nocturnal rodents and their willingness to
forage in a variety of vegetation cover types and moon-light levels. The amount of seed removed
from a tray was used as a measure of how long they spent in trays in different microhabitats in
areas with different vegetation.

Surprisingly, microhabitat cover type did not seem to affect nocturnal rodent foraging
behavior. I had hypothesized that rodents would prefer to forage in shrub microhabitats because
of the increased cover that shrubs provide from predators, thus reducing predation risk (Kotler
1984, Rosenzweig 1973, Orrock et al. 2004). Despite my prediction that rodents would visit trays
placed in shrub microhabitats more often than open ones, there was no significant difference in
visitation of seed trays between microhabitats (Figure 3). I also predicted that of the visited trays,
rodents would remove more seeds in shrub trays, but there were no significant differences in
seed removal between microhabitats (Figure 4). This lack of preference for microhabitat shown
was likely because the Ord’s kangaroo rat, a bipedal granivore, was the most common nocturnal
rodent across all treatments (Table 2). Differences in morphology between bipedal and
quadrupedal rodent species can influence foraging behavior and preference. Bipedal rodents,
such as kangaroo rats, have large auditory bullae and strong hindlimbs that allow them to detect
predators easily and quickly evade them, while quadrupedal rodents, like the other rodents at the
CPER, lack these traits (Brown et al. 1988). Consequently, quadrupedal rodent species tend to
prefer shrub microhabitats, while bipedal species can prefer to forage in open microhabitats

(Longland and Price 1991). For a bipedal rodent like a kangaroo rat, differences between the
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perceived risk of visiting and potentially foraging in an open microhabitat compared to a shrub
microhabitat might not be critical.

Grazing treatment affected whether or not rodents visited trays, but not the amount of
seed removed. Foragers visited seed trays in CRE and RE treatments most frequently, followed
by CE treatments (Figure 4). AH treatments had the lowest percentage of visits (Figure 3). This
pattern closely follows the rodent trapping numbers of treatments in 2022 (Table 2). Where
rodents were abundant (CRE, RE) seed trays were visited more often, and where there were
fewer rodents (CE, AH), fewer seed trays were not visited. Rodent abundance therefore may
determine the amount of foraging activity that occurs in a plot: the more rodents there are in a
treatment, the higher the percentage of trays visited. Differences between treatments in rodent
abundance may reflect differences in vegetation caused by removal of herbivores.

I had predicted that rodents would remove more seeds in ungrazed plots with taller
vegetation than grazed plots with more bare ground and shorter vegetation because of the
protective cover from predators that vegetation would provide (CRE>RE>CE>AH; Table 1).
However, the amount of seed removed from visited trays did not differ significantly between
treatment (Figure 5). This was most likely because of the rodent population effect on the
percentage of seed trays visited. Once a forager encountered a seed tray and made the decision to
forage in it, the type and height of the vegetation around them had less of an effect on seed
removal than the level of moonlight.

Moonlight was a significant determinant of foraging preference and activity. Foragers
visited seed trays more frequently during the new moon than the quarter and full moon, with
little difference in number of visits between quarter and full moon (Figure 4). Rodents also

removed the most seeds from visited trays during new moon, while there was little difference
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between amount of seed removed during quarter and full moon (Figure 5). During the new
moon, rodents removed almost all seeds from the few trays visited in AH plots, the most “risky”
plot due to the low vegetation cover caused by grazing, at the same level as the other three
treatments (Figure 5). But on quarter and full-moon nights, rodents removed less seeds in AH
than in the other three treatments (Figure 6).

This finding is consistent with previous studies showing higher levels of nocturnal
activity during darker nights compared to bright nights (Kotler 2010 et al., Clarke 1983).
Rodents significantly altered their behavior in response to a decrease in light because predation
risk is presumably lower, allowing them to forage for more seeds (Prugh 2014). When
illumination levels decreased during the new moon, the perceived risk of predation decreased,
allowing rodents to forage in AH treatments at the same level as CE, CRE, and RE treatments.
When illumination increased during the full moon, foragers did not remove seeds in AH
treatments at the same level as in the other three treatments, perhaps because the perceived risk
of predation in the grazed AH treatments outweighed the benefit of millet seed.

I had also expected that more seed would be removed during the quarter moon than the
full moon, but that was not the case (Figure 5). Seeds in artificial trays represent a rich but
unfamiliar resource to foraging rodents. Because the first round of seed trays set out were during
the quarter moon, it is possible that rodents might have shown some neophobia towards the trays
(Barnett 1958), resulting in low seed removal during the first round of seed trays set out during
the quarter moon.

Both moonlight and the intensity of grazing by herbivores affect the foraging habits of
nocturnal rodents. Intensity of grazing in each treatment highly influences the type and amount

of vegetation available, which in turn influences the type and numbers of rodents present.
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Rodents were most numerous in treatments that have low grazing intensity by cattle (CRE) and
lowest population in treatments that experience high levels of grazing (AH). The number of
rodents in a treatment type was a good indicator of the percentage of seed trays that were visited,
suggesting that rodents may prefer ungrazed areas with more vegetation that provide cover from
predators, such as owls (Zimmerman et al. 1996). Once a rodent visited a tray, decisions about
how much seed to remove and how much time to spend potentially exposed to predators was
most influenced by moon phase, with the greatest amount of seeds removed on dark, new-moon
nights.

Predation risk due to levels of illumination and grazing-related vegetation changes highly
influences the foraging behavior of rodents and in turn, the abundance of rodents in the
shortgrass prairie. Rodents, especially kangaroo rats, are important seed predators that influence
the vegetation around them (Brown and Heske 1990, Larios et al. 2017). The influence of
livestock grazing on the foraging behavior of rodents could potentially affect the plant
communities they live in because granivorous rodents affect seed distribution and plant invasion
(Maron et al. 2012, Larios et al. 2017). Future studies at the CPER should focus on the effects of

the rodent population on the local plant community assembly.
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Abstract
Microbes play an important role in the health and nutrient cycling of our planet. The transition
metal manganese (Mn) found in terrestrial and marine environments can be oxidized from
soluble Mn-II into insoluble Mn-III/IV by manganese oxidizing bacteria (MOB). The produced
Mn-III/IV oxides are some of the most reactive compounds in nature and have the ability to
oxidize many other elements. The marine bacterium Erythrobacter sp. SD-21 is known to
produce a Mn-oxidizing protein, MopA (238-kDa). The purpose of this project is to obtain an
active and pure sample of MopA-hp through different purification methods. The current protocol
involves gravity nickel affinity chromatography (GNAC) and anion exchange chromatography
(AEC). Currently, we are obtaining more AEC samples to test the activity and analyze the purity
of the protein. A pure and active sample of MopA-hp will allow future studies on the mechanism

of Mn oxidation by MopA-hp.
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Introduction

The transition metal manganese (Mn) is an important element and is required for the
activity of many enzymes involved in metabolic pathways, such as the oxidation of organic
matter. Manganese in both terrestrial and marine environments can be oxidized from soluble Mn-
IT into insoluble Mn-III/IV by manganese oxidizing bacteria (MOB) (Tebo et al., 2005). The
produced Mn-III/IV oxides are among the strongest oxidants in nature and have the ability to
oxidize many other elements (Tebo et al., 2004). Mn-III/IV oxides play an important role in the
fate and biogeochemical cycling of vital elements such as carbon, sulfur, and iron (Burdige, D.
J., 1993)

Manganese is involved in the decomposition of organic matter in soil and water, which
are two essential natural resources on Earth. Specifically on Earth, characteristics of Mn-III/IV
oxides such as low solubility under natural environmental conditions and the ability to efficiently
oxidize Fe and other metals (Tebo et al., 2018; Plathe et al., 2013). Mn (III/IV) oxides can also
readily absorb pollutants such as lead, mercury, and arsenic due to their porous and highly
reactive nature (Mensah et al., 2021) Coupled with Mn(II)-oxidizing microorganisms, biotic
production of Mn(III/IV) oxides provides a natural solution for remediation of pollution sites.
These oxides have not only been added directly to water and sediments for toxin removal but are
generated by the environmental bacterial colonization of wastewater filters, a potentially cost
saving means for safe water (Maurya et al., 2020). Despite the powerful geochemical reactivity
of Mn and its widespread use by organisms, the mechanism of manganese oxidation by bacterial
enzymes is unclear. Studying the natural mechanism of these enzymes has the potential to be

utilized in the field of bioremediation.
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The marine bacterium Erythrobacter sp. SD-21 is known to produce a Mn-oxidizing
protein, MopA (238-kDa) — a peroxidase cyclooxygenase. Prior purification attempts of the
active peroxidase domain, MopA-hp (105-kDa), have provided heterologously expressed
samples with incomplete purification or no activity. Purifying a protein into a homogenous
solution allows for further defined studies, however Mn(Il) oxidizing enzymes are known to be
difficult to purify. The purpose of this project is to obtain an active and pure sample of MopA-hp
through different purification methods. This research focuses on the heterologous expression of
MopA-hp in Escherichia coli, followed by exploring further purification of an MopA-hp using
additional purification protocols. The current protocol involves gravity nickel affinity
chromatography (GNAC) and anion exchange chromatography (AEC). Mn oxidation activity is
quantified through a colorimetric leucoberbelin blue assay. Sodium dodecyl sulfate—
polyacrylamide gel electrophoresis (SDS-PAGE) is used to confirm the purity of the desired
protein samples. Increased purification has been obtained through AEC, but a high amount of
protein is lost throughout this process. A pure and active sample of MopA-hp will allow future
studies on the mechanism of Mn oxidation by MopA-hp. Understanding the bacterial Mn
oxidation mechanism has the potential to help us clean contaminated sites and better understand

the biogeochemical cycles of Earth that keep the planet and its inhabitants healthy.
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Figure 1. SDS-PAGE gel displays the current purification of MopA-hp. Note the contaminants

present following affinity chromatography. Lane 1: Ladder, Lane 2: Cell free extract, Lane 3:

MopA-hp purified by NAC located at 130kDa.!

Figure 2. Protein purification methods displayed.
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Heterologous Expression of MopA-hp

Escherichia coli strain Rosetta 2 cells (Novagen) transformed with pSpeedET-HP10
(MopA-hp) are streaked monthly on LB agar plates containing 60 pgmL! kanamycin (KAN) and
30 ug mL!' chloramphenicol (CHL) for culture maintenance. A colony of this strain was
inoculated into 25 mL of Luria broth (LB) with 60 pgmL! kanamycin (KAN) and 30 pg mL"!
chloramphenicol (CHL) and were incubated overnight at 37°C with constant shaking at 200 rpm.
After approximately 12 hours, 2 mL of culture was aseptically transferred into 100 mL of LB
media with the same concentration of KAN and CHL. Cells were incubated under the same
conditions until an optical density of 0.5 was achieved at 600 nm (ODsoonm) measured with a
Varian Cary 50 Bio UV-Visible Spectrophotometer (approximately 2 hours). At this point,
protein expression was induced under the same conditions with the aseptic addition of 200 uL of
10% L-arabinose. After 4 hours, the cultures were harvested by centrifugation at 5000 x g for 15
minutes at 4°C using a Sorvall Legend X 1R Centrifuge (Thermo Scientific). Cell pellets were re-
suspended in 1.5 mL of EQ buffer (50 mM 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid
(HEPES) buffer pH 8, 50 mM NaCl, and 10 mM Imidazole). Re-suspended pellets were stored at

-20°C for later use.

