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Functional Assessment of an ExoS/ChvI Transcriptional Target Gene in Sinorhizobium 

meliloti During Free-Living Growth 

 

Kristen Abe  

 

Advisor: Dr. Esther Chen 

 

Abstract 

Biological nitrogen fixation by microbes offers a sustainable alternative to synthetic 

nitrogen fertilizers that contribute to environmental pollution. The ExoS/ChvI two-component 

signaling pathway is critical for symbiotic nitrogen fixation by Sinorhizobium meliloti, a microbe 

that performs nitrogen fixation in an endosymbiotic relationship with legume plants. This 

pathway also regulates free-living bacterial phenotypes, including exopolysaccharide production, 

cell envelope integrity, and biofilm formation. This study aimed to determine the functions of 

small RNA (sRNA) genes that are transcriptionally regulated by ExoS/ChvI in S. meliloti. 

Strains overexpressing the sRNA gene SmelC023 were successfully created, and preliminary 

results showed no differences in bacterial growth and free-living phenotypes compared to S. 

meliloti strains without SmelC023 overexpressed. Overall, these results provide an initial 

contribution towards understanding the mechanisms of symbiotic nitrogen fixation and shed light 

on the potential role of ExoS/ChvI-regulated sRNA genes in S. meliloti. This work is supported 

by the Maximizing Access to Research Careers grant to CSUF from the National Institutes of 

Health [T34GM008612-26] and the National Institute of General Medical Sciences of the 

National Institutes of Health Award Number SC3GM144065 to E.J.C.  
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Introduction 

 Nitrogen is a crucial element in nucleic acids and amino acids and is therefore vital for 

the survival of all living organisms. Though nitrogen is one of the most abundant elements in the 

Earth’s atmosphere, it is found in the chemically inert form of dinitrogen, which is not accessible 

for use by organisms until it is reduced to ammonia. This reduction relies on the cleavage of the 

molecule’s triple bond during a process known as nitrogen fixation (Socolow, 1999). Biological 

nitrogen fixation is one of the main sources of fixed nitrogen on Earth, but it can only be 

performed by microbes called diazotrophs (Raymond, Siefert, Staples, & Blankenship, 2004). 

Rhizobia, such as the gram-negative, α-proteobacterium Sinorhizobium meliloti, are a type of 

diazotroph that can perform nitrogen fixation in an endosymbiosis with legume plants of the 

Medicago genus.  

In nitrogen-limited conditions, the free-living bacteria evoke the formation of a nodule in 

the root of the legume and infect the plant through an infection thread (Gibson, et al., 2008; 

Long, 2016). The formation of this infection thread begins through hydrolysis of the plant cell 

wall and is dependent on the production of bacterial exopolysaccharides, such as succinoglycan 

or EPS-I (Cheng & Walker, 1998). Once they have successfully infected host cells, the free-

living bacteria become surrounded by a plant-derived membrane in an environment known as the 

symbiosome where they undergo terminal differentiation into nitrogen-fixing bacteroids (Gibson 

et al., 2008; Long, 2016).  

In S. meliloti, the ExoS/ChvI two-component signaling pathway transcriptionally 

regulates genes required for the bacteria to establish their symbiosis with the legume host. Two-
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component signaling pathways are present in almost all bacteria and enable bacteria to sense and 

respond to environmental signals for survival and adaptation (Laub, 2011). The two conserved 

components in these pathways are the histidine protein kinase and the response regulator protein, 

which work together in signal transduction. The exoS and chvI genes are adjacent to one another 

in the S. meliloti chromosome and encode the two main components of the signaling pathway. 

The cytoplasmic membrane protein ExoS is the histidine kinase component with a periplasmic 

sensing domain and autophosphorylates in response to an unknown signal. ExoS is negatively 

regulated by the periplasmic inhibitor protein ExoR, which is believed to act by binding the 

sensing domain in ExoS, preventing its activity in the pathway (Chen et al., 2008). If ExoS is 

autophosphorylated, the phosphate group is transferred to the response regulator ChvI (Cheng & 

Walker, 1998). Once phosphorylated, ChvI activates transcription of exo genes, encoding 

enzymes for the synthesis of exopolysaccharides required for successful bacterial infection of the 

plant host (Belanger et al., 2009; Cheng & Walker, 1998). Notably, the ExoS/ChvI pathway 

regulates the synthesis of succinoglycan, which plays a vital role in the Rhizobia-legume 

symbiosis. 

Bacterial small RNAs (sRNAs) are believed to play a role in microbe-host interactions, 

such as during the differentiation of free-living bacteria into their bacteroid form during 

symbiosis initiation. sRNAs are short, non-protein encoding RNAs that are found in abundance 

in all prokaryotes and regulate gene expression by base-pairing to a complementary mRNA 

target sequence (Storz et al. 2011). Genes directly regulated by the ExoS/ChvI pathway have 

their upstream region bound by ChvI, which acts as a transcriptional regulator. To date, 

numerous ExoS/ChvI direct target genes have been identified in S. meliloti through 

transcriptional profiling of strains with increased and reduced chvI activity to identify potential 
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target genes based on the reciprocal changes in expression in the chvI mutants compared to those 

in the wild-type strain (Chen et al., 2009). In a later study, more direct target genes of ChvI were 

identified by chromatin immunoprecipitation, followed by microarray analysis (ChIP-chip) and 

qRT-PCR; specifically, 489 ChvI-bound DNA regions were identified (Ratib et al., 2018). The 

sRNA gene SmelC023 was found to be a potential candidate for direct regulation by the 

ExoS/ChvI pathway from previous RNA sequencing and ChIP-chip studies (del Val et al., 2007; 

Ratib et al., 2018; Schluter et al., 2010). 

For this study, overexpression strains were constructed to observe any altered phenotypic 

effects. Plasmids with the sRNA gene SmelC023 overexpressed were introduced into S. meliloti 

wild-type or chvI partial loss of function (LOF) strains. To observe growth phenotypes of free-

living S. meliloti, these overexpression strains were grown on various media to test nutrient 

utilization, cell envelope integrity, survival in acidic conditions, and succinoglycan production. 

Methods 

Reagents and Equipment 

All oligonucleotide primers used in this study were manufactured by Integrated DNA 

Technologies (IDT; Coralville, IA) and were diluted to 20 µM for use (Table 1). Techne Progene 

(Techne; Staffordshire, UK) and Bio-Rad MJ Mini (Bio-Rad; Hercules, CA) thermocyclers were 

used for all PCR amplifications. Amplification of SmelC023, and its upstream and downstream 

regions, was carried out with Phusion polymerase (Thermo Fisher, Waltham, MA). All other 

PCR reactions used Taq polymerase (New England Biolabs [NEB], Ipswich, MA), following 

conditions in Appendix A and Appendix B with 10 mM dNTPs (NEB). 

All reaction amplicons were verified with agarose gel electrophoresis using Tris-acetate-

EDTA (TAE) buffer, and DNA was separated at 120 V for 30 minutes. Plasmids were generated 

11



 

and maintained in Escherichia coli DH5-α cells, which were grown at 37 ºC. Zymo ZR Plasmid 

Miniprep™- Classic kits (Zymo Research; Irvine, CA) were used in plasmid isolation, Zymo 

DNA Clean & Concentrator™-5 kits were used in the purification of PCR products, and Qiagen 

QIAEX II Gel Extraction Kits (Qiagen; Hilden, Germany) or Zymo Zymoclean Gel DNA 

Recovery Kits were used in the extraction of DNA.  

The E. coli and S. meliloti strains listed in Table 2 were grown on media plates containing 

one or more antibiotics used at the following concentrations for all following sections: 500 

µg/mL streptomycin (Sm), 40 µg/mL hygromycin (Hy), 50 µg/mL chloramphenicol (Cm), and 

50 µg/mL spectinomycin (Sp). 

 

Table 1. Oligonucleotide primers designed for this study.  

Primer  

5' 

Positio

n 

Restrictio

n Site 

F/

R Primer Sequence 

OCL 349 -36 PstI F TTTTctgcagCCTTGAAATGCCACATTTCAATCCA 

OCL 350 177 PstI R TTTTctgcagGCTTTCGACCGTCGGGCAAAG 

OCL 351 -400 SpeI F TTTTTactagtCGAAGATCACGGCCAGATGTG 

OCL 352 -1 BamHI R 
TTTTTggatccGACATGATTTGTGGATTGAAATGT

G 

OCL 353 148 BamHI F TTTTTggatccTTTGTTGCCTTTGCCCGACGG 

OCL 354 548 SacI R TTTTTgagctcCGAACGCTTGTCGTTCGGATG 
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Table 2. Bacterial strains used. 

Strain 

Name 

Antibiotic 

Resistance 

Backgroun

d Details 

C10 Cm E. coli pMS4 

C12 Sm S. meliloti Wild-type (WT) – Rm1021 

C14 Cm E. coli Helper Strain 

C26 Sm, Hy S. meliloti chvI K214T (Hy)  marked with pDW181 at P-HisB 

C27 Sm, Hy S. meliloti WT (Hy) – marked with pDW181 at P-HisB 

C314 Cm E. coli SmelC023 overexpression plasmid 

C322 Sp, Sm, Hy S. meliloti SmelC023 overexpression in chvI K214T mutant 

C324 Sp, Sm, Hy S. meliloti SmelC023 overexpression in WT  

 

Overexpression Strain Construction 

 Primers OCL 349 and OCL 350 (Table 1) were used to PCR amplify SmelC023, along 

with 1 unit of Phusion polymerase (2 units/µL; Thermo Fisher) with and without dimethyl 

sulfoxide (DMSO), and 40 ng S. meliloti genomic DNA as a template. The plasmid vector pMS4 

and SmelC023 amplicon were both digested with 10 units PstI (NEB) in 1x NEB Buffer 3 for 2.5 

hours at 37 ºC. Five units of calf intestinal alkaline phosphatase (NEB) were added to the pMS4 

digest and incubated for 5 additional minutes after the 2.5-hour digestion. Ligation of the 

digested amplicon and digested pMS4 vector was performed using 200 units of T4 DNA ligase 

(400 units/µL; NEB) and 1x T4 DNA Ligase Reaction Buffer (NEB) at room temperature for 3 
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hours. Five µL of the ligation mix was transformed into 50 µL competent DH5-α E. coli cells by 

heat shock at 42 ºC for 45 seconds and transformants were selected using LB media plates with 

50 µg/mL Cm after growth at 37 ºC for 25 hours. Colony PCR (Appendix B) was performed 

with 0.625 units of Taq DNA polymerase (5 units/µL; NEB) per reaction to check for successful 

ligation using T7 and T3 primers (IDT) with DNA from E. coli colonies lysed with boiling in 

5mM Tris pH 8, 2 mM EDTA, 0.5% Triton X-100. The orientation of the SmelC023 insert 

ligated into pMS4 was determined through PCR (Appendix B) with the T3 primer and primer 

OCL 349 or OCL 350 (Table 1). The overexpression plasmid was conjugated into the wild-type 

(C27) and chvI partial loss of function (C26) strains of S. meliloti through triparental mating, 

with an E. coli helper strain (C14) on LB media plates with Sm, Sp, Hy, and grown at 30 ºC for 

about 24 hours. 

 

Plate Assays 

 Overexpression and control strains were grown on LB media plates with Sm, Sp, Hy, as 

reported in Reagents and Equipment, at 30 ºC for three days, then resuspended and serially 

diluted in Joel’s minimal media (JMM2) until final optical densities of 1x10-4 OD/mL and 1x10-5 

OD/mL were achieved. Five µL of these dilutions were spotted onto LB plates with Sm, Sp, Hy 

in addition to each of the following media plates. Calcofluor plates were prepared using LB 

media, Sm, Sp, Hy, and 0.02% calcofluor. Tryptone-yeast (TY) plates were prepared with Sm, 

Sp, Hy. Ethanol (EtOH) plates were prepared using LB media with Sm, Sp, Hy, and 4% EtOH. 

JMM2 plates were prepared using JMM2 salts, 0.3% sucrose, 1.5% agar, sterile double distilled 

water, and a mixture of magnesium sulfate, cobalt chloride, and biotin (MCB). Acidic plates 

were prepared using a 2x LB media, 80mM MES, and Sm, Sp, Hy, with NaOH added to pH 
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6.25. All plates were incubated for 1-2 days at 30 ºC, then photographed using a Canon 

(Melville, NY) EOS Rebel camera. Calcofluor plates were also photographed with exposure to 

UV light. 

Results 

 To investigate the role of SmelC023, overexpression studies were performed on free-

living bacteria. ExoS/ChvI is known to regulate biofilm formation, motility, survival in acidic 

conditions, cell envelope integrity, succinoglycan production, and nutrient utilization in S. 

meliloti (Belanger et al., 2009; Wells et al., 2007; Yao et al., 2004, Zahran, 1999). Thus, the 

growth of S. meliloti strains on different types of media allows for the detection of differences 

between different strains under discrete conditions. While it was expected that the chvI partial 

LOF (K214T) strain will have less growth and smaller colony sizes than the wild-type strain on 

LB medium, the overexpression of SmelC023 was investigated to potentially observe any 

additional phenotypes. SmelC023 was overexpressed in both a wild-type background and in a 

chvI partial LOF background, to see if overexpression of SmelC023 would rescue any 

phenotypes caused by the LOF mutation. The wild-type Rm1021 strain with empty vector and 

the chvI partial LOF strain with empty vector were used as control strains. Five microliters of 

each strain were spotted onto different media plates at either 10-4 OD600 mL-1 to observe overall 

growth or 10-5 OD600 mL-1 to be able to observe the growth of single colonies. Each phenotypic 

figure shows results from one trial, except for Figures 1, 3, and 4 which are representative of two 

trials. 

S. meliloti strains were grown on LB and TY media plates to observe growth on two 

types of nutrient-rich media (Figs. 1 and 2). As expected, the chvI partial LOF strain showed a 

growth defect compared to the wild-type S. meliloti. Comparing the wild-type S. meliloti with an 
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empty vector to the wild-type overexpressing SmelC023, no difference in overall growth or 

single colony size was observed. Similar results were observed between the chvI partial LOF S. 

meliloti strain with an empty vector and chvI partial LOF strain with SmelC023 overexpressed 

(Figs. 1 and 2).  

 

Figure 1. SmelC023 overexpression did not affect growth on LB media. Five microliters of 

strains diluted to 10-4 OD600 mL-1 (top row) or 10-5 OD600 mL-1 (bottom row) then grown on LB 

media plates with Sm, Sp, and Hy for three days at 30°C. From left to right, strains shown are: 

WT (Rm1021), SmelC023 overexpression in WT, chvI partial LOF, and SmelC023 

overexpression in chvI partial LOF. Results shown represent two trials. 
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Figure 2. SmelC023 overexpression did not affect growth on tryptone-yeast (TY) media. 

Five microliters of strains diluted to 10-4 OD600 mL-1 (top row) or 10-5 OD600 mL-1 (bottom row) 

then grown on TY media plates with Sm, Sp, and Hy for three days at 30°C. From left to right, 

strains shown are: WT (Rm1021) and SmelC023 overexpression in WT. Results shown represent 

one trial. 

S. meliloti strains were grown on LB media plates with JMM2 (Fig. 3) and 4% EtOH 

(Fig. 4) and media plates to observe any effects on S. meliloti nutrient utilization and cell 

envelope integrity, respectively. JMM2 shows how the strains grow on a minimal medium, and 

EtOH plates allow for the detection of cell envelope integrity defects since EtOH disrupts cell 

membranes. On JMM2, the chvI partial LOF strain was expected to grow similarly to the wild-

type strain, matching what was observed in these results. Again, there were no differences in 

overall growth or single colony size of the wild-type and partial LOF strains compared to the 

strains overexpressing SmelC023 in those backgrounds. Together, these results indicate that 

SmelC023 overexpression did not affect nutrient utilization or cell envelope integrity in S. 

meliloti. 
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Figure 3. SmelC023 overexpression did not affect growth on minimal media. Five microliters 

of strains diluted to 10-4 OD600 mL-1 (top row) or 10-5 OD600 mL-1 (bottom row), then grown on 

JMM2 media plates with Sm, Sp, and Hy for three days at 30°C. From left to right, strains shown 

are: WT (Rm1021), SmelC023 overexpression in WT, chvI partial LOF, SmelC023 

overexpression in chvI partial LOF. Results shown represent two trials. 

 

Figure 4. SmelC023 overexpression did not affect cell envelope integrity. Five microliters of 

strains diluted to 10-4 OD600 mL-1 (top row) or 10-5 OD600 mL-1 (bottom row), grown on 

LB+EtOH media plates with Sm, Sp, and Hy for three days at 30°C. From left to right, strains 

shown are: WT (Rm1021), SmelC023 overexpression in WT, chvI partial LOF, SmelC023 

overexpression in chvI partial LOF. Results shown represent one trial. 
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The ability to grow in acidic conditions is important for S. meliloti since the root nodule 

environment formed during host invasion is believed to be acidic (Zahran, 1999). To test this 

phenotype, S. meliloti strains were grown on LB media plates at pH 6.25. Preliminary results 

showed no difference in growth or single colony size between strains where SmelC023 is 

overexpressed or not overexpressed, indicating that SmelC023 has no effect on growth in acidic 

conditions (Fig. 5). 

