Multimodal Biometrics for Enhanced Mobile Device Security

By Mikhail Gofman

Biometrics

- Science of identifying people based on what they are:
 - Physical Traits (e.g., face, fingerprint...)
 - Behavioral Traits (e.g., speech, gait, writing...)
- In theory strongest form of authentication
 - Faking biometrics is supposed to be difficult

Mobile Device Biometrics

- Practically in every modern smartphone
- A natural choice for mobile security:
 - Passwords/PINs: users pick easily guessable words
 - Security Tokens/Smartwatches/etc: not always convenient for unlocking a device
 - With biometrics users do not have to remember or carry anything!
- But how secure are current systems?

Mobile Biometrics...the facts of life

- We don't really know...
- Manufacturers (e.g., iPhone, Samsung, etc) publish few details...:
 - What is verification accuracy? How was it measured?
 - What type of biometric data was it tested on (diverse individuals, different conditions etc)?
 - "We tested it on some people in our office"
 - How resistant is the system to faked (i.e., spoofed) biometrics?
 - Underlying matching algorithms? No details...

Mobile Biometrics: Expectation vs Reality

• Fingerprints:

- iPhone 5s TouchID bypassed within a week of release...similar issues with other iPhones
- All Samsung Galaxy fingerprint readers bypassed with fake fingers

Samsung S10 Expectation: "next generation vault-like security"

Samsung S10 Reality:

The Samsung Galaxy S10's ultrasonic fingerprint scanner is hacked

Source: https://www.grahamcluley.com

Mobile Biometrics: Expectation vs Reality

• Face Recognition: iPhone's FaceID

Expectation: "Face ID securely unlocks iPhone X. It provides intuitive and secure authentication enabled by the TrueDepth camera..." apple.com

Reality: 3D Masks, kids unlocking parents' phones, etc

Face ID shown unlocking for family members who aren't alike

Source: https://bgr.com

Mobile Biometrics: Expectation vs Reality

 Iris Recognition: a feature in Samsung Galaxy S8/S8+ and S9/S9+:

Expectation: Samsung:

Reality:

Samsung Galaxy S8 Iris Scanner Hacked In Three Simple Steps

Forbes.com

SAMSUNG

It's Alarmingly Easy to Hack the Samsung Galaxy S8's Iris Scanner

Is Mobile Biometric Security a Shattered Illusion?

- Researchers (including us) do not think so…just more is needed
- Remember?

In theory strongest form of authentication

- Faking biometrics is supposed to be difficult
- Let's make it difficult!

Detect Spoofed Biometrics

- Researchers (including us) do not think so…just more is needed
- Anti-spoofing techniques to detect fake biometrics
 - Hardware: sensors that detect whether the biometrics are coming from a live human (pulse, skin galvanic response, ability to perform gestures, heat maps, depth sensing, internal skin structure, etc)
 - Software: detecting spoofing artifacts in images, analysis of sweat pores in fingerprints, 3D image analysis, color and motion analysis
 - Impressive array of techniques exist in literature...are they being applied to real-world mobile devices?

Novel Biometric Modalities

- Develop other modalities that are naturally difficult to spoof?
 - Brainwaves?
 - DNA?
 - Behavioral biometrics?
 - Cardiac Characteristics?
- Emerging research area

- Combine the strengths of multiple biometrics!
- ECSCYBER researchers specialize in this area
- Key approach: combine features from multiple modalities to form a new modality with features from multiple:
 - Attacker needs to spoof multiple modalities (...but there are pitfalls)
 - More identifying information is required to prove identity
 - More robust verification accuracy in uncontrolled conditions (e.g., skewed camera angles, distorted images, noise interference...etc)

- What we have done?
 - Novel techniques for combining features from face and voice on mobile and IoT devices (past 5 years)
 - Classical machine learning, ensemble, and deep learning techniques
 - Deep learning techniques to combine features from face and ear
 - Optimizing efficiency of mobile biometric system through integration of Field Programming Gate Arrays (FPGAs)

- What we found?
 - Face in voice: Combining features from face and voice using Discriminant Correlation Analysis (DCA) resulted in 52.45% and 81.62% improvement when compared to using only face or only voice in real-world uncontrolled conditions that significantly distort biometric image quality. See below for details:
 - https://ieeexplore.ieee.org/abstract/document/8666599
 - https://search.proquest.com/openview/59f183486cb11685988188170f4c28c4/1?pq
 -origsite=gscholar&cbl=1976342
 - https://m-cacm.acm.org/magazines/1816/4/180169-multimodal-biometrics-for-enhanced-mobile-device-security/abstract
 - Face and Ear: significant improvements attained (publication in progress)

• Future:

- Combining 3D face and ear features
- IoT-specific techniques for multimodal biometrics
- Mobile device multimodal biometrics for applications in education

Our and publications for more information:

Book: Sinjini Mitra and Mikhail Gofman, eds. Biometrics in a Data Driven World: Trends, Technologies, and Challenges. CRC Press, 2016.

Book chapter: Mikhail Gofman, Sinjini Mitra, Yu Bai, and Yoonsuk Choi. "Security, Privacy, and Usability Challenges in Selfie Biometrics." In Selfie Biometrics, pp. 313-353. Springer, Cham, 2019.

- Conference and Journal Publications:
 - Please see

http://www.fullerton.edu/cybersecurity/research/publications.php
for a complete list

Don't Forget: Research Involvement is a HIP

- This work involved more than 25 graduate and undergraduate students!
- Experiences gained from research involvement resulted in students receiving jobs in:
 - Amazon
 - PayPal
 - MITRE
 - Raytheon
 - Pursuing Ph.Ds.

Thank You! Questions?