French Press: Acquisition of Cell Free Extract

Re-suspended cell pellets were thawed and lysed by 4-5 passages through a French press
cell at 16000 psi. Cell lysate was centrifuged at 5000 x g for 15 minutes at 4°C. Cell-free extract
(CFE) was collected and used for purification through Ni?" affinity purification by gravity flow.

CFE saved for later use was stored in the -20°C freezer.
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Purification by Gravity Nickel Immobilized Metal Affinity Column Chromatography

Nickel affinity chromatography (NAC) was carried out using a gravity-flow column
(Bio-Rad, Irvine, CA) and nickel nitrilotriacetic acid (Ni-NTA) agarose beads (Qiagen, Valencia,
CA) at 4°C. This column was washed with SmL of MQ water then 5 mL of EQ buffer.
Approximately 4 mL of CFE was loaded onto the column and incubated, horizontally and gently
shaken for 15 mins at 4°C. After incubation, the resin was allowed to settle and unbound proteins
are collected by flow through (FT). After collecting the FT fraction, protein was eluted with
equilibrium (EQ) buffer at the following volumes with increasing imidazole concentrations: 10
mM (5 mL) wash 1 of unbound proteins, 20 mM (3 mL) wash 2, 40 mM (5 mL) elution 1, and
300 mM (5 mL) elution 2. After the collection of 5 fractions, the column was washed with 5 mL
of Milli-Q (MQ) water, then 5 mL of 20% ethanol and stored in the 20°C deli fridge in 20%

ethanol.

Protein Concentration Determination
Protein concentrations were measured on a Nanodrop One® (Thermo Scientific) at an
absorbance of 280 nm of 1 equal to 1 mg/mL-" of protein. The baseline correction was 340 nm.

The EQ buffer was utilized as a blank.

Centrifugal Protein Concentration

The elution 1 (E1) fraction containing the highest protein concentration by absorbance at
280 nm (A280) was retained for concentration by centrifugation in Amicon® Ultra-4 filter
centrifuge tubes (Merck Millipore Ltd.) at 5,000xg to a volume of approximately 2.5 mL for the

PD-10 column.

47



Buffer Exchange: Desalting Column

A GE PD-10 Desalting column with Sephadex™ G-25 resin (GE Healthcare, Chicago,
IL) was equilibrated with 25 mL of 20 mM HEPES pH 8, 100 mM NacCl, and -10% glycerol
buffer (dialysis buffer). 2.5 mL concentrated protein was added then eluted from the column
with 3.5 mL of the same equilibration buffer and collected as a 1 and 2.5 mL fraction. The 1 mL
fraction was discarded, while the 2.5 mL protein fraction was quantified using the Nanodrop

One®. After obtaining concentration the protein was then assayed.

Anion Exchange Chromatography

Further protein purification included anion exchange chromatography using a HiTrapTM
Q XL I mL (Cytiva) column. This technique was conducted by hand. First the column was
washed to remove preservatives with a syringe containing 5 mL of binding buffer (BB) [50 mM
Tris-HCI pH 8 and 20% glycerol] followed by 5 mL of elution buffer (EB) [50 mM Tris-HCI pH
8, 20% glycerol, and 1 M NacCl]. Both buffers were filtered through a 0.45 um syringe filter. 5
mL of BB was utilized for column equilibration before passing the MopA-hp containing sample
through the column. The MopA-hp-containing sample was filtered through a 0.22 um syringe
filter before placed in column. The column was then washed with 5 mL of BB to remove

unbound proteins. Followed by a 5 mL wash of EB for analysis.

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis
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Non-native sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS - PAGE)
was performed at a constant 200 V for approximately 1.5 h using 12% acrylamide separating and
4% acrylamide stacking gels. The 2X stock solution (0.5 M TRIS pH 8.6, 10% SDS, 10%
glycerol, Rodriguez 11 11 0.5% brophenol blue) mixed with 2-mercaptoethanol (1:20 dilution 2-
mercaptoethanol) was utilized in a 1:1 ratio with the protein sample and heated for 5 mins.
Protein ladder Broad Range from Bio - Rad Laboratories (Irvine, CA) or Thermo Scientific
PageRuler Plus pre - stained protein ladder (Waltham, MA) were used as molecular weight
(MW) standards. Proteins were stained in a solution of 0.05% Coomassie brilliant blue (Bio -
Rad Laboratories), 10% acetic acid, and 40% ethanol. The gels were destained in a solution of

10% acetic acid and 10% ethanol.

Mn(II) Oxidation Activity: Leucoberbelin Blue Assay

Samples containing MopA-hp were mixed in a ratio of 1:5 (500 pL final volume) with a
mixed solution containing 5 uL. of 0.1 M MnCl2, 5 uL of 1.0 M CaCl2, 1 uL of 5 mM PQQ, 383
puL of 50 mM HEPES pH 8.0 and 100 mM NacCl, 5 uL of 10 mM NAD+, and 1 pL of 1 mM
heme, for activity testing. The EQ buffer utilized before served as the negative control.
Triplicates were conducted for each sample. After 24hrs of shaking at 200 rpm at room
temperature, 50 pL of the assay mixture was mixed in a ratio of 1:5 (300 uL final volume) with
0.04% LBB in 45 mM acetic acid. After 15 minutes of shaking at 200 rpm at room temperature,
these samples were centrifuged in an Eppendorf Centrifuge 5430 R for 5 minutes at 14,000 rpm
at room temperature. The supernatant (250 puL) was placed on a 96 well plate to read their

absorbance at 620 nm on a Synergy 2 (Biotek) plate reader. The absorbance readings were
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compared to a standard curve produced with KMnO4 standards where 1 pM KMnO4 = 2.5 uM

MnQO2.

Results

SDS-PAGE and the activity assay provide a comprehensive assessment of the success of
the current MopA-hp protein purification protocol. SDS-PAGE was used to visualize the 130
kDa MopA-hp band and contaminants. The LBB colorimetric assay was used to measure Mn
oxidizing activity. The combination of these techniques ensure that MopA-hp is present and
active in the samples.

5 fractions are collected from the GNAC protocol. Elution 1 (E1) fraction is used for
further purification as it is the most abundant and pure compared to the other fraction samples
visualized by SDS-PAGE (Figure 2). The LBB activity assay was conducted and indicated that
E1 had the highest Mn oxidizing activity (Table 1). This suggests that E1 has the highest

concentration of active MopA-hp and is the most promising fraction for further purification.
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Figure 3. SDS-PAGE gel displays 5 fractions collected from GNAC. Elution 1 has the highest
protein abundance and the least contaminants. Lane 1: Ladder, Lane 2: Flow through, Lane 3:

Wash 1, Lane 4: Wash 2, Lane 5: Elution 1, Lane 6: Elution 2.

Specific Activity A620/mg
CFE 0.796
Flow through 0.244
Wash 1 4.21
Wash 2 7.52
Elution 1 10.87
Elution 2 10.16

Table 1. Manganese oxidizing specific activity table displays Elution 1 (E1) has the highest
activity of all the fractions. This fraction also had the most abundant protein band when

visualized by SDS-PAGE (Figure 2).
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Fraction |A620 GNAC Vol. (mL) Total Activity (A*mL) Activity Recovered (%)
CFE 1.26 4 5.04 100

FT 0.221 4.5 0.9945 19.73214286

Wi 0.122 5.5 0.671 13.31349206

W2 0.124 3 0.372 7.380952381

El 0.125 5.5 0.6875 13.64087302

E2 0.127 5 0.635 12.59920635

Table 2. Mn Oxidizing Activity Assay results indicate E1 has the highest activity recovered of
the purified samples.

Three to five fractions of E1 are collected and concentrated using Amicon® Ultra-4 filter
centrifuge tubes (Merck Millipore Ltd.) to about 2.5 mL. E1 is then desalted through the buffer
exchange protocol using the PD-10 column. SDS-PAGE is used to analyze the resulting bands of
the concentrated protein sample (Figure 3). The gel indicates that there are more contaminants in

the protein sample than visible with the initial analysis.
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Figure 4. SDS-PAGE gel displays desalting fraction from PD-10 Column. Three bands result
from the concentration of the E1 fractions.

After the buffer exchange, the anion exchange chromatography (AEC) purification step
was performed next. Three fractions are collected which are the wash, bound, and elution. The
elution fraction contained three bands at the same size as the starting fraction, which suggests
that MopA-hp bound to the anion exchange column (Figure 4). However, the abundance of the
protein is much less than the initial sample put onto the column. This indicates that some of the
protein is stuck in the column or is not eluted all the way through. We have not yet obtained a
sample from AEC that produces high Mn oxidizing activity. Next, we are going to combine the

fractions to see if this will recover activity.
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Figure 4. MopA-hp is located at 130kDa. Elution fraction contains three bands. Lane 1: Ladder,

Lane 2:Wash, Lane 3: Bound, Lane 4: Elution, Lane 5: Starting Sample (DS)

Discussion

Prior discoveries and findings have helped the scientific community gain a better
understanding about the manganese oxidation process, but a full understanding of the
biochemical mechanism of MopA requires a pure and active protein. Current research has either
provided a pure but inactive MopA-hp, or active but impure MopA-hp. This research focuses on
the heterologous expression of MopA-hp in Escherichia coli, followed by utilizing several
purification techniques to explore further purification. Mn oxides affect different biological
environmental processes that require such elements in compounds and contribute to the lowering

levels of toxic chemicals in the environment (Tebo et al., 2004). A final characterization of a
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pure sample MopA-hp and the compounds that allow for its activity, would allow for kinetics
studies of MopA-hp and thus have a better understanding of MopA-hp and its mechanism

implied in Mn oxidation.

The Purification of MopA

The purpose of this project is to obtain an active and pure sample of MopA-hp after the
heterologous expression in E. coli. To obtain a pure sample of MopA-hp, GNAC and AEC were
used in attempts to purify the cell-free extract. SDS-PAGE was used to analyze the purity after
each chromatography. GNAC showed that E1 had the highest protein abundance and least
amount of contaminating proteins (Figure 2). This sample was concentrated and buffer exchange
through the PD-10 column was done to desalt the protein solution for AEC. The PD-10 column
is used for buffer exchange, AEC is done after the imidazole is removed because the salt
interferes with the protein purification protocol. The fractions from AEC were visualized via
SDS-PAGE. The elution fraction showed 3 bands that were very faint compared to the starting
sample. These bands should be about ' the intensity of the desalting sample based on the
volumes recovered and added to the gel, but they are only about 1/10™ of the intensity. This
indicates that some sample is not eluted all the way by the buffer or that the protein is getting
stuck in the column. More AEC samples need to be obtained to further investigate the reason

why the bands are significantly less intense than the starting sample.

Protein Mn Oxidizing Activity

Mn oxidizing activity was determined in the protein samples. From the GNAC, Elution 1

had the highest activity compared to the other fractions (Table 2). We have not yet obtained a
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sample from AEC that produces high Mn oxidizing activity. Next, we are going to combine the

fractions from the anion exchange to see if this will recover activity.