 

Figure 5. SmelC023 overexpression did not affect growth in acidic conditions. Five 

microliters of strains diluted to 10-4 OD600 mL-1 (top row) or 10-5 OD600 mL-1 (bottom row) then 

grown on LB media plates at pH 6.25 with Sm, Sp, and Hy for three days at 30°C. From left to 

right, strains shown are: WT (Rm1021), SmelC023 overexpression in WT, chvI partial LOF, and 

SmelC023 overexpression in chvI partial LOF. Results shown represent one trial. 

 

Calcofluor specifically binds to succinoglycan and fluoresces under UV light, making 

fluorescence a proxy for succinoglycan production. The resulting growth of the wild-type S. 

meliloti overexpressing SmelC023 and the wild-type control strain on LB media with calcofluor 
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under UV light showed no differences in fluorescence between the two strains (Fig. 6). There 

was also no difference in fluorescence observed between the chvI partial LOF S. meliloti strain 

and the SmelC023 overexpression in the chvI partial LOF background. Likewise, the strains with 

and without SmelC023 overexpression show no noticeable differences in overall growth and 

single colony sizes. Together, these results indicate that overexpression of SmelC023 had no 

noticeable effect on succinoglycan production in S. meliloti. 

 

Figure 6. SmelC023 overexpression did not affect succinoglycan production. Five microliters 

of strains diluted to 10-4 OD600 mL-1 (top row) or 10-5 OD600 mL-1 (bottom row) in each of the 

two panels were grown on LB+calcofluor media plates with Sm, Sp, and Hy for three days at 

30°C, photographed under visible (upper panel) and UV light (lower panel). From left to right, 

strains shown are: WT (Rm1021), SmelC023 overexpression in WT, chvI partial LOF, SmelC023 

overexpression in chvI partial LOF. Results represent shown one trial. 
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Discussion 

This project aimed to characterize the functions of sRNA direct target genes of the 

ExoS/ChvI pathway, namely SmelC023. Overexpression strains were created by cloning each 

gene of interest behind a strong constitutive promoter, then introducing this construct as a 

plasmid into S. meliloti backgrounds via triparental mating.  

The preliminary results presented here indicate that the overexpression of SmelC023 does 

not affect succinoglycan production, growth on TY, growth in acidic conditions, cell envelope 

integrity, or growth on minimal media in free-living S. meliloti. Although overexpression of 

SmelC023 had no effect on the phenotypes studied here, overexpression may show a distinct 

phenotype in other free-living bacterial functions known to be regulated by ExoS/ChvI, 

including biofilm formation. To further investigate the results of SmelC023 overexpression 

presented in this study, it would be beneficial to conduct quantitative analyses of the 

succinoglycan production phenotype to determine the magnitude of difference in this function. 

This is important because small differences may be overlooked when conclusions are drawn 

solely from visual analysis. Additionally, a 2007 study by del Val et al. demonstrated that the 

expression of SmelC023 is highly induced in endosymbiotic bacteria, and it was speculated that 

SmelC023 may be involved in infection and/or bacterial differentiation (del Val et al., 2007). 

Therefore, the failure to detect a free-living phenotype in the assays performed here does not 

exclude a possible role for SmelC023 during symbiosis. Furthermore, the effects of SmelC023 

deletion were not investigated in this study, and testing the phenotypes of a SmelC023 knockout 

strain can provide new insights into both free-living and symbiotic potential functions. Together, 

these findings build upon previous research and provide new insights into the potential role of 

SmelC023 in S. meliloti to guide future investigations.  
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APPENDIX A. 

Thermocycler Conditions with Phusion Polymerase 

1. 98ºC for 3 minutes 
2. 98ºC for 10 seconds 
3. Annealing temperature for 20 seconds (Skip if annealing temperature is greater than 

72ºC) 
4. Repeat Steps 2-3 32 times (33 cycles total) 
5. 72ºC for 5 minutes 
6. 4ºC hold 

 

APPENDIX B. 

Thermocycler Conditions with Taq Polymerase 

1.  94ºC for 3 minutes 
2.  94ºC for 30 seconds 
3.  55ºC for 30 seconds 
4.  72 ºC 1 min per 1kb length 
5.  Repeat Steps 2-4 four times (5 cycles total) 
6.  94ºC for 30 seconds 
7.  58ºC for 30 seconds 
8.  72ºC 1 min per 1kb length 
9.  Repeat Steps 6-8 24 times (25 cycles total) 
10.  72ºC for 10 minutes 
11.  4ºC hold  
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Abstract 

Predation risk is a factor that highly influences rodent foraging behavior. Rodents alter their 

behavior in response to cues of predation risk, like levels of moonlight and changes in 

vegetation. I used artificial seed trays to analyze the effects of moonlight and grazing-related 

differences in vegetation on the foraging behavior of nocturnal rodents in the shortgrass prairie. 

Seed trays were placed in either open or shrub microhabitats for one night (new, quarter, full 

moon) in one of four different grazing treatments. Trays were recorded as either “visited” or “not 

visited” by a forager, and the amount of seed (g) removed from trays was recorded. I examined 

two response variables: the percentage of visited trays and amount of seed (g) removed from 

visited trays. Rodents visited trays most frequently during darker, new moon nights and visited 

treatments with lowest amount of grazing most frequently. The most seed was removed from 

trays during darker, new moon nights, but there wasn’t any difference between amount of seed 

removed from visited trays between grazing treatments. Rodents altered their foraging behavior 

in response to changes in moonlight and differences of grazing levels, presumably because of 

perceived predation risk.  
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Introduction 

Behavioral decision-making by animals reflects tradeoffs between foraging efficiency and 

minimizing risk of predation (Lima and Dill 1990). For many small mammals, movements and 

microhabitat use reflect both the dispersion and availability of food as well as the need to avoid 

detection and capture by predators (Stapp and Lindquist 2007). In open environments such as 

deserts and grasslands, the amount of moonlight can influence predation risk and thus rodent 

foraging behavior. For example, predators are often more effective hunters during full moon 

nights (Clarke 1983, Longland and Price 1991), leading nocturnal rodents to alter their behavior 

to become more vigilant and more risk averse. On bright nights, desert rodents may move shorter 

distances, spend less time foraging, or use vegetation cover, e.g., shrubs, more (Longland and 

Price 1991). On darker nights, rodents may be more active aboveground and venture further from 

their burrows to forage or find mates (Longland and Price 1991). Moonlight thus may serve as a 

cue that rodents use to assess predation risk, ultimately causing them to alter their activity levels 

and aboveground behavior in response to ambient light caused by different phases of the moon. 

 

Because foraging by rodents is sensitive to predation risk, and perceived or actual risk is 

mediated by the availability of protective cover, factors that influence the amount or type of 

vegetation can affect rodent foraging behavior and, ultimately, patterns of abundance and 

community structure. In grassland ecosystems, grazing by native herbivores and livestock are a 

key determinant of plant productivity, community composition, and vegetation structure (Hobbs 

1996, Eldridge et al. 2016). Rodent communities in intensively grazed areas tend to differ from 

those in enclosures or in areas with less intensive grazing (Grant et al. 1982, Thompson and Gese 

2013, Ellis and Cushman 2018), although the exact ecological mechanisms underlying these 
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differences have not been studied thoroughly. The influence of grazing on the activity and 

behavior small mammals could ultimately feed back to affect plant communities because rodents 

can be important seed predators, especially for large-seeded forbs and shrubs (Brown and Heske 

1990, Hoffman et al. 1995, Maron et al. 2012, Larios et al. 2017). 

 

I used artificial seed trays to examine the interactive effects of moonlight and grazing-related 

differences in vegetation on the foraging behavior of nocturnal rodents in the shortgrass prairie in 

north-central Colorado. I estimated overnight seed removal during foraging trials conducted 

during new, quarter- and full-moon phases, in plots where access to large and medium-sized 

herbivores were manipulated experimentally to examine the effects of herbivory on woody shrub 

encroachment.  I expected that, in trays set out overnight, rodents would visit trays set out under 

shrubs than in open microhabitats, visit more trays on darker, new-moon nights than bright, full-

moon nights, and visit more trays in ungrazed plots with taller vegetation than grazed plots with 

more bare ground and shorter vegetation. Of the trays that were visited, I expected that rodents 

would remove more seeds in trays beneath shrubs than in open microhabitats, remove more 

seeds during darker, new-moon nights than on bright, full-moon nights, and remove more seeds 

in ungrazed plots with taller vegetation than grazed plots with more bare ground and shorter 

vegetation. 

 

Methods 

I conducted my research between May and August 2022, at the Semi-arid Grasslands Research 

Center (SGRC), located at the USDA-ARS Central Plains Experimental Range (CPER) in north-

central Colorado. Vegetation at the study site is classified as shortgrass prairie, with a great 
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diversity of grasses, shrubs, cacti, and forbs (Lauenroth and Burke 2008). The climate is 

semiarid, with cold winters and hot summers, and most precipitation falling as rain during the 

spring and summer growing season (Lauenroth and Burke 2008). Common nocturnal rodent 

species at the CPER include the Ord’s kangaroo rat (Dipodomys ordii), northern grasshopper 

mouse (Onychomys leucogaster), deer mouse (Peromyscus maniculatus), and the western harvest 

mouse (Reithrodontomys megalotis; Lauenroth and Burke 2008). 

 

I conducted my research at five CPER sites (19N, 19S, 24W, 11S, 5E; Figure 1) that were part of 

an ongoing study initiated in 2012 to investigate effects of different-sized herbivores on potential 

encroachment by four-wing saltbush (Atriplex canescens). Each site consisted of four 

experimental plots, each measuring 50 x 50 meters, and representing a different experimental 

treatment. “All herbivores” (AH) plots were not fenced and allowed access to all herbivores, 

including pronghorn (Antilocapra americana) and cattle (Bos taurus), the latter of which were 

stocked at a moderate grazing intensity during the growing season. “Cattle excluded” (CE) plots 

were fenced using 4 strands of barbed wire, which prevented cattle from entering, but still 

allowed smaller herbivores such as jackrabbits (Lepus sp.) to enter. “Rabbits excluded” (RE) 

plots were fenced with both barbed wire and chicken wire, but two steers were placed in the plot 

for two days (one day in June, one day in August) to simulate moderate-intensity grazing. Lastly, 

“cattle and rabbits excluded” (CRE) plots were fenced using barbed wire and chicken wire, 

permitting access to only small rodents and juvenile cottontail rabbits (Sylvilagus audubonii). 
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Figure 1. Map of the Semi-arid Grasslands Research Center (SGRC), located on the USDA-ARS 

Central Plains Experimental Range (CPER) in northern Colorado. The five study sites, each 

with three enclosures and one unfenced control plot, are labeled. Map provided by USDA-ARS. 

To determine rates of seed removal by rodents, I set artificial seed trays in each treatment plot for 

one night during quarter-, full-, and new- moon phases. Quarter-moon trials were conducted 

between 21-23 June, full-moon trials were conducted from 14-16 July, and new-moon trials were 

conducted between 27-31 July. Because of the distance between and the need to check 

immediately at dawn, all four plots at a site (16 trays per site) were sampled on the same night. 
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Seed trays were circular, terra-cotta plant saucers constructed of stiff plastic, measuring 1,964 

cm2 in area and 8.9 cm deep. Two pairs of seed trays were placed into each treatment plot. One 

was placed beneath the canopy of a large shrub (usually Atriplex canescens), with the other 

placed 1-2 m away in the open, at least 1 m from any shrubs or dense vegetation (Figure 2). Each 

tray contained 8 g of commercial milo millet mixed with 2 L of sieved play sand. I set the trays 

at dusk and then checked them at dawn. I recorded any signs of foraging behavior (tail drags, 

disturbed sand, footprints) and labeled these trays as “visited” (Figure 2C). If no foraging signs 

were observed, the tray was considered “not visited”. After returning the seed to the lab, I sieved 

the remaining millet from the sand and weighed it to estimate the amount of seed removed. 

 

Figure 2. Images of  artificial seed trays used in rodent foraging trials at the Central Plains 

Experimental Range, Colorado. A. Tray placed in open cover type. B. Tray placed in shrub cover 

type. C. Foraged seed tray showing evidence of visitation (scats, tail drags). 

I analyzed two response variables: the proportion of trays in a given treatment type that were 

visited and the amount (g) of seed removed from visited trays. I used a three-way ANOVA to 

A B C 
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test the effects of moonlight, grazing treatment (AH, CE, RE, CRE), and microhabitat (shrub, 

open) on the percentage of trays visited and the amount of seed removed from visited trays.  

 

Results 

Vegetation in plots was measured in most years of the study by USDA-ARS field crews. Table 1 

shows the treatment means of some representative variables in 2022. CRE and RE plots had the 

highest canopy cover of mid grasses, followed CE plots. AH plots had lowest canopy percent 

cover of mid grasses. 

Table 1. Mean (+ 1 SE) of vegetation measurements in treatment plots at the CPER in 2022 . 

Sample size was five plots per treatment. 

Treatment Canopy percent cover of 

"mid" grasses 

Index of vegetation 

thickness/height 

Density of Atriplex per 

m2 

 

AH 0.68 ± 1.0 16.75 ± 2.7 0.14 ± 0.01 

CE 1.25 ± 1.8 28.72 ± 2.1 0.15 ± 0.01 

CRE 1.90 ± 2.5 27.58 ± 4.0 0.16 ± 0.01 

RE 1.40 ± 4.6 22.72 ± 3.3 0.11 ± 0.01 

 

 

Based on live-trapping studies conducted concurrently by M.S. student Katie Biardi in 2022 

(Table 2), the highest number of nocturnal rodents were captured in CRE plots (19), followed by 

RE plots(18). The fewest nocturnal rodents were captured in AH and CE (15). Ord’s kangaroo 
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rat, a large granivore, was most common rodent caught in all treatments, making up 40-68% of 

captures. Omnivorous rodents (ONLE, PEMA, REME) were especially common on AH and CE 

plots (40% and 53% of total captured, respectively). 

 

 

 

Table 2. Total number of nocturnal rodents live-trapped in four treatments (AH, CE, RE, CRE) 

at the Central Plains Experimental Range in north-central Colorado in June and July 2022. 

DIOR = Dipodomys ordii,; CHHI = Chaetodipus hispidus, PEFL = Perognathus flavus, ONLE 

= Onychomys leucogaster, PEMA = Peromyscus maniculatus, REME = Reithrodontomys 

megalotis. Data from Katie Biardi, M.S. student, Department of Biological Science, CSUF. 
 

DIOR CHHI PEFL ONLE PEMA REME Total 

AH 7 0 1 4 1 2 15 

CE 6 1 0 2 2 4 15 

RE 12 0 3 0 3 0 18 

CRE 13 1 0 0 1 4 19 

 

Based on results of a three-way ANOVA, there was no significant difference between the 

percentage of trays visited in open and shrub cover types (p=0.263, F=1.37, df=1; Figure 3). 

There was also no interaction between treatment and cover type, nor between moon phase and 

cover type. Pooling across cover types, the percentage of trays visited differed between treatment 

(p<0.0001, F=27.1, df=3) and moon phases (p<0.0001, F=23.2, df=2; Figure 4). There was also a 

significant interaction between moon phase and treatment (p=0.02, F=3.95, df=6). Overall, 

during all moon phases, the fewest trays were visited in AH plots, whereas most of the trays in 
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CRE and RE plots were visited. The greatest difference in visitation was between AH and fenced 

plots on new-moon nights. 

 

 

Figure 3. Percentage of trays visited in open (o) and shrub (s) cover types in four grazing 

treatments (AH, CE, RE, CRE) during three different moon phases (New, Quarter, Full) in 

shortgrass prairie in north-central Colorado in June and July 2022. There were five replicate 

sites in each treatment type and two trays per cover type, for a total of 10 trays per treatment 

and moon phase (trays were set for one night during each moon phase). 
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Figure 4. Pooling across cover types, the percentage of trays visited (mean + SE) in four grazing 

treatments (AH, CE, RE, CRE) during three different moon phases (new, quarter, full) in 

shortgrass prairie in north-central Colorado in June and July 2022. There were four trays per 

treatment type and five replicates of each treatment type for a total of 20 trays per treatment type 

in each moon phase (trays were set for one night during each moon phase). Bars with letters 

were not significantly different (P > 0.05, Tukey HSD tests). 

 

Considering only trays that were visited, the amount of seed removed (g) from trays did not 

differ significantly between “open” and “shrub” cover types (p=0.918, F=0.01, df=1), nor 

between treatment types (p=0.087, F=2.24, df=3), and there was no significant interaction 

between moon phase and treatment or moon phase and cover. The mean amount of seeds 

removed from visited trays tended to be lowest in AH plots (Figure 5). Across all treatments and 

cover types, the most seeds were removed during new- moon nights and the lowest during 
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quarter- and full- moon nights (Figure 5).  Combining across cover and treatment types, 

significantly more seed was removed from visited trays on new-moon nights than quarter- or 

full-moon nights (p=0.0008, F=7.51, df=2; Figure 6) 

 

 

Figure 5. Mean (+1 SE) amount of millet seed removed (g) from a total of 8 g of seed placed in 

one of the four grazing treatments (AH, CE, RE, CRE) during three different moon phases (New, 

Quarter, Full) in shortgrass prairie in north-central Colorado in June and July 2022. Only trays 

actually visited by rodents were included, so sample size varied from 4 to 20. 
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Figure 6. Considering only trays visited by rodents and pooling across treatments trays, mean 

(+1 SE) amount of millet seed removed (g) from a total of 8 grams of seed placed in trays during 

three moon phases (New, Quarter, Full) in shortgrass prairie in north-central Colorado in June 

and July 2022. Sample sizes were 65, 42, and 44 for New, Quarter and Full moon nights, 

respectively. 