Future works
Future works could focus on combining AEC fractions to recover activity and further
analyzing the contaminants in the SDS-PAGE gels to see which bands are necessary for Mn
oxidation. The characterization of a pure MopA-hp sample and its necessary compounds that
conduct activity allow for kinetic studies of MopA-hp. These studies allow us to learn about the

MopA-hp mechanism of Mn oxidation.
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Combinatorial Identities Derived from
the Monoid of Partial Order-preserving
Injections
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Abstract

The study of monoids, algebraic structures with an associative bi-
nary operation and an identity element, contributes to diverse disciplines:
computer science, physics, mathematics, and others. It also reveals inter-
esting and practical revelations on combinatorial identities. We analyze
the monoid of partial order-preserving injections, or POI(n), and we re-
veal new representations of the elements of POI(n). Our work leads to
combinatorial identities involving the Catalan Numbers, and in particu-
lar, we explore a proof of Touchard’s Identity that relates to a sub-monoid
of POI(n). We also uncover a novel combinatorial identity involving the
cardinality of POI(n).

1 Introduction

In recent years, there has been interest in the categorization of roots of ele-
ments across various mathematical structures [1, 3, 4]. Useful applications in
fields such as matrix theory and cryptography are well-known. Analyzing roots
of elements in the monoid of partial order-preserving injections of an n-element
set, POI(n), has motivated new notational representations of the elements of
POI(n). In turn, these new notational devices have led to some noteworthy
combinatorial insights. By counting the same objects from different perspec-
tives, we can derive several combinatorial identities. These identities involve
the sequences of Catalan numbers, C,,, and Motzkin numbers, M,,, which we
will review in Section 3 below. The identities are summarized here. The first
two are already known, while the third one is a new result of our research.

Touchard’s Identity [12] :

L5

|3

n\
Ck(zk)z = Cnta

>
Il

0
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Relation of Motzkin to Catalan Numbers [8]:

Cardinality of POI(n):

2n\ . K v—1 oop (20— 2v
<n>_2 +2) <2k_1>0k_1(2 )(n_v>

v=1 k=1

2 Background

2.1 Introduction to POI(n)

Definition The symmetric inverse monoid on an n-element set S = {1, 2, ...,n},
denoted by SIM(n), consists of all partial one-to-one mappings from the set to
itself [5]. The elements of SIM(n) are represented by a two-line notation in
which i € S is placed on the top line directly above its image o(i). For example,

consider:
1 2 3 45 6 7
o= ( 15 2 3 — 7) € SIM(T7).

In o, we have that 2 maps to 1, 3 maps to 5, 4 maps to 2, 5 maps to 3, 7 is
fixed, and both 1 and 6 do not get mapped to anything. The binary operation
in SIM(n) is composition and, as is custom, is done from right to left. The
following calculation illustrates this.

1 2 3 4 5 1 2 3 4 5
Ll ¢¢¢¢¢:(éf§fg>
4 3 5 2 —)J\3 — 2 5 4

Definition The monoid of partial order-preserving injections, denoted
by POI(n), is a submonoid of SIM(n) consisting of all o in SIM(n) such that
1 <i<j<nimplies o(i) < o(j) [1]. Here is an example:

1 2 3 4 5
0—(3 ~ 45 )EPOI(E)).

Note that if o € SIM(n), then o € POI(n) if and only if the elements appearing
in the second row of the two-line notation are in increasing order.

Definition For an element a in a semigroup S, suppose that there exists an
element, o’ in S, that satisfies a = aa’a and @’ = a’aa’. Then we call @’ an
inverse of a.
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Definition We call a monoid M an inverse monoid if for every element a € M,
there exists a unique inverse a’ € M.

Remark Both SIM(n) and POI(n) are inverse monoids.

Definition The domain of an element o € POI(n) is denoted as
Dom(c) ={i € S:0(i) is defined}.
Definition The range of an element o € POI(n) is denoted as
Rng(c) ={c(i):i € S}
Definition The rank of an element o € POI(n) is defined as
rank(o) = |Dom(o)| = |Rng(o)|.

Definition Any o € POI(n) such that o(i) =i for all i € Dom(o) is a partial
identity.

Definition For any o € POI(n), the inverse of ¢ is defined as 0= € POI(n)
such that
Dom(c™ ') = Rng(c) and Rng(oc™') = Dom(c).

Since an element ¢ € POI(n) is completely determined once its domain and
range are specified, the definition of the inverse is well-defined. Additionally, we
can verify that this agrees with the general definition of inverses in a semigroup
given above by verifying that oo 'oc = ¢ and 0 'oo~! = ¢~ !. Also, note that
both oo~! and o~ 'o are partial identities.

4 5 6 7

Example 1 Consider the element o = :1,) i ? - € POI(7).
Then Dom(c) = {1,2,3} and Rng o) = {3,4,7}. Also, rank(c) = 3. Fi-
naﬂy’ 0'_1 = (i E :]3- ;-L E ) then Dom ) = {3,4,7}, and

Rng(o~1) = {1,2,3}.

Definition Let us define POI,4.(n) to be the sub-monoid of POI(n) consisting
of all 0 in POI(n) such that o(i) > i for all i € Dom(o). Likewise, let us define
POlI4es(0) to be the sub-monoid of POI(n) consisting of all ¢ in POI(n) such
that o(7) < i for all i € Dom(o).

Remark The cardinality of POI,;.(n) equals the cardinality of POI.s(n) since

we can define a bijection 6 : POIs.(n) — POIg.s(n) via (o) = o~1. In Ex-
ample 1, note that o € POI,,.(7) while 071 € POI.,(7).
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Fig. 1. A graphical representation of POI(6), Rank 3. The columns represent the domain,
and the rows represent the range. White squares correspond to the elements in POIysc(n),
black squares correspond to the elements of POI.(n), dark gray squares correspond to ele-
ments that are in neither, and light gray corresponds to elements that are in both. Elements
of POI4.s(n) are generally found in the upper-right of the grid, and elements of POI4sc(n)
are in the bottom-left. This diagram thus demonstrates the bijection between elements in
POI4sc(n) and POI4.s(n) obtained via 0 — o~1, which is visualized by a reflection across
the main diagonal of the grid.

Remark Note that the union of POI,4.(n) and POIg.s(n) is not POI(n).
:1)) E E i i g) € POI(6) is in neither POI,4.(6)
nor POI4.s(6). Indeed, the dark gray squares in Fig. 1 identify elements of
POI(6) that do not belong to either subset. Also note that the intersection of
POI,s.(n) and POI4es(n) is non-empty; all light gray squares correspond to
partial identities, which are in both sets.

For instance, 0 =

2.2 Path Notation

We next present a series of definitions that relate to the research we present in
this paper.

Definition Let ¢ € {1,2,3,...,n}, and let o be in POI(n). Then if ¢ is nei-
ther in the domain nor range of o, we call ¢ a gap of .
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Definition Let o0 € POI(n). If o(c) = ¢, we call ¢ a fixed point of o.

Definition: Let 0 = (ajag...a;] € POI(n) denote the partial one-to-one map-
ping that sends aq to as, as to as,...,a;—1 to a;, and does not map a; to anything.
We call (ajas...a;] a t-path, or simply a path.

LI Zl denote the partial one-
- - - a4 - -
to-one mapping that sends a; to a;. In other words, a; is a fixed point.

Definition: Let 0 = (a1) =

Definition We call the path notation of an element of POI(n) a product
of all such disjoint paths and fixed points. Such a product is uniquely deter-
mined for each element up to the order in which the paths appear in the product.

Remark Suppose that in the path notation of o € POI(n) we have two paths,
a = (ayag...a;] and b = (bybs...bs], such that a; < by. Then for all r < min{s,t},
the ordering principle of POI(n) implies that a, < b,.. We then write path a
before path b in the notation for consistency.

Example 2 Here is the two-line notation of an element of POI(4) along with
the corresponding path notation:

G 23 f):(ls}(m.

We see that 1 maps to 3, which does not have an image. Thus, in the path
notation we write the path (13]. To represent the other path, we note that 2
maps to 4, which does not have an image. Note that we write the paths in this
order according to their first values, as explained in the remark above.

Example 3 Here we present an element of POI(6) in both notations:

(3221720 -naaese.

Let us note two new details. First, 2 is part of a 1-path; in other words, 2 is
a gap: (2]. However, 6 is a fixed point, which, by the convention established
above, is written as (6).

Example 4 The example below demonstrates paths of greater lengths:

<12345678910

o 10)(1358](2}(469](7}(10).
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2.3 Initiate-Continue-End (ICE) Notation

Definition For ¢ € POI(n), we code ¢ into a string of length n, where each
character in the string corresponds to 1,2,3,4,...,n respectively, to form the
ICE notation for o. The symbols of the ICE notation are as follows:

I: The corresponding number is the first number of a path, initiating it;
F: The corresponding number is a fixed point;

1: The corresponding number is a gap;

C: The corresponding number is in the middle of a path;

E: The corresponding number is the last number of a path, ending it.

Remark For convenience and utility, we will apply the ICE notation for el-
ements in POI,..(n) only. However, a more generalized form can technically
be used for all elements in POI(n).

Definition A slot in the ICE notation is merely a space that a character of
the string occupies. We number the slots from left to right as 1,2,...,n. For
instance, slot 1 would be the space the first character occupies.

2.4 Initiate-Continue-End (ICE) Algorithm

Throughout this sub-section, o will always refer to an element of POI,s.(n).
An ICE algorithm is used to translate from the ICE notation to the path no-
tation, and reversing it translates from the path notation to the ICE notation.
To explain the algorithm, we need a couple of definitions first.

Definition An open path is a path that is in the process of being constructed
using the ICE algorithm; it is not finished. Given an open path, we must con-
tinue it by adding at least one more element to the path.

Definition An open path has a right-most value, which is the last number
that has been added to it in the process of constructing an element of POI(n)
using the ICE algorithm. The right-most value of an open path changes through-
out the execution of the ICE algorithm.

ICE Algorithm: Now, let us read the ICE notation from left to right. If
we reach an I in slot k&, we begin a new path with k. If we reach an F in slot
k, we map k to itself and add (k) to the path notation. If we reach a 1 in slot
k, we place k in a l-path: (k]. If we reach an E in slot k, we place k as the
last number in the open path that has the least right-most value. Finally, if we
reach a C in slot k, we place k in the open path that has the least right-most
value, and the path remains open.

Remark Each action represented by I, F, and 1 is clearly well-defined. The
actions represented by E and C are also well-defined since only one open path

65



can have the least right-most value. Thus, every ICE notation has only one
corresponding path notation, and vice versa.

Remark All elements of POI,s.(n) that can be represented with the path
notation can also be represented by the ICE notation since every element is
constructed of only paths, fixed points, and gaps.

Definition We denote by P(r) the number of open paths at slot r, the number
of Is appearing in slots 1 through r minus the number of Es appearing in slots
1 through r. Clearly, P(r) > 0 for all ». An example is illustrated in Fig. 2.

P)=1 PB)=1 PG)=2 P(7) =1 P9 =0

' y | ' '

ITECICETEFTF
t t t t

P2)=2  PM4)=1 P6)=2 P@&=0

Fig. 2. An example of computing the number of open paths at each slot » = 1 through 9.

Example 5 Let us use the ICE notation in Fig. 2 to demonstrate a part
of the ICE algorithm. After the first two Is, we have two open paths beginning
with 1 and 2. Then, we place 3 in the path containing 1, since 1 is the least
right-most value. We now only have one open path. Then, 4 is placed in the
path containing 2, which is the only option. We continue this process to yield
the path notation: (1 3](24 6 8](5 7](9).

Remark We establish conditions for the slot in which each character can be
placed in order for an ICE string to represent an element of POI,s.(n):

1) P(n) = 0 for all elements in POI,.(n) since all paths that are initiated
must eventually be closed.

2) 1 can be placed in any slot since the corresponding number is neither the
preimage or image to any other number; it does not disrupt the ordering prin-
ciple.

3) F can be placed in slot r only if P(r) = 0. Proof: Let us proceed by
way of contradiction. Suppose that P(r) > 0, and we place an F' in slot r.
Then there exists at least one open path which contains ¢ < r as its rightmost
value. This path must be continued or ended with a number greater than r.
Thus, o(¢) > r = o(r), contradicting the ordering principle of POI(n).
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4) C can be placed in slot r only if P(r) > 0. Proof: If P(r) = 0, there are
no open paths when slot r is reached, so it is impossible to continue any paths.

5) I can be placed in slot r only if P(r — 1) < n —r. Proof: Initiating a path
does not disrupt ordering. However, we note that |P(i + 1) — P(i)| < 1 for all
1=1,2,...,n—1 since the number of open paths at two consecutive slots can only
differ by at most 1. It then follows that, more generally, |P(i + j) — P(i)| < j
for all i = 1,2,...,n — j. Further, given that P(n) = 0, it also follows that
Pn—-1)<1,Pn—-2)<2,.,Pn—j) <jforalj=012,...n—1 Our
result follows after we set j to n —r.

6) E can be placed in slot r only if P(r) > 0. Proof: One cannot end a
path at slot = unless there is at least one open path at slot 7.

Note that these conditions are relatively simple compared to the path nota-
tion; this fact is useful when approaching the combinatorics of POI(n).

Example 6 Returning to Example 2, we can now also present the ICE no-
tation:

(:1,) 20 f):(13](24]:HEE

Note that because the ICE notation begins with I, 1 and 2 are the first num-
bers of the paths that they belong to. Further, since the notation ends with
FEFE, 3 and 4 have a preimage, but not an image. Note that, in the process of
applying the ICE algorithm for slot 3, we must place 3 in an open path. There
are two open paths at slot 3, with right-most values 1 and 2. According to the
algorithm, we place 3 in the path with 1. Indeed, placing 3 in the path with
2 would result in an element that violates the order-preserving requirement of
POI(n).

Example 7 Here is an example in POI(6) that builds from Example 3.
(411 E g f E 2) = (14](2|(35](6) = ILIEEF

We know that 2 is a gap. Thus, the second symbol in the ICE notation is a 1.
Further, since 6 is a fixed point, the last symbol in the ICE notation is an F'.

Example 8 We analyze an element containing all of the symbols 1,1,C, F,
and F, which we first introduced in Example 4.

(51,) Praaa e 18):(1358](2](469](7](10)

=I1CICC1EEF
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We will now explain the construction of the ICE notation given a path
notation. We note that 1 is the first number in its corresponding path, so the
first symbol in the ICE notation is I. Then, 2 is a 1-path, so the second symbol
is 1. Since 3 is in the same path as 1, and is thus in the middle of a path, the
third symbol is a C'. We continue this process for the remaining numbers.

3 Combinatorics

Now that we have established useful notations for elements of POI(n), we will
consider how they may be used to prove some combinatorial identities. These
identities involve a famous sequence of numbers, the Catalan numbers.

3.1 Touchard’s Identity

We count the number of ¢ € POI(n) such that o(c) > ¢ for all ¢ € Dom(o),
which is |[POI,s.(n)|. Thus, we are counting all possible ICE strings of length
n.

3.1.1 Catalan Numbers

Catalan numbers are familiar in combinatorics. For instance, the nth Catalan
number is the number of non-crossing partitions of an n-element set [13]. How-
ever, the definition we use involves Catalan graphs.

Definition The nth Catalan number, denoted by C),, is the number of routes
on the upper right quadrant of the zy-coordinate plane with =,y € Z from co-
ordinate (0, 0) to coordinate (2n, 0) in 2n steps if one is allowed to move only
to the right (up or down) at each step but forbidden from dipping below the
x-axis. These form Catalan graphs [13]. By convention, we set Cp = 1.

<
3
:

(31 0 1
x 1 1
y y 2 2
(:2 3 5
. . 4 14
y y y 5 42
C 6 132
3 . ) 7 42
y y 8 1430
9 4862

Fig. 3. Catalan graphs. Note that the graphs never drop below the z-axis.
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Remark For point (z,y) on any Catalan graph, = is analogous to 7, and y
is analogous to P(r) of the ICE notation.

Remark The conditions of POI(n) state that P(r) > 0 for all r, meaning that
finding all legal strings of k Is and k Es according to the ICE notation rules
in the previous section is the same as finding the number of Catalan graphs of
length 2k, which is Cj.

Finally, a closed form of the nth Catalan number exists [13]:
- 1 (271) .
n+1\n

There are also a number of notable recursive identities for the Catalan numbers,
such as [7, 16]:

2(2n + 1)
n+2
Cnt1 = CoCp + C1Ch—1 + ... + C1 C1 + CLCy

Cn+1 =

n

3.1.2 Counting using Catalan Numbers

Let us count all possible ICE notations with n slots. To begin, assume the ICE
notation contains exactly k Is and k Es. Given the remark above, we arrange
the Is and Es in C} ways. Then, we must place the arranged Is and Es into n
slots as our second combinatorial task, with (,;) possibilities.

Now let us define an alternating variable, A, where A can either be F' or
C, depending on the mutually exclusive situations (since an F can only be
placed at slot r if P(r) =0, and a C can be placed at slot r if P(r) > 0). Then
in each remaining slot we either place an A or a 1, leading to 2" ~2* possibilities
for the remaining n — 2k slots. So the number of ICE notations with exactly
k Is and k Es is is Cy (21) 2n=2k  Tterating through all possible values of k, we
obtain all possible ICE notations.

Theorem 1 For any n > 0,

L5

_ n n—2k
|POILoye(n)| = 0 Ch <2k>2 .

o3

=
Il

3.1.3 Motzkin Numbers

Motzkin numbers have multiple combinatorial definitions. For instance, the
nth Motzkin number, M,,, is the number of different ways of drawing non-
intersecting chords between n points on a circle (not necessarily touching every
point by a chord) [14].
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Definition The nth Motzkin number is the number of routes on the up-
per right quadrant of the zy-coordinate plane with z,y € Z from coordinate (0,
0) to coordinate (n, 0) in n steps if one is allowed to move only to the right (up,
down, or straight) at each step but forbidden from dipping below the z-axis.
These form Motzkin graphs [15]. By convention, we set My = 1.

Remark Since Motzkin graphs have more allowed configurations than Cata-
lan graphs, it is clear that Ms,, > C), for all n.

"

B
s

N

©C 0O U kWO
3]
[t

Fig. 4. The Motzkin graphs corresponding to Mj, Ma, and M3, and the first ten Motzkin

numbers. We can see similarities to Catalan graphs, except for the addition of horizontal lines.

Recursive identities for the Motzkin numbers exist, for instance [15]:
(n+3)Mpi1 = (2n+3)M, + 3n)M,,_1.

M1 =My + MMy 1 + MiMy_o + ... + My, oMy + M,,_1 My

It is interesting to note that the latter recursion follows a similar pattern to a
recursion for the Catalan numbers from Section 3.1.1.

3.1.4 Counting using Motzkin Numbers

Because a 1 in the ICE notation does not affect the number of paths that are
open, it is analogous to moving straight, or horizontally, in a Motzkin graph.
Thus, the number of ways to arrange a total of k Is, 1s, and Es is Mj.

Let us now assign combinatorial tasks to construct an element of POI,s.(n). If
we have a total of k 1s, I's and Es, we can arrange them in M}, ways. Then we
can choose k out of n slots to place the 1s, Is, and Es. The remaining n— k slots
must all be As, where A is the alternating variable as defined in Section 3.1.2.
We must sum through all possible values of k, yielding the following theorem.
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Theorem 2 For any n > 0,

POl = 3 My (7).

k=0

In view of Theorems 1 and 2 above, we obtain

L5

n - n
27 =N M )
()7 = o ()
0 k=0
Finally, using the well-known identity [15]
n n
k=0

we arrive to the famous Touchard’s Identity:

n
2

k

n
15!

Y\ oy
2 O <2k)2 SO

k=0

3.2 An Equation for the Motzkin Numbers

Let us count the number of elements in POI(n) with only Is, E's, and 1s. We
have established above that there are M, ways to do so. Let us now use the

n
Catalan numbers to count the same collection. For fixed k < | =], let us first

arrange k Is and k Es in C) ways. Now let us place these symbols in n slots,
with (272) possibilities. The remaining slots are all filled with 1s. After iterating
through all possible values of k, we have the following equation.

Theorem 3 For all n > 0,

n

Bl

Z <27;€) Ck,

M, =
k=0

which relates the Motzkin numbers as a summation involving the Catalan num-
bers. Thus, we have discovered an identity from [8] through the novel use of the
ICE notation to represent the elements of POI(n)..
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3.3 Cardinality of POI(n)
3.3.1 Utilizing Original Notation
Define the set of elements of POI(n) of rank k by POIy(n). Then

POI(n)| = (Z)

This is because k out of n numbers are selected for the domain and the range
independently. Once all the values in the domain and range are chosen, there
is only one possible arrangement by the requirement that order is preserved by
elements in POI(n). Then, since

POI(n) = | J POIL(n),
k=0
we know that )

\POI(n)| = kzn::o (Z) (27;‘)

The second equality can be proven in myriad ways, whether algebraic or com-
binatorial [12].

3.3.2 Utilizing ICE Notation

Definition Any integer 1 < r < n that satisfies both of the following conditions
is a splittable slot:

1) For all £ < r, either £ is not in Dom(o) or o(¢) <r.
2) For all ¢ > r, either ¢ is not in Dom(o) or o(£) > r.

Definition Let ¢ € POI(n). We denote the left-most splittable slot of o
containing E by v, if it exists.

Remark The ICE notation of any partial identity contains only 1s and Fs,
for which no such v will exist.

Example 9Let 0 = 1ITECEIEIE = i Z
dov

We have splittable slots of 1, 6,8, and 10, an

3 4
5
= 6.

5
6 - 10 -

6 7 8 9 10
8 .

Remark Note that n is always a splittable slot for any o € POI(n).
Definition Let 1 < r < n be a splittable slot. For o € POI(n), let o|fy, ., or

o, € POI(r) denote the restricted partial order preserving injection that
maps {1,2,...,7} to itself, such that, for ¢ € Dom(o) and i < r, 0,.(i) = o(3).
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Similarly, let 0" = o[(41,r+42,....n} € POI(n — 1) be defined by o" (i) = o (i) for
i€ DOM(o) and i > 7.

Definition The concatenation of elements o € POI(r) and 7 € POI(n —r)
forms an element o € POI(n) according to the following rule: a(i) = o (i) for
1<i<randa(l+r)=7{¢)+rfor 1 <¢<n—r. We will denote a by ol|7.