 

 

Discussion 

To understand the effects of moonlight and vegetation cover on rodent foraging behavior, 

I analyzed two variables: the percentage of trays that were visited by a nocturnal forager and the 

amount of seed removed from those visited trays. I was able to tell if rodents visited trays by the 

presence of footprints, tail drags, or feces and by the volume of sand moved. In many cases, the 
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most likely visitors were kangaroo rats, which are more than twice the size of mice, have large 

tails and hind feet, and are capable of moving large amounts of sand during foraging. The 

percentage of trays visited reflected the activity of nocturnal rodents and their willingness to 

forage in a variety of vegetation cover types and moon-light levels. The amount of seed removed 

from a tray was used as a measure of how long they spent in trays in different microhabitats in 

areas with different vegetation.  

Surprisingly, microhabitat cover type did not seem to affect nocturnal rodent foraging 

behavior. I had hypothesized that rodents would prefer to forage in shrub microhabitats because 

of the increased cover that shrubs provide from predators, thus reducing predation risk (Kotler 

1984, Rosenzweig 1973, Orrock et al. 2004). Despite my prediction that rodents would visit trays 

placed in shrub microhabitats more often than open ones, there was no significant difference in 

visitation of seed trays between microhabitats (Figure 3). I also predicted that of the visited trays, 

rodents would remove more seeds in shrub trays, but there were no significant differences in 

seed removal between microhabitats (Figure 4). This lack of preference for microhabitat shown 

was likely because the Ord’s kangaroo rat, a bipedal granivore, was the most common nocturnal 

rodent across all treatments (Table 2). Differences in morphology between bipedal and 

quadrupedal rodent species can influence foraging behavior and preference. Bipedal rodents, 

such as kangaroo rats, have large auditory bullae and strong hindlimbs that allow them to detect 

predators easily and quickly evade them, while quadrupedal rodents, like the other rodents at the 

CPER, lack these traits (Brown et al. 1988). Consequently, quadrupedal rodent species tend to 

prefer shrub microhabitats, while bipedal species can prefer to forage in open microhabitats 

(Longland and Price 1991). For a bipedal rodent like a kangaroo rat, differences between the 
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perceived risk of visiting and potentially foraging in an open microhabitat compared to a shrub 

microhabitat might not be critical.  

Grazing treatment affected whether or not rodents visited trays, but not the amount of 

seed removed. Foragers visited seed trays in CRE and RE treatments most frequently, followed 

by CE treatments (Figure 4). AH treatments had the lowest percentage of visits (Figure 3). This 

pattern closely follows the rodent trapping numbers of treatments in 2022 (Table 2). Where 

rodents were abundant (CRE, RE) seed trays were visited more often, and where there were 

fewer rodents (CE, AH), fewer seed trays were not visited. Rodent abundance therefore may 

determine the amount of foraging activity that occurs in a plot: the more rodents there are in a 

treatment, the higher the percentage of trays visited. Differences between treatments in rodent 

abundance may reflect differences in vegetation caused by removal of herbivores.  

I had predicted that rodents would remove more seeds in ungrazed plots with taller 

vegetation than grazed plots with more bare ground and shorter vegetation because of the 

protective cover from predators that vegetation would provide (CRE>RE>CE>AH; Table 1). 

However, the amount of seed removed from visited trays did not differ significantly between 

treatment (Figure 5). This was most likely because of the rodent population effect on the 

percentage of seed trays visited. Once a forager encountered a seed tray and made the decision to 

forage in it, the type and height of the vegetation around them had less of an effect on seed 

removal than the level of moonlight. 

Moonlight was a significant determinant of foraging preference and activity. Foragers 

visited seed trays more frequently during the new moon than the quarter and full moon, with 

little difference in number of visits between quarter and full moon (Figure 4). Rodents also 

removed the most seeds from visited trays during new moon, while there was little difference 
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between amount of seed removed during quarter and full moon (Figure 5). During the new 

moon, rodents removed almost all seeds from the few trays visited in AH plots, the most “risky” 

plot due to the low vegetation cover caused by grazing, at the same level as the other three 

treatments (Figure 5). But on quarter and full-moon nights, rodents removed less seeds in AH 

than in the other three treatments (Figure 6).  

This finding is consistent with previous studies showing higher levels of nocturnal 

activity during darker nights compared to bright nights (Kotler 2010 et al., Clarke 1983). 

Rodents significantly altered their behavior in response to a decrease in light because predation 

risk is presumably lower, allowing them to forage for more seeds (Prugh 2014). When 

illumination levels decreased during the new moon, the perceived risk of predation decreased, 

allowing rodents to forage in AH treatments at the same level as CE, CRE, and RE treatments. 

When illumination increased during the full moon, foragers did not remove seeds in AH 

treatments at the same level as in the other three treatments, perhaps because the perceived risk 

of predation in the grazed AH treatments outweighed the benefit of millet seed.  

I had also expected that more seed would be removed during the quarter moon than the 

full moon, but that was not the case (Figure 5). Seeds in artificial trays represent a rich but 

unfamiliar resource to foraging rodents. Because the first round of seed trays set out were during 

the quarter moon, it is possible that rodents might have shown some neophobia towards the trays 

(Barnett 1958), resulting in low seed removal during the first round of seed trays set out during 

the quarter moon.  

Both moonlight and the intensity of grazing by herbivores affect the foraging habits of 

nocturnal rodents. Intensity of grazing in each treatment highly influences the type and amount 

of vegetation available, which in turn influences the type and numbers of rodents present. 
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Rodents were most numerous in treatments that have low grazing intensity by cattle (CRE) and 

lowest population in treatments that experience high levels of grazing (AH). The number of 

rodents in a treatment type was a good indicator of the percentage of seed trays that were visited, 

suggesting that rodents may prefer ungrazed areas with more vegetation that provide cover from 

predators, such as owls (Zimmerman et al. 1996). Once a rodent visited a tray, decisions about 

how much seed to remove and how much time to spend potentially exposed to predators was 

most influenced by moon phase, with the greatest amount of seeds removed on dark, new-moon 

nights.   

Predation risk due to levels of illumination and grazing-related vegetation changes highly 

influences the foraging behavior of rodents and in turn, the abundance of rodents in the 

shortgrass prairie. Rodents, especially kangaroo rats, are important seed predators that influence 

the vegetation around them (Brown and Heske 1990, Larios et al. 2017). The influence of 

livestock grazing on the foraging behavior of rodents could potentially affect the plant 

communities they live in because granivorous rodents affect seed distribution and plant invasion 

(Maron et al. 2012, Larios et al. 2017). Future studies at the CPER should focus on the effects of 

the rodent population on the local plant community assembly.  

 

 

 

 

 

 

 

 

39



 

Literature Cited 

Orrock J.L., Danielson B.J., Brinkerhoff R.J. 2004. Rodent foraging is affected by indirect, but 
not by direct, cues of predation risk. Behavioral Ecology 15:433-437. 
https://doi.org/10.1093/beheco/arh031 

Brown J.S., Kotler B.P., Smith R.J., Wirtz W.O. 1988. The effects of owl predation on the 
foraging behavior of heteromyid rodents. Oecologia 76:408–415. 

Rosenzweig, M.L. 1973. Habitat selection experiments with a pair of coexisting heteromyid 
rodent species. Ecology 54:111-117. 

Kotler B. P., Brown J., Mukherjee S., Berger-Tal O., Baouskila A. 2010. Moonlight avoidance in 
gerbils reveals a sophisticated interplay among time allocation, vigilance and state-
dependent foraging. Proceedings of the Royal Society B: Biological Sciences 277:1469-
1474. 

Kotler B. P. 1984. Risk of predation and the structure of desert rodent communities. Ecology 
65:689-701. 

Clarke J. A. 1983. Moonlight's influence on predator/prey interactions between short-eared owls 
(Asio flammeus) and deer mice (Peromyscus maniculatus). Behavioral Ecology and 
Sociobiology 13:205-209. 

Lima S. L., Dill L.M. 1990. Behavioral decisions made under the risk of predation: a review and 
prospectus. Canadian journal of zoology 68:619-640. 

Stapp P., Lindquist M. D. 2007. Roadside foraging by kangaroo rats in a grazed short-grass 
prairie landscape. Western North American Naturalist 67:368–377. 

Longland W. S., Price M. V. 1991. Direct Observations of Owls and Heteromyid Rodents: Can 
Predation Risk Explain Microhabitat Use? Ecology 72:2261–2273. 
https://doi.org/10.2307/1941576 

Grant W. E., Birney E.C., French N. R., and Swift D. M. 1982. Structure and Productivity of 
Grassland Small Mammal Communities Related to Grazing-Induced Changes in 
Vegetative Cover. Journal of Mammalogy 63:248–260. 

Ellis T. D., Cushman J.H. 2018. Indirect effects of a large mammalian herbivore on small 
mammal populations: Context‐dependent variation across habitat types, mammal species, 
and seasons. Ecology and evolution 8:12115-12125. 

Brown J. H., Heske E. J. 1990. Control of a Desert-Grassland Transition by a Keystone Rodent 
Guild. Science 250:1705–1707. http://www.jstor.org/stable/2878546 

Maron J.L., Pearson D. E., Potter T., Ortega Y.K. 2012. Seed size and provenance mediate the 
joint effects of disturbance and seed predation on community assembly. Journal of 
Ecology 100:1492-1500. https://doi.org/10.1111/j.1365-2745.2012.02027.x 

Larios L., Pearson D. E., and Maron J.L. 2017. Incorporating the effects of generalist seed 
predators into plant community theory. Functional Ecology 31:1856-1867. 
https://doi.org/10.1111/1365-2435.12905 

40



 

Lauenroth W. K., and Burke I.C. 2008. Ecology of the Shortgrass Steppe : A Long-Term 
Perspective. 17th ed. Oxford University Press.   

Barnett S. A. 1958.  Experiments on ‘neophobia’ in wild and laboratory rats. British journal of 
psychology 49:195-201. 

Zimmerman G., Stapp P., Van Horne B. 1996. Seasonal variation in the diet of Great Horned 
Owls (Bubo virginianus) on shortgrass prairie. American Midland Naturalist 176:149-156. 

Prugh L. R., Golden C.D. 2014. Does moonlight increase predation risk? Meta‐analysis reveals 
divergent responses of nocturnal mammals to lunar cycles. Journal of animal ecology 
83:504-514. 

Hobbs N. T. 1996. Modification of Ecosystems by Ungulates. The Journal of Wildlife 
Management 60:695–713. https://doi.org/10.2307/3802368 

Eldridge D. J., Poore A.G., Ruiz-Colmenero M., Letnic M. and Soliveres S. 2016. Ecosystem 
structure, function, and composition in rangelands are negatively affected by livestock 
grazing. Ecological Applications 26:1273-1283. 

Thompson C.M., Gese E.M. 2013. Influence of vegetation structure on the small mammal 
community in a shortgrass prairie ecosystem. Acta Theriol 58:55–61. 

41



The Purification of the Manganese Oxidizing Protein, MopA-hp, found in Erythrobacter sp. 

SD-21  

Alyssa Ng 

Advisor: Dr. Hope A. Johnson 

Abstract 

Microbes play an important role in the health and nutrient cycling of our planet. The transition 

metal manganese (Mn) found in terrestrial and marine environments can be oxidized from 

soluble Mn-II into insoluble Mn-III/IV by manganese oxidizing bacteria (MOB). The produced 

Mn-III/IV oxides are some of the most reactive compounds in nature and have the ability to 

oxidize many other elements. The marine bacterium Erythrobacter sp. SD-21 is known to 

produce a Mn-oxidizing protein, MopA (238-kDa).  The purpose of this project is to obtain an 

active and pure sample of MopA-hp through different purification methods. The current protocol 

involves gravity nickel affinity chromatography (GNAC) and anion exchange chromatography 

(AEC). Currently, we are obtaining more AEC samples to test the activity and analyze the purity 

of the protein. A pure and active sample of MopA-hp will allow future studies on the mechanism 

of Mn oxidation by MopA-hp. 
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Introduction 

The transition metal manganese (Mn) is an important element and is required for the 

activity of many enzymes involved in metabolic pathways, such as the oxidation of organic 

matter. Manganese in both terrestrial and marine environments can be oxidized from soluble Mn-

II into insoluble Mn-III/IV by manganese oxidizing bacteria (MOB) (Tebo et al., 2005). The 

produced Mn-III/IV oxides are among the strongest oxidants in nature and have the ability to 

oxidize many other elements (Tebo et al., 2004). Mn-III/IV oxides play an important role in the 

fate and biogeochemical cycling of vital elements such as carbon, sulfur, and iron (Burdige, D. 

J., 1993)  

Manganese is involved in the decomposition of organic matter in soil and water, which 

are two essential natural resources on Earth. Specifically on Earth, characteristics of Mn-III/IV 

oxides such as low solubility under natural environmental conditions and the ability to efficiently 

oxidize Fe and other metals (Tebo et al., 2018; Plathe et al., 2013). Mn (III/IV) oxides can also 

readily absorb pollutants such as lead, mercury, and arsenic due to their porous and highly 

reactive nature (Mensah et al., 2021) Coupled with Mn(II)-oxidizing microorganisms, biotic 

production of Mn(III/IV) oxides provides a natural solution for remediation of pollution sites. 

These oxides have not only been added directly to water and sediments for toxin removal but are 

generated by the environmental bacterial colonization of wastewater filters, a potentially cost 

saving means for safe water (Maurya et al., 2020). Despite the powerful geochemical reactivity 

of Mn and its widespread use by organisms, the mechanism of manganese oxidation by bacterial 

enzymes is unclear. Studying the natural mechanism of these enzymes has the potential to be 

utilized in the field of bioremediation.   
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The marine bacterium Erythrobacter sp. SD-21 is known to produce a Mn-oxidizing 

protein, MopA (238-kDa) – a peroxidase cyclooxygenase. Prior purification attempts of the 

active peroxidase domain, MopA-hp (105-kDa), have provided heterologously expressed 

samples with incomplete purification or no activity. Purifying a protein into a homogenous 

solution allows for further defined studies, however Mn(II) oxidizing enzymes are known to be 

difficult to purify. The purpose of this project is to obtain an active and pure sample of MopA-hp 

through different purification methods. This research focuses on the heterologous expression of 

MopA-hp in Escherichia coli, followed by exploring further purification of an MopA-hp using 

additional purification protocols. The current protocol involves gravity nickel affinity 

chromatography (GNAC) and anion exchange chromatography (AEC). Mn oxidation activity is 

quantified through a colorimetric leucoberbelin blue assay. Sodium dodecyl sulfate–

polyacrylamide gel electrophoresis (SDS-PAGE) is used to confirm the purity of the desired 

protein samples.  Increased purification has been obtained through AEC, but a high amount of 

protein is lost throughout this process. A pure and active sample of MopA-hp will allow future 

studies on the mechanism of Mn oxidation by MopA-hp. Understanding the bacterial Mn 

oxidation mechanism has the potential to help us clean contaminated sites and better understand 

the biogeochemical cycles of Earth that keep the planet and its inhabitants healthy.  
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Figure 1. SDS-PAGE gel displays the current purification of MopA-hp. Note the contaminants 

present following affinity chromatography. Lane 1: Ladder, Lane 2: Cell free extract, Lane 3: 

MopA-hp purified by NAC located at 130kDa.1 

 

Methods 

 

Figure 2. Protein purification methods displayed.  
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Heterologous Expression of MopA-hp  

Escherichia coli strain Rosetta 2 cells (Novagen) transformed with pSpeedET-HP10 

(MopA-hp) are streaked monthly on LB agar plates containing 60 μgmL-1 kanamycin (KAN) and 

30 μg mL-1 chloramphenicol (CHL) for culture maintenance. A colony of this strain was 

inoculated into 25 mL of Luria broth (LB) with 60 μgmL-1 kanamycin (KAN) and 30 μg mL-1 

chloramphenicol (CHL) and were incubated overnight at 37°C with constant shaking at 200 rpm. 

After approximately 12 hours, 2 mL of culture was aseptically transferred into 100 mL of LB 

media with the same concentration of KAN and CHL. Cells were incubated under the same 

conditions until an optical density of 0.5 was achieved at 600 nm (OD600nm) measured with a 

Varian Cary 50 Bio UV-Visible Spectrophotometer (approximately 2 hours). At this point, 

protein expression was induced under the same conditions with the aseptic addition of 200 μL of 

10% L-arabinose. After 4 hours, the cultures were harvested by centrifugation at 5000 x g for 15 

minutes at 4°C using a Sorvall Legend X1R Centrifuge (Thermo Scientific). Cell pellets were re-

suspended in 1.5 mL of  EQ buffer (50 mM 4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid 

(HEPES) buffer pH 8, 50 mM NaCl, and 10 mM Imidazole). Re-suspended pellets were stored at 

-20°C for later use.   

 

French Press: Acquisition of Cell Free Extract 

 Re-suspended cell pellets were thawed and lysed by 4-5 passages through a French press 

cell at 16000 psi. Cell lysate was centrifuged at 5000 x g for 15 minutes at 4°C. Cell-free extract 

(CFE) was collected and used for purification through Ni2+ affinity purification by gravity flow. 

CFE saved for later use was stored in the -20°C freezer. 
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Purification by Gravity Nickel Immobilized Metal Affinity Column Chromatography 

Nickel affinity chromatography (NAC) was carried out using a gravity-flow column 

(Bio-Rad, Irvine, CA) and nickel nitrilotriacetic acid (Ni-NTA) agarose beads (Qiagen, Valencia, 

CA) at 4°C. This column was washed with 5mL of MQ water then 5 mL of EQ buffer. 