Example 10 For instance, for r = 3 and n = 7, we have
_(L2 3yt 23 4y_(1 2 34567
T3 - )23 4 )78 - - 5067 -

Remark Note that r is a splittable slot of o||7. For a = of|r, the process

of taking the inverse over only o can be written as o, !||a”. For instance, if
1 2 4 . .

o= 3 5 6 , then 4 is a splittable slot, and
34 - — 6 -

6

a41|a4:<1 3 i) ;1 2 _)ePOI(G).

Cardinality of the set of Partial Identities Let us find the number of
partial identities in POI(n) by utilizing the ICE notation. These elements have
no Is or Es. In other words, they only have gaps and fixed points in each slot,
with no restrictions on placing these symbols. Thus, given n slots, there are 2"
partial identities.

Henceforth, we shall count the number of o € POI(n) such that there ex-
ists at least one ¢ € Dom(o) such that o(c) # c¢. Thus, ¢ is neither a gap nor a
fixed point.

Lemma: Assume o € POI(n) and ¢ € DOM (o) such that o(c) # ¢. Then
there exists a left-most splittable slot v which contains E, such that o, belongs
to either POI,.(v) or POlges(v), but not both.

Proof We already know that all elements that are in both POI,s.(n) and
POlI,.s(n) are partial identities. Since o(c) # ¢, o is not a partial identity.
Thus, we now must prove that o, is in one of POI,s.(v) or POI4.s(v). Let us
proceed by way of contradiction. Suppose that o, is neither in POI,4.(v) nor
POI4.5(v). Then there must exist a splittable slot u, where u < v, that contains
E. This remark is illustrated in Examples 11 and 12 below. This contradicts
the definition of v as the left-most splittable slot that contains E.

12 3 4 5 6 7 8

ExamplellLetUgg:(3 4 - — _ _ 5 7

) for 0 € POI(8). Then
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og & POI,s.(8) and og &€ POI,.5(8), and it has a splittable slot at 4 < 8.

Example 12 Let o7 = (i E i) ;L 2 (73 Z) for 0 € POI(7). Once
again, we note that o7 € POI,s.(7) and o7 & POI4.5(7). It has a splittable slot

at 4 < 7.

Cardinality of the set of o, € POI(v) Now, we return to counting the
number of possible elements o, € POI(v) with v being the left-most splittable
slot containing E.

Since |POI,s.(n)| = |POI4es(n)|, the total number of possible o, is twice the
total number of possible o, € POI,s.(v). Thus, the number of possible o, ||c?
equals the number of o !||ov.

v v
s s
1 2 3 4 5 6 7 1 2 3 4 5 6 7
3 — — 6 7 — — - - 16 7 - -
— -
v -1 v
Ou o 0, o

Let us find the number of possible o, € POI,s.(v). We can now utilize the ICE
notation, as we have restricted the domain of consideration. We have several
combinatorial tasks: find the slots for Is and Es, arrange the Is and Es, and fill
in the remaining slots of o, with Cs, 1s, and Fs.

Let us first only consider Is and Es before we place other symbols. Suppose
that we have k Is and k£ Es in ¢,. We note that, by the definition of v, we place
E in slot v. We must choose which 2k — 1 of the remaining v — 1 slots in o, to
place the remaining Is and Es. This gives us (2“1;11) possibilities.

Because we must always have a strictly greater number of Is and Es to the
left of any slot in o,, except v itself, by the definition of v, we fix an I to the
first of the chosen slots. Then, we arrange the remaining £ — 1 Is and k£ — 1 Es
according to the usual requirements on ICE strings, with C_; possibilities.

We then fill the remaining v — 2k slots with Cs, 1s, or Fs, depending on the
situation. In each slot, we either choose an A (as defined in Section 3.1.2) or 1,
resulting in 2U~2* possibilities. We have now identified the combinatorial tasks
required to construct o, € POI,s.(v). Explicitly, there are

v—1 v—2k
<2k B 1) Cr-1(2"77%)

such o, € POI,s.(v) with &k Is and k Es. See Example 13 below for a visual
representation of such o,,. Thus, recalling that |POI,s.(v)| = |POIes(v)]|, there
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are

v—1
2<2k—1

>Ck_1(2”2’“)

such 0, € POI,s.(v)|J POIes(v) with k Is and k Es. Using the Lemma, this
union comprises all such o, € POI(v).

v-2k
remaining n-v remaining

/o : -~ \

T~

Fig. 5. An abstract construction where v = 6, n = 11, and k = 2. Slots 1, 2, 5, and 6 contain

Is and Es, leaving two slots that can be filled independently with either a 1 or C.

Example 13 We now demonstrate possible combinations for o6 € POI,5.(6):

ITCCEE ITC1EE ITICEE IT11EE
ICICEE ICITEE ITTCEE I1I1EE
ICCIEE ICIITEE ITCIEE IT1TEE
FICIEE FI1IEE 1ICIEE 1T1TEE
FFIIEE FI1ITEE 1CITEE 11ITEE
ICIECE ICIEL1E ITTECE I1ITET1E
ITCECE ITCE1E ITTECE ITTET1E
ITECCE ITECIE ITE1ICE ITE11E
FIICEE FII1TEE 1ITCEE 1IT1EE
FFIIEE 1CITEE FI1ITEE 11ITEE

Note that each column has the same choice of 1s and As, and each row has
Is and Es in the same places. We have four columns for the 2¢=2¢ = 22 pos-
sibilities to choose between 1 and A for two slots. We have ten rows for the
(21;@_—11) = (g) = 10 possible ways to place the Is and Es. Then to find the total
number of o, € POI,s.(v), we multiply the number of rows with the number of
columns: 22 -10 = 40 such o,.

Cardinality of the set of o¥ € POI(n — v) Having found the number
of possibilities for o, € POI(v), we now consider the n — v slots to the right of v
that remain to be filled as we construct o”. We know that o is itself an element
of POI(n — v), which we concatenate with o, € POI(v) to form o € POI(n).
This means that there are |POI(n — v)| ways to fill these remaining slots. We

know that 5 5
|POI(n —v)| = ( " ”)

n—uov
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as established in Section 3.3.1.

Summation Bounds The total number of ¢ € POI(n) with fixed v and k,
where o is not a partial identity, is

v—1 w2k [ 21— 20
<2k:—1>ck_1(2 )(n—v>'

We now sum through all possible values of v (2 to n; v # 1 since by the defini-
tion of v, E is required to occupy slot v, but an ICE string cannot begin with
an E as we cannot end a path that was never initiated to begin with), and k (1

to L%j, we have k Is and k Es among the first v slots, so 2k < v).

We now have bounds of the summation, but we can extend these bounds. Begin
summing v with v = 1, but note that the corresponding value is 0. We also sum

v
k when Lij < k < v, but once again, the corresponding values are 0. Thus, we

have shown the following theorem.

Theorem 4 For any n > 0,

\POI(n)| = 2" +2 Xn: Z (Q”k__ll) Cro1 (2720 (22 - i”) ,

v=1 k=1

or rephrased,

(?) =2"+2 i Zv: <2vk_11) Cr1(277)Cpp(n— v+ 1).

v=1k=1

3.4 Future Work

The study of POI(n) clearly introduces a wealth of combinatorial identities
to analyze. By changing axioms and focusing on specific characteristics of el-
ements, we formulate different counting problems revolving around the same
monoid. We can also construct different notations to develop new ways of
counting elements. For instance, the position notation is an n-element string,
where slot k is occupied by the number of the path that k is in. This notation
reveals interesting patterns of POI(n).
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Efficiency of Horner’s Method for
Binomial Expansions

Cadence Pinkerton
Advisor: Dr. Adam Glesser

Abstract

Horner’s Method is an extremely efficient tool that can be implemented
in place of expansion using the binomial formula. In this paper, we re-
view the Horner’s Method algorithm and two applications: partial fraction
decomposition with repeated linear factors, and the Eisenstein criterion.
Within each application, we also demonstrate that Horner’s Method has
an organizational component that makes it easier to identify properties of
the methods. Lastly, we show that Horner’s Method is an order of mag-
nitude more efficient than binomial expansion by calculating the number
of computations required for each technique.

1 Introduction

Although the technique described in this paper is commonly called Horner’s
method, Horner himself attributed it to Lagrange [2], and its history dates back
to at least the Han Dynasty in China. It is an efficient multipurpose tool that
is known to simplify many computations. Our goal in this paper is to highlight
two of these applications which are not very well known and to evaluate how
efficient the method is compared to an obvious alternative, namely expansion
using the binomial formula.

The plan is as follows. In Section 2, we will demonstrate one variation of
Horner’s method crucial to the two applications in the paper. In Section 3, we
will show how to utilize Horner’s method to compute the partial fraction decom-
position of a rational function with repeated linear factors in the denominator,
as well as how to perform shifts of polynomials in conjunction with Eisenstein’s
irreducibility criterion. Finally, in Section 4, we show that solving either of the
above problems using the binomial theorem requires O (n?) operations, while
Horner’s method only requires O (n?) operations, thus verifying the increased
efficiency of Horner’s method.
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2 Horner’s Method

Prior to investigating the efficiency of Horner’s Method, we will review the
basic algorithm. Instead of giving an abstract presentation, it simpler to give
an example. Let f(r) = 2% — 322 4+ 3z + 4. Our goal is to rewrite f in terms of
x — 2, i.e., of the form

f(x) = (z—2)3 +as(z —2)* + ar(z — 2) + ap.

The method is organized in a table (see Figure 1) with the shift (2) in the top
left-hand corner and the polynomial’s coefficients across the top.

1
w

4
2 6

1
—_
[Z It V]

e e e el B
W

Figure 1: Applying Horner’s method to write 23 — 322 43z +4 in terms of  — 2.

In the table above, we copy the leading coeflicient 1 four times vertically,
matching the number of coefficients. Note that the number coefficients for the
polynomial 23 + 1 is still four since we would write it as 23 + 022 + 0z + 1 and
the coefficient list in that case would be 1 0 0 1. Let us focus on the second row
of the table. We multiply the shift term, 2, by the first 1 in the second row and
add it to the coefficient above in the next column, -3. The resulting number
is —1 which is recorded under the second coefficient. Repeating the same steps
with —1, we multiply our shift term 2 by —1 add it to the coefficient above in
the next column, 3, yielding a 1, which is placed in our table under the third
coefficient. Finally, we multiply the shift by 1 and add 4, indicating that a 6
is placed in the last column. Moving onto the second row, we are now going
to treat row 2 as our new coefficients. Using the new coefficients, we follow
the same steps used to create row 1. We finish row 2 after we have added to
the third coefficient. This pattern continues until you are left with your first
coefficient. Our new polynomial is f(z) = (z — 2)% + 3(x — 2)% + 3(z — 2) + 6.
The coefficients of this polynomial are the diagonals from our table, read from
south west to north east.

‘ as a aj aop
k as agk + ag a3k2 + agk' + ai a3k3 + agkz + alkz + agp
as 2a3k —+ a9 3a3k:2 —+ 2(12’{3 + aj
as 3(13]43 + a2
as

Figure 2: Using Horner’s method to write aj +asz? 4+ a12 + ag in terms of x — k.

Generalizing the prior example, we can write f(z) = azz® + asz? + a1z + ag
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in terms of x — k (see Figure 2). We therefore obtain

f(2) = az(x — k)® + (3azk + a2)(x — k)? + (3azk? + 2a2k + a1)(z — k)
+ (agkg + agk® + ark + ao).
This generalized table displays makes clear that the first coefficient of our shifted
polynomial will always be the same as the original polynomial. The table only
includes coefficients, which is easy to implement computationally.
Let us compare this to the coefficients we get through binomial distribution.

Note that the simplest way to obtain the coefficients in this manner is to evaluate
flz+k).

az(x + k) +az(z + k) + ar1(z + k) + ap = azx® + 3azks? + 3azk’s + azk®
+ asx® + 2askz + aok?
+a1x + ark
+ agp.
Combining like terms, we obtain:
f(x4k) = azx®+ (3azk +az) 2 + (3ask? +2ask +a1 )z + (ask® +ask® + a1k +ap)
and hence

f(z) = as(x — k)3 + (Bazk + az)(z — k;)2 + (3(13]{72 + 2a0k + a1)(z — k)
+ (agkg + a2k2 + alk + ao).

This is the same result we obtained using Horner’s method. An important
question is whether one approach is more computationally efficient than the
other. We will show in Section 4 that Horner’s method is an order of magnitude
more efficient.

3 Applications

3.1 Partial Fraction Decomposition with Repeated Linear
Factors

Partial fraction decomposition is a method used to express a rational function
as a sum of simpler fractions. It is often used to simplify integrals [4] and in
solving differential equations via the Laplace transform [1]. An example of a
partial fraction decomposition with repeated linear factors is:

Bzl A B C D E
@-2F @-2)  @-22 @-2° @-21 (@-2p

where the challenge is to determine the coefficients A, B,C, D, E. Thisis typi-
cally done either by using the binomial theorem or differentiation, both of which
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are extremely labor intensive here. Using Horner’s Method makes finding the
values quite simple. We construct our table in Figure 3 and obtain four coef-
ficients 1 6 11 7. The key insight is that we start substituting 7 for £ and
working our way backward.

1 0 -1 1
211 2 3 7

1 4 11

1 6

1

Figure 3: Using Horner’s method to compute the partial fraction decomposition
of a rational function with repeated linear factors.

Therefore, we have E =7, D =11, C' = 6, B = 1 and, since there is nothing
left, A = 0. The final partial fraction decomposition is
-z +1 B 1 n 6 n 11 n 7
(r—2% (z-22 (z-23 (z—-2% (z—-2)5.~

Using Horner’s Method also reveals some properties of partial fractions. For
example, the first nonzero numerator will always be the leading coefficient of
the polynomial. Also, if the degrees of the numerator and denominator are k
and /¢, respectively, then the first £ — k — 1 terms of the decomposition will have
coefficient 0.

3.2 The Eisenstein Criterion

The Eisenstein criterion [3] is a method used to determine whether a polynomial
with integer coefficients is irreducible. The criterion states that a polynomial is
irreducible if there exists a prime number such that the prime number divides
all coefficients except the leading coefficient and the square of the prime num-
ber does not divide the constant coefficient. For cases where a polynomial is
irreducible but the Eisenstein criterion is not satisfied, we can sometimes shift
the polynomial, resulting in coefficients that satisfy the criterion.

Notation 1. For f € Z[x], the set of polynomials with coefficients in Z, let
frr(@) = f(z+ k).

Definition 2. Let f € Z[z]. If k € Z such that fiy satisfies the Eisenstein
criterion, then fi is an Eisenstein shift of f.

Lemma 3. If f € Z[z], then following statements are equivalent.
1. f is irreducible.
2. fik is irreducible for some k € Z.

3. fy1 is wrreducible for alll € 7Z.
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Proof. If f is irreducible, then f, is irreducible. If there exists k& € Z such that
f+k is irreducible, if £ € Z, and if g, h € Z|z] such that f,, = gh, then

Tk = (f+£)+(k-£) = 9+(k—€)h+(k—€)'

Since [y is irreducible, we conclude that one of g _g) or hy(_p) is a unit in
Z[z], i.e., is equal to 1. Since shifting a constant does not change the constant,
we conclude that g or h equals +1, and hence f,, is irreducible. Finally, if f,
is irreducible for all £ € Z, then f = f, is irreducible. O

The above lemma motivates the use of Horner’s method since Horner’s
method gives us an efficient way to compute fi; for a given polynomial f.

Consider the example f(x) = 22 + z + 1. In this case, no prime divides any
of the coefficients and so f fails to satisfy the Eisenstein Criterion. This is a
case where we could use an Eisenstein shift to meet these conditions. However,
applying Horner’s method (see Figure 4) we compute the Eisenstein shift f.

1
3

RGN [
L | =

Figure 4: Using Horner’s method to compute fy; where f(z) = 2% +z + 1.

Thus, fi1(7) = 2% + 3z + 3, which is irreducible by Eisenstein with p = 3.
Had we not “guessed” correctly to use fi1, we could work generally, using the
Eisenstein shift ;. For example, fix(2) = (x +k)?+ (z +k) + 1. Distributing
using Horner’s method returns fix(z) = 22 + (2k + D)z + (k> + k + 1). As
the coefficient of = is odd, we immediately see that there is not Eisenstein shift
after which f,, will satisfy the Eisenstein criterion for the prime 2. Through
trial and error (a computer can do this quite quickly!) we can check whether
different values for k lead to a successful Eisenstein shift.

1 1 1
k|1l k+1 K +k+1

1 2k+1

1

Figure 5: Using Horner’s method to compute f,; where f(z) = 2% +  + 1.

4 Results

To demonstrate the efficiency of Ho rner’s Me thod co mpared to bi nomial ex-
pansion, we calculated the number of computations used for each. First,
for
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binomial expansions, we separately count the number of multiplications and
additions. Using the binomial theorem, we have

n n g .
i I\ g—igi
4 aj(z+ k) = Zaj Z <Z>m7 k*.
j=0 Jj=0 =0
Reindexing and combining like terms we obtain
>[5 (" et
=0 Lm=¢ \"" T

For each (¢,m), we compute the number of multiplications needed to find
( m )amkm’g. This information is listed in Figure 6.

m—~L.

L) kR (M) ram (" )am K| Total
m—¢>1|2m—4 m-—-¥{-1 1 1 3m—1—-3
m—{<1 1 0 1 1 3

Figure 6: Computing the number of multiplications when using the binomial
expansion.

Unsurprisingly, the number of operations required will depend on the degree,
n, of the polynomial. As such, we pause for a moment here to recall some
standard notation from mathematics and computer science for evaluating the
order of magnitude of the number of operations, namely big-O notation.

Notation 4. Let f and g be two polynomials over Z. We write f € O(g) if
there exists C > 0 such that, for all n € Z>1, we have |f(n)| < Cg(n).

For example, 5n? +6n—7¢€ O (nQ) since, for n > 1, the triangle inequality
implies that

1502 + 6n — 7| < 5n® +6n + 7 < 5n” + 6n% 4 Tn? = 18n°.
We extend this notation a bit for our purposes.
Notation 5. If o,n,k € Z>g and o < n, then
n

S0 () = {Z 7(0)

l=a

fHeo (ek)} .

Theorem 6. If f is a function such that f(€) € O (£*), then

n

> f() e O (nkT).

=«
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Proof. If f(¢) € O (¢*) then there exists M > 0 such that |f(¢)] < M~
Therefore,

> )
=«

n

<SR <S ME =Y
=« =«

=

< Man =M(n—a)n® = M —an®) € O (nF1).
l=a

Thus, >, f(£) C O (n*t1). O

Applying this to the resulting number of computations we have

f: <3+ En: (3m—€—3)> e}n: [(9(1)+i0(m)+€ En: o)
£=0 m=~+2 £=0 0+2 m=ell+2

) (0(1) 40 (n®) +10(n))

=0
COo((n?)) 01)+0(n)) o)
£=0 £=0
cO (n3) .

Thus, our number of multiplications is of order O (n3) Next, we find the
number of additions. For each (¢,m), we have n— ¢+ 1 choices, and so the order
of the total number of additions is:

n

Zn—l+1€(9(n2).

=0

Combining the number of additions and multiplications results, the total
number of computations for binomial expansion is order O (n3)

Now we investigate Horner’s Method. Our table will look something like
what is found in Figure 7.

ao e an
k ap Cn
ao PR cn_l
C1
ag = Co

Figure 7: A generic example of Horner’s method.

A convenient property within the table is that the number of multiplications
is equal to the number of additions. This implies that the number of total
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computations is equal to 2(# of multiplications). Each row contains a number
of multiplications equal to the index of the last term, i.e.,

# of multiplications = Zé €0 (n2) .
(=0

Comparing the two methods, binomial expansion is order O (n?’) and Horner’s
Method is order O (n2), an order of magnitude more efficient! The table also
adds an organizational component that makes it visually easier to follow.

5 Conclusion

While Horner’s Method has a long history, new applications for this technique
continue to be discovered. This paper examined two such applications and in-
vestigated the efficiency of Horner’s Method compared to expansion using the
binomial formula. In Section 2, we reviewed a common variation of Horner’s
Method and the basic algorithm to provide motivation for our suggested appli-
cations. An important aspect of this method is the table used to visualize the
computations. Using this table, we can focus directly on the polynomial’s coef-
ficients and the shift term, adding an organizational component to the analysis.

In Section 3, we introduced Horner’s Method for partial fraction decompo-
sition with repeated linear factors and the Eisenstein criterion. With partial
fraction decomposition, Horner’s Method provides the desired coefficients for
the sum of simpler fractions while revealing properties that are not commonly
observed using other methods. For instance, the first nonzero numerator is
the leading coefficient of the polynomial. Additionally, we note that the first
Il — k — 1 terms of the decomposition will have coefficient 0, where the degrees
of the numerator are k and the degrees of the denominator are [.

Following partial fraction decomposition, we introduced the Eisenstein cri-
terion and the Eisenstein shift. When shifting a given polynomial f, we can
apply Horner’s method to easily and efficiently compute fir. Using the shift
f+k, Horner’s method provides us with the general coeflicients, which can be
evaluated for different values of k to check for a successful Eisenstein shift.

In Section 4, we investigated the efficiency of Horner’s Method compared to
binomial expansion by calculating the number of computations required to per-
form each method. The calculations verify that solving problems using Horner’s
Method (order O(n?)) is more efficient by an order of magnitude than solving
problems using binomial expansion (order O(n?)).

Overall, Horner’s Method is a more efficient and organized alternative to
binomial expansion that can be applied in a variety of methods.
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A mathematical investigation of the
frontogenesis function

Yulia Potyrina
Advisor: Christopher Lyons

Abstract

Inspired by its uses in meteorology, we study the frontogenesis function
obtained from some simple scalar fields and notable vector fields. We focus
especially on vector fields arising from complex-analytic functions. Based
on our observations, we prove several results and offer one conjecture.

1 Introduction

The subject of meteorology, which studies weather and other atmospheric phe-
nomena, affects all of our lives. [ts impacts range from the everyday convenience
of checking the forecast for tomorrow’s temperature to lifesaving predictions
about major storms and heat waves. Behind the scenes, meteorology is also
an intensively mathematical subject. These mathematical models, derived from
the physical principles of fluids, have made the endeavors of weather forecasting
so successful.