Approximately 4 mL of CFE was loaded onto the column and incubated, horizontally and gently 

shaken for 15 mins at 4°C. After incubation, the resin was allowed to settle and unbound proteins 

are collected by flow through (FT). After collecting the FT fraction, protein was eluted with 

equilibrium (EQ) buffer at the following volumes with increasing imidazole concentrations: 10 

mM (5 mL) wash 1 of unbound proteins, 20 mM (3 mL) wash 2, 40 mM (5 mL) elution 1, and 

300 mM (5 mL) elution 2. After the collection of 5 fractions, the column was washed with 5 mL 

of Milli-Q (MQ) water, then 5 mL of 20% ethanol and stored in the 20°C deli fridge in 20% 

ethanol.  

 

Protein Concentration Determination  

Protein concentrations were measured on a Nanodrop Onec (Thermo Scientific) at an 

absorbance of 280 nm of 1 equal to 1 mg/mL-1 of protein. The baseline correction was 340 nm. 

The EQ buffer was utilized as a blank. 

 

Centrifugal Protein Concentration 

The elution 1 (E1) fraction containing the highest protein concentration by absorbance at 

280 nm (A280) was retained for concentration by centrifugation in Amicon® Ultra-4 filter 

centrifuge tubes (Merck Millipore Ltd.) at 5,000×g to a volume of approximately 2.5 mL for the 

PD-10 column. 
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Buffer Exchange: Desalting Column  

A GE PD-10 Desalting column with SephadexTM G-25 resin (GE Healthcare,  Chicago, 

IL) was equilibrated with 25 mL of 20 mM HEPES pH 8, 100 mM NaCl, and  10% glycerol 

buffer (dialysis buffer). 2.5 mL concentrated protein was  added then eluted from the column 

with 3.5 mL of the same equilibration buffer and collected as a 1 and 2.5 mL fraction. The 1 mL 

fraction was discarded, while the 2.5 mL protein fraction was quantified using the Nanodrop 

Onec. After obtaining concentration the protein was then assayed.   

 

Anion Exchange Chromatography 

Further protein purification included anion exchange chromatography using a HiTrapTM 

Q XL 1 mL (Cytiva) column. This technique was conducted by hand. First the column was 

washed to remove preservatives with a syringe containing 5 mL of binding buffer (BB) [50 mM 

Tris-HCl pH 8 and 20% glycerol] followed by 5 mL of elution buffer (EB) [50 mM Tris-HCl pH 

8, 20% glycerol, and 1 M NaCl]. Both buffers were filtered through a 0.45 μm syringe filter. 5 

mL of BB was utilized for column equilibration before passing the MopA-hp containing sample 

through the column. The MopA-hp-containing sample was filtered through a 0.22 μm syringe 

filter before placed in column. The column was then washed with 5 mL of BB to remove 

unbound proteins. Followed by a 5 mL wash of EB for analysis.  

 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis  
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Non-native sodium dodecyl sulfate - polyacrylamide gel electrophoresis (SDS - PAGE) 

was performed at a constant 200 V for approximately 1.5 h using 12% acrylamide separating and 

4% acrylamide stacking gels. The 2X stock solution (0.5 M TRIS pH 8.6, 10% SDS, 10% 

glycerol, Rodriguez 11 11 0.5% brophenol blue) mixed with 2-mercaptoethanol (1:20 dilution 2-

mercaptoethanol) was utilized in a 1:1 ratio with the protein sample and heated for 5 mins. 

Protein ladder Broad Range from Bio - Rad Laboratories (Irvine, CA) or Thermo Scientific 

PageRuler Plus pre - stained protein ladder (Waltham, MA) were used as molecular weight 

(MW) standards. Proteins were stained in a solution of 0.05% Coomassie brilliant blue (Bio - 

Rad Laboratories), 10% acetic acid, and 40% ethanol. The gels were destained in a solution of 

10% acetic acid and 10% ethanol. 

 

Mn(II) Oxidation Activity: Leucoberbelin Blue Assay 

Samples containing MopA-hp were mixed in a ratio of 1:5 (500 μL final volume) with a 

mixed solution containing 5 μL of 0.1 M MnCl2, 5 μL of 1.0 M CaCl2, 1 μL of 5 mM PQQ, 383 

μL of 50 mM HEPES pH 8.0 and 100 mM NaCl, 5 μL of 10 mM NAD+ , and 1 μL of 1 mM 

heme, for activity testing. The EQ buffer utilized before served as the negative control. 

Triplicates were conducted for each sample. After 24hrs of shaking at 200 rpm at room 

temperature, 50 μL of the assay mixture was mixed in a ratio of 1:5 (300 μL final volume) with 

0.04% LBB in 45 mM acetic acid. After 15 minutes of shaking at 200 rpm at room temperature, 

these samples were centrifuged in an Eppendorf Centrifuge 5430 R for 5 minutes at 14,000 rpm 

at room temperature. The supernatant (250 μL) was placed on a 96 well plate to read their 

absorbance at 620 nm on a Synergy 2 (Biotek) plate reader. The absorbance readings were 
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compared to a standard curve produced with KMnO4 standards where 1 μM KMnO4 = 2.5 μM 

MnO2. 

 

Results 

SDS-PAGE and the activity assay provide a comprehensive assessment of the success of 

the current MopA-hp protein purification protocol. SDS-PAGE was used to visualize the 130 

kDa MopA-hp band and contaminants. The LBB colorimetric assay was used to measure Mn 

oxidizing activity. The combination of these techniques ensure that MopA-hp is present and 

active in the samples.  

5 fractions are collected from the GNAC protocol. Elution 1 (E1) fraction is used for 

further purification as it is the most abundant and pure compared to the other fraction samples 

visualized by SDS-PAGE (Figure 2). The LBB activity assay was conducted and indicated that 

E1 had the highest Mn oxidizing activity (Table 1). This suggests that E1 has the highest 

concentration of active MopA-hp and is the most promising fraction for further purification.  
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Figure 3. SDS-PAGE gel displays 5 fractions collected from GNAC. Elution 1 has the highest 

protein abundance and the least contaminants. Lane 1: Ladder, Lane 2: Flow through, Lane 3: 

Wash 1, Lane 4: Wash 2, Lane 5: Elution 1, Lane 6: Elution 2.  

 

Specific Activity A620/mg 

CFE 0.796 

Flow through  0.244 

Wash 1 4.21 

Wash 2  7.52 

Elution 1 10.87 

Elution 2  10.16 

 

Table 1. Manganese oxidizing specific activity table displays Elution 1 (E1) has the highest 

activity of all the fractions. This fraction also had the most abundant protein band when 

visualized by SDS-PAGE (Figure 2).  
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Fraction A620 GNAC Vol. (mL)  Total Activity (A*mL)  Activity Recovered (%) 

CFE  1.26 4 5.04 100 

FT  0.221 4.5 0.9945 19.73214286 

W1 0.122 5.5 0.671 13.31349206 

W2 0.124 3 0.372 7.380952381 

E1 0.125 5.5 0.6875 13.64087302 

E2 0.127 5 0.635 12.59920635 

 

Table 2. Mn Oxidizing Activity Assay results indicate E1 has the highest activity recovered of 

the purified samples.   

Three to five fractions of E1 are collected and concentrated using Amicon® Ultra-4 filter 

centrifuge tubes (Merck Millipore Ltd.) to about 2.5 mL. E1 is then desalted through the buffer 

exchange protocol using the PD-10 column. SDS-PAGE is used to analyze the resulting bands of 

the concentrated protein sample (Figure 3). The gel indicates that there are more contaminants in 

the protein sample than visible with the initial analysis.   
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Figure 4. SDS-PAGE gel displays desalting fraction from PD-10 Column. Three bands result 

from the concentration of the E1 fractions.  

After the buffer exchange, the anion exchange chromatography (AEC) purification step 

was performed next. Three fractions are collected which are the wash, bound, and elution. The 

elution fraction contained three bands at the same size as the starting fraction, which suggests 

that MopA-hp bound to the anion exchange column (Figure 4). However, the abundance of the 

protein is much less than the initial sample put onto the column. This indicates that some of the 

protein is stuck in the column or is not eluted all the way through. We have not yet obtained a 

sample from AEC that produces high Mn oxidizing activity. Next, we are going to combine the 

fractions to see if this will recover activity.  
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Figure 4. MopA-hp is located at 130kDa. Elution fraction contains three bands. Lane 1: Ladder, 

Lane 2:Wash, Lane 3: Bound, Lane 4: Elution, Lane 5: Starting Sample (DS)  

 

 

Discussion  

Prior discoveries and findings have helped the scientific community gain a better 

understanding about the manganese oxidation process, but a full understanding of the 

biochemical mechanism of MopA requires a pure and active protein. Current research has either 

provided a pure but inactive MopA-hp, or active but impure MopA-hp. This research focuses on 

the heterologous expression of MopA-hp in Escherichia coli, followed by utilizing several 

purification techniques to explore further purification. Mn oxides affect different biological 

environmental processes that require such elements in compounds and contribute to the lowering 

levels of toxic chemicals in the environment (Tebo et al., 2004). A final characterization of a 

B W E DS 
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pure sample MopA-hp and the compounds that allow for its activity, would allow for kinetics 

studies of MopA-hp and thus have a better understanding of MopA-hp and its mechanism 

implied in Mn oxidation.  

 

The Purification of MopA 

The purpose of this project is to obtain an active and pure sample of MopA-hp after the 

heterologous expression in E. coli. To obtain a pure sample of MopA-hp, GNAC and AEC were 

used in attempts to purify the cell-free extract. SDS-PAGE was used to analyze the purity after 

each chromatography. GNAC showed that E1 had the highest protein abundance and least 

amount of contaminating proteins (Figure 2). This sample was concentrated and buffer exchange 

through the PD-10 column was done to desalt the protein solution for AEC. The PD-10 column 

is used for buffer exchange, AEC is done after the imidazole is removed because the salt 

interferes with the protein purification protocol. The fractions from AEC were visualized via 

SDS-PAGE. The elution fraction showed 3 bands that were very faint compared to the starting 

sample. These bands should be about ½ the intensity of the desalting sample based on the 

volumes recovered and added to the gel, but they are only about 1/10th of the intensity. This 

indicates that some sample is not eluted all the way by the buffer or that the protein is getting 

stuck in the column. More AEC samples need to be obtained to further investigate the reason 

why the bands are significantly less intense than the starting sample.  

 

Protein Mn Oxidizing Activity 

Mn oxidizing activity was determined in the protein samples. From the GNAC, Elution 1 

had the highest activity compared to the other fractions (Table 2).  We have not yet obtained a 
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sample from AEC that produces high Mn oxidizing activity. Next, we are going to combine the 

fractions from the anion exchange to see if this will recover activity.   

 

Future works 

Future works could focus on combining AEC fractions to recover activity and further 

analyzing the contaminants in the SDS-PAGE gels to see which bands are necessary for Mn 

oxidation. The characterization of a pure MopA-hp sample and its necessary compounds that 

conduct activity allow for kinetic studies of MopA-hp. These studies allow us to learn about the 

MopA-hp mechanism of Mn oxidation.  
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Injections
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Abstract

The study of monoids, algebraic structures with an associative bi-
nary operation and an identity element, contributes to diverse disciplines:
computer science, physics, mathematics, and others. It also reveals inter-
esting and practical revelations on combinatorial identities. We analyze
the monoid of partial order-preserving injections, or POI(n), and we re-
veal new representations of the elements of POI(n). Our work leads to
combinatorial identities involving the Catalan Numbers, and in particu-
lar, we explore a proof of Touchard’s Identity that relates to a sub-monoid
of POI(n). We also uncover a novel combinatorial identity involving the
cardinality of POI(n).

1 Introduction

In recent years, there has been interest in the categorization of roots of ele-
ments across various mathematical structures [1, 3, 4]. Useful applications in
fields such as matrix theory and cryptography are well-known. Analyzing roots
of elements in the monoid of partial order-preserving injections of an n-element
set, POI(n), has motivated new notational representations of the elements of
POI(n). In turn, these new notational devices have led to some noteworthy
combinatorial insights. By counting the same objects from different perspec-
tives, we can derive several combinatorial identities. These identities involve
the sequences of Catalan numbers, Cn, and Motzkin numbers, Mn, which we
will review in Section 3 below. The identities are summarized here. The first
two are already known, while the third one is a new result of our research.

Touchard’s Identity [12] :

⌊
n

2
⌋∑

k=0

Ck

(
n

2k

)
2n−2k = Cn+1
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Relation of Motzkin to Catalan Numbers [8]:

Mn =

⌊
n

2
⌋∑

k=0

(
n

2k

)
Ck

Cardinality of POI(n):(
2n

n

)
= 2n + 2

n∑
v=1

v∑
k=1

(
v − 1

2k − 1

)
Ck−1(2

v−2k)

(
2n− 2v

n− v

)

2 Background

2.1 Introduction to POI(n)

Definition The symmetric inverse monoid on an n-element set S = {1, 2, ..., n},
denoted by SIM(n), consists of all partial one-to-one mappings from the set to
itself [5]. The elements of SIM(n) are represented by a two-line notation in
which i ∈ S is placed on the top line directly above its image σ(i). For example,
consider:

σ =

(
1 2 3 4 5 6 7
− 1 5 2 3 − 7

)
∈ SIM(7).

In σ, we have that 2 maps to 1, 3 maps to 5, 4 maps to 2, 5 maps to 3, 7 is
fixed, and both 1 and 6 do not get mapped to anything. The binary operation
in SIM(n) is composition and, as is custom, is done from right to left. The
following calculation illustrates this.1 2 3 4 5

↓ ↓ ↓ ↓ ↓
4 3 5 2 −

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 − 2 5 4

 =

(
1 2 3 4 5
5 − 3 − 2

)

Definition The monoid of partial order-preserving injections, denoted
by POI(n), is a submonoid of SIM(n) consisting of all σ in SIM(n) such that
1 ≤ i < j ≤ n implies σ(i) < σ(j) [1]. Here is an example:

σ =

(
1 2 3 4 5
3 − 4 5 −

)
∈ POI(5).

Note that if σ ∈ SIM(n), then σ ∈ POI(n) if and only if the elements appearing
in the second row of the two-line notation are in increasing order.

Definition For an element a in a semigroup S, suppose that there exists an
element, a′ in S, that satisfies a = aa′a and a′ = a′aa′. Then we call a′ an
inverse of a.

61



DefinitionWe call a monoidM an inverse monoid if for every element a ∈ M ,
there exists a unique inverse a′ ∈ M .

Remark Both SIM(n) and POI(n) are inverse monoids.

Definition The domain of an element σ ∈ POI(n) is denoted as

Dom(σ) = {i ∈ S : σ(i) is defined}.

Definition The range of an element σ ∈ POI(n) is denoted as

Rng(σ) = {σ(i) : i ∈ S}.

Definition The rank of an element σ ∈ POI(n) is defined as

rank(σ) = |Dom(σ)| = |Rng(σ)|.

Definition Any σ ∈ POI(n) such that σ(i) = i for all i ∈ Dom(σ) is a partial
identity.

Definition For any σ ∈ POI(n), the inverse of σ is defined as σ−1 ∈ POI(n)
such that

Dom(σ−1) = Rng(σ) and Rng(σ−1) = Dom(σ).

Since an element σ ∈ POI(n) is completely determined once its domain and
range are specified, the definition of the inverse is well-defined. Additionally, we
can verify that this agrees with the general definition of inverses in a semigroup
given above by verifying that σσ−1σ = σ and σ−1σσ−1 = σ−1. Also, note that
both σσ−1 and σ−1σ are partial identities.

Example 1 Consider the element σ =

(
1 2 3 4 5 6 7
3 4 7 − − − −

)
∈ POI(7).

Then Dom(σ) = {1, 2, 3} and Rng(σ) = {3, 4, 7}. Also, rank(σ) = 3. Fi-

nally, σ−1 =

(
1 2 3 4 5 6 7
− − 1 2 − − 3

)
; then Dom(σ−1) = {3, 4, 7}, and

Rng(σ−1) = {1, 2, 3}.

Definition Let us define POIasc(n) to be the sub-monoid of POI(n) consisting
of all σ in POI(n) such that σ(i) ≥ i for all i ∈ Dom(σ). Likewise, let us define
POIdes(σ) to be the sub-monoid of POI(n) consisting of all σ in POI(n) such
that σ(i) ≤ i for all i ∈ Dom(σ).

Remark The cardinality of POIasc(n) equals the cardinality of POIdes(n) since
we can define a bijection θ : POIasc(n) −→ POIdes(n) via θ(σ) = σ−1. In Ex-
ample 1, note that σ ∈ POIasc(7) while σ−1 ∈ POIdes(7).
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Fig. 1. A graphical representation of POI(6), Rank 3. The columns represent the domain,

and the rows represent the range. White squares correspond to the elements in POIasc(n),

black squares correspond to the elements of POIdes(n), dark gray squares correspond to ele-

ments that are in neither, and light gray corresponds to elements that are in both. Elements

of POIdes(n) are generally found in the upper-right of the grid, and elements of POIasc(n)

are in the bottom-left. This diagram thus demonstrates the bijection between elements in

POIasc(n) and POIdes(n) obtained via σ −→ σ−1, which is visualized by a reflection across

the main diagonal of the grid.

Remark Note that the union of POIasc(n) and POIdes(n) is not POI(n).

For instance, σ =

(
1 2 3 4 5 6
3 − − − 4 5

)
∈ POI(6) is in neither POIasc(6)

nor POIdes(6). Indeed, the dark gray squares in Fig. 1 identify elements of
POI(6) that do not belong to either subset. Also note that the intersection of
POIasc(n) and POIdes(n) is non-empty; all light gray squares correspond to
partial identities, which are in both sets.

2.2 Path Notation

We next present a series of definitions that relate to the research we present in
this paper.

Definition Let c ∈ {1, 2, 3, ..., n}, and let σ be in POI(n). Then if c is nei-
ther in the domain nor range of σ, we call c a gap of σ.
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Definition Let σ ∈ POI(n). If σ(c) = c, we call c a fixed point of σ.

Definition: Let σ = (a1a2...at] ∈ POI(n) denote the partial one-to-one map-
ping that sends a1 to a2, a2 to a3,...,at−1 to at, and does not map at to anything.
We call (a1a2...at] a t-path, or simply a path.

Definition: Let σ = (a1) =

(
1 2 ... a1 ... n
− − − a1 − −

)
denote the partial one-

to-one mapping that sends a1 to a1. In other words, a1 is a fixed point.

Definition We call the path notation of an element of POI(n) a product
of all such disjoint paths and fixed points. Such a product is uniquely deter-
mined for each element up to the order in which the paths appear in the product.

Remark Suppose that in the path notation of σ ∈ POI(n) we have two paths,
a = (a1a2...at] and b = (b1b2...bs], such that a1 < b1. Then for all r ≤ min{s, t},
the ordering principle of POI(n) implies that ar < br. We then write path a
before path b in the notation for consistency.

Example 2 Here is the two-line notation of an element of POI(4) along with
the corresponding path notation:(

1 2 3 4
3 4 − −

)
= (1 3](2 4].

We see that 1 maps to 3, which does not have an image. Thus, in the path
notation we write the path (13]. To represent the other path, we note that 2
maps to 4, which does not have an image. Note that we write the paths in this
order according to their first values, as explained in the remark above.

Example 3 Here we present an element of POI(6) in both notations:(
1 2 3 4 5 6
4 − 5 − − 6

)
= (1 4](2](3 5](6).

Let us note two new details. First, 2 is part of a 1-path; in other words, 2 is
a gap: (2]. However, 6 is a fixed point, which, by the convention established
above, is written as (6).

Example 4 The example below demonstrates paths of greater lengths:(
1 2 3 4 5 6 7 8 9 10
3 − 5 6 8 9 − − − 10

)
= (1 3 5 8](2](4 6 9](7](10).
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2.3 Initiate-Continue-End (ICE) Notation

Definition For σ ∈ POI(n), we code σ into a string of length n, where each
character in the string corresponds to 1, 2, 3, 4, ..., n respectively, to form the
ICE notation for σ. The symbols of the ICE notation are as follows:

I: The corresponding number is the first number of a path, initiating it;
F: The corresponding number is a fixed point;
1: The corresponding number is a gap;
C: The corresponding number is in the middle of a path;
E: The corresponding number is the last number of a path, ending it.

Remark For convenience and utility, we will apply the ICE notation for el-
ements in POIasc(n) only. However, a more generalized form can technically
be used for all elements in POI(n).

Definition A slot in the ICE notation is merely a space that a character of
the string occupies. We number the slots from left to right as 1, 2, ..., n. For
instance, slot 1 would be the space the first character occupies.

2.4 Initiate-Continue-End (ICE) Algorithm

Throughout this sub-section, σ will always refer to an element of POIasc(n).
An ICE algorithm is used to translate from the ICE notation to the path no-
tation, and reversing it translates from the path notation to the ICE notation.
To explain the algorithm, we need a couple of definitions first.

Definition An open path is a path that is in the process of being constructed
using the ICE algorithm; it is not finished. Given an open path, we must con-
tinue it by adding at least one more element to the path.

Definition An open path has a right-most value, which is the last number
that has been added to it in the process of constructing an element of POI(n)
using the ICE algorithm. The right-most value of an open path changes through-
out the execution of the ICE algorithm.

ICE Algorithm: Now, let us read the ICE notation from left to right. If
we reach an I in slot k, we begin a new path with k. If we reach an F in slot
k, we map k to itself and add (k) to the path notation. If we reach a 1 in slot
k, we place k in a 1-path: (k]. If we reach an E in slot k, we place k as the
last number in the open path that has the least right-most value. Finally, if we
reach a C in slot k, we place k in the open path that has the least right-most
value, and the path remains open.

Remark Each action represented by I, F, and 1 is clearly well-defined. The
actions represented by E and C are also well-defined since only one open path
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can have the least right-most value. Thus, every ICE notation has only one
corresponding path notation, and vice versa.

Remark All elements of POIasc(n) that can be represented with the path
notation can also be represented by the ICE notation since every element is
constructed of only paths, fixed points, and gaps.

Definition We denote by P (r) the number of open paths at slot r, the number
of Is appearing in slots 1 through r minus the number of Es appearing in slots
1 through r. Clearly, P (r) ≥ 0 for all r. An example is illustrated in Fig. 2.

Fig. 2. An example of computing the number of open paths at each slot r = 1 through 9.

Example 5 Let us use the ICE notation in Fig. 2 to demonstrate a part
of the ICE algorithm. After the first two Is, we have two open paths beginning
with 1 and 2. Then, we place 3 in the path containing 1, since 1 is the least
right-most value. We now only have one open path. Then, 4 is placed in the
path containing 2, which is the only option. We continue this process to yield
the path notation: (1 3](2 4 6 8](5 7](9).

Remark We establish conditions for the slot in which each character can be
placed in order for an ICE string to represent an element of POIasc(n):

1) P (n) = 0 for all elements in POIasc(n) since all paths that are initiated
must eventually be closed.

2) 1 can be placed in any slot since the corresponding number is neither the
preimage or image to any other number; it does not disrupt the ordering prin-
ciple.

3) F can be placed in slot r only if P (r) = 0. Proof : Let us proceed by
way of contradiction. Suppose that P (r) > 0, and we place an F in slot r.
Then there exists at least one open path which contains c < r as its rightmost
value. This path must be continued or ended with a number greater than r.
Thus, σ(c) > r = σ(r), contradicting the ordering principle of POI(n).
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4) C can be placed in slot r only if P (r) > 0. Proof : If P (r) = 0, there are
no open paths when slot r is reached, so it is impossible to continue any paths.

5) I can be placed in slot r only if P (r − 1) < n− r. Proof : Initiating a path
does not disrupt ordering. However, we note that |P (i + 1) − P (i)| ≤ 1 for all
i = 1, 2, ..., n−1 since the number of open paths at two consecutive slots can only
differ by at most 1. It then follows that, more generally, |P (i + j) − P (i)| ≤ j
for all i = 1, 2, ..., n − j. Further, given that P (n) = 0, it also follows that
P (n − 1) ≤ 1, P (n − 2) ≤ 2, ..., P (n − j) ≤ j for all j = 0, 1, 2, ..., n − 1. Our
result follows after we set j to n− r.

6) E can be placed in slot r only if P (r) > 0. Proof : One cannot end a
path at slot r unless there is at least one open path at slot r.

Note that these conditions are relatively simple compared to the path nota-
tion; this fact is useful when approaching the combinatorics of POI(n).

Example 6 Returning to Example 2, we can now also present the ICE no-
tation: (

1 2 3 4
3 4 − −

)
= (1 3](2 4] = IIEE

Note that because the ICE notation begins with II, 1 and 2 are the first num-
bers of the paths that they belong to. Further, since the notation ends with
EE, 3 and 4 have a preimage, but not an image. Note that, in the process of
applying the ICE algorithm for slot 3, we must place 3 in an open path. There
are two open paths at slot 3, with right-most values 1 and 2. According to the
algorithm, we place 3 in the path with 1. Indeed, placing 3 in the path with
2 would result in an element that violates the order-preserving requirement of
POI(n).

Example 7 Here is an example in POI(6) that builds from Example 3.(
1 2 3 4 5 6
4 − 5 − − 6

)
= (1 4](2](3 5](6) = I1IEEF

We know that 2 is a gap. Thus, the second symbol in the ICE notation is a 1.
Further, since 6 is a fixed point, the last symbol in the ICE notation is an F .

Example 8 We analyze an element containing all of the symbols 1, I, C,E,
and F , which we first introduced in Example 4.(
1 2 3 4 5 6 7 8 9 10
3 − 5 6 8 9 − − − 10

)
= (1 3 5 8](2](4 6 9](7](10)

= I1CICC1EEF
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We will now explain the construction of the ICE notation given a path
notation. We note that 1 is the first number in its corresponding path, so the
first symbol in the ICE notation is I. Then, 2 is a 1-path, so the second symbol
is 1. Since 3 is in the same path as 1, and is thus in the middle of a path, the
third symbol is a C. We continue this process for the remaining numbers.

3 Combinatorics

Now that we have established useful notations for elements of POI(n), we will
consider how they may be used to prove some combinatorial identities. These
identities involve a famous sequence of numbers, the Catalan numbers.

3.1 Touchard’s Identity

We count the number of σ ∈ POI(n) such that σ(c) ≥ c for all c ∈ Dom(σ),
which is |POIasc(n)|. Thus, we are counting all possible ICE strings of length
n.

3.1.1 Catalan Numbers

Catalan numbers are familiar in combinatorics. For instance, the nth Catalan
number is the number of non-crossing partitions of an n-element set [13]. How-
ever, the definition we use involves Catalan graphs.

Definition The nth Catalan number, denoted by Cn, is the number of routes
on the upper right quadrant of the xy-coordinate plane with x, y ∈ Z from co-
ordinate (0, 0) to coordinate (2n, 0) in 2n steps if one is allowed to move only
to the right (up or down) at each step but forbidden from dipping below the
x-axis. These form Catalan graphs [13]. By convention, we set C0 = 1.

Fig. 3. Catalan graphs. Note that the graphs never drop below the x-axis.
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Remark For point (x, y) on any Catalan graph, x is analogous to r, and y
is analogous to P (r) of the ICE notation.

Remark The conditions of POI(n) state that P (r) ≥ 0 for all r, meaning that
finding all legal strings of k Is and k Es according to the ICE notation rules
in the previous section is the same as finding the number of Catalan graphs of
length 2k, which is Ck.

Finally, a closed form of the nth Catalan number exists [13]:

Cn =
1

n+ 1

(
2n

n

)
.

There are also a number of notable recursive identities for the Catalan numbers,
such as [7, 16]:

Cn+1 =
2(2n+ 1)

n+ 2
Cn

Cn+1 = C0Cn + C1Cn−1 + ...+ Cn−1C1 + CnC0

3.1.2 Counting using Catalan Numbers

Let us count all possible ICE notations with n slots. To begin, assume the ICE
notation contains exactly k Is and k Es. Given the remark above, we arrange
the Is and Es in Ck ways. Then, we must place the arranged Is and Es into n
slots as our second combinatorial task, with

(
n
2k

)
possibilities.

Now let us define an alternating variable, A, where A can either be F or
C, depending on the mutually exclusive situations (since an F can only be
placed at slot r if P (r) = 0, and a C can be placed at slot r if P (r) > 0). Then
in each remaining slot we either place an A or a 1, leading to 2n−2k possibilities
for the remaining n − 2k slots. So the number of ICE notations with exactly
k Is and k Es is is Ck

(
n
2k

)
2n−2k. Iterating through all possible values of k, we

obtain all possible ICE notations.

Theorem 1 For any n ≥ 0,

|POIasc(n)| =

⌊
n

2
⌋∑

k=0

Ck

(
n

2k

)
2n−2k.

3.1.3 Motzkin Numbers

Motzkin numbers have multiple combinatorial definitions. For instance, the
nth Motzkin number, Mn, is the number of different ways of drawing non-
intersecting chords between n points on a circle (not necessarily touching every
point by a chord) [14].
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Definition The nth Motzkin number is the number of routes on the up-
per right quadrant of the xy-coordinate plane with x, y ∈ Z from coordinate (0,
0) to coordinate (n, 0) in n steps if one is allowed to move only to the right (up,
down, or straight) at each step but forbidden from dipping below the x-axis.
These form Motzkin graphs [15]. By convention, we set M0 = 1.

Remark Since Motzkin graphs have more allowed configurations than Cata-
lan graphs, it is clear that M2n ≥ Cn for all n.

Fig. 4. The Motzkin graphs corresponding to M1, M2, and M3, and the first ten Motzkin

numbers. We can see similarities to Catalan graphs, except for the addition of horizontal lines.

Recursive identities for the Motzkin numbers exist, for instance [15]:

(n+ 3)Mn+1 = (2n+ 3)Mn + (3n)Mn−1.

Mn+1 = Mn +M0Mn−1 +M1Mn−2 + ...+Mn−2M1 +Mn−1M0

It is interesting to note that the latter recursion follows a similar pattern to a
recursion for the Catalan numbers from Section 3.1.1.

3.1.4 Counting using Motzkin Numbers

Because a 1 in the ICE notation does not affect the number of paths that are
open, it is analogous to moving straight, or horizontally, in a Motzkin graph.
Thus, the number of ways to arrange a total of k Is, 1s, and Es is Mk.

Let us now assign combinatorial tasks to construct an element of POIasc(n). If
we have a total of k 1s, Is and Es, we can arrange them in Mk ways. Then we
can choose k out of n slots to place the 1s, Is, and Es. The remaining n−k slots
must all be As, where A is the alternating variable as defined in Section 3.1.2.
We must sum through all possible values of k, yielding the following theorem.
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Theorem 2 For any n ≥ 0,

|POIasc(n)| =
n∑

k=0

Mk

(
n

k

)
.

In view of Theorems 1 and 2 above, we obtain

⌊
n

2
⌋∑

k=0

Ck

(
n

2k

)
2n−2k =

n∑
k=0

Mk

(
n

k

)
.

Finally, using the well-known identity [15]

n∑
k=0

Mk

(
n

k

)
= Cn+1,

we arrive to the famous Touchard’s Identity:

⌊
n

2
⌋∑

k=0

Ck

(
n

2k

)
2n−2k = Cn+1.

3.2 An Equation for the Motzkin Numbers

Let us count the number of elements in POI(n) with only Is, Es, and 1s. We
have established above that there are Mn ways to do so. Let us now use the

Catalan numbers to count the same collection. For fixed k ≤ ⌊n
2
⌋, let us first

arrange k Is and k Es in Ck ways. Now let us place these symbols in n slots,
with

(
n
2k

)
possibilities. The remaining slots are all filled with 1s. After iterating

through all possible values of k, we have the following equation.

Theorem 3 For all n ≥ 0,

Mn =

⌊
n

2
⌋∑

k=0

(
n

2k

)
Ck,

which relates the Motzkin numbers as a summation involving the Catalan num-
bers. Thus, we have discovered an identity from [8] through the novel use of the
ICE notation to represent the elements of POI(n)..
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3.3 Cardinality of POI(n)

3.3.1 Utilizing Original Notation

Define the set of elements of POI(n) of rank k by POIk(n). Then

|POIk(n)| =
(
n

k

)2

.

This is because k out of n numbers are selected for the domain and the range
independently. Once all the values in the domain and range are chosen, there
is only one possible arrangement by the requirement that order is preserved by
elements in POI(n). Then, since

POI(n) =
n⋃

k=0

POIk(n),

we know that

|POI(n)| =
n∑

k=0

(
n

k

)2

=

(
2n

n

)
.

The second equality can be proven in myriad ways, whether algebraic or com-
binatorial [12].

3.3.2 Utilizing ICE Notation

Definition Any integer 1 ≤ r ≤ n that satisfies both of the following conditions
is a splittable slot:

1) For all ℓ ≤ r, either ℓ is not in Dom(σ) or σ(ℓ) ≤ r.

2) For all ℓ > r, either ℓ is not in Dom(σ) or σ(ℓ) > r.

Definition Let σ ∈ POI(n). We denote the left-most splittable slot of σ
containing E by v, if it exists.

Remark The ICE notation of any partial identity contains only 1s and Fs,
for which no such v will exist.

Example 9 Let σ = 1IIECEIEIE =

(
1 2 3 4 5 6 7 8 9 10
− 4 5 − 6 − 8 − 10 −

)
.

We have splittable slots of 1, 6, 8, and 10, and v = 6.

Remark Note that n is always a splittable slot for any σ ∈ POI(n).

Definition Let 1 ≤ r ≤ n be a splittable slot. For σ ∈ POI(n), let σ|{1,...,r} or
σr ∈ POI(r) denote the restricted partial order preserving injection that
maps {1, 2, ..., r} to itself, such that, for i ∈ Dom(σ) and i ≤ r, σr(i) = σ(i).
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Similarly, let σr = σ|{r+1,r+2,...,n} ∈ POI(n− r) be defined by σr(i) = σ(i) for
i ∈ DOM(σ) and i > r.

Definition The concatenation of elements σ ∈ POI(r) and τ ∈ POI(n− r)
forms an element α ∈ POI(n) according to the following rule: α(i) = σ(i) for
1 ≤ i ≤ r and α(ℓ+ r) = τ(ℓ) + r for 1 ≤ ℓ ≤ n− r. We will denote α by σ||τ .