Our aim in this article is to go the other way. Not to accurately model
the weather using mathematics, but rather to apply mathematical tools used in
meteorology to situations of purely mathematical interest. One motivation is
that these mathematical situations might be regarded as overly simple, idealized
“toy models” of weather. However, the study of natural phenomena has always
led to interesting new mathematics, and it is in this spirit that we undertake
our investigation.

In this paper we focus upon one specific m eteorological c oncept r elated to
fronts, which are boundaries between air masses of different t emperatures (see
Figure 1). When one passes through a front, a large temperature change occurs
over a relatively short distance. The temperature at each point is represented
by a type of function called a scalar field, and t hel arge t emperature change
implies the magnitude of its gradient vector fieldislarge near a front.

If, at some given point and given moment, the temperature gradient is in-
creasing in magnitude, it might indicate that a front is beginning to form or
continuing to strengthen there, a process called frontogenesis. Conversely, if the
temperature gradient is decreasing, it could indicate the breakdown of a front;
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Figure 1: Visualization of a front between warm and cold air masses. (Source:
Thomson Higher Education)

this is called frontolysis. The actions of the wind can have significant frontoge-
netic or frontolytic effects, since wind can move areas of hot and cold air closer
together or farther apart. Wind is represented by a wector field, sinceit has
a direction and magnitude at each point. The frontogenesis function, which is
our main object of study in this paper, quantifies the frontogenetic effect of the
wind on the temperature field.

Scalar fields (such as t he temperature) and vector fields (such as the wind)
are common objects with applications in several branches of science, but are
also of interest in their own right. Thus, the frontogenesis function provides a
way for a given scalar field and vector field can “interact” with each ot her. Our
approach is start with some interesting vector fields and to see how they affect
two simple temperature fields (see Figure 2 ). T he frontogenesis f unction that
results can then be viewed as a compelling secondary feature of the vector field.

Here is an outline of the paper. In §2, we set up our notation and define
the frontogenesis function. In §3, we illustrate these concepts with a few ex-
amples, and we prove some general results about them in §4. Finally, in §5 we
study frontogenesis in the context of vector fields arising from complex analytic
functions, proving some results and making one conjecture about these.

2 Basic formulas and notation

We model the wind velocity (i.e., the wind speed and direction) using a vector
field. O nlarge s cales, t he v ertical c omponent o f w ind i s s mall c ompared to

its horizontal component, and so we take the simplified v iew t hat t he wind
velocity is a 2-dimensional vector field, r epresenting t he m ovement of air over
a surface. We take this surface to be flat (much as t he surface of t he earth is
approximately flat in small enough regions) and represent points using Cartesian
coordinates (z,y). The wind velocity vector field will then denoted by W(z, y) =

(u(z,y), v(z, y))-
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1.0ff
T-value T-value
05l 0.72 1.20
0.54 1.08
0.36 0.96
0.18 0.84
0.0 0 0.72
-0.18 0.60
-0.36 0.48
-0.54 0.36
-0.57 -0.72 0.24
-0.90 0.12
-1.0t

-1.0 -0.5 0.0 0.5 1.0

Figure 2: Contour maps of the temperature fields Ty (z,y) = x (left) and

Tr(z,y) = /2% + y? (right).

The temperature distribution in our 2-dimensional atmosphere is given by
a two-dimensional scalar field that we denote as T(x,y). Two temperature
functions that we will use in this paper are

Ty(z,y) ==, (1)

which represents a temperature distribution that increases uniformly in the left-
to-right direction (i.e., the “horizontal” direction), and

TR(-T,Z/) =V x? +y23 (2)

which represents a temperature distribution that increases uniformly in the
radial direction away from the origin. Contour maps for these temperature
fields are shown in Figure 2.

Given a wind velocity field W = (u,v) and a temperature function T', we
define the frontogenesis function Fw r(z,y) associated to W and T' as

ooy L [(OTY (wor _ovor
WY VT dr ) \Ox 0x  Ox Oy

oT oudl  ovdT
<3y> (3@/ dr " ay 51/)} '
When it does not cause confusion, we will often denote Fw r(z,y) simply by
F(z,y) to make the notation simpler.

The derivation and physical meaning behind the frontogenesis function is
discussed in detail in [2]. Roughly speaking, F(z,y) represents the rate of
change of |VT|, the magnitude of the gradient VT, as a parcel of air at (z,y)
moves along with the wind W. As mentioned in §1, |[VT| should be large near
a front, and therein lies the interest in determining its rate of change. When
F(x,y) > 0, and we view this as a sign that the wind vector field is causing the

(magnitude of the) gradient of T' to increase, and we say that frontogenesis is
occurring at (x,y). Conversely, F < 0 indicates frontolysis.
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3 Some preliminary examples

To illustrate the frontogenesis function, we start with an example having a
specific wind velocity field and temperature function.

Example 3.1. Let W(z,y) = (z? — y?, —2zy) and T = T = /2% + y2. The
left side of Figure 3 shows the vector field W overlaid with the contour map of
Tr. First we note that

oT x oT y

9r  Jx2iy2 Oy P t+e?

or\? I 2 + 72
T — _ _ = —— =1
v ﬂaw) + (o) \/x2+y2

and therefore

Moreover,
%—%(mz’—f)zw, %z@(xQ—y2)=—2y7
0 0 0 0
8—;:%<—2xy):2y, 8—Z:a—y(—2xy>:—2m
Thus,

Famry) = L [(OTY (0 o1 ov o
W, Tx (2, Y T VT o dxr Oz Idx Oy

(RCE)
()" () (2 (52)
() (2 () (3]
0] ()4 () ()
() () () ()]

T (2% 2z + 2y - (—2y) + 2y - (—2y) + ¢y - (—22)]

_ 1

VT

B —22° + 621>
- 22 1+ yz )
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2.2
T-value Xy F-value

W0
1.08
—0.96
—0.84
—0.72
—0.60
— 048

0.36
0.24
0.12

1.68
1.26
0.84
0.42

-0.42
-0.84
-1.26
-1.68
-2.10

Figure 3: Plot of vector field W from Example 3.1 overlaid with contour map
of Tr (left) and contour map of Fw 7, (right).

The right side of Figure 3 shows the contour map of F. In comparing the left
and right diagrams, one gets a sense of how W and T interact to create positive
or negative values of F. For instance, in the left figure along the negative z-axis,
the “wind velocity” vectors move left-to-right and decrease in magnitude as one
approaches the origin. This decreasing magnitude means there is a net influx
of “air” of different temperature at each point on the negative z-axis. As a
result, the temperature gradient at those points ought to strengthen, and this
is reflected on the right side of Figure 3, which shows F > 0 along the negative
z-axis. A similar, but opposite, situation occurs along the positive z-axis. On
the other hand, at points such as those on the y-axis, the wind velocity vectors
are aligned with the level curves of the temperature function, and do not cause
air of different temperatures to mix; in those places, we see that F = 0.

We will revisit Example 3.1 later on, when we view the vector field
<:c2 — 2, —2a:y> as arising from the complex analytic function f(z) = 22; see
Example 5.4. Next we consider how F simplifies for the special temperature
functions Ty and Tg.

Example 3.2. Let W = (u,v) be any wind velocity field and let T = Ty = «.

oT oT
%_17 6_y_07

V| = \/@—Z)z + (‘2—2)2 =/ (1)* +(0)* = 1.

and therefore
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Then,

P (g — L [(_OTY (0w 9T ou or
WIS Y =197 [\ 9r ) \0r 9z T 0z oy
(9T (0u T v OT\]
dy oy Ox 0Oy 0y)/|
1 ou ov
= — (=D [ =.1)+=.
VT {( )<8x D+ 5 (0)>
ou ov i
_ (1) + ==
(0)<5y ()+3y 0)_
_ _Ou
oz’

Example 3.3. Let W(z,y) = (u,v) be a general

wind velocity field and T =

Tr = /22 + y2. As we calculated in Example 3.1, we have
o __r Y yr=1
ox /x2+y2’ Oy /xz_,_yz’ '
Therefore,
ar o= L [(OTY (u oT v o
WIS Y) = g [\ oz ) \oz 0z T oz oy
(9T (ou 0T _ov oT
Oy Oy Ox Jy Oy
1 [gory (owy, (orory (oo
| vT] [\ o= Oz Or 9y ) \ Oz

or or
dzr Oy

~(ara)

du
dy

or
dy

o
dy

5+ (%) ()]

e - @e)
) ()
) @) () 3)
) @)
b)) G5
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4 Some general properties of the frontogenesis
function

We begin by showing what happens to frontogenesis when wind directions are
all reversed:

Proposition 4.1. If we replace W = (u,v) by —W = (—u, —v), then the sign
of the frontogenesis function changes; in symbols, F_w r(z,y) = —Fw r(z,y).

Proof.
_ 1 [/ or\ (o(-u)dT  O(-v) OT
F-wr(r,y) = VT [( 61;) ( 0r Ox + or Oy
_ (o7 (9(-w) OT + d(—v) oT
Oy oy ox Oy dy
1 [(Lor\(_ou ar v or
= VT or dr Oxr Oz Oy
(9T (0w or _ov or
_ CED (O (Qu 0T v OT
VT Ox Ox Ox Ox Oy

(T (2w 0T 0w or
dy Jdy Ox Jy Oy

O

- _-FW,T(I7 y)

Due to Proposition 4.1, we need not expend effort calculating F for —W
once we have already calculated it for W. Next we indicate two special ways
that the frontogenesis function can vanish:

Proposition 4.2. If W is a constant vector field, then frontogenesis is zero.

Proof. f W = {(a,b) for a,b some constants, then % Ov _ Ou _ v

dr  dy dy Or

Hence,

1

Fw.r(z,y) = [(

aT\ (du T v IT
VT

"0z ) \oz oz Tax ay

(T (2w ot ov ot
dy Jdy Ox Jy Oy
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[y (. o
VT Ox Ox dy

— 8£ 0.a£+0.a£
y or oy

O

Proposition 4.3. If W's first component u does not depend on x and T only
depends on x, then Fw r(z,y) = 0.

Similarly, W ’s second component v does not depend ony and T only depends
on y, then Fw r(z,y) = 0.

orT
Proof. It T = T(z) depends on z only, then o = 0. Similarly, if v does not

depend upon z, then % = 0. Therefore,
x

Fwr(ry) = — | (29T (Qu oL ov T
WY =9 [\ oz ) \ozr 9z T ax  ay

_(ory (ou ot ov or
oy dy Oxr Oy Oy
1 oT oT  Ov
VT {‘(m)'(“aﬁaﬂ)

ou 9T Ov
-0 (5 5+ 5

=0.
P . o . Ov
The second part of the proposition is proved in a similar way: if 90 = 0 and
Y
oT
— =0 th
o en

Fwr(oy) = —— [(29L) (Qu oL Ov OT
WIEY) =T [\ 0z ) \oz 8z T 0x By
_ (9T (Ou OT  Ov OT
dy dy Oxr Oy OJy
1 ou ov 0T
5O (50 5 ay)

(TN (0u 0T
dy ) \ 9y dy
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5 Vector fields arising from analytic functions

For a complex function f(z) defined on a domain D in the complex plane, it
is traditional to denote the real and imaginary parts by u and v, respectively.
However, to avoid confusion with the components of the wind velocity field
W = (u,v), we will instead put p = Re(f) and ¢ = Im(f). There are two
related vector fields on D that arise from f:

Definition 5.1. Let f(z) = f(z+iy) = p(x,y)+iq(z,y) be a complex function.
Let us say that the standard vector field of [ is (Re(f), Im(f)) = (p,q), and the
Pdélya vector field of f is (Re(f), —Im(f)) = (p, —q).