Example 10 For instance, for r = 3 and n = 7, we have

α =

(
1 2 3
3 − −

)
||
(
1 2 3 4
2 3 4 −

)
=

(
1 2 3 4 5 6 7
3 − − 5 6 7 −

)

Remark Note that r is a splittable slot of σ||τ . For α = σ||τ , the process
of taking the inverse over only σ can be written as α−1

r ||αr. For instance, if

α =

(
1 2 3 4 5 6
3 4 − − 6 −

)
, then 4 is a splittable slot, and

α−1
4 ||α4 =

(
1 2 3 4 5 6
− − 1 2 6 −

)
∈ POI(6).

Cardinality of the set of Partial Identities Let us find the number of
partial identities in POI(n) by utilizing the ICE notation. These elements have
no Is or Es. In other words, they only have gaps and fixed points in each slot,
with no restrictions on placing these symbols. Thus, given n slots, there are 2n

partial identities.

Henceforth, we shall count the number of σ ∈ POI(n) such that there ex-
ists at least one c ∈ Dom(σ) such that σ(c) ̸= c. Thus, c is neither a gap nor a
fixed point.

Lemma: Assume σ ∈ POI(n) and c ∈ DOM(σ) such that σ(c) ̸= c. Then
there exists a left-most splittable slot v which contains E, such that σv belongs
to either POIasc(v) or POIdes(v), but not both.

Proof We already know that all elements that are in both POIasc(n) and
POIdes(n) are partial identities. Since σ(c) ̸= c, σ is not a partial identity.
Thus, we now must prove that σv is in one of POIasc(v) or POIdes(v). Let us
proceed by way of contradiction. Suppose that σv is neither in POIasc(v) nor
POIdes(v). Then there must exist a splittable slot u, where u < v, that contains
E. This remark is illustrated in Examples 11 and 12 below. This contradicts
the definition of v as the left-most splittable slot that contains E.

Example 11 Let σ8 =

(
1 2 3 4 5 6 7 8
3 4 − − − − 5 7

)
for σ ∈ POI(8). Then
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σ8 ̸∈ POIasc(8) and σ8 ̸∈ POIdes(8), and it has a splittable slot at 4 < 8.

Example 12 Let σ7 =

(
1 2 3 4 5 6 7
− − 1 2 6 7 −

)
for σ ∈ POI(7). Once

again, we note that σ7 ̸∈ POIasc(7) and σ7 ̸∈ POIdes(7). It has a splittable slot
at 4 < 7.

Cardinality of the set of σv ∈ POI(v) Now, we return to counting the
number of possible elements σv ∈ POI(v) with v being the left-most splittable
slot containing E.

Since |POIasc(n)| = |POIdes(n)|, the total number of possible σv is twice the
total number of possible σv ∈ POIasc(v). Thus, the number of possible σv||σv

equals the number of σ−1
v ||σv.

Let us find the number of possible σv ∈ POIasc(v). We can now utilize the ICE
notation, as we have restricted the domain of consideration. We have several
combinatorial tasks: find the slots for Is and Es, arrange the Is and Es, and fill
in the remaining slots of σv with Cs, 1s, and Fs.

Let us first only consider Is and Es before we place other symbols. Suppose
that we have k Is and k Es in σv. We note that, by the definition of v, we place
E in slot v. We must choose which 2k − 1 of the remaining v − 1 slots in σv to
place the remaining Is and Es. This gives us

(
v−1
2k−1

)
possibilities.

Because we must always have a strictly greater number of Is and Es to the
left of any slot in σv, except v itself, by the definition of v, we fix an I to the
first of the chosen slots. Then, we arrange the remaining k − 1 Is and k − 1 Es
according to the usual requirements on ICE strings, with Ck−1 possibilities.

We then fill the remaining v − 2k slots with Cs, 1s, or Fs, depending on the
situation. In each slot, we either choose an A (as defined in Section 3.1.2) or 1,
resulting in 2v−2k possibilities. We have now identified the combinatorial tasks
required to construct σv ∈ POIasc(v). Explicitly, there are(

v − 1

2k − 1

)
Ck−1(2

v−2k)

such σv ∈ POIasc(v) with k Is and k Es. See Example 13 below for a visual
representation of such σv. Thus, recalling that |POIasc(v)| = |POIdes(v)|, there
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are

2

(
v − 1

2k − 1

)
Ck−1(2

v−2k)

such σv ∈ POIasc(v)
⋃
POIdes(v) with k Is and k Es. Using the Lemma, this

union comprises all such σv ∈ POI(v).

Fig. 5. An abstract construction where v = 6, n = 11, and k = 2. Slots 1, 2, 5, and 6 contain

Is and Es, leaving two slots that can be filled independently with either a 1 or C.

Example 13 We now demonstrate possible combinations for σ6 ∈ POIasc(6):

I I C C E E I I C 1 E E I I 1 C E E I I 1 1 E E
I C I C E E I C I 1 E E I 1 I C E E I 1 I 1 E E
I C C I E E I C 1 I E E I 1 C I E E I 1 1 I E E
F I C I E E F I 1 I E E 1 I C I E E 1 I 1 I E E
F F I I E E F 1 I I E E 1 C I I E E 1 1 I I E E
I C I E C E I C I E 1 E I 1 I E C E I 1 I E 1 E
I I C E C E I I C E 1 E I I 1 E C E I I 1 E 1 E
I I E C C E I I E C 1 E I I E 1 C E I I E 1 1 E
F I I C E E F I I 1 E E 1 I I C E E 1 I I 1 E E
F F I I E E 1 C I I E E F 1 I I E E 1 1 I I E E

Note that each column has the same choice of 1s and As, and each row has
Is and Es in the same places. We have four columns for the 2v−2k = 22 pos-
sibilities to choose between 1 and A for two slots. We have ten rows for the(
v−1
2k−1

)
=

(
5
3

)
= 10 possible ways to place the Is and Es. Then to find the total

number of σv ∈ POIasc(v), we multiply the number of rows with the number of
columns: 22 · 10 = 40 such σv.

Cardinality of the set of σv ∈ POI(n − v) Having found the number
of possibilities for σv ∈ POI(v), we now consider the n−v slots to the right of v
that remain to be filled as we construct σv. We know that σv is itself an element
of POI(n− v), which we concatenate with σv ∈ POI(v) to form σ ∈ POI(n).
This means that there are |POI(n − v)| ways to fill these remaining slots. We
know that

|POI(n− v)| =
(
2n− 2v

n− v

)
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as established in Section 3.3.1.

Summation Bounds The total number of σ ∈ POI(n) with fixed v and k,
where σ is not a partial identity, is(

v − 1

2k − 1

)
Ck−1(2

v−2k)

(
2n− 2v

n− v

)
.

We now sum through all possible values of v (2 to n; v ̸= 1 since by the defini-
tion of v, E is required to occupy slot v, but an ICE string cannot begin with
an E as we cannot end a path that was never initiated to begin with), and k (1

to ⌊v
2
⌋; we have k Is and k Es among the first v slots, so 2k ≤ v).

We now have bounds of the summation, but we can extend these bounds. Begin
summing v with v = 1, but note that the corresponding value is 0. We also sum

k when ⌊v
2
⌋ < k ≤ v, but once again, the corresponding values are 0. Thus, we

have shown the following theorem.

Theorem 4 For any n ≥ 0,

|POI(n)| = 2n + 2

n∑
v=1

v∑
k=1

(
v − 1

2k − 1

)
Ck−1(2

v−2k)

(
2n− 2v

n− v

)
,

or rephrased,(
2n

n

)
= 2n + 2

n∑
v=1

v∑
k=1

(
v − 1

2k − 1

)
Ck−1(2

v−2k)Cn−v(n− v + 1).

3.4 Future Work

The study of POI(n) clearly introduces a wealth of combinatorial identities
to analyze. By changing axioms and focusing on specific characteristics of el-
ements, we formulate different counting problems revolving around the same
monoid. We can also construct different notations to develop new ways of
counting elements. For instance, the position notation is an n-element string,
where slot k is occupied by the number of the path that k is in. This notation
reveals interesting patterns of POI(n).
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Efficiency of Horner’s Method for

Binomial Expansions

Cadence Pinkerton
Advisor: Dr. Adam Glesser

Abstract

Horner’s Method is an extremely efficient tool that can be implemented
in place of expansion using the binomial formula. In this paper, we re-
view the Horner’s Method algorithm and two applications: partial fraction
decomposition with repeated linear factors, and the Eisenstein criterion.
Within each application, we also demonstrate that Horner’s Method has
an organizational component that makes it easier to identify properties of
the methods. Lastly, we show that Horner’s Method is an order of mag-
nitude more efficient than binomial expansion by calculating the number
of computations required for each technique.

1 Introduction

Although the technique described in this paper is commonly called Horner’s
method, Horner himself attributed it to Lagrange [2], and its history dates back
to at least the Han Dynasty in China. It is an efficient multipurpose tool that
is known to simplify many computations. Our goal in this paper is to highlight
two of these applications which are not very well known and to evaluate how
efficient the method is compared to an obvious alternative, namely expansion
using the binomial formula.

The plan is as follows. In Section 2, we will demonstrate one variation of
Horner’s method crucial to the two applications in the paper. In Section 3, we
will show how to utilize Horner’s method to compute the partial fraction decom-
position of a rational function with repeated linear factors in the denominator,
as well as how to perform shifts of polynomials in conjunction with Eisenstein’s
irreducibility criterion. Finally, in Section 4, we show that solving either of the
above problems using the binomial theorem requires O

(
n3
)
operations, while

Horner’s method only requires O
(
n2
)
operations, thus verifying the increased

efficiency of Horner’s method.
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2 Horner’s Method

Prior to investigating the efficiency of Horner’s Method, we will review the
basic algorithm. Instead of giving an abstract presentation, it simpler to give
an example. Let f(x) = x3 − 3x2 + 3x+ 4. Our goal is to rewrite f in terms of
x− 2, i.e., of the form

f(x) = (x− 2)3 + a2(x− 2)2 + a1(x− 2) + a0.

The method is organized in a table (see Figure 1) with the shift (2) in the top
left-hand corner and the polynomial’s coefficients across the top.

1 -3 3 4
2 1 -1 1 6

1 1 3
1 3
1

Figure 1: Applying Horner’s method to write x3−3x2+3x+4 in terms of x−2.

In the table above, we copy the leading coefficient 1 four times vertically,
matching the number of coefficients. Note that the number coefficients for the
polynomial x3 + 1 is still four since we would write it as x3 + 0x2 + 0x+ 1 and
the coefficient list in that case would be 1 0 0 1. Let us focus on the second row
of the table. We multiply the shift term, 2, by the first 1 in the second row and
add it to the coefficient above in the next column, -3. The resulting number
is −1 which is recorded under the second coefficient. Repeating the same steps
with −1, we multiply our shift term 2 by −1 add it to the coefficient above in
the next column, 3, yielding a 1, which is placed in our table under the third
coefficient. Finally, we multiply the shift by 1 and add 4, indicating that a 6
is placed in the last column. Moving onto the second row, we are now going
to treat row 2 as our new coefficients. Using the new coefficients, we follow
the same steps used to create row 1. We finish row 2 after we have added to
the third coefficient. This pattern continues until you are left with your first
coefficient. Our new polynomial is f(x) = (x − 2)3 + 3(x − 2)2 + 3(x − 2) + 6.
The coefficients of this polynomial are the diagonals from our table, read from
south west to north east.

a3 a2 a1 a0

k a3 a3k + a2 a3k
2 + a2k + a1 a3k

3 + a2k
2 + a1k + a0

a3 2a3k + a2 3a3k
2 + 2a2k + a1

a3 3a3k + a2

a3

Figure 2: Using Horner’s method to write a33 +a2x
2 +a1x+a0 in terms of x−k. 

Generalizing the prior example, we can write f(x) = a3x3 + a2x2 + a1x + a0
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in terms of x− k (see Figure 2). We therefore obtain

f(x) = a3(x− k)3 + (3a3k + a2)(x− k)2 + (3a3k
2 + 2a2k + a1)(x− k)

+ (a3k
3 + a2k

2 + a1k + a0).

This generalized table displays makes clear that the first coefficient of our shifted
polynomial will always be the same as the original polynomial. The table only
includes coefficients, which is easy to implement computationally.

Let us compare this to the coefficients we get through binomial distribution.
Note that the simplest way to obtain the coefficients in this manner is to evaluate
f(x+ k).

a3(x+ k)3 + a2(x+ k)2 + a1(x+ k) + a0 = a3x
3 + 3a3kx

2 + 3a3k
2x+ a3k

3

+ a2x
2 + 2a2kx+ a2k

2

+ a1x+ a1k

+ a0.

Combining like terms, we obtain:

f(x+k) = a3x
3+(3a3k+a2)x

2+(3a3k
2+2a2k+a1)x+(a3k

3+a2k
2+a1k+a0)

and hence

f(x) = a3(x− k)3 + (3a3k + a2)(x− k)2 + (3a3k
2 + 2a2k + a1)(x− k)

+ (a3k
3 + a2k

2 + a1k + a0).

This is the same result we obtained using Horner’s method. An important
question is whether one approach is more computationally efficient than the
other. We will show in Section 4 that Horner’s method is an order of magnitude
more efficient.

3 Applications

3.1 Partial Fraction Decomposition with Repeated Linear
Factors

Partial fraction decomposition is a method used to express a rational function
as a sum of simpler fractions. It is often used to simplify integrals [4] and in
solving differential equations via the Laplace transform [1]. An example of a
partial fraction decomposition with repeated linear factors is:

x3 − x+ 1

(x− 2)5
=

A

(x− 2)
+

B

(x− 2)2
+

C

(x− 2)3
+

D

(x− 2)4
+

E

(x− 2)5
,

where the challenge is to determine the coefficients A, B, C, D, E.  This is  typi-
cally done either by using the binomial theorem or differentiation, both of which
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are extremely labor intensive here. Using Horner’s Method makes finding the
values quite simple. We construct our table in Figure 3 and obtain four coef-
ficients 1 6 11 7. The key insight is that we start substituting 7 for E and
working our way backward.

1 0 -1 1
2 1 2 3 7

1 4 11
1 6
1

Figure 3: Using Horner’s method to compute the partial fraction decomposition
of a rational function with repeated linear factors.

Therefore, we have E = 7, D = 11, C = 6, B = 1 and, since there is nothing
left, A = 0. The final partial fraction decomposition is

x3 − x+ 1

(x− 2)5
=

1

(x− 2)2
+

6

(x− 2)3
+

11

(x− 2)4
+

7

(x− 2)5.
.

Using Horner’s Method also reveals some properties of partial fractions. For
example, the first nonzero numerator will always be the leading coefficient of
the polynomial. Also, if the degrees of the numerator and denominator are k
and ℓ, respectively, then the first ℓ− k− 1 terms of the decomposition will have
coefficient 0.

3.2 The Eisenstein Criterion

The Eisenstein criterion [3] is a method used to determine whether a polynomial
with integer coefficients is irreducible. The criterion states that a polynomial is
irreducible if there exists a prime number such that the prime number divides
all coefficients except the leading coefficient and the square of the prime num-
ber does not divide the constant coefficient. For cases where a polynomial is
irreducible but the Eisenstein criterion is not satisfied, we can sometimes shift
the polynomial, resulting in coefficients that satisfy the criterion.

Notation 1. For f ∈ Z[x], the set of polynomials with coefficients in Z, let
f+k(x) = f(x+ k).

Definition 2. Let f ∈ Z[x]. If k ∈ Z such that f+k satisfies the Eisenstein
criterion, then f+k is an Eisenstein shift of f .

Lemma 3. If f ∈ Z[x], then following statements are equivalent.

1. f is irreducible.

2. f+k is irreducible for some k ∈ Z.

3. f+l is irreducible for all l ∈ Z.
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Proof. If f is irreducible, then f+0 is irreducible. If there exists k ∈ Z such that
f+k is irreducible, if ℓ ∈ Z, and if g, h ∈ Z[x] such that f+ℓ = gh, then

f+k = (f+ℓ)+(k−ℓ) = g+(k−ℓ)h+(k−ℓ).

Since f+k is irreducible, we conclude that one of g+(k−ℓ) or h+(k−ℓ) is a unit in
Z[x], i.e., is equal to ±1. Since shifting a constant does not change the constant,
we conclude that g or h equals ±1, and hence f+ℓ is irreducible. Finally, if f+ℓ

is irreducible for all ℓ ∈ Z, then f = f+0 is irreducible.

The above lemma motivates the use of Horner’s method since Horner’s
method gives us an efficient way to compute f+k for a given polynomial f .

Consider the example f(x) = x2 + x+ 1. In this case, no prime divides any
of the coefficients and so f fails to satisfy the Eisenstein Criterion. This is a
case where we could use an Eisenstein shift to meet these conditions. However,
applying Horner’s method (see Figure 4) we compute the Eisenstein shift f+1.

1 1 1
1 1 2 3

1 3
1

Figure 4: Using Horner’s method to compute f+1 where f(x) = x2 + x+ 1.

Thus, f+1(x) = x2 + 3x + 3, which is irreducible by Eisenstein with p = 3.
Had we not “guessed” correctly to use f+1, we could work generally, using the
Eisenstein shift f+k. For example, f+k(x) = (x+k)2+(x+k)+1. Distributing
using Horner’s method returns f+k(x) = x2 + (2k + 1)x + (k2 + k + 1). As
the coefficient of x is odd, we immediately see that there is not Eisenstein shift
after which f+k will satisfy the Eisenstein criterion for the prime 2. Through
trial and error (a computer can do this quite quickly!) we can check whether
different values for k lead to a successful Eisenstein shift.

1 1 1
k 1 k + 1 k2 + k + 1

1 2k + 1
1

Figure 5: Using Horner’s method to compute f+k where f(x) = x2 + x + 1.

4 Results

To demonstrate the efficiency of  Ho rner’s Me thod co mpared to  bi nomial ex-
pansion, we calculated the number of computations used for each. First, 
for
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binomial expansions, we separately count the number of multiplications and
additions. Using the binomial theorem, we have

n∑
j=0

aj(x+ k)j =
n∑

j=0

aj

j∑
i=0

(
j

i

)
xj−iki.

Reindexing and combining like terms we obtain

n∑
ℓ=0

[
n∑

m=ℓ

(
m

m− ℓ

)
amkm−ℓ

]
xℓ

For each (ℓ,m), we compute the number of multiplications needed to find(
m

m−ℓ

)
amkm−ℓ. This information is listed in Figure 6.(

m
m−ℓ

)
km−ℓ

(
m

m−ℓ

)
· am

(
m

m−ℓ

)
am · km−ℓ Total

m− ℓ > 1 2m− 4 m− ℓ− 1 1 1 3m− l − 3
m− ℓ ≤ 1 1 0 1 1 3

Figure 6: Computing the number of multiplications when using the binomial
expansion.

Unsurprisingly, the number of operations required will depend on the degree,
n, of the polynomial. As such, we pause for a moment here to recall some
standard notation from mathematics and computer science for evaluating the
order of magnitude of the number of operations, namely big-O notation.

Notation 4. Let f and g be two polynomials over Z. We write f ∈ O(g) if
there exists C > 0 such that, for all n ∈ Z≥1, we have |f(n)| ≤ Cg(n).

For example, 5n2 + 6n− 7 ∈ O
(
n2
)
since, for n ≥ 1, the triangle inequality

implies that

|5n2 + 6n− 7| ≤ 5n2 + 6n+ 7 ≤ 5n2 + 6n2 + 7n2 = 18n2.

We extend this notation a bit for our purposes.

Notation 5. If α, n, k ∈ Z≥0 and α ≤ n, then

n∑
ℓ=α

O
(
ℓk
)
=

{
n∑

ℓ=α

f(ℓ)

∣∣∣∣∣ f(ℓ) ∈ O
(
ℓk
)}

.

Theorem 6. If f is a function such that f(ℓ) ∈ O
(
ℓk
)
, then

n∑
ℓ=α

f(ℓ) ∈ O
(
nk+1

)
.
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Proof. If f(ℓ) ∈ O
(
ℓk
)
then there exists M > 0 such that |f(ℓ)| ≤ Mℓk.

Therefore,∣∣∣∣∣
n∑

ℓ=α

f(ℓ)

∣∣∣∣∣ ≤
n∑

ℓ=α

|f(ℓ)| ≤
n∑

ℓ=α

Mℓk = M
n∑

ℓ=α

ℓk

≤ M
n∑

ℓ=α

nk = M(n− α)nk = M(nk+1 − αnk) ∈ O
(
nk+1

)
.

Thus,
∑n

ℓ=α f(ℓ) ⊆ O
(
nk+1

)
.

Applying this to the resulting number of computations we have

n∑
ℓ=0

(
3 +

n∑
m=ℓ+2

(3m− ℓ− 3)

)
∈

n∑
ℓ=0

[
O(1) +

n∑
ℓ+2

O(m) + ℓ
n∑

m=ell+2

O(1)

]

⊆
n∑

ℓ=0

(
O(1) +O

(
n2
)
+ lO(n)

)
⊆ O

(
n2
) n∑
ℓ=0

O(1) +O(n)
n∑

ℓ=0

O(ℓ)

⊆ O
(
n3
)
.

Thus, our number of multiplications is of order O
(
n3
)
. Next, we find the

number of additions. For each (ℓ,m), we have n−ℓ+1 choices, and so the order
of the total number of additions is:

n∑
l=0

n− l + 1 ∈ O
(
n2
)
.

Combining the number of additions and multiplications results, the total
number of computations for binomial expansion is order O

(
n3
)
.

Now we investigate Horner’s Method. Our table will look something like
what is found in Figure 7.

a0 · · · an

k a0 · · · cn
a0 · · · cn−1

...
... c1

a0 = c0

Figure 7: A generic example of Horner’s method.

A convenient property within the table is that the number of multiplications
is equal to the number of additions. This implies that the number of total
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computations is equal to 2(# of multiplications). Each row contains a number
of multiplications equal to the index of the last term, i.e.,

# of multiplications =
n∑

ℓ=0

ℓ ∈ O
(
n2
)
.

Comparing the two methods, binomial expansion is order O
(
n3
)
and Horner’s

Method is order O
(
n2
)
, an order of magnitude more efficient! The table also

adds an organizational component that makes it visually easier to follow.

5 Conclusion

While Horner’s Method has a long history, new applications for this technique
continue to be discovered. This paper examined two such applications and in-
vestigated the efficiency of Horner’s Method compared to expansion using the
binomial formula. In Section 2, we reviewed a common variation of Horner’s
Method and the basic algorithm to provide motivation for our suggested appli-
cations. An important aspect of this method is the table used to visualize the
computations. Using this table, we can focus directly on the polynomial’s coef-
ficients and the shift term, adding an organizational component to the analysis.

In Section 3, we introduced Horner’s Method for partial fraction decompo-
sition with repeated linear factors and the Eisenstein criterion. With partial
fraction decomposition, Horner’s Method provides the desired coefficients for
the sum of simpler fractions while revealing properties that are not commonly
observed using other methods. For instance, the first nonzero numerator is
the leading coefficient of the polynomial. Additionally, we note that the first
l − k − 1 terms of the decomposition will have coefficient 0, where the degrees
of the numerator are k and the degrees of the denominator are l.

Following partial fraction decomposition, we introduced the Eisenstein cri-
terion and the Eisenstein shift. When shifting a given polynomial f , we can
apply Horner’s method to easily and efficiently compute f+k. Using the shift
f+k, Horner’s method provides us with the general coefficients, which can be
evaluated for different values of k to check for a successful Eisenstein shift.

In Section 4, we investigated the efficiency of Horner’s Method compared to
binomial expansion by calculating the number of computations required to per-
form each method. The calculations verify that solving problems using Horner’s
Method (order O(n2)) is more efficient by an order of magnitude than solving
problems using binomial expansion (order O(n3)).

Overall, Horner’s Method is a more efficient and organized alternative to
binomial expansion that can be applied in a variety of methods.
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Abstract

Inspired by its uses in meteorology, we study the frontogenesis function
obtained from some simple scalar fields and notable vector fields. We focus
especially on vector fields arising from complex-analytic functions. Based
on our observations, we prove several results and offer one conjecture.

1 Introduction

The subject of meteorology, which studies weather and other atmospheric phe-
nomena, affects all of our l ives. Its impacts range from the everyday convenience 
of checking the forecast for tomorrow’s temperature to lifesaving predictions 
about major storms and heat waves. Behind the scenes, meteorology is also 
an intensively mathematical subject. These mathematical models, derived from 
the physical principles of fluids, have made the endeavors of weather forecasting 
so successful.

Our aim in this article is to go the other way. Not to accurately model 
the weather using mathematics, but rather to apply mathematical tools used in 
meteorology to situations of purely mathematical interest. One motivation is 
that these mathematical situations might be regarded as overly simple, idealized 
“toy models” of weather. However, the study of natural phenomena has always 
led to interesting new mathematics, and it is in this spirit that we undertake 
our investigation.

In this paper we focus upon one specific meteorological c oncept r elated to 
fronts, which are boundaries between air masses of different t emperatures (see 
Figure 1). When one passes through a front, a large temperature change occurs 
over a relatively short distance. The temperature at each point is represented 
by a type of function called a scalar field, a nd t he l arge t emperature change 
implies the magnitude of its gradient vector field i s large near a  front.

If, at some given point and given moment, the temperature gradient is in-
creasing in magnitude, it might indicate that a front is beginning to form or 
continuing to strengthen there, a process called frontogenesis. Conversely, if the 
temperature gradient is decreasing, it could indicate the breakdown of a front;
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Figure 1: Visualization of a front between warm and cold air masses. (Source:
Thomson Higher Education)

this is called frontolysis. The actions of the wind can have significant frontoge-
netic or frontolytic effects, since wind can move areas of hot and cold air closer 
together or farther apart. Wind is represented by a vector field, s ince i t has 
a direction and magnitude at each point. The frontogenesis function, which is 
our main object of study in this paper, quantifies the frontogenetic effect of  the 
wind on the temperature field.

Scalar fields ( such as the temperature) and vector fields (such as  the wind) 
are common objects with applications in several branches of science, but are 
also of interest in their own right. Thus, the frontogenesis function provides a 
way for a given scalar field and vector field can “interact” with each ot her. Our 
approach is start with some interesting vector fields and to see how they affect 
two simple temperature fields ( see F igure 2 ). The f rontogenesis f unction that 
results can then be viewed as a compelling secondary feature of the vector field.

Here is an outline of the paper. In §2, we set up our notation and define 
the frontogenesis function. In §3, we illustrate these concepts with a few ex-
amples, and we prove some general results about them in §4. Finally, in §5 we 
study frontogenesis in the context of vector fields arising from complex analytic 
functions, proving some results and making one conjecture about these.

2 Basic formulas and notation
We model the wind velocity (i.e., the wind speed and direction) using a vector 
field. O n l arge s cales, t he v ertical c omponent o f w ind i s s mall c ompared to 
its horizontal component, and so we take the simplified v iew t hat t he wind 
velocity is a 2-dimensional vector field, r epresenting t he movement o f a ir over 
a surface. We take this surface to be flat (much a s t he s urface o f t he e arth is 
approximately flat in small enough regions) and represent points using Cartesian 
coordinates (x, y). The wind velocity vector field will then denoted by W(x, y) = 
⟨u(x, y), v(x, y)⟩.
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Figure 2: Contour maps of the temperature fields TH(x, y) = x (left) and

TR(x, y) =
√
x2 + y2 (right).

The temperature distribution in our 2-dimensional atmosphere is given by
a two-dimensional scalar field that we denote as T (x, y). Two temperature
functions that we will use in this paper are

TH(x, y) = x, (1)

which represents a temperature distribution that increases uniformly in the left-
to-right direction (i.e., the “horizontal” direction), and

TR(x, y) =
√

x2 + y2, (2)

which represents a temperature distribution that increases uniformly in the
radial direction away from the origin. Contour maps for these temperature
fields are shown in Figure 2.

Given a wind velocity field W = ⟨u, v⟩ and a temperature function T , we
define the frontogenesis function FW,T (x, y) associated to W and T as

FW,T (x, y) =
1

|∇T |

[(
−∂T

∂x

)(
∂u

∂x

∂T

∂x
+

∂v

∂x

∂T

∂y

)
−
(
∂T

∂y

)(
∂u

∂y

∂T

∂x
+

∂v

∂y

∂T

∂y

)]
.

When it does not cause confusion, we will often denote FW,T (x, y) simply by 
F(x, y) to make the notation simpler.

The derivation and physical meaning behind the frontogenesis function is 
discussed in detail in [2]. Roughly speaking, F(x, y) represents the rate of 
change of |∇T |, the magnitude of the gradient ∇T , as a parcel of air at (x, y) 
moves along with the wind W. As mentioned in §1, |∇T | should be large near 
a front, and therein lies the interest in determining its rate of change. When 
F(x, y) > 0, and we view this as a sign that the wind vector field is causing the 
(magnitude of the) gradient of T to increase, and we say that frontogenesis is 
occurring at (x, y). Conversely, F < 0 indicates frontolysis.
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3 Some preliminary examples

To illustrate the frontogenesis function, we start with an example having a
specific wind velocity field and temperature function.

Example 3.1. Let W(x, y) =
〈
x2 − y2,−2xy

〉
and T = TR =

√
x2 + y2. The

left side of Figure 3 shows the vector field W overlaid with the contour map of
TR. First we note that

∂T

∂x
=

x√
x2 + y2

,
∂T

∂y
=

y√
x2 + y2

,

and therefore

|∇T | =

√(
∂T

∂x

)2

+

(
∂T

∂y

)2

=

√
x2 + y2

x2 + y2
= 1.

Moreover,

∂u

∂x
=

∂

∂x

(
x2 − y2

)
= 2x,

∂u

∂y
=

∂

∂y

(
x2 − y2

)
= −2y,

∂v

∂x
=

∂

∂x

(
− 2xy

)
= 2y,

∂v

∂y
=

∂

∂y

(
− 2xy

)
= −2x.

Thus,

FW,TR
(x, y) =

1

|∇T |

[(
−∂T

∂x

)
·
(
∂u

∂x
· ∂T
∂x

+
∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)
·
(
∂u

∂y
· ∂T
∂x

+
∂v

∂y
· ∂T
∂y

)]

= − 1

|∇T |

[(
∂T

∂x

)2(
∂u

∂x

)
+

(
∂T

∂x

∂T

∂y

)(
∂v

∂x

)

+

(
∂T

∂x

∂T

∂y

)(
∂u

∂y

)
+

(
∂T

∂y

)2(
∂v

∂y

)]

= (−1)

[(
x2

x2 + y2

)(
∂u

∂x

)
+

(
xy

x2 + y2

)(
∂v

∂x

)
+

(
xy

x2 + y2

)(
∂u

∂y

)
+

(
y2

x2 + y2

)(
∂v

∂y

)]
= − 1

x2 + y2
[
x2 · 2x+ xy · (−2y) + xy · (−2y) + y2 · (−2x)

]
=

−2x3 + 6xy2

x2 + y2
.
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Figure 3: Plot of vector field W from Example 3.1 overlaid with contour map
of TR (left) and contour map of FW,TR

(right).

The right side of Figure 3 shows the contour map of F . In comparing the left
and right diagrams, one gets a sense of how W and T interact to create positive
or negative values of F . For instance, in the left figure along the negative x-axis,
the “wind velocity” vectors move left-to-right and decrease in magnitude as one
approaches the origin. This decreasing magnitude means there is a net influx
of “air” of different temperature at each point on the negative x-axis. As a
result, the temperature gradient at those points ought to strengthen, and this
is reflected on the right side of Figure 3, which shows F > 0 along the negative
x-axis. A similar, but opposite, situation occurs along the positive x-axis. On
the other hand, at points such as those on the y-axis, the wind velocity vectors
are aligned with the level curves of the temperature function, and do not cause
air of different temperatures to mix; in those places, we see that F = 0.

We will revisit Example 3.1 later on, when we view the vector field〈
x2 − y2,−2xy

〉
as arising from the complex analytic function f(z) = z2; see

Example 5.4. Next we consider how F simplifies for the special temperature
functions TH and TR.

Example 3.2. Let W = ⟨u, v⟩ be any wind velocity field and let T = TH = x.

∂T

∂x
= 1,

∂T

∂y
= 0,

and therefore

|∇T | =

√(
∂T

∂x

)2

+

(
∂T

∂y

)2

=

√
(1)

2
+ (0)

2
= 1.
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Then,

FW,TH
(x, y) =

1

|∇T |

[(
−∂T

∂x

)(
∂u

∂x
· ∂T
∂x

+
∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂u

∂y
· ∂T
∂x

+
∂v

∂y
· ∂T
∂y

)]
=

1

|∇T |

[
(−1)

(
∂u

∂x
· (1) + ∂v

∂x
· (0)

)
− (0)

(
∂u

∂y
· (1) + ∂v

∂y
· 0
)]

= −∂u

∂x
.

Example 3.3. Let W(x, y) = ⟨u, v⟩ be a general wind velocity field and T =

TR =
√

x2 + y2. As we calculated in Example 3.1, we have

∂T

∂x
=

x√
x2 + y2

,
∂T

∂y
=

y√
x2 + y2

, |∇T | = 1.

Therefore,

FW,TR
(x, y) =

1

|∇T |

[(
−∂T

∂x

)(
∂u

∂x
· ∂T
∂x

+
∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂u

∂y
· ∂T
∂x

+
∂v

∂y
· ∂T
∂y

)]

= − 1

|∇T |

[(
∂T

∂x

)2(
∂u

∂x

)
+

(
∂T

∂x

∂T

∂y

)(
∂v

∂x

)

+

(
∂T

∂x

∂T

∂y

)(
∂u

∂y

)
+

(
∂T

∂y

)2(
∂v

∂y

)]

= −

[(
∂T

∂x

)2(
∂u

∂x

)
+

(
∂T

∂y

)2(
∂v

∂y

)
+

(
∂T

∂x

∂T

∂y

)[(
∂v

∂x

)
+

(
∂u

∂y

)]]

= −
[(

x2

x2 + y2

)(
∂u

∂x

)
+

(
y2

x2 + y2

)(
∂v

∂y

)
+

(
xy

x2 + y2

)[(
∂v

∂x

)
+

(
∂u

∂y

)]]

= − 1

x2 + y2

[
x2

(
∂u

∂x

)
+ y2

(
∂v

∂y

)
+ xy

(
∂v

∂x
+

∂u

∂y

)]
.
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4 Some general properties of the frontogenesis
function

We begin by showing what happens to frontogenesis when wind directions are
all reversed:

Proposition 4.1. If we replace W = ⟨u, v⟩ by −W = ⟨−u,−v⟩, then the sign
of the frontogenesis function changes; in symbols, F−W,T (x, y) = −FW,T (x, y).

Proof.