Remark. While the standard vector field of f may seem like the most natural
one to associate to it, the Pdélya vector field turns out to be more useful for
relating the calculus of complex functions with the calculus of vector fields. In
particular, one can express complex line integrals of f(z) in terms of work and
flux integrals of its Pdlya vector field. See the beautiful book [3] for more on
these connections. It is worth noting that the Pdlya vector field of f is the
standard vector field of its complex conjugate function f.

Proposition 5.2. Suppose that f(z) is analytic on D. If W is the standard
vector field of f, then

Fov (o) = V7] (=52 ) = = 19T (Re ' (2).

Proof. Since f = p + iq is analytic on D, the Cauchy-Riemann equations [1]
give

dp _ Oq dp dq

—=— and —=-——.
oxr Oy oy ox

Therefore, with W = (p, ¢) we have:
Faraoyy— L [(_OTY (00 oT 0y 0
W) =157 [\ "oz ) \ oz 0z T 0s 5‘y

(&)@ a a5

Y (@) - (2 (2
(o) (22) - (22’ (2)]
Y (@) - (2 (2

(o) (22) - () ()]
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Finally, for an analytic function f = p +iq one has - = g—z + i%, from which
we obtain

fw’T(x, y) = —‘VT| ( Re f/(Z))
O

Proposition 5.3. Suppose that f(z) is analytic on D. If W s the Pélya vector

field of f, then

or\* 9T\ (%), , (9T OTY (04

Ay oz Ox Ox Oy Oz ) |~
Proof. Again, we apply the Cauchy-Riemann equations to the analytic function
f=p+ig

1
‘FW,TR = ‘VTl

op  0Oq

— =_— and O _ _ %
oxr Oy N

dy o
With the Pélya vector W= (p, —¢), we put u = p and v = —q into the fronto-
genesis formula:

Fyr(@,y) = ﬁ [(?9?) <g§ . % N 3(6;61) 'ZZD
RETOE RO
(5) (o) () (59
* x w Oy ) \Ox
() (@) (5) (3]

!
VT
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Example 5.4. Let us illustrate these concepts with the analytic function f(z2) =
z2. Since (z+4iy)? = (2% —y?)+i(2zy), the standard vector field of f is W (z,y) =
<x2 — 2, 2xy> while the Pélya vector field of fis W = <x2 — 2, —2:ry>.

(a) Standard vector field

Let W(z,y) = <x2 -2, 2xy>. By Proposition 5.2, the frontogenesis function of
W on any temperature field T is

)
Fw.r(z,y) =|VT| (—ap> = —2z|VT].

x
Alternatively, since f/(z) = 2z, we could obtain the same answer by writing
Fw,r(z,y) = —|VT|(Re(22)) = —|VT|( Re(2z + i2y)) = —2z|VT|.

For the special temperature fields Ty and Tr we have |VT| = 1 everywhere,
and so
]:VV,TH = ‘FW-,TR = —2x.
(b) Pélya vector field
Now we let W(z,y) = (22 — y?, —2zy). By Proposition 5.3, the frontogenesis
function of W on any temperature field T is
1 or\* [or\? oT OT
For === =] - (5 22) +2( =—= ] (2] .
Witn = V7] ((ay) (%) ) ) +2 (5 ) ‘”]
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Since for the special temperature fields Ty and Tr we have |[VT| = 1 everywhere,

Fw,ry =(0-1)(2z) +2(0-1) (2y)

=—2
1 y? x? xy
FW T =1 [(ﬁ vy ~ +y2> (2x) +2 ((E2 o (2y)

2 2 2
y:—x 4xy
= —_— 2 _—
<w2+y2>( Za <w2+y2>

72xy2 — 223 + 4ay?
- .’1,'2 + y2
B —22% + 629>
- 2 + y2 '

We remark that this is the same answer that we obtained in Example 3.1, before
we had developed any of the propositions used in this example.

Example 5.5. The function f(z) = % is not entire, but only analytic on the
punctured complex plane C \ {0}. We have f(z) = z—iy

1 _ _
ztiy — (atiy)(z—iy) T

(a) Standard vector field
The standard vector field of f(z) = L is W = (Re(f), Tm(f)) = <ﬁ fﬁ>

Applying Proposition 5.2, the frontogenesis function of W on any temperature
field T is

In particular, for the special temperature fields Ty and Tr we have |VT| =1
everywhere, and so

(224922 (a2 +y?)?

x?2 — y? xr — T+
Fw oy — Foty — y (@ —y)z+y)

(b) Pdlya vector field
The Pélya vector field of f(z) = 1 is W = (Re(f), —Im(f)) = <IZZTyQ, r21+y?>
By Proposition 5.3, the frontogenesis function FW 1 for any temperature field

() (0) ()= (25 ()]

1
Fwr = (e
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Applying this to Ty = z gives

Favy =) [(<0>2 - (%) (22) 20 (ggqc)]
5

and applying it to Tr = /22 + y? gives
s 1 alz_ai2@+QaTaT@
WiIr VT dy Ox Oz Ox Oy Ox
2 2 _ 2
Y- Y- —x Ty 2zy
= [(w“ry ) ((12+y2)2) i ($2+y2) ((1’2+y2)2ﬂ

(2 —a?)? Ax2y?
@24y (e +y?)?
y4 222y + 2t + 4a?y?

(332 +y?)?
Yt + 2222 4 2t

S
(42 + 22)?

NG

1

g

Calculations such as Examples 5.4 and 5.5 lead us to two observations. The
first observation is one that holds for all analytic functions, and is one that we
are able to prove:

Proposition 5.6. Let f(z) be an analytic function on D, let W denotes its
standard vector field, and W denote its Pélya vector field. Then,

—FW,TH = -T"W,TR = ‘FVV,TH = —Re f/(Z)

Proof. For the standard vector field W of f(z), this follows immediately from
Proposition 5.2 and the fact that |VTy| = |VTg| = 1. Moreover, Proposition
5.3 gives

Fy ., = % ((02 ~1?) (g ) +2(1-0) (gg)) - —g—i = —Re f'(2).
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Our second observation involves the interaction Polya vector field of f and
the radial temperature distribution Tr. While not as a simple as the formula
in the previous proposition, the frontogenesis function in this case takes on an
intriguing form that relates the analytic functions f’ and 2z?:

Proposition 5.7. Let f(z) be an analytic function on D, W be the Pdlya vector
field of f(2), V be the Pdlya vector field of f'(z), and U = <x2 — y2,2:cy> be
the standard vector field of g(z) = 2%. Then

Form, = —%ﬂﬂ (u-¥). (3)

| '<(g§y<g§>>< 2)es (1) (3)
. [( ) () (2 ()]
[l () ()

__ 1 2_ 2 9p 9q
= m {(x y°, 2zy) <8x’ 5/ |-

The first factor in the dot product above is U. Remembering the formula
df ap —H , we see that the second factor is the Pélya vector field V of f/(z).
ThlS estabhshes (3). O

1
‘FV_V(zn)7TR( ay) |VT|

Remark. With notation as in Proposition 5.7, the Cauchy-Riemann equation
applied to f allows gives

- Op Oq dp Op
V:<&f—m>:<&ﬂ%>=Vp=VBWV»

So we can alternatively write (3) as

Faviry =~ (U V(R £2).

Finally, when we look at the power functions f(z) = 2", for an integer n, we
have observed an an interesting pattern. Since we have so far not found a proof
of this, we state it as:

Conjecture 5.8. Let f(z) = 2", forn € Z, and let W be the Pdlya vector field

of f. Then
n

n+1
FVV,TR = —7‘%2 +y2 RG(Z + )
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We observe this in Example 5.4 when f(z) = 2% and

—223 + 6xy> _ 2

2
o _ 3_ 9.2y _ 3
]:W7TR - 2 + y2 - x2 + y2 (l‘ 3!L’y ) - 2 + y2 Re(z )7
and in Example 5.5 when f(z) = 27! and
1 (=1 (=1 0
}—VV,TR:x2+y2:_x2_|_y2’1: Re(z7).

_x2+y2

In Figure 4, we illustrate vector fields and resulting frontogenesis functions
appearing in this conjecture for n = —3,—4,...,—7. We note that the contour
map of F in these plots yields the shape of a “flower” in the center, where the
computer automatically cuts off its plot of values that increase without bound
as one approaches the origin. For f(z) = 27%, k a positive integer, Conjecture
5.8 predicts that

(—k) k1 k 1
‘FVV,TR = _a:2—|—y2 Re(z7"1) = 22 + g2 Re k1

k Zk-1 k
=—" R = Re(zF1
EE e<(z|z>k_1> @)

The number of “petals” of the flower (which, for z=%, is 2(k — 1)) related to the
regions of alternating sign for the function Re(z*~1) as one circles the origin.
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F of T on Polya of -~
3

T-value F-value
1.20 23.2
1.08 17.4
0.96 11.6
0.84 5.8
0.72 0
0.60 -5.8
0.48 -11.6
0.36 -17.4
0.24 -23.2
0.12 -29.0
N
T-value F-value
1.20 44
I 1.08 33
I 0.96 22
I 0.84 1"
I 0.72 0
I 0.60 -1
I 0.48 =22
0.36 -33
0.24 -44
0.12 -55
N
T-value F-value
1.20 92
1.08 69
0.96 46
0.84 23
0.72 [
0.60 -23
0.48 -46
0.36 -69
0.24 -92
0.12 =115
-
T-value F-value
1.20 152
1.08 114
0.96 76
0.84 38
0.72 0
0.60 -38
0.48 -76
0.36 -114
0.24 -152
0.12 -190
N
T-value F-value
1.20 236
1.08 177
0.96 118
0.84 59
0.72 0
0.60 -59
0.48 -118
0.36 =177
0.24 -236
0.12 -295
)

Figure 4: Left images: Plot of the Pdlya vector field of f (2) = z "forn =
—3,—4,—-5,—6, =7 (from top to bottom) overlaid with contour map of Tr. Right
images: Contour map of frontogenesis function resulting from setup in image to
its left.
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6 Conclusion

We have explored mathematical aspects of the frontogenesis function JF(z,y)
arising from 2-dimensional meteorological models of the interaction of wind and
temperature. From the mathematical standpoint, this function arises when we
pair a vector field W (z,y) with a scalar scalar field T'(z,y). By restricting our
focus to the simple scalar fields Ty and Tr, our viewpoint has been to see what
kinds of frontogenesis functions arise when we pair these simple scalar fields
with interesting, more complicated sorts of vector fields. In §4 we gave some
results that apply to a wide class of vector fields W, while in §5 we studied
the vector fields come from analytic functions. In the latter section, we found
several interesting patterns, were able to verify most of them with proofs, and
left one observed pattern as a conjecture.

In addition to proving this conjecture and others like it, there are many
ways that this work can be extended. As just one example, one could instead
start with simple vector fields W and choose interesting scalar fields (e.g., two-
variable harmonic functions, which are the real and imaginary parts of complex
analytic functions) and see what shape F(z,y) takes.
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