F−W,T (x, y) =
1

|∇T |

[(
−∂T

∂x

)(
∂(−u)

∂x

∂T

∂x
+

∂(−v)

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂(−u)

∂y
· ∂T
∂x

+
∂(−v)

∂y
· ∂T
∂y

)]

=
1

|∇T |

[(
−∂T

∂x

)(
−∂u

∂x
· ∂T
∂x

− ∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
−∂u

∂y
· ∂T
∂x

− ∂v

∂y
· ∂T
∂y

)]

=
(−1)

|∇T |

[(
−∂T

∂x

)(
∂u

∂x
· ∂T
∂x

+
∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂u

∂y
· ∂T
∂x

+
∂v

∂y
· ∂T
∂y

)]
= −FW,T (x, y)

Due to Proposition 4.1, we need not expend effort calculating F for −W
once we have already calculated it for W. Next we indicate two special ways
that the frontogenesis function can vanish:

Proposition 4.2. If W is a constant vector field, then frontogenesis is zero.

Proof. If W = ⟨a, b⟩ for a, b some constants, then
∂u

∂x
=

∂v

∂y
=

∂u

∂y
=

∂v

∂x
= 0.

Hence,

FW,T (x, y) =
1

|∇T |

[(
−∂T

∂x

)(
∂u

∂x
· ∂T
∂x

+
∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂u

∂y
· ∂T
∂x

+
∂v

∂y
· ∂T
∂y

)]
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=
1

|∇T |

[(
−∂T

∂x

)(
0 · ∂T

∂x
+ 0 · ∂T

∂y

)
−
(
∂T

∂y

)(
0 · ∂T

∂x
+ 0 · ∂T

∂y

)]
= 0.

Proposition 4.3. If W’s first component u does not depend on x and T only
depends on x, then FW,T (x, y) = 0.

Similarly, W’s second component v does not depend on y and T only depends
on y, then FW,T (x, y) = 0.

Proof. If T = T (x) depends on x only, then
∂T

∂y
= 0. Similarly, if u does not

depend upon x, then
∂u

∂x
= 0. Therefore,

FW,T (x, y) =
1

|∇T |

[(
−∂T

∂x

)(
∂u

∂x
· ∂T
∂x

+
∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂u

∂y
· ∂T
∂x

+
∂v

∂y
· ∂T
∂y

)]

=
1

|∇T |

[
−
(
∂T

∂x

)
·
(
0 · ∂T

∂x
+

∂v

∂x
· 0
)

− (0)

(
∂u

∂y
· ∂T
∂x

+
∂v

∂y
· 0
)]

= 0.

The second part of the proposition is proved in a similar way: if
∂v

∂y
= 0 and

∂T

∂x
= 0 then

FW,T (x, y) =
1

|∇T |

[(
−∂T

∂x

)(
∂u

∂x
· ∂T
∂x

+
∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂u

∂y
· ∂T
∂x

+
∂v

∂y
· ∂T
∂y

)]

=
1

|∇T |

[
(0) ·

(
∂u

∂x
· 0 + ∂v

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂u

∂y
· 0 + 0 · ∂T

∂y

)]
= 0.
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5 Vector fields arising from analytic functions

For a complex function f(z) defined on a domain D in the complex plane, it
is traditional to denote the real and imaginary parts by u and v, respectively.
However, to avoid confusion with the components of the wind velocity field
W = ⟨u, v⟩, we will instead put p = Re(f) and q = Im(f). There are two
related vector fields on D that arise from f :

Definition 5.1. Let f(z) = f(x+ iy) = p(x, y)+ iq(x, y) be a complex function.
Let us say that the standard vector field of f is ⟨Re(f), Im(f)⟩ = ⟨p, q⟩, and the
Pólya vector field of f is ⟨Re(f),−Im(f)⟩ = ⟨p,−q⟩.
Remark. While the standard vector field of f may seem like the most natural
one to associate to it, the Pólya vector field turns out to be more useful for
relating the calculus of complex functions with the calculus of vector fields. In
particular, one can express complex line integrals of f(z) in terms of work and
flux integrals of its Pólya vector field. See the beautiful book [3] for more on
these connections. It is worth noting that the Pólya vector field of f is the
standard vector field of its complex conjugate function f̄ .

Proposition 5.2. Suppose that f(z) is analytic on D. If W is the standard
vector field of f , then

FW,T(x, y) = |∇T |
(
−∂p

∂x

)
= − |∇T |

(
Re f ′(z)

)
.

Proof. Since f = p + iq is analytic on D, the Cauchy-Riemann equations [1]
give

∂p

∂x
=

∂q

∂y
and

∂p

∂y
= − ∂q

∂x
.

Therefore, with W = ⟨p, q⟩ we have:

FW,T (x, y) =
1

|∇T |

[(
−∂T

∂x

)(
∂p

∂x
· ∂T
∂x

+
∂q

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂p

∂y
· ∂T
∂x

+
∂q

∂y
· ∂T
∂y

)]
=

1

|∇T |

[
−
(
∂T

∂x

)2(
∂p

∂x

)
−
(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)

−
(
∂T

∂x

∂T

∂y

)(
∂p

∂y

)
−
(
∂T

∂y

)2(
∂q

∂y

)]

=
1

|∇T |

[
−
(
∂T

∂x

)2(
∂p

∂x

)
−
(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)

−
(
∂T

∂x

∂T

∂y

)(
∂p

∂y

)
−
(
∂T

∂y

)2(
∂p

∂x

)]
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=
1

|∇T |

[
−

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)(

∂p

∂x

)
−
(
∂T

∂x

∂T

∂y

)(
−∂p

∂y
+

∂p

∂y

)]
=

1

|∇T |

[
−

((
∂T

∂x

)2

+

(
∂T

∂y

)2
)(

∂p

∂x

)]

=
1

|∇T |

[
−|∇T |2

(
∂p

∂x

)]
= |∇T |

(
−∂p

∂x

)
.

Finally, for an analytic function f = p+ iq one has df
dz = ∂p

∂x + i ∂q∂x , from which
we obtain

FW,T (x, y) = −|∇T |
(
Re f ′(z)

)
.

Proposition 5.3. Suppose that f(z) is analytic on D. If W̃ is the Pólya vector
field of f , then

FW̃,TR
=

1

|∇T |

[((
∂T

∂y

)2

−
(
∂T

∂x

)2
)(

∂p

∂x

)
+ 2

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)]
.

Proof. Again, we apply the Cauchy-Riemann equations to the analytic function
f = p+ iq:

∂p

∂x
=

∂q

∂y
and

∂p

∂y
= − ∂q

∂x
.

With the Pólya vector W̃= ⟨p,−q⟩, we put u = p and v = −q into the fronto-
genesis formula:

FW̃,T (x, y) =
1

|∇T |

[(
−∂T

∂x

)(
∂p

∂x
· ∂T
∂x

+
∂(−q)

∂x
· ∂T
∂y

)
−
(
∂T

∂y

)(
∂p

∂y
· ∂T
∂x

+
∂(−q)

∂y
· ∂T
∂y

)]
=

1

|∇T |

[
−
(
∂T

∂x

)2(
∂p

∂x

)
+

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)

−
(
∂T

∂x

∂T

∂y

)(
∂p

∂y

)
+

(
∂T

∂y

)2(
∂q

∂y

)]
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=
1

|∇T |

[
−
(
∂T

∂x

)2(
∂p

∂x

)
+

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)

+

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)
+

(
∂T

∂y

)2(
∂p

∂x

)]

=
1

|∇T |

[(
−
(
∂T

∂x

)2

+

(
∂T

∂y

)2
)(

∂p

∂x

)
+ 2

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)]

=
1

|∇T |

[((
∂T

∂y

)2

−
(
∂T

∂x

)2
)(

∂p

∂x

)
+ 2

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)]
.

Example 5.4. Let us illustrate these concepts with the analytic function f(z) =
z2. Since (x+iy)2 = (x2−y2)+i(2xy), the standard vector field of f isW(x, y) =〈
x2 − y2, 2xy

〉
while the Pólya vector field of f is W̃ =

〈
x2 − y2,−2xy

〉
.

(a) Standard vector field
Let W(x, y) =

〈
x2 − y2, 2xy

〉
. By Proposition 5.2, the frontogenesis function of

W on any temperature field T is

FW,T (x, y) = |∇T |
(
−∂p

∂x

)
= −2x|∇T |.

Alternatively, since f ′(z) = 2z, we could obtain the same answer by writing

FW,T (x, y) = −|∇T |(Re(2z)) = −|∇T |
(
Re(2x+ i2y)

)
= −2x|∇T |.

For the special temperature fields TH and TR we have |∇T | = 1 everywhere,
and so

FW,TH
= FW,TR

= −2x.

(b) Pólya vector field
Now we let W̃(x, y) =

〈
x2 − y2,−2xy

〉
. By Proposition 5.3, the frontogenesis

function of W̃ on any temperature field T is

FW̃,TR
=

1

|∇T |

[((
∂T

∂y

)2

−
(
∂T

∂x

)2
)
(2x) + 2

(
∂T

∂x

∂T

∂y

)
(2y)

]
.
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Since for the special temperature fields TH and TR we have |∇T | = 1 everywhere,

FW̃,TH
=(0− 1)(2x) + 2 (0 · 1) (2y)
=− 2x

FW̃,TR
=
1

1

[(
y2

x2 + y2
− x2

x2 + y2

)
(2x) + 2

(
xy

x2 + y2

)
(2y)

]
=

(
y2 − x2

x2 + y2

)
(2x) +

(
4xy2

x2 + y2

)
=
2xy2 − 2x3 + 4xy2

x2 + y2

=
−2x3 + 6xy2

x2 + y2
.

We remark that this is the same answer that we obtained in Example 3.1, before
we had developed any of the propositions used in this example.

Example 5.5. The function f(z) = 1
z is not entire, but only analytic on the

punctured complex plane C \ {0}. We have f(z) = 1
x+iy = x−iy

(x+iy)(x−iy) =

x
x2+y2 + i

(
−y

x2+y2

)
.

(a) Standard vector field

The standard vector field of f(z) = 1
z isW = ⟨Re(f), Im(f)⟩ =

〈
x

x2+y2 ,− y
x2+y2

〉
.

Applying Proposition 5.2, the frontogenesis function of W on any temperature
field T is

FW,T (x, y) = |∇T |
(
−∂p

∂x

)
= |∇T |

(
−
(

−x2 + y2

(x2 + y2)2

))
= |∇T |

(
x2 − y2

(x2 + y2)2

)
.

In particular, for the special temperature fields TH and TR we have |∇T | = 1
everywhere, and so

FW,TH
= FW,TR

=
x2 − y2

(x2 + y2)2
=

(x− y)(x+ y)

(x2 + y2)2
.

(b) Pólya vector field

The Pólya vector field of f(z) = 1
z is W̃ = ⟨Re(f),−Im(f)⟩ =

〈
x

x2+y2 ,
y

x2+y2

〉
.

By Proposition 5.3, the frontogenesis function FW̃,TR
for any temperature field

T is

FW̃,T =
1

|∇T |

[((
∂T

∂y

)2

−
(
∂T

∂x

)2
)(

∂p

∂x

)
+ 2

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)]
.
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Applying this to TH = x gives

FW̃,TH
= (1)

[(
(0)

2 − (1)
2
)(∂p

∂x

)
+ 2 (0)

(
∂q

∂x

)]
= −∂p

∂x

= −
(

−x2 + y2

(x2 + y2)2

)
=

x2 − y2

(x2 + y2)2

and applying it to TR =
√
x2 + y2 gives

FW̃,TR
=

1

|∇T |

[((
∂T

∂y

)2

−
(
∂T

∂x

)2
)(

∂p

∂x

)
+ 2

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)]

=(1)

[(
y2 − x2

x2 + y2

)(
y2 − x2

(x2 + y2)2

)
+ 2

(
xy

x2 + y2

)(
2xy

(x2 + y2)2

)]
=
(y2 − x2)2

(x2 + y2)3
+

4x2y2

(x2 + y2)3

=
y4 − 2x2y2 + x4 + 4x2y2

(x2 + y2)3

=
y4 + 2x2y2 + x4

(x2 + y2)3

=
(y2 + x2)2

(x2 + y2)3

=
1

x2 + y2
.

Calculations such as Examples 5.4 and 5.5 lead us to two observations. The
first observation is one that holds for all analytic functions, and is one that we
are able to prove:

Proposition 5.6. Let f(z) be an analytic function on D, let W denotes its
standard vector field, and W̃ denote its Pólya vector field. Then,

FW,TH
= FW,TR

= FW̃,TH
= −Re f ′(z)

Proof. For the standard vector field W of f(z), this follows immediately from
Proposition 5.2 and the fact that |∇TH | = |∇TR| = 1. Moreover, Proposition
5.3 gives

FW̃,TH
=

1

1
·
((

02 − 12
)(∂p

∂x

)
+ 2 (1 · 0)

(
∂q

∂x

))
= −∂p

∂x
= −Re f ′(z).

100



Our second observation involves the interaction Pólya vector field of f and
the radial temperature distribution TR. While not as a simple as the formula
in the previous proposition, the frontogenesis function in this case takes on an
intriguing form that relates the analytic functions f ′ and z2:

Proposition 5.7. Let f(z) be an analytic function on D, W̃ be the Pólya vector
field of f(z), Ṽ be the Pólya vector field of f ′(z), and U =

〈
x2 − y2, 2xy

〉
be

the standard vector field of g(z) = z2. Then

FW̃,TR
= − 1

x2 + y2

(
U · Ṽ

)
. (3)

Proof. By Proposition 5.3 we have

FW̃(zn),TR
(x, y) =

1

|∇T |

[((
∂T

∂y

)2

−
(
∂T

∂x

)2
)(

∂p

∂x

)
+ 2

(
∂T

∂x

∂T

∂y

)(
∂q

∂x

)]

=
1

1

[(
−x2 + y2

x2 + y2

)(
∂p

∂x

)
+

(
2xy

x2 + y2

)(
∂q

∂x

)]
=− 1

x2 + y2

[
(x2 − y2)

(
∂p

∂x

)
+ (2xy)

(
− ∂q

∂x

)]
=− 1

x2 + y2

[〈
x2 − y2, 2xy

〉
·
〈
∂p

∂x
,− ∂q

∂x

〉]
.

The first factor in the dot product above is U. Remembering the formula
df
dz = ∂p

∂x + i ∂q∂x , we see that the second factor is the Pólya vector field Ṽ of f ′(z).
This establishes (3).

Remark. With notation as in Proposition 5.7, the Cauchy-Riemann equation
applied to f allows gives

Ṽ =

〈
∂p

∂x
,− ∂q

∂x

〉
=

〈
∂p

∂x
,
∂p

∂y

〉
= ∇p = ∇(Re f(z)).

So we can alternatively write (3) as

FW̃,TR
= − 1

x2 + y2

(
U · ∇(Re f(z))

)
.

Finally, when we look at the power functions f(z) = zn, for an integer n, we
have observed an an interesting pattern. Since we have so far not found a proof
of this, we state it as:

Conjecture 5.8. Let f(z) = zn, for n ∈ Z, and let W̃ be the Pólya vector field
of f . Then

FW̃,TR
= − n

x2 + y2
Re(zn+1).

101



We observe this in Example 5.4 when f(z) = z2 and

FW̃,TR
=

−2x3 + 6xy2

x2 + y2
= − 2

x2 + y2
(x3 − 3xy2) = − 2

x2 + y2
Re(z3),

and in Example 5.5 when f(z) = z−1 and

FW̃,TR
=

1

x2 + y2
= − (−1)

x2 + y2
· 1 = − (−1)

x2 + y2
Re(z0).

In Figure 4, we illustrate vector fields and resulting frontogenesis functions
appearing in this conjecture for n = −3,−4, . . . ,−7. We note that the contour
map of F in these plots yields the shape of a “flower” in the center, where the
computer automatically cuts off its plot of values that increase without bound
as one approaches the origin. For f(z) = z−k, k a positive integer, Conjecture
5.8 predicts that

FW̃,TR
= − (−k)

x2 + y2
Re(z−k+1) =

k

x2 + y2
Re

(
1

zk−1

)

=
k

x2 + y2
Re

(
z̄k−1

(|z|2)k−1

)
=

k

(x2 + y2)k
Re(zk−1)

The number of “petals” of the flower (which, for z−k, is 2(k− 1)) related to the
regions of alternating sign for the function Re(zk−1) as one circles the origin.
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−3,−4,−5,−6,−7 (from top to bottom) overlaid with contour map of TR. Right
images: Contour map of frontogenesis function resulting from setup in image to
its left.

Figure 4: Left images: Plot of the Pólya vector field o f f (z) =  z n f or n  =
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6 Conclusion

We have explored mathematical aspects of the frontogenesis function F(x, y)
arising from 2-dimensional meteorological models of the interaction of wind and
temperature. From the mathematical standpoint, this function arises when we
pair a vector field W(x, y) with a scalar scalar field T (x, y). By restricting our
focus to the simple scalar fields TH and TR, our viewpoint has been to see what
kinds of frontogenesis functions arise when we pair these simple scalar fields
with interesting, more complicated sorts of vector fields. In §4 we gave some
results that apply to a wide class of vector fields W, while in §5 we studied
the vector fields come from analytic functions. In the latter section, we found
several interesting patterns, were able to verify most of them with proofs, and
left one observed pattern as a conjecture.

In addition to proving this conjecture and others like it, there are many
ways that this work can be extended. As just one example, one could instead
start with simple vector fields W and choose interesting scalar fields (e.g., two-
variable harmonic functions, which are the real and imaginary parts of complex
analytic functions) and see what shape F(x, y) takes.